Abstract
Neuroinflammation is a hallmark of many neurodegenerative diseases such as Alzheimer’s and Parkinson’s. In the brain, inflammation is most often caused by a special type of brain immune cell called microglia. Depending on the type of damage the brain has sustained, the microglia can either enter into a pro-inflammatory state known as M1, or an anti-inflammatory state known as M2. In neurodegenerative diseases, either state can become chronic. One way this could happen is through Mitochondrial Dysfunction Associated Senescence (MiDAS), a form of cellular senescence arising from a feedback loop in which mitochondria stay in a hyperfused network for too long and cannot produce a sufficient amount of ATP to exit hyperfusion. The present study proposes a Boolean model of the MiDAS feedback loop, an in silico method that investigates the cellular conditions under which MiDAS can occur. The results show that MiDAS does not occur during a moderate amount of DNA damage, as well as a normal G1/S phase transition. MiDAS does occur from a high amount of DNA damage perpetuated by an abundance of Reactive Oxygen Species (ROS) but can be rescued by the knockdown or overexpression of several proteins and molecules involved in MiDAS. These results indicate several possibilities of further study that could ultimately lead to better treatments for neuroinflammation.
Advisor
Regan, Erzsébet
Department
Neuroscience
Recommended Citation
Fleig, Katherine H., "An Overworked Powerhouse: A Boolean Model of Mitochondrial Dysfunction Associated Senescence in the Context of Aging Microglia" (2023). Senior Independent Study Theses. Paper 10683.
https://openworks.wooster.edu/independentstudy/10683
Disciplines
Molecular and Cellular Neuroscience | Nervous System Diseases | Systems Biology | Systems Neuroscience
Keywords
Mitochondria, Neurodegenerative Diseases, Microglia, Boolean Modeling, Neuroscience
Publication Date
2023
Degree Granted
Bachelor of Arts
Document Type
Senior Independent Study Thesis
© Copyright 2023 Katherine H. Fleig