Ionizing radiation is connected to neurocognitive difficulties experienced by childhood brain cancer survivors. The cellular and molecular bases of the patients’ altered cognitive function following radiotherapy have been studied but are not known in their entirety. A family of small G proteins, Rho GTPases, are potential mediators of the effects of radiation in the post-mitotic neuron. The present paper used a Förster Resonance Energy Transfer (FRET) assay to examine activation of Rho GTPases and morphological changes of dendritic spines in cultured hippocampal neurons immediately post-radiation. The results of the study indicate a significant decrease in the diameter of dendritic spines of the neurons, but no change in spine volume. There is no significant change in the activation of the RhoA GTPase following radiation treatment. These findings indicate that hippocampal spines are elongated acutely post-treatment, implying loss of synapse density and spine maturity, but that Rho GTPases are unlikely the mediators of this morphological change.


Stavnezer, Amy Jo




Neuroscience and Neurobiology


radiation, neurocognitive impairment, Rho GTPases, FRET, childhood brain cancer

Publication Date


Degree Granted

Bachelor of Arts

Document Type

Senior Independent Study Thesis



© Copyright 2018 Matea Paveskovic