Evolutionary algorithms are used a lot to solve non-polynomial problems. This works especially well since it has already been shown that they are able to find near-optimal solutions. This project will look focus on the genetic algorithm (GA) and the population based incremental learning algorithm (PBIL). This paper will then take the PBIL and add functionality to the PBIL to create the population based incremental schema learning (PBISL) algorithm which uses the notion of schemata from the GA. The objective of this paper is to create a PBISL and compare it against a PBIL and a genetic algorithm. This comparison will be done by comparing the results of different problems like the parity, 0/1 knapsack and the traveling salesman problem.


Brown, Dale A.


Computer Science

Publication Date


Degree Granted

Bachelor of Arts

Document Type

Senior Independent Study Thesis



© Copyright 2008 Matthew S. Dominski