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Abstract

Differential equations are vitally important in numerous scientific fields.

Oftentimes, they are quite challenging to solve. This Independent Study examines

one method for solving differential equations. Norwegian mathematician Sophus

Lie developed this method, which uses groups of symmetries, called Lie groups.

These symmetries map one solution curve to another. They can be used to

determine a canonical coordinate system for a given differential equation. Writing

the differential equation in terms of a different coordinate system can make the

equation simpler to solve. This I.S. explores techniques for finding a canonical

coordinate system and using it to solve a given differential equation. Several

examples are presented.
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CHAPTER 1

Introduction and Symmetries

1.1 Introduction

Differential equations are used to model numerous phenomenon in our world, from

the spread of infectious diseases to the behavior of tidal waves. Naturally, the study

of differential equations plays a vital role in the physical sciences. These equations

are often non-linear and solving them requires unique and creative methods.

This Independent Study will explore the use of Lie symmetry groups for solving

differential equations. Sophus Lie (pronounced Lee), a Norwegian mathematician

born in 1842, developed these techniques [3]. He was the first to discover the

relationship between group theory and traditional methods for finding solution

curves [3]. His ground-breaking discovery involved using groups of point

transformations to solve differential equations [3].

This IS is the culmination of a two-semester exploration of Lie symmetry groups

and their role in solving differential equations. Chapters 1, 2, and 3 explore first

order differential equations. In Chapter 1, we define some basic terminology and

familiarize the reader with a few examples. Chapter 2 includes a variety of

1



2 1. Introduction and Symmetries

examples that illustrate how Lie Symmetries are utilized to solve both linear and

non-linear first order differential equations. The third chapter will define the

infinitesimal generator and discuss its role. The information presented in Chapter 3

can be extended for working with higher order differential equations. Chapter 4

discusses higher order differential equations and uses Lie Symmetry groups in a

preliminary example.

1.2 Symmetries

The information in this chapter is adapted from Hydon’s Symmetry Methods for

Differential Equations: A Beginner’s Guide [2] and Starrett’s “Solving Differential

Equations by Symmetry Groups" [5]. Material presented includes an introduction

to symmetry and Lie groups, along with preliminary examples. These examples

come from both sources.

The properties of symmetries provide a unique tool for solving differential

equations. A symmetry is a rigid mapping from an object to itself or another object.

It must preserve the structural properties of the original item. These mappings

include rotations, translations, and reflections. One simple example is S3, the group

of symmetries of a triangle. A group is a set that is closed under a binary operation.

Groups are associative under the operation, contain an identity element, and

inverses. The group S3 is a group of permutations that is closed under composition.

Figure 1.1 demonstrates one of these rotations. The permutation is denoted (123).

This means that 1 is mapped to 2, 2 is mapped to 3 and 3 is mapped to 1. Notice

that the mapping preserves the structure of the triangle.

This demonstrates a discrete symmetry. The group S3 has 6 elements - 6 possible

symmetries of an equilateral triangle. This IS deals with Lie symmetries, which are
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Figure 1.1: Rotating symmetry of a triangle

not discrete.

Symmetries preserve structure. In other words, they must satisfy the symmetry

condition. In the previous example, satisfying the symmetry condition means that

the mapping is a bijection from an equilateral triangle to itself. Applied to the

solution curves of a differential equation, satisfying the symmetry condition

requires that a symmetry maps one solution curve to another. The resulting

solution curve must also satisfy the original differential equation. The symmetry

condition is crucial to solving differential equations with symmetry methods. We

will discuss this in greater detail in Section 1.4.

As a simple example of symmetry in differential equations, consider the following

ordinary differential equation (ODE),

dy
dx
= 0. (1.1)

As one would expect the solutions to this equation are horizontal lines, seen in

Figure 1.2.

Lie symmetries are point transformations [6] that map a point on a solution curve in
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Figure 1.2: Solutions to Equation (1.1)

R2 to another point on a solution curve in R2. For a parameter λ ∈ R, a Lie

symmetry looks like:

Pλ : (x, y) #→ (x̂, ŷ).

The identity, I in a Lie symmetry group maps a point to itself.

For example, one symmetry of Equation (1.1) is

(x̂, ŷ) = (x, y + λ). (1.2)

This symmetry will map a point (x, y) on one solution curve to a point (x̂, ŷ) on

another. Some symmetries are trivial. A trivial symmetry maps every solution curve

to itself. For instance, a trivial symmetry of Equation (1.1) is:

(x̂, ŷ) = (x + λ, y).

This symmetry does not map to another solution curve, because the point (x̂, ŷ) is

on the same solution curve as (x, y).
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1.3 Lie Groups

A Lie group is a group of symmetries with a parameter λ ∈ R. Lie group symmetries

are functions from R2 to R2. Let A be a set of points (x, y) ∈ R2 and let B be a set of

points (x̂, ŷ) ∈ R2. A Lie group Pλ maps A to B:

Pλ : A #→ B.

Here, x̂ is a function of x, y, and λ and ŷ is also a function of x, y, and λ. Therefore,

a Lie group can also be written as

Pλ : (x, y) #→ ( f (x, y,λ), g(x, y,λ)).

Lie groups must meet the following restrictions:

1) Pλ is one-to-one and onto

2) Pλ2 ◦ Pλ1 = Pλ2+λ1

3) P0 = I

4) ∀λ1 ∈ R,∃λ2 = −λ1 such that Pλ2 ◦ Pλ1 = P0 = I

Equation (1.2) furnishes a simple example of a Lie group. The following is another

example of a Lie group that is a symmetry for Equation (1.1):

Pλ : (x, y) #→ (x̂, ŷ) = (x, eλy). (1.3)

This is a symmetry because it maps a point on one solution curve of Equation (1.1)

to a point on another solution curve of Equation (1.1). We will show that it is a

symmetry for each fixed λ. It satisfies all of the properties of Lie symmetry groups:

1) The mapping (1.3) is one-to-one and onto.

This means that if two points (x1, y1) and (x2, y2) map to the same (x̂, ŷ) then

(x1, y1) = (x2, y2) and for every (x̂, ŷ) on the interval that (1.3) is defined (in this case,
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the entirety of R2), there is a point (x, y) that maps to (x̂, ŷ). Consider the mapping

(1.3) for a fixed λ.We can clearly see that it is both one-to-one and onto for x̂

because x̂ = x. This is the identity mapping. Now consider ŷ = eλy. If we have

eλy1 = eλy2 = ŷ, we can divide by eλ to see that y1 = y2. To show that there is a y

that corresponds with every ŷ in R, we can divide ŷ by eλ. Then y = e−λ ŷ.

Therefore, the mapping (1.3) is one-to-one and onto.

2) The group satisfies the composition property of Lie groups.

Suppose we take Pλ2 ◦ Pλ1 . Apply Pλ1 to the point (x, y) to get

(x̂1, ŷ1) = (x, eλ1 y).

Then apply Pλ2 to (x, eλ1 y) to get

(x̂2, ŷ2) = (x, eλ2eλ1 y)

= (x, eλ2+λ1 y).

This is what we get when we apply Pλ2+λ1 , and therefore the composition property

is satisfied.

3) P0 is the identity:

(x̂, ŷ) = (x, e0y) = (x, y).

4) For all λ1 ∈ R there is an inverse. When we apply P−λ1 ◦ Pλ1 , we get

(x̂, ŷ) = (x, e−λ1(eλ1 y))

= (x, eλ1−λ1 y)

= (x, y).
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Therefore, all of the Lie group properties are satisfied, and the mapping (1.3) is a

symmetry group for Equation (1.1).

Lie groups might not necessarily be defined over the entire real number plane. We

will be dealing with local groups. The group action of a local group is not necessarily

defined over the entire real number plane [5]. Consider the next example.

Example 1.3.1. The following Lie group is only defined if λ < 1
x when x > 0 and

λ > 1
x when x < 0:

Pλ : (x, y) #→ (x̂, ŷ) =
( x
1 − λx

,
y

1 − λx

)
. (1.4)

We can see at a glance that if λ = 1
x , Pλ is undefined. We can verify that the identity

for Pλ is λ = 0:

P0 : (x, y) #→ (x̂, ŷ) =
(x
1
,

y
1

)
= (x, y).

Therefore, the interval on which Pλ is defined must include the origin. If x > 0 and

λ > 1
x , then the identity is not included in this interval. Similarly, if x < 0 and λ < 1

x

then the origin is not included. Therefore, in order for the group to have an identity,

it can only be defined when λ < 1
x for x > 0 and λ > 1

x for x < 0. This means that, for

a fixed λ, the domain of Pλ is 1
−λ < x < 1

λ and y ∈ R. The range is 1
−2λ < x̂ and ŷ ∈ R.

We can also verify that the Lie group (1.4) satisfies the other three Lie group

properties.

1) Pλ is one-to-one and onto. We can show that the mapping (1.4) is one-to-one. If

(x1, y2) and (x2, y2) both map to the same (x̂, ŷ) then

x̂ =
x1

1 − λx1
=

x2

1 − λx2
.
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When we cross multiply we get

x1 − λx1x2 = x2 − λx1x2.

And therefore, x1 = x2. Similarly,

ŷ =
y1

1 − λx1
=

y2

1 − λx2
.

We have already shown that x1 = x2 therefore, y1 = y2. Thus (1.4) is one-to-one.

Now we can show that (1.4) is onto. Consider x̂:

x̂ =
x

1 − λx
.

We can rewrite this equation as:

x = (1 − λx)x̂

x − λxx̂ = x̂

x =
x̂

1 − λx̂
.

Now consider ŷ:

ŷ =
y

1 − λx
.

We can rewrite this as

y = (1 − λx)ŷ = ŷ − λxŷ

= ŷ − λŷ
( x̂
1 − λx̂

)
=

ŷ
1 − λx̂

.

Therefore, there is a point (x, y) that corresponds to every point (x̂, ŷ) so the
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mapping is onto.

2) The group satisfies the composition property.

Suppose we take Pλ2 ◦ Pλ1 . The domain of this composition is 1
−(λ1+λ2) < x < 1

(λ1+λ2)

and y ∈ R. The range is 1
−2(λ1+λ2) < x̂ and ŷ ∈ R. Apply Pλ1 to (x, y) to get

(x̂1, ŷ1) =
( x
1 − λ1x

,
y

1 − λ1x

)
.

Then we can apply Pλ2 to (x̂1, ŷ1) to find (x̂2, ŷ2). For simplicity, we will compute x̂2

first:

x̂2 =
x̂1

1 − λ2(x̂1)
=

x
1−λ1x

1 − λ2

(
x

1−λ1x

)

=
x

1 − λ1x
· 1

1−λ1x−λ2x
1−λ1x

=
x

1 − λ1x
· 1 − λ1x

1 − λ1x − λ2x

=
x

1 − (λ1 + λ2)x
.

Then we will compute ŷ2:

ŷ2 =
ŷ1

1 − λ2(x̂1)
=

y
1−λ1x

1 − λ2

(
x

1−λ1x

)

=
y

1 − λ1x
· 1

1−λ1x−λ2x
1−λ1x

=
y

1 − λ1x
· 1 − λ1x

1 − λ1x − λ2x

=
y

1 − (λ1 + λ2)x
.

Therefore, Pλ2 ◦ Pλ1 yields

(x̂2, ŷ2) =
(

x
1 − (λ1 + λ2)x

,
y

1 − (λ1 + λ2)x

)
.
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Similarly, if we apply Pλ1+λ2 to (x, y), we get

(x̂, ŷ) =
(

x
1 − (λ1 + λ2)x

,
y

1 − (λ1 + λ2)x

)
.

Therefore, the second Lie group property is satisfied.

3) We have already verified that P0 = I, the identity.

4) For all λ1 ∈ R, there exists an inverse. When we apply P−λ1 ◦ Pλ1 , we get

(x̂, ŷ) =
(

x
1 − (λ1 − λ1)x

,
y

1 − (λ1 − λ1)x

)
= (x, y).

Therefore, the mapping (1.4) is a Lie group, defined only when λ < 1
x when x > 0

and λ > 1
x when x < 0.

1.4 The Symmetry Condition

The total derivative operator is important for understanding the symmetry condition.

The total derivative operator is:

Dx =
∂
∂x
+

dy
dx
∂
∂y
+

d2y
dx2

∂
∂y′
.

First, consider an example that demonstrates how the total derivative operator

works.

Example 1.4.1. We will use the derivative operator to show that the family of

ellipses
x2

a2 +
y2

b2 = c2 (1.5)

satisfies the differential equation

y′′ =
y′(y − y′x)

yx
. (1.6)



1.4. The Symmetry Condition 11

First, apply the total derivative operator to Equation (1.5):

2x
a2 + y′

(
2y
b2

)
= 0.

Then divide by 2, and rewrite the equation:

(1
x

) (x2

a2

)
+ y′
( y
b2

)
= 0.

From Equation (1.5), we know that x2

a2 = c2 − y2

b2 . When we substitute this in, we get

(1
x

) (
c2 − y2

b2

)
+ y′
( y
b2

)
= 0.

Next, multiply by x

c2 − y2

b2 + y′
( yx

b2

)
= 0.

Next, apply the total derivative operator again:

y′y
b2 + y′

(−2y
b2 +

y′x
b2

)
+ y′′

( yx
b2

)
= 0.

Then multiply by b2:

y′y + y′(−2y + y′x) + y′′(yx) = 0.

From here, we can simplify to get

y′′ =
y′(y − y′x)

yx
.

In general, we are working with differential equations of the form:

dy
dx
= ω(x, y). (1.7)
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In order to satisfy the symmetry condition, the point (x̂, ŷ) must also be on a

solution curve to the differential equation (1.7):

dŷ
dx̂
= ω(x̂, ŷ). (1.8)

Written with the derivative operator, this looks like:

dŷ
dx̂
=

Dxŷ
Dxx̂

=
ŷx +

dy
dx ŷy

x̂x +
dy
dx x̂y

= ω(x̂, ŷ).

From Equation (1.7), we know that dy
dx = ω(x, y). Therefore:

ŷx + ω(x, y)ŷy

x̂x + ω(x, y)x̂y
= ω(x̂, ŷ). (1.9)

Example 1.4.2. We will show that the differential equation

dy
dx
=

1 − y2

x
(1.10)

has a symmetry

(x̂, ŷ) = (eλx, y). (1.11)

Substituting this into the symmetry condition, we want to get:

ŷx +
dy
dx ŷy

x̂x +
dy
dx x̂y

=
1 − ŷ2

x̂

or
ŷx +

1−y2

x ŷy

x̂x +
1−y2

x x̂y

=
1 − ŷ2

x̂
. (1.12)
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On the right side of Equation (1.12), we get:

1 − ŷ2

x̂
=

1 − y2

eλx
.

On the left side, because ŷx = 0 and x̂y = 0, we get:

ŷx +
1−y2

x ŷy

x̂x +
1−y2

x x̂y

=

1−y2

x

eλ

=
1 − y2

eλx
.

Therefore, the symmetry condition is satisfied and (1.11) is a symmetry of (1.10).

Example 1.4.3. In the following example, we will demonstrate that the symmetry

(x̂, ŷ) = (x, y + λe
∫

F(x)dx) (1.13)

satisfies the differential equation

dy
dx
= F(x)y + G(x).

We can test that the symmetry (1.13) meets the symmetry condition. First, we must

calculate ŷx, ŷy, x̂x, and ŷx:

ŷx = F(x)λe
∫

F(x)dx

ŷy = 1

x̂x = 1

and

x̂y = 0.

Beginning with the left side of equation (1.9) and using the partial derivatives
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calculated above, we obtain

dŷ
dx̂
= F(x)λe

∫
F(x)dx + F(x)y + G(x)

= F(x)
(
y + λe

∫
F(x)dx
)
+ G(x).

On the right side, we get

ω(x̂, ŷ) = F(x̂)ŷ + G(x̂)

= F(x)
(
y + λe

∫
F(x)dx
)
+ G(x).

Example 1.4.4. In some cases, it is possible to use Equation (1.9) to determine the

symmetries of a differential equation. For example, consider

dy
dx
= y. (1.14)

We want to find a symmetry of this equation that satisfies Equation (1.9). In other

words, the symmetry should satisfy the following:

ŷx + yŷy

x̂x + yx̂y
= ŷ.

In order to find the symmetry, one can solve this equation for x̂ and ŷ. To make this

easier, one can make assumptions about x̂ and ŷ. Let’s assume that x̂ is a function of

x and y and ŷ maps to y

(x̂, ŷ) = (x̂(x, y), y).

Then Equation (1.9) looks like:

y
x̂x + yx̂y

= y.
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Multiply by x̂x + yx̂y on both sides to get

y = y(x̂x + yx̂y).

As long as y ! 0, then

1 = x̂x + yx̂y.

We want to find a symmetry that will satisfy Equation (1.9). The following

symmetry does so:

(x̂, ŷ) = (x + λ, y),λ ∈ R

because x̂x = 1 and x̂y = 0.

1.5 A Change in Coordinates

Oftentimes, a differential equation that is difficult to solve in Cartesian coordinates

becomes simpler in a different coordinate system. Any ODE that has a symmetry of

the form:

(x̂, ŷ) = (x, y + λ) (1.15)

can be reduced to quadrature. This means that the differential equation can be

solved by an integrating technique. For all λ in some neighborhood of zero, the

symmetry condition reduces to:

ω(x, y) = ω(x, y + λ). (1.16)

We will differentiate Equation (1.16) with respect to λ at λ = 0. On the left side of
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the equation, we get ∂∂λω(x, y) = 0. On the right side, we can use the chain rule to

differentiate ω(x, y + λ) with respect to λ and therefore,

0 =
∂ω
∂x
∂x
∂λ
+
∂ω
∂y
∂y
∂λ
.

From Equation (1.16),
∂x
∂λ
= 0

and
∂y
∂λ
= 1.

Therefore, we have:

0 =
∂ω
∂y
.

Thus the original ODE is a function of x only and then

dy
dx
= ω(x)

and

y =
∫
ω(x)dx + c.

While a symmetry of the form in Equation (1.16) does not exist in Cartesian

coordinates for all differential equations (that would be nice!), it is possible to find

such a symmetry in a different coordinate system.

Example 1.5.1. The following differential equation becomes much simpler to

integrate when written in polar coordinates

dy
dx
=

y3 + x2y − x − y
x3 + xy2 − x + y

. (1.17)



1.5. A Change in Coordinates 17

If we let

x = r cosθ, y = r sinθ (1.18)

then

dx =
∂x
∂r

dr +
∂x
∂θ

dθ = cosθdr − r sinθdθ

and

dy =
∂y
∂r

dr +
∂y
∂θ

dθ = sinθdr + r cosθdθ.

We will simplify the right side of Equation (1.17) first, then substitute dy
dx on the left.

Substituting with Equations (1.18) to the right side, we get:

dy
dx
=

r3 sin3 θ + r3 cos2 θ sinθ − r sinθ − r cosθ
r3 cos3 θ + r3 cosθ sin2 θ − r cosθ + r sinθ

.

This simplifies to:

dy
dx
=

r3 sinθ(sin2 θ + cos2 θ) − r(cosθ + sinθ)
r3 cosθ(cos2 θ + sin2 θ) + r(sinθ − cosθ)

=
r2 sinθ − cosθ − sinθ
r2 cosθ + sinθ − cosθ

=
sinθ(r2 − 1) − cosθ
cosθ(r2 − 1) + sinθ

. (1.19)

Now substitute dy
dx from Equation (1.19) above. The goal is to write the equation in

terms of dr
dθ :

dy
dx
=

sinθdr + r cosθdθ
cosθdr − r sinθdθ

=
sinθ(r2 − 1) − cosθ
cosθ(r2 − 1) + sinθ

.

Now one can cross multiply and solve the equation for dr
dθ :

(cosθ(r2 − 1)+ sinθ)(sinθdr+ r cosθdθ) = (sinθ(r2 − 1)− cosθ)(cosθdr− r sinθdθ).
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When we multiply through, we get

sinθ cosθ(r2 − 1)dr + r cos2 θ(r2 − 1)dθ + sin2 θdr + r cosθ sinθdθ

= sinθ cosθ(r2 − 1)dr − r sin2 θ(r2 − 1)dθ − cos2 θdr + r sinθ cosθ.

The sinθ cosθ(r2 − 1)dr term cancels, as well as the r cosθ sinθdθ term, to get:

r cos2 θ(r2 − 1)dθ + sin2 θdr = −r sin2 θ(r2 − 1)dθ − cos2 θdr.

This simplifies further:

dr = −r cos2 θ(r2 − 1)dθ − r sin2 θ(r2 − 1)dθ

which implies
dr
dθ
= −(r2 − 1)r(cos2 θ + sin2 θ)

and therefore:
dr
dθ
= r(1 − r2). (1.20)

This equation is separable in this coordinate system:

dr
r(1 − r2)

= dθ.

This requires the method of partial fractions to integrate:

∫
1
r

dr − 1
2

∫
1

1 + r
dr +

1
2

∫
1

1 − r
dr = θ.

When we integrate we get:

ln r − 1
2

ln(1 + r) − 1
2

ln(1 − r) = θ.
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and

ln
r√

1 − r2
= θ.

Equation (1.20) has the symmetry

(r̂, θ̂) = (r,θ + λ)

which can be verified with the symmetry condition:

dr̂
dθ̂
=

r̂θ + dr
dθ r̂r

θ̂θ + dr
dθθ̂r

= r̂(1 − r̂2).

Figure 1.3 shows some of the solution curves for Equation (1.20). The solution

curves are rotational symmetries. When written in polar coordinates, the symmetry

for Equation (1.20) indicates that the rotational symmetries are translations in θ.

Figure 1.3: Solutions to Equation (1.20)
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1.6 Orbits

Orbits are an essential tool for solving differential equations using symmetry

methods. Suppose there is a point A on a solution curve to a differential equation.

Under a given symmetry, the orbit of A is the set of all points that A can be mapped

to for all possible values of λ.

Example 1.6.1. Consider the differential equation discussed in Section 1.2:

dy
dx
= 0.

The orbits for the points on the solution curves of this differential equation are

vertical lines under the symmetry

(x̂, ŷ) = (x, y + λ).

For instance, under the symmetry, the orbit of the point (1, 0) includes

{(1, 1), (1, 2), (1, 3), ...}.

Figure 1.4 shows the orbit of the point (1, 0) under the symmetry (x̂, ŷ) = (x, y + λ).

Example 1.6.2. We have already seen a symmetry of Equation (1.17) when the

equation is expressed in polar coordinates. In Cartesian coordinates, one symmetry

of Equation (1.17) is

(x̂, ŷ) = (x cosλ − y sinλ, x sinλ + y cosλ). (1.21)

The orbits of the points on the solution curves of Equation (1.17) are circles. For a
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Figure 1.4: Solutions to Equation (1.1) and orbit of the point (1, 0)

given point (x0, y0) ! (0, 0), the orbit of the point is

r2 = x2
0 + y2

0.

To verify this, we will consider x̂2 + ŷ2. Under the symmetry (1.21):

x̂2 + ŷ2 = (x cosλ − y sinλ)2 + (x sinλ + y cosλ)2

= x2 cos2 λ + x2 sin2 λ + y2 cos2 λ + y2 sin2 λ = x2 + y2.

We see that x̂2 + ŷ2 = x2 + y2. Now we can convert x2 + y2 to polar coordinates. Let

x = r cosθ and y = r sinθ to get

x2 + y2 = r2 cos2 θ + r2 sin2 θ = r2

and therefore

x̂2 + ŷ2 = x2 + y2 = r2.

Thus the new point (x̂, ŷ) and the original point (x, y) are points on a circle with
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radius r. We can also see that the orbits of the points on the solution curves of

Equation (1.17) are circles by looking at a symmetry of Equation (1.17) in polar

coordinates. We saw in Section 1.5 that one symmetry is

(r̂, θ̂) = (r,θ + λ).

The radius remains constant as the symmetry takes one solution curve to another.

In Chapter 1 we have seen several examples of Lie symmetry groups and discussed

the significance of using a canonical coordinate system to solve first order

differential equations. An ODE that has a symmetry of the form

(x̂, ŷ) = (x, y + λ)

can be reduced to quadrature. However, a symmetry of this form does not

necessarily exist in Cartesian coordinates for a given differential equation, hence

the importance of a canonical coordinate system. The next chapter will explain how

to find a new coordinate system and how to use it to solve first order ODE’s.



CHAPTER 2

UnearthingNew Coordinates

The material presented in this chapter is adapted from Chapter Two of Symmetry

Methods for Differential Equations: A Beginner’s Guide [2] and “Solving Differential

Equations by Symmetry Groups" [5]. The definitions and examples presented are

adapted from these sources. This chapter will explain how to find canonical

coordinates and how to use them to solve an ordinary differential equation.

As λ ∈ R varies under a given symmetry Pλ : (x, y) #→ (x̂, ŷ), a point A travels along

its orbit. The tangent vectors to an orbit under a given symmetry are crucial to

determining the new coordinate system (r(x, y), s(x, y)). This chapter explains how

to find these tangent vectors, their importance, and how to use them to solve a

differential equation by symmetry methods.

2.1 The Tangent Vectors

The tangents to the orbit at any point (x̂, ŷ) are described by the tangent vector in

the x direction, denoted ξ(x̂, ŷ) and the tangent vector in the y direction, denoted

η(x̂, ŷ). Thus

dx̂
dλ
= ξ(x̂, ŷ)

23
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and
dŷ
dλ
= η(x̂, ŷ).

At the initial point (x, y), λ is equal to 0. Therefore

( dx̂
dλ

∣∣∣∣∣
λ=0
,

dŷ
dλ

∣∣∣∣∣
λ=0

)
= (ξ(x, y), η(x, y)).

As we will demonstrate in Section 2.2, the tangent vectors ξ(x, y) and η(x, y) can be

used to find a simplifying coordinate system. However, ξ(x, y) and η(x, y) can

sometimes be used to find solution curves without the use of different coordinates.

The tangent vectors are useful for finding invariant solution curves. An invariant

solution curve is always mapped to itself under a symmetry. The points on an

invariant solution curve are mapped either to themselves or to another point on the

same curve [2]. Therefore, the orbit of a noninvariant point on an invariant solution

curve is the solution curve itself. If a solution curve is invariant that means that the

derivative at the point (x, y) will point in the same direction as the tangent vectors

to the orbit [2]. As λ varies, the point is mapped to another point on the same

solution curve, rather than a different solution curve. Therefore

dy
dx
= ω(x, y) =

η(x, y)
ξ(x, y)

.

The characteristic, Q is defined by Hydon [2] as

Q(x, y, y′) = η(x, y) − y′ξ(x, y). (2.1)

Because dy
dx = ω(x, y), we can rewrite Equation (2.1) as the reduced characteristic Q̄:

Q̄(x, y) = η(x, y) − ω(x, y)ξ(x, y). (2.2)
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If, under a given symmetry, the reduced characteristic equals 0, then the solution

curve is invariant under that symmetry.

Example 2.1.1. The symmetry

(x̂, ŷ) = (eλx, e(eλ−1)xy) (2.3)

acts trivially on
dy
dx
= y. (2.4)

In other words, every solution curve is invariant under the symmetry (2.3). To

show this, we will use the reduced characteristic, Equation (2.2). First we must find

ξ(x, y) and η(x, y). To get ξ(x̂, ŷ), take the derivative of x̂ with respect to λ:

ξ(x̂, ŷ) = eλx.

To find ξ(x, y), evaluate ξ(x̂, ŷ) at λ = 0 :

ξ(x, y) = x.

To obtain η(x̂, ŷ) take the derivative of ŷ with respect to λ:

η(x̂, ŷ) = eλxe(eλ−1)xy.

To find η(x, y), evaluate η(x̂, ŷ) at λ = 0 :

η(x, y) = xy.

Substituting these into the reduced characteristic, Q̄, we get
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xy − xy = 0.

Therefore, the symmetry (2.3) acts trivially on Equation (2.4) because the reduced

characteristic equals 0.

Example 2.1.2. Consider the Riccati equation:

dy
dx
= xy2 − 2y

x
− 1

x3 , x ! 0. (2.5)

It has the following symmetry:

(x̂, ŷ) = (eλx, e−2λy). (2.6)

The tangent vectors are

ξ(x, y) = x

and

η(x, y) = −2y.

The reduced characteristic is

Q̄(x, y) = −2y −
(
xy2 − 2y

x
− 1

x3

)
x

= −x2y2 +
1
x2 . (2.7)

Equation (2.7) is equal to 0 when y = ±x−2. Therefore, the symmetry (2.6) acts

nontrivially on all the solution curves of (2.5) except for y = x−2 and y = −x−2. This

example will be revisited in Section 2.3.
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2.2 Canonical Coordinates

The goal of changing to a different coordinate system is to make a differential

equation easier to solve. As demonstrated in Section 1.3, if a differential equation

has a symmetry of the form

(x̂, ŷ) = (x, y + λ),

then it can be reduced to quadrature and can be solved by an integrating technique.

However, not all differential equations have a symmetry of this form in Cartesian

coordinates. Therefore, one can change to a new coordinate system in

(r(x, y), s(x, y)) to obtain a symmetry:

Pλ : (r, s) #→ (r̂, ŝ) = (r, s + λ).

The tangent vectors at (r, s) when λ = 0 are

dr̂
dλ

∣∣∣∣∣
λ=0
= 0 (2.8)

and
dŝ
dλ

∣∣∣∣∣
λ=0
= 1. (2.9)

Applying the chain rule to Equation (2.8) and Equation (2.9), we get

dr̂
dλ

∣∣∣∣∣
λ=0
=

dr̂
dx

dx
dλ

∣∣∣∣∣
λ=0
+

dr̂
dy

dy
dλ

∣∣∣∣∣
λ=0
=

dr
dx
ξ(x, y) +

dr
dy
η(x, y) = 0 (2.10)

and
dŝ
dλ

∣∣∣∣∣
λ=0
=

dŝ
dx

dx
dλ

∣∣∣∣∣
λ=0
+

dŝ
dy

dy
dλ

∣∣∣∣∣
λ=0
=

ds
dx
ξ(x, y) +

ds
dy
η(x, y) = 1. (2.11)
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Equations (2.10) and (2.11) can also be written as [5]

rxξ(x, y) + ryη(x, y) = 0 (2.12)

and

sxξ(x, y) + syη(x, y) = 1. (2.13)

Equations (2.12) and (2.13) can be solved using the method of characteristics [5]. The

solutions to Equations (2.12) and (2.13), can be represented as surfaces, r(x, y) and

s(x, y), respectively. First consider Equation (2.12). This equation satisfies:

〈rx, ry,−1〉 ·〈 ξ, η, 0〉 = 0.

We know that the gradient of r(x, y) = z is 〈rx, ry,−1〉 and therefore, 〈rx, ry,−1〉 is a

normal vector to the surface r(x, y). Since the dot product 〈rx, ry,−1〉 ·〈 ξ, η, 0〉 = 0,

the vector 〈ξ(x, y), η(x, y), 0〉 is orthogonal to the normal vector. Thus

〈ξ(x, y), η(x, y), 0〉 is in the tangent plane to r(x, y).

Consider a parameterized curve, C on the surface r(x, y). Because 〈ξ(x, y), η(x, y), 0〉
is in the tangent plane to the surface r(x, y), 〈ξ(x(t), y(t)), η(x(t), y(t)), 0〉 is tangent to

C. Therefore, we can write the symmetric equations as

dx
dt
= ξ,

dy
dt
= η,

dz
dt
= 0.

These can also be written:
dx
ξ
=

dy
η
.

We can go through a similar process to find the symmetric equations for Equation
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(2.13):
dx
dt
= ξ,

dy
dt
= η,

dz
dt
= 1

and therefore
dx
ξ
=

dy
η
= dz.

In this case, we will rename z:

dx
ξ(x, y)

=
dy
η(x, y)

= ds. (2.14)

Now consider the function φ(x, y), the first integral of a differential equation:

dy
dx
= f (x, y). (2.15)

First integrals are nonconstant functions whose value is constant along solution

curves of Equation (2.15). Therefore, φ(x, y) = c, where c is a constant. Applying the

total derivative operator to φ(x, y), we get

φx + f (x, y)φy = 0,φy ! 0. (2.16)

If we divide Equation (2.10) by ξ(x, y), we get

dr
dx
ξ(x, y)
ξ(x, y)

+
dr
dy
η(x, y)
ξ(x, y)

= 0

and therefore

rx +
η(x, y)
ξ(x, y)

ry = 0.

Comparing this result to Equation (2.16), we find that r(x, y) is a first integral of

dy
dx
=
η(x, y)
ξ(x, y)

, ξ(x, y) ! 0. (2.17)
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Therefore, in order to find r, one can solve Equation (2.17). Because r(x, y) is a first

integral of Equation (2.17), r(x, y) equals the constant, c.

To find s, one can use Equation (2.14):

ds =
dy
η(x, y)

=
dx
ξ(x, y)

and therefore

s =
∫

dy
η(x, y)

=

∫
dx
ξ(x, y)

.

There is a special case when ξ(x, y) = 0. If ξ(x, y) = 0, then r = x and s =
∫ dy
η(x,y) .

The next example demonstrates how to find the canonical coordinates r(x, y) and

s(x, y) with a given one parameter Lie group.

Example 2.2.1. Consider the following one parameter Lie group:

(x̂, ŷ) = (eλx, ekλy), k > 0. (2.18)

To find the tangent vector ξ(x, y), first take the derivative of x̂(x, y) with respect to λ:

ξ(x̂, ŷ) = eλx. (2.19)

Then evaluate Equation (2.19) at λ = 0:

ξ(x, y) = x.

To find the tangent vector η(x, y), first take the derivative of ŷ(x, y) with respect to λ:

η(x̂, ŷ) = kekλy. (2.20)
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Then evaluate Equation (2.20) at λ = 0:

η(x, y) = ky.

Next, we use ξ(x, y) and η(x, y) to find r(x, y). Remember that r(x, y) is the first

integral of
dy
dx
=
η(x, y)
ξ(x, y)

=
ky
x
.

This equation is separable: ∫
dy
y
= k
∫

dx
x
.

Integrating this we get

ln y = ln xk + c0

which simplifies to

y = cxk.

When we solve for c, we get r(x, y) = y
xk .

To find s, use Equation (2.14) to get

s =
∫

dx
ξ(x, y)

=

∫
dx
x
.

Therefore s = ln x. So the canonical coordinates are

(r, s) =
( y
xk , ln x

)
.

Example 2.2.2. Consider the following one parameter Lie group:

(x̂, ŷ) =
(

x
(1 − λx)

,
y

(1 − λx)

)
. (2.21)
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We can start by finding the tangent vectors:

ξ(x̂, ŷ) =
x2

(1 − λx)2 (2.22)

and

η(x̂, ŷ) =
xy

(1 − λx)2 . (2.23)

Evaluating Equation (2.22) and (2.23) at λ = 0 results in:

(ξ(x, y), η(x, y)) = (x2, xy).

Therefore, we can integrate Equation (2.17) to find r(x, y):

dy
dx
=
η(x, y)
ξ(x, y)

=
y
x
.

This equation is separable: ∫
dy
y
=

∫
dx
x
.

When we integrate, we get:

ln y = ln x + c0.

Exponentiating and solving for r yields:

y = cx, c = r =
y
x
.

To find s:

s =
∫

dx
x2 =

−1
x
.

Therefore, the canonical coordinates are

(r, s) =
( y

x
,
−1
x

)
.
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The reader can see that the tangent vectors, rather than the symmetries themselves,

are used to find the canonical coordinates. This section and Section 2.1 explain how

to find the tangent vectors and use them when one knows the symmetry for a

differential equation. In practice the symmetry is often unknown. Section 2.4 will

explain how to find ξ(x, y) and η(x, y) without knowing the symmetry itself. Once

the tangent vectors and canonical coordinate system are determined, symmetries

can be reconstructed from the canonical coordinates. First, solve the canonical

coordinates r(x, y) and s(x, y) for x and y to get

x = f (r, s), y = g(r, s).

Then, x̂ and ŷ are

x̂ = f (r̂, ŝ) = f (r(x, y), s(x, y) + λ) (2.24)

and

ŷ = g(r̂, ŝ) = g(r(x, y), s(x, y) + λ). (2.25)

Example 2.2.3. We can find the symmetry associated with the following canonical

coordinates:

(r, s) =
(y

x
,
−1
x

)
.

Solving r and s for x and y, we get

x =
−1
s
, y =

−r
s
.
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Therefore

x̂ =
−1
ŝ
=

−1
s(x, y) + λ

=
−1

−1
x + λ

=
x

1 − λx
.

And

ŷ =
−r̂
ŝ
=
−r(x, y)
s(x, y)

=

−y
x

−1
x + λ

=
y

1 − λx
.

So the symmetry is

(x̂, ŷ) =
( x
1 − λx

,
y

1 − λx

)
.

2.3 A NewWay to Solve Differential Equations

Our goal is to write the differential equation in terms of r and s in order to solve it.

Then, we can put the solution back into Cartesian coordinates. To find ds
dr , apply the

total derivative operator to get

ds
dr
=

sx + ω(x, y)sy

rx + ω(x, y)ry
. (2.26)

This will result in an equation ds
dr written in terms of x and y. To write it in terms of r

and s, solve the coordinates r(x, y) and s(x, y) for x and y, then simplify. From there,

solve the equation and put the solution back into Cartesian coordinates.
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Example 2.3.1. Again, consider the Riccati Equation:

dy
dx
= xy2 − 2y

x
− 1

x3 , x ! 0. (2.27)

It has the following symmetry:

(x̂, ŷ) = (eλx, e−2λy).

This can be verified with the symmetry condition, Equation (1.9). First we will

calculate:

ŷx = 0, ŷy = e−2λ

and

x̂x = eλ, x̂y = 0.

Evaluating the left side of Equation (1.9) we get:

dŷ
dx̂
=

e−2λ(xy2 − 2y
x − 1

x3 )
eλ

=
1

e3λ

(
xy2 − 2y

x
− 1

x3

)

Evaluating the right side of Equation (1.9), we get:

dy
dx
= eλx(e−2λy)2 − 2e−2λy

eλx
− 1

(eλx)3 = e−3λxy2 − e−3λ
(

2y
x

)
− e−3λ

( 1
x3

)

=
1

e3λ

(
xy2 − 2y

x
− 1

x3

)
.

Thus the symmetry condition is satisfied for the symmetry (x̂, ŷ) = (eλx, e−2λy) of the

Riccati Equation. The tangent vectors for this symmetry are

ξ(x̂, ŷ) = eλx, ξ(x, y) = x
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and

η(x̂, ŷ) = −2e−2λy, η(x, y) = −2y.

We can find r using Equation (2.17):

dy
dx
=
η(x, y)
ξ(x, y)

=
−2y

x

This equation is separable and we can integrate it:

∫
1
y

dy = −2
∫

1
x

dx

and therefore

ln y = −2 ln x + c0.

When we exponentiate we get

y = cx−2.

Then we can solve for c to find r:

r = c = x2y.

We can find s:

ds =
dx
ξ(x, y)

=
dx
x

and therefore

s =
∫

dx
x
= ln x.

The canonical coordinates are

(r, s) = (x2y, ln x).
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We can write x and y in terms of r and s:

x = es

and

y = re−2s.

When we substitute the canonical coordinates into Equation (2.26), we get

ds
dr
=

1
x

2xy + dy
dx x2

=
1
x

2xy + x3y2 − 2xy − 1
x

=
1

x4y2 − 1
.

Then substitute in x = es and y = re−2s:

ds
dr
=

1
e4sr2e−4s − 1

=
1

r2 − 1
.

Then we can integrate. The equation

ds
dr
=

1
r2 − 1

is separable:

ds =
dr

r2 − 1

and therefore

s =
∫

dr
r2 − 1

.
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We can integrate this using partial fractions:

s =
1
2

∫
1

r − 1
dr − 1

2

∫
1

r + 1
dr

=
1
2

(ln(r − 1) − ln(r + 1)) + k0

=
1
2

ln
(r − 1
r + 1

)
+ k0.

Then substitute r = x2y and s = ln x:

ln x =
1
2

ln
(x2y − 1
x2y + 1

)
+ k0.

We can exponentiate to get

x = k

√
x2y − 1
x2y + 1

.

Then we square both sides:

x2 = k
x2y − 1
x2y + 1

.

Simplification yields:

x2(x2y + 1) = k(x2y − 1)

x4y + x2 = kx2y − k

x4y − kx2y = −k − x2.

The solution to Equation (2.27) is

y =
−k − x2

x4 − kx2 .

Recall from Section 2.1 that there are two invariant solution curves to the Riccati

equation under the symmetry (x̂, ŷ) = (eλx, e−2λy). They are y = x−2 and y = −x−2.
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We obtain y = −x−2 when k = 0 and y = x−2 comes from

lim
k→+∞

−k − x2

x4 − kx2 = x−2.

Figure 2.1 shows some solution curves of Equation (2.27), including the invariant

curves.

Figure 2.1: Solutions to the Riccati Equation

2.4 The Linearized Symmetry Condition

In all of the previous examples in this IS, the symmetry needed to solve a

differential equation has been given. However, in practice it is difficult to find a

symmetry that works for a given differential equation. In order to find a symmetry,

it is necessary to solve the symmetry condition, Equation (1.9):

ŷx + ω(x, y)ŷy

x̂x + ω(x, y)x̂y
= ω(x̂, ŷ).

This equation gives the symmetry (x, y) #→ (x̂, ŷ). If we could solve this equation for
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x̂ and ŷ then we could find the tangent vectors ξ and η and use them to find new

coordinates. However, this equation is often very difficult or impossible to solve.

Therefore, it is necessary to use a linearized symmetry condition to find ξ(x, y) and

η(x, y).

We can linearize the symmetry condition using a Taylor series expansion. We can

expand x̂, ŷ and ω(x̂, ŷ) around λ = 0.

x̂ = x + λξ(x, y) +O(λ2) (2.28)

ŷ = y + λη(x, y) +O(λ2) (2.29)

ω(x̂, ŷ) = ω(x, y) + λ(ωx(x, y)ξ(x, y) + ωy(x, y)η(x, y)) +O(λ2) (2.30)

Here, O(λ2) describes the error function for the Taylor series expansions of x̂, ŷ, and

ω(x̂, ŷ). Consider an error function for one of the Taylor series expansions above.

We will denote it e(λ). As λ gets closer to 0, the ratio e(λ)
λ2 approaches a constant, c. A

function e(λ) is O(λ2) if:

lim
λ→0

e(λ)
λ2 = c.

We ignore terms of (λ)2 or higher. For simplicity, ξ(x, y) will be denoted merely as ξ

and η(x, y) as η.

To obtain the linearized symmetry condition, substitute Equations (2.28), (2.29),

(2.30) into the symmetry condition, Equation (1.9). For simplicity purposes, we will

compute the numerator, dŷ, first, then the denominator, dx̂, before simplifying the

entire equation. From Equation (2.29), we compute

ŷx = ληx
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and

ŷy = 1 + ληy.

Therefore,

dŷ = ληx + ω(x, y) + ω(x, y)ληy

= ω + λ(ηx + ωηy)

And from Equation (2.28), we compute

x̂x = 1 + λξx

and

x̂y = λξy.

Therefore,

dx̂ = 1 + λξx + ω(x, y)λξy

= 1 + λ(ξx + ωξy).

Now, we obtain that

dŷ
dx̂
=
ω + λ(ηx + ωηy)
1 + λ(ξx + ωξy)

= ω(x̂, ŷ).

Substitute Equation (2.30) for ω(x̂, ŷ):

ω + λ(ηx + ωηy)
1 + λ(ξx + ωξy)

= ω + λ(ωxξ + ωyη).
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Then we multiply by the denominator to get:

ω + λ(ηx + ωηy) = (1 + λ(ξx + ωξy))(ω + λ(ωxξ + ωyη)).

Disregarding terms of λ2 or higher yields:

ω + λ(ηx + ωηy) = ω + λ(ωxξ + ωyη) + ωλ(ξx + ωξy).

Simplify further:

ηx + ωηy = ωxξ + ωyη + ωξx + ω2ξy.

This is the linearized symmetry condition:

ηx + (ηy − ξx)ω − ξyω2 = ξωx + ηωy. (2.31)

The next three examples demonstrate how to use the linearized symmetry

condition.

Example 2.4.1. Consider the equation,

dy
dx
=

y
x
+ x. (2.32)

Substitute Equation (2.32) into the linearized symmetry condition, Equation (2.31)

to get

ηx + (ηy − ξx)ω − ξyω2 − (ξωx + ηωy) = 0

ηx − ξy

( y
x
+ x
)2
+
(
ηy − ξx

) ( y
x
+ x
)
−
(
ξ
(
1 − y

x2

)
+ η
(1
x

))
= 0.

It is necessary to solve this equation for ξ and η. In its current form, this is a very
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difficult task. Therefore, we can make an ansatz (ansatz!) about ξ and η. Suppose

that ξ = 0 and η is a function of x only. Then we get

ηx −
η
x
= 0.

This differential equation is easily solved:

∫
dη
η
=

∫
dx
x

ln η = ln x + c0

η = cx.

Now we can find the canonical coordinates r and s. Recall from Section 2.2 that

when ξ(x, y) = 0, r = x. To find s we can solve

ds =
dy
η
.

Therefore

s =
∫

dy
cx
=

y
cx
.

Now set c = 1 to get

(r(x, y), s(x, y)) =
(
x,

y
x

)

and

sx =
−y
x2 , sy =

1
x
.

Now we can substitute r and s into Equation (2.26) to obtain

ds
dr
=

−y
x2 +

1
x ( y

x + x)
1

= 1.
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Therefore, s = r + k, where k is a constant. Substituting x and y back in, we get

y
x
= x + k.

and the general solution to Equation (2.32) is

y = x2 + kx.

Example 2.4.2. Consider the differential equation:

dy
dx
= e−xy2 + y + ex. (2.33)

We will use the linearized symmetry condition, Equation (2.31), to find the tangent

vectors ξ(x, y) and η(x, y). First, keep in mind that

ωx = −e−xy2 + ex

and

ωy = 2e−xy + 1.

We will make an ansatz about the form of ξ(x, y) and η(x, y). Suppose ξ = 1 and η is

a function of y only. Therefore, Equation (2.31) looks like

ηyω − ξωx − ηωy = 0

ηy(e−xy2 + y + ex) − (−e−xy2 + ex) − η(2e−xy + 1) = 0. (2.34)

Simplifying Equation (2.34) yields

e−xy(ηyy + y − 2η) + ex(ηy − 1) + ηyy − η = 0.
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Therefore, we know that

ηyy + y − 2η = 0, (2.35)

ηyy − η = 0, (2.36)

and

ηy − 1 = 0. (2.37)

Solving Equation (2.37),
dy
dη
= 1

we get η = y. This is consistent with the Equations (2.35) and (2.36). Now we can

find the canonical coordinates. To find r, solve

dy
dx
=
η
ξ
= y.

This is separable. Integrating, we get ln y = x + c0 which simplifies to

y = cex

and therefore,

r =
y
ex .

To find s:

s =
∫

dx = x.

Therefore, the canonical coordinates are

(r, s) =
( y
ex , x
)
.
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Substituting the canonical coordinates into Equation (2.26), we get:

ds
dr
=

1
−ye−x + e−x(e−xy2 + y + ex)

=
1

y2e−2x + 1
.

Therefore:
ds
dr
=

1
r2 + 1

. (2.38)

s =
∫

1
r2 + 1

dr = arctan(r)

x = arctan
( y
ex

)

and

y = tan(x)ex.

Example 2.4.3. Consider the following equation:

dy
dx
=

1 − y2

xy
+ 1. (2.39)

Here, we must make an (ansatz!) about the form of ξ and η. We will assume that

ξ = α(x) (2.40)

and

η = β(x)y + γ(x). (2.41)

Therefore, we have

ξx = α′, ξy = 0
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and

ηx = β′y + γ′, ηy = β.

We can substitute these assumptions into the linearized symmetry condition (2.31).

First compute ωx and ωy :

ωx =
y2 − 1

x2y

and

ωy =
(−2y)(xy) − x(1 − y2)

(xy)2 =
−2xy2 − x + xy2

(x2y2)

=
−x(1 + y2)

x2y2 =
−(1 + y2)

xy2 .

Then substitute Equation (2.40) and Equation (2.41) into Equation (2.31).

β′y + γ′ + (β − α′)
(

1 − y2

xy
+ 1
)
= α

(
y2 − 1

x2y

)
− (βy + γ)

(
1 + y2

xy2

)
(2.42)

Expanding and simplifying Equation (2.42) yields the following:

β′y + γ′ +
β − α′

xy
− (β − α′)y2

xy
+ β − α′ = αy2

x2y
− α

x2y
− (βy + γ)

xy2 − (βy + γ)y2

xy2

β′y + γ′ +
β − α′

xy
+

(α′ − β)y
x

+ β − α′ = αy
x2 −

α
x2y
− βy

xy2 −
γ

xy2 −
βy3

xy2 −
γy2

xy2

β′y + γ′ +
β − α′

xy
+

(α′ − β)y
x

+ β − α′ = αy
x2 −

α
x2y
− β

xy
− βy

x
− γ

xy2 −
γ
x
.

In comparing the powers of y, we get

y−2 : γ = 0
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y−1 :
β − α′

x
=
β

x
− α

x2

and

y0 : β = α′.

This results in the differential equation

α
x
+ α′ = 0. (2.43)

Equation (2.43) is separable. We get that

∫
dα
α
= −
∫

dx
x

and therefore

lnα = ln x−1 + k0.

Exponentiating, we get

α = kx−1.

Therefore,

β = α′ = −kx−2.

The tangent vectors are

(ξ, η) = (kx−1,−kx−2y).

We can use the tangent vectors ξ and η to find the new coordinates r and s. We

know that

dy
dx
=
η
ξ
=
−kx−2y

kx−1 =
−y
x
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Integrating, we get

ln y = − ln x + c0

and

y =
c
x
.

Therefore

r = c = xy.

We can also find s:

s =
∫

dx
ξ
=

∫
xdx =

1
2

x2.

The new coordinates are

(r, s) =
(
xy,

1
2

x2
)
.

Solving these for x and y, we get x =
√

2s and y = r√
2s

.

To get the differential equation written in the new coordinates, we will use the total

derivative operator:

ds
dr
=

sx + ωsy

rx + ωry

=
x

y + ( 1−y2+xy
xy )x

=
xy

1 + xy
.

Substituting in x =
√

2s and y = r√
2s

yields the following result:

ds
dr
=

r
1 + r

= 1 − 1
r + 1

.
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When we integrate this, we get

s =
∫

1dr −
∫

1
1 + r

= r − ln(1 + r).

Substituting s = 1
2x2 and r = xy, we find that the solution to Equation (2.39) is

1
2

x2 = xy − ln(1 + xy).

In this chapter, we have seen several examples illustrating how to find and use a

canonical coordinate system to solve first order differential equations. In the next

chapter, we will explore another tool, one that is useful for working with higher

order differential equations.



CHAPTER 3

Infinitesimal Generators

The material presented in this chapter is adapted from Differential Equations: Their

Solution Using Symmetries by Hans Stephani [6] and from Symmetry Methods for

Differential Equations: A Beginner’s Guide by Peter Hydon [2].

3.1 Infinitesimal Generator

The method described in Chapters 1 and 2 can be used to solve first order

differential equations. Many higher order differential equations can be reduced in

order with the use of infinitesimal generators [2]. For a one parameter Lie

symmetry group Pλ : (x, y) #→ (x̂, ŷ) there exists the tangent vectors dx̂
dλ |λ=0 = ξ(x, y)

and dŷ
dλ |λ=0 = η(x, y). The infinitesimal generator for the symmetry is the partial

differential operator

X = ξ
∂
∂x
+ η
∂
∂y
. (3.1)

Example 3.1.1. The following symmetry:

(x̂, ŷ) = (x + λ, y + λ)

has an infinitesimal generator

X =
∂
∂x
+
∂
∂y

51
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because ξ(x, y) = 1 and η(x, y) = 1.

Example 3.1.2. Consider the symmetry:

(x̂, ŷ) =
(

x
1 − λy

,
y

1 − λy

)
.

It has the tangent vectors

ξ(x, y) = xy

and

η(x, y) = y2.

The infinitesimal generator for this symmetry is

X = xy
∂
∂x
+ y2 ∂
∂y
.

In most cases, it is not necessary to determine the symmetry based on the

infinitesimal generator. However, symmetries can be reconstructed from the

infinitesimal generators.

Example 3.1.3. Consider the following infinitesimal generator:

X =
∂
∂x
+ y
∂
∂y
. (3.2)

We can see that the tangent vectors are

ξ(x, y) = 1

and

η(x, y) = y.

Remember that ξ(x, y) is the derivative of x̂ with respect to λ, evaluated at λ = 0.
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Similarly, η(x, y) is the derivative of ŷ with respect to λ, evaluated at λ = 0. In this

example, ξ(x, y) = 1 so we could say that

ξ(x̂, ŷ) = 1.

One equation for x̂ that satisfies ξ(x̂, ŷ) = 1 is

x̂ = x + λ.

Because η(x, y) = y, one possible equation for η(x̂, ŷ) is:

η(x̂, ŷ) = eλy

and ŷ can be written as

ŷ = eλy.

Therefore, the symmetry corresponding to this infinitesimal generator is

(x̂, ŷ) = (x + λ, eλy).

Other possibilities exist for symmetries that satisfy Equation (3.2). For example,

(x̂, ŷ) = (2x + λ, eλy) would also satisfy (3.2).

The next example is more challenging. In the previous example, we can determine

the symmetries simply by looking at ξ(x, y) and η(x, y). This is not obvious in the

following example. One must use ξ(x, y) and η(x, y) to find the canonical

coordinates. Using the canonical coordinates, one can reconstruct the symmetry by

the method described in Section 2.2.

Example 3.1.4. We will reconstruct the symmetry that corresponds to the following
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infinitesimal generator:

X = (1 + x2)
∂
∂x
+ xy

∂
∂y
. (3.3)

We know that ξ(x, y) = 1 + x2 and η(x, y) = xy. Now one can find the canonical

coordinates. To find r(x, y), solve

dy
dx
=
η
ξ
=

xy
1 + x2 .

We get
dy
y
=

xdx
1 + x2 .

To integrate, it is necessary to do a u-substitution:

u = 1 + x2

and

du = 2x.

Now we can solve ∫
dy
y
=

1
2

∫
du
u

to get

ln y =
1
2

ln u + c.

This becomes

ln y = ln
√

1 + x2 + c0.

When we exponentiate both sides, we get

y = c
√

1 + x2.
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And then we can solve for r:

r =
y√

1 + x2
.

Now one can determine s using:

ds =
dx
ξ(x, y)

,

and therefore

s =
∫

dx
1 + x2 .

Integrating, we get

s = arctan x + c.

We can solve r(x, y) and s(x, y) for x and y:

x = tan s

and

y = r
√

1 + tan2 s.

Now we use the following equations from Section 2.2, Equations (2.24) and (2.25):

x̂ = f (r̂, ŝ) = f (r(x, y), s(x, y) + λ)

ŷ = g(r̂, ŝ) = g(r(x, y), s(x, y) + λ).

For this generator, Equation (3.3), x̂ looks like:

x̂ = tan ŝ = tan(s + λ) = tan((arctan x) + λ).

Here, it can be shown that the addition formula for tan(a + b) is (Stewart front
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cover!):

tan(a + b) =
tan a + tan b

1 − tan a tan b
. (3.4)

Therefore,

x̂ =
x + sinλ

cosλ

1 − x
(

sinλ
cosλ

) .

We can simplify this fraction to get

x̂ =
x cosλ + sinλ
cosλ − x sinλ

.

Similarly, we can find ŷ using Equation (2.25):

ŷ = r̂
√

1 + tan2 ŝ

= r
√

1 + tan2(s + λ)

=
y√

1 + x2
·
√

1 + tan2(arctan x + λ).

Now we will use Equation (3.4) to simplify this fraction:

ŷ =
y√

1 + x2
·

√

1 +
( x + tanλ
1 − x tanλ

)2
.

When we expand and simplify, we get

ŷ =
y√

1 + x2
·
√

1 + x2 tan2 λ + x2 + tan2 λ
1 − 2x tanλ + x2 tan2 λ

= y ·
√

(1 + x2)(1 + tan2 λ)
(1 + x2)(1 − x tanλ)2 =

y
√

1 + tan2 λ
1 − x tanλ

=
y
√

1 + sin2 λ
cos2 λ

1 − x
(

sinλ
cosλ

) =
y
√

1
cos2 λ

cosλ−x sinλ
cosλ

.
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Therefore

ŷ =
y

cosλ − x sinλ
.

And the symmetry is

(x̂, ŷ) =
(x cosλ + sinλ
cosλ − x sinλ

,
y

cosλ − x sinλ

)
.

3.2 Infinitesimal Generator in Canonical

Coordinates

The infinitesimal generator can be written in the coordinates (u(x, y)) and (v(x, y)).

Let F(u, v) be an arbitrary smooth function. The infinitesimal generator acts on F:

XF(u, v) = XF(u(x, y), v(x, y)).

By the chain rule, we get

X = ξ(uxFu + vxFv) + η(uyFu + vyFv).

Simplifying this, we get

X = Fu(ξux + ηuy) + Fv(ξvx + ηvy).

Therefore

X = XuFu + XvFv.
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We know that F is an arbitrary function, so the infinitesimal generator in the

coordinates u(x, y) and v(x, y) is

X = Xu
∂
∂u
+ Xv

∂
∂v
. (3.5)

Now consider the infinitesimal generator for the canonical coordinates r and s.

From Equation (3.5) we get

X = (Xr)
∂
∂r
+ (Xs)

∂
∂s

(3.6)

and

Xr = ξ(x, y)
dr
dx
+ η(x, y)

dr
dy
.

This is Equation (2.10), which we have already dealt with in Chapter 2. Therefore,

we know that Xr = 0.

Similarly, from Equation (2.11) we get:

Xs = ξ(x, y)
ds
dx
+ η(x, y)

ds
dy
,

which we have already dealt with in Chapter 2. Therefore, we know that Xs = 1.

Therefore, we know that Equation (3.6) is

X =
∂
∂s

in the canonical coordinates r(x, y) and s(x, y).

Infinitesimal generators make it possible to characterize the action of Lie

symmetries on functions without using canonical coordinates. This means that they
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can be extended to equations with more variables. First consider the situation in

two variables:

F(x, y) = G(r(x, y), s(x, y))

and therefore

F(x̂, ŷ) = G(r̂, ŝ) = G(r, s + λ).

We can expand this using the Taylor Series. At first glance, this seems to be a two

variable problem, but we know from Equation (2.10) that Xr = 0. The derivative

operator on r is 0. We also know that r̂ = r. Now consider the Taylor Series for

F(x̂, ŷ) = G(r̂, ŝ) centered at s:

F(x̂, ŷ) = G(r, s) + Gs(r, s)(s + λ − s) +
Gss(r, s)

2!
(s + λ − s)2 +

Gsss(r, s)
3!

(s + λ − s)3 + ...

=
∞∑

j=0

λ j

j!
∂ j

∂sj G(r, s).

Because X = ∂
∂s in the canonical coordinates r(x, y) and s(x, y), we can write:

F(x̂, ŷ) =
∞∑

j=0

λ j

j!
XjG(r, s).

We know that G(r, s) = F(x, y) so

F(x̂, ŷ) =
∞∑

j=0

λ j

j!
XjF(x, y). (3.7)

We know that the Taylor series expansion for ex is

ex =
∞∑

j−0

xj

j!
.
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Therefore, Equation (3.7) can be rewritten as

F(x̂, ŷ) = eλXF(x, y). (3.8)

This notation is useful for studying the symmetries associated with higher order

differential equations [2].

The information in this chapter can be expanded to any number of variables.

Suppose a function has L variables, z1, z2, ..., zL. Then, the Taylor expansion for ẑs is

ẑs(z1, z2, ...zL;λ) = zs + λζs(z1, ...zL) +O(λ2)

where

ζs =
dẑs

dλ
|λ=0.

The infinitesimal generator is

X = ζs(z1, z2, ..., zL)
∂
∂zs .

The material presented in this chapter can be used with higher order differential

equations. We will see a preliminary example in the next chapter.



CHAPTER 4

Higher Order Differential Equations

This chapter will extend the use of the infinitesimal generator for higher order

differential equations. The material presented in this chapter comes from Symmetry

Methods for Differential Equations: A Beginner’s Guide by Peter Hydon [2] and from

Differential Equations: Their Solutions Using Symmetries by Hans Stephani [6].

4.1 The Symmetry Condition for Higher Order

Differential Equations

In this chapter we will consider higher order differential equations of the form

y(k) = ω(x, y, y′, ..., y(k−1)). (4.1)

Symmetries for higher order differential equations work similarly to symmetries for

first order differential equations. The symmetry must map one solution curve to

another. The mapping takes x to x̂, y to ŷ, y′ to ŷ′ and so forth, where ŷ(k) is defined

as

ŷ(k) =
dkŷ
dx̂k . (4.2)

The kth derivative of ŷ is calculated recursively. Remember that the kth derivative of

61
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ŷ is the derivative of the (k − 1)st derivative of ŷ. Therefore

ŷk =
dŷ(k−1)

dx̂
=

Dxŷ(k−1)

Dxx̂
. (4.3)

The symmetry condition for first order differential equations requires that a

mapping P : (x, y) #→ (x̂, ŷ) take one solution curve to another. Thus the symmetry

condition for a first order differential equation is

dŷ
dx̂
= ω(x̂, ŷ). (4.4)

It works in the same fashion for higher order differential equations- a mapping

takes a solution curve to another solution curve. Therefore, the symmetry condition

for higher order differential equations is

dnŷ
dx̂n = ŷ(n) = ω(x̂, ŷ, ŷ′, ..., ŷ(n−1)). (4.5)

The following example demonstrates how to verify the symmetry condition, and

demonstrates how to compute ŷ(k).

Example 4.1.1. Consider the following differential equation:

y′′ = 0. (4.6)

In this example, we will verify that the following symmetry holds for Equation (4.6):

(x̂, ŷ) =
(1
x
,

y
x

)
.

In other words, we will show that ŷ′′ = 0 under this symmetry. In order to calculate

ŷ′′, we must first calculate ŷ′ using ŷ and x̂. To begin, we take the partial
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derivatives of ŷ and x̂ in order to take the total derivative operator:

ŷx =
−y
x2 , ŷy =

1
x

and

x̂x =
−1
x2 , x̂y = 0.

Then we can use Equation (4.3) to find ŷ′:

ŷ′ =
dŷ
dx̂
=

Dx

( y
x

)

Dx

(
1
x

)

=

−y
x2 +

y′

x
−1
x2

= y − y′x.

Then we can use Equation (4.3) and ŷ′ to find ŷ′′, thus verifying that ŷ′′ is equal to 0:

ŷ′′ =
dŷ′

dx̂
=

Dx(y − y′x)
Dx( 1

x )

= (−y′ + y′ + y′′(−x))(−x2) = x3y′′.

Therefore, the symmetry condition is satisfied because y′′ = 0. We have just shown

that ŷ′′ = 0.

The symmetry (x̂, ŷ) =
(

1
x ,

y
x

)
for Equation (4.6) is actually a discrete symmetry,

rather than a continuous symmetry. The general solution to y′′ = 0 is

y = c1x + c2.

When one applies the symmetry, the result is

ŷ = c1x̂ + c2,
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and therefore
y
x
=

c1

x
+ c2.

When we multiply by x we get

y = c1 + c2x.

This symmetry is its own inverse. Applied once, it maps to y = c1 + c2x. Applied a

second time, it maps back to y = c1x + c2.

4.2 The Linearized Symmetry Condition, Revisited

In Section 2.4, we worked with the linearized symmetry condition for first order

differential equations. One can use the linearized symmetry condition to determine

the tangent vectors ξ(x, y) and η(x, y). Similarly, one can use a linearized symmetry

condition for higher order differential equations as well. As demonstrated in the

next example, the linearized symmetry condition can be used to find the

infinitesimal generator for a given symmetry. First we will demonstrate how to find

the linearized symmetry condition for higher order differential equations. To begin,

here are the Taylor series expansions for x̂, ŷ, and ŷ(k):

x̂ = x + λξ +O(λ2), (4.7)

ŷ = y + λη +O(λ2), (4.8)

ŷ(k) = y(k) + λ
(

(k)η
)
+O(λ2). (4.9)

Here, (k)η denotes the tangent vector that corresponds to the kth derivative of ŷ [6]:

(k)η =
∂ŷ(k)

∂λ

∣∣∣∣∣
λ=0
.
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If we substitute Equations (4.7), (4.8), and (4.9) into Equation (4.5), we get

ŷ(n) = ω(x + λξ +O(λ2), y + λη +O(λ2), y′ + λ′η +O(λ2), ...y(n−1) + λ
(

(n−1)η
)
+O(λ2)).

(4.10)

Using the chain rule to take the derivative of Equation (4.10) with respect to λ

(evaluated at λ = 0), we get the linearized symmetry condition:

(n)η = ξωx + ηωy +
(

(1)η
)
ωy(1) + ... +

(
(n−1)η

)
ωy(n−1) . (4.11)

We can calculate (n)η recursively. Consider, (1)η. By definition:

ŷ′ =
Dxŷ
Dxx̂
.

First compute Dxŷ using the Taylor series expansion of ŷ:

Dxŷ = ληx + y′(1 + ληy) +O(λ2)

= y′ + ληx + λy′ηy

= y′ + λDxη +O(λ2).

Then compute Dxx̂ using the Taylor series expansion of x̂:

Dxx̂ = 1 + λξx + y′(λξy)

= 1 + λDxξ +O(λ2).

Therefore

ŷ′ =
Dxŷ
Dxx̂

=
y′ + λDxη +O(λ2)
1 + λDxξ +O(λ2)

. (4.12)
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Now multiply Equation (4.12) by

1 − λDxξ
1 − λDxξ

and ignore terms of λ2 or higher, as we did while calculating the linearized

symmetry condition for first order differential equations in Section 2.4. We get:

ŷ′ = (y′ + λDxη)(1 − λDxξ) +O(λ2)

= y′ + λ(Dxη − y′Dxξ) +O(λ2).

When we compare this with Equation (4.9), we find that

(1)η = Dxη − y′Dxξ.

We can generalize this for (k)η. From Equation (4.3), we know that

ŷ(k) =
Dxŷ(k−1)

Dxx̂
.

We have already computed Dxx̂. Now we will compute Dxŷ(k−1). First remember

that

ŷ(k−1) = y(k−1) + λ
(

(k−1)η
)
+O(λ2).

Therefore,

Dxŷ(k−1) = λ
(

(k−1)ηx

)
+ y′λ

(
(k−1)ηy

)
+ y′′λ

(
(k−1)ηy′

)
+ ... + y(k)

(
1 + λ

(
(k−1)ηy(k−1)

))
+O(λ2)

= y(k) + λ
(

(k−1)ηx

)
+ y′λ

(
(k−1)ηy

)
+ y′′λ

(
(k−1)ηy′

)
+ ... + y(k)λ

(
(k−1)ηy(k−1)

)
O(λ2)

= y(k) + λDx

(
(k−1)η

)
+O(λ2).
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Thus,

ŷ(k) =
Dxŷ(k−1)

Dxx̂
(4.13)

=
y(k) + λDx

(
(k−1)η

)
+O(λ2)

1 + λDxξ +O(λ2)
. (4.14)

When we multiply Equation (4.13) by

1 − λDxξ
1 − λDxξ

we get

ŷ(k) = y(k) − y(k)λDxξ + λD(k−1)
x η +O(λ2)

= y(k) + λ(D(k−1)
x η − y(k)Dxξ) +O(λ2).

Comparing this result with Equation (4.9), we get

(k)η = D(k−1)
x η − y(k)Dxξ. (4.15)

As k increases, the number of terms in (k)η increases exponentially [2]. For this

reason, we will only compute (1)η and (2)η in this IS. The computation for (1)η goes as

follows:

(1)η = ηx + ηy(y′) − y′(ξx + ξyy′)

= ηx + ηyy′ − y′ξx − ξy(y′)2

= ηx + y′(ηy − ξx) − ξy(y′)2.
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And then we can use (1)η to compute (2)η:

(2)η = D(1)
x η − y′′Dxξ

= ηxx + y′ηyx − y′ξxx − ξyx(y′)2 + y′(ηxy + y′ηyy − y′ξxy − ξyy(y′)2)

+ y′′(ηy − ξx − 2ξyy′) − y′′(ξx + ξyy′)

= ηxx + y′(2ηxy − ξxx) + (y′)2(ηyy − 2ξxy) − ξyy(y′)3 + (ηy − 2ξx − 3ξyy′)y′′

Substituting (2)η into Equation (4.11), we find that the the linearized symmetry

condition for second order differential equations is

(2)η = ηxx + y′(2ηxy − ξxx) + (y′)2(ηyy − 2ξxy) − ξyy(y′)3 + (ηy − 2ξx − 3ξyy′)y′′

= ξωx + ηωy +
(1) ηωy′ . (4.16)

We will use Equation (4.16) to determine the infinitesimal generator for the

following example.

Example 4.2.1. Again, consider the following second order differential equation:

y′′ = 0. (4.17)

Because y′′ = ω(x, y) = 0, we know that (2)η = 0. That leaves us with:

ηxx + y′(2ηxy − ξxx) + (y′)2(ηyy − 2ξxy) − ξyy(y′)3 = 0. (4.18)

Equation (4.18) can be split into a system of four equations, called the determining

equations:

ηxx = 0 (4.19)

2ηxy − ξxx = 0 (4.20)
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ηyy − 2ξxy = 0 (4.21)

and

ξyy = 0. (4.22)

Integrating Equation (4.22) with respect to y twice results in

ξ(x, y) = A(x)y + B(x).

Then substitute ξ(x, y) into Equation (4.21):

ηyy = 2A′(x). (4.23)

When we integrate Equation (4.23) with respect to y, we get

ηy = 2A′(x)y + C(x).

Then integrate with respect to y again to get:

η(x, y) = A′(x)y2 + C(x)y +D(x).

Now we can substitute ξ(x, y) and η(x, y) into Equations (4.20) and (4.19). First, we

must compute ηxy, ξxx, and ηxx:

ηxy = 2A′′(x)y + C′(x)

ξxx = A′′(x)y + B′′(x)

and

ηxx = A′′′(x)y2 + C′′(x)y +D′′(x) = 0. (4.24)
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Therefore, Equation (4.20) yields:

2ηxy − ξxx = 2(2A′′(x)y + C′(x)) − (A′′(x)y + B′′(x)) (4.25)

= 3A′′′(x)y + 2C′(x) − B′′(x) = 0.

From Equations (4.24) and (4.25), we can determine that A′′(x) = 0, C′′(x) = 0,

D′′(x) = 0 and B′′(x) = 2C′(x). The general solutions for A(x), B(x), and C(x) are

A(x) = c1x + c2

C(x) = c3x + c4

and

D(x) = c5x + c6

where c1, c2, c3, c4, c5, and c6 are constants. We can solve for B(x):

B′′(x) = 2C′(x) = 2c3

B′(x) = 2c3x + c7

B(x) = c3x2 + c7x + c8.

When we substitute A(x), B(x), C(x), and D(x) back into ξ(x, y) and η(x, y), we get:

ξ(x, y) = A(x)y + B(x)

= c1xy + c2y + c3x2 + c7x + c8
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and

η(x, y) = A′(x)y2 + C(x)y +D(x)

= c1y2 + c3xy + c4y + c5x + c6.

Therefore, the infinitesimal generator for y′′ = 0 is:

X = (c1xy + c2y + c3x2 + c7x + c8)∂x + (c1y2 + c3xy + c4y + c5x + c6)∂y.

In this chapter, we have illustrated how symmetry methods for higher order

equations work with one example - the simplest 2nd order differential equation,

y′′ = 0. There are numerous possibilities for using symmetry methods to solve

higher order differential equations or to obtain a reduction in order. Several

resources for further study of symmetry methods are presented in the conclusion

chapter.
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CHAPTER 5

Conclusion

This Independent Study has demonstrated just a small portion of the possibilities

for using Lie symmetry groups to solve differential equations. Chapters 1 and 2

explained the fundamentals of this method for first order ODEs, while Chapters 3

and 4 described some of the tools necessary to extend the work in Chapters 1 and 2

to higher order differential equations. These tools have applications in a variety of

disciplines.

We have only explored a small sampling of the resources available for studying Lie

symmetry methods. The main sources for this I.S. offer several more chapters of

information pertaining to these methods. Hydon’s, Symmetry Methods for

Differential Equations: A Beginner’s Guide explains how to use Lie symmetries with

several parameters and also includes methods for solving partial differential

equations (PDEs) [2]. Stephani’s Differential Equations: Their Solution Using

Symmetries offers a detailed explanation of symmetry methods for both ODEs and

PDEs. Stephani also includes a chapter on solving systems of differential equations

[6]. Ibragimov’s Elementary Lie Group Analysis and Ordinary Differential Equations is

another highly relevant resource for anyone wishing to study the applications of

Lie symmetry methods and other tools for solving differential equations [3]. This

book has a wealth of information on the application of these methods to physics

and engineering.

73
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This project proved challenging in a variety of ways. The selection of the topic

resulted from a desire to utilize knowledge from multiple mathematics courses at

The College of Wooster, particularly Abstract Algebra and Differential Equations.

Basic comprehension of the mathematics involved took a significant amount of

time and dedication. Starrett’s “Solving Differential Equations by Symmetry

Groups" provided a basis for understand the fundamental techniques of Lie

symmetry methods [5]. His explanations and examples became useful for further

study and for learning the first two chapters of Hydon. Much of this I.S. combines

these two sources.

The challenge acquired a new dimension in November, when writing commenced.

Some difficulty stemmed from communicating the mathematics clearly and

effectively while adhering to the constraints of mathematical and scientific writing.

In addition, incorporating equations into proper English prose seemed

unexpectedly difficult. This resulted in a number of period placement catastrophes

in primitive drafts of Chapter 2.

Finishing this project required skills not only from several math classes but also

from quite a few other Wooster classes. This included everything from outlining

methods learned in First Year Seminar to drafting strategies developed in writing

intensive courses to stress management techniques (and increased familiarity with

the Greek alphabet!) acquired during study abroad. Overall, the scope of this

project has made it a fitting conclusion to my Wooster career.
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