
The College of Wooster Libraries
Open Works

Senior Independent Study Theses

2017

Pretending To Be Human: An Automated Theorem
Prover To Write Mathematical Proofs
Khoa Nguyen
The College of Wooster, knguyen18@wooster.edu

Follow this and additional works at: https://openworks.wooster.edu/independentstudy

This Senior Independent Study Thesis Exemplar is brought to you by Open Works, a service of The College of Wooster Libraries. It has been accepted
for inclusion in Senior Independent Study Theses by an authorized administrator of Open Works. For more information, please contact
openworks@wooster.edu.

© Copyright 2017 Khoa Nguyen

Recommended Citation
Nguyen, Khoa, "Pretending To Be Human: An Automated Theorem Prover To Write Mathematical Proofs" (2017). Senior Independent
Study Theses. Paper 8308.
https://openworks.wooster.edu/independentstudy/8308

https://openworks.wooster.edu?utm_source=openworks.wooster.edu%2Findependentstudy%2F8308&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openworks.wooster.edu/independentstudy?utm_source=openworks.wooster.edu%2Findependentstudy%2F8308&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openworks.wooster.edu/independentstudy?utm_source=openworks.wooster.edu%2Findependentstudy%2F8308&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openworks.wooster.edu/independentstudy/8308?utm_source=openworks.wooster.edu%2Findependentstudy%2F8308&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openworks.wooster.edu/independentstudy/8308
mailto:openworks@wooster.edu

PRETENDING TO BE
HUMAN: AN AUTOMATED

THEOREM PROVER TO
WRITE MATHEMATICAL

PROOFS

Independent Study Thesis

Presented in Partial Fulfillment of the Requirements for
the Degree Bachelors of Arts in the

Department of Mathematics and Computer Science
at The College of Wooster

by
Khoa Le Tue Nguyen

The College of Wooster
2017

Advised by:

Dr. James Hartman

Dr. Sofia Visa

c© 2017 by Khoa Le Tue Nguyen

iv

Abstract

This project explores the theories of automated theorem proving and lambda

calculus, and seeks to improve upon a current implementation of an automated

theorem prover that produces human-like output. This software component is based

on a published article titled “A Fully Automatic Theorem Prover with Human-Style

Output” by M. Ganesalingam and W.T. Gowers [7], which outlines a program called

robotone containing a first-order logic system (with a few modifications) able to

automatically write simple direct proofs. It is designed to mimic different strategies

that a human mathematician would use when facing a problem, and to write

human-style proofs. The current prototype can solve and write eighteen proofs,

seven of which are developed from this project with the addition of a mathematics

library customized for the course MATH-332 Real-Analysis I at The College of

Wooster. Future work includes further investigation on how human mathematicians

construct their proofs, and a possible implementation of a more dynamic tactic

mechanism to emulate humans’ thinking process better.

v

vi

Acknowledgments

To my parents and brother for enabling me to have a great education both inside

and outside of school.

To many friends who help me get over the various difficulties of being away from

home for most of my teenage and studying in the US for the last five and a half

years.

To many great teachers and professors who encourage me to do things I never

thought about doing.

Thank you.

vii

viii

Contents

Abstract v

Acknowledgments vii

Contents ix

List of Listings xi

CHAPTER PAGE

1 Introduction 1
1.1 Proof Techniques . 2

1.1.1 Direct Proofs . 2
1.1.2 Contrapositive Proofs . 3
1.1.3 Contradiction Proofs . 4

1.2 What is Automated Theorem Proving? 5
1.2.1 Artifacts . 5
1.2.2 Inference Rules . 6

1.3 Current Theorem Provers and Research 7

2 Formalized Logic 9
2.1 Propositional Logic . 10
2.2 First-Order Logic . 11

2.2.1 Elements of Syntax and Semantics 11
2.2.2 First-Order Proof Systems . 14

2.3 Higher-Order Logic (HOL) . 15

3 Lambda Calculus 17
3.1 Definitions . 18

3.1.1 λ-Terms . 18
3.1.2 Free and Bound Variables . 19
3.1.3 Substitution . 20
3.1.4 Lambda Calculus as Formal Theory 24

3.2 Conditionals . 24
3.2.1 AND . 25
3.2.2 OR . 27
3.2.3 NOT . 28

3.3 Recursion . 29
3.4 Functional Programming . 30

ix

4 Software Architecture 33
4.1 Logic Framework . 34

4.1.1 Implementing First-Order Logic and Tactics 34
4.1.2 Deletion/Removal Tactics (DeletionMoves.hs) 36
4.1.3 Tidying Tactics (TidyingMoves.hs) 37
4.1.4 Applying Tactics (ApplyingMoves.hs) 38
4.1.5 Suspension Tactics (Suspension.hs) 40
4.1.6 RobotM . 41

4.2 Mathematical Contents . 41
4.2.1 Inputting Problems into Robotone 42
4.2.2 Inputting Mathematical Facts into Robotone 42

4.3 LATEX Writeup . 43

5 Using robotone for Real Analysis I 45
5.1 Modifications to the Original Source Code 45

5.1.1 Customizations for MATH-332 Real Analysis I 45
5.1.2 Docker . 46
5.1.3 Helper Scripts . 48

5.2 Setting Up Robotone . 49
5.2.1 Installation and Usage with Docker on Command Line Interface 49
5.2.2 Installation and Usage with Docker on Graphical Interface . . 51
5.2.3 Direct Installation on Host Machine 55

5.3 Proof Analysis and Examples . 56
5.3.1 Working Proofs . 56
5.3.2 Incomplete Proofs . 62

6 Challenges and Future Work 65
6.1 Challenges . 65

6.1.1 Robotone Cannot Apply Creativity in Mathematical Proofs . 65
6.1.2 Robotone Cannot Apply Underlying Assumptions Like Hu-

mans . 67
6.2 Future Work . 67

6.2.1 Creating New Tactics . 67
6.2.2 Application of Machine Learning 68

7 Conclusion 73

APPENDIX PAGE

A Newly Added Definitions and Theorems 75
A.0.1 New Definitions . 75
A.0.2 New Theorems . 76

B Examples of Proofs with Steps 77

C List of All Proofs 83

References 89

x

List of Listings

Listing Page

5.1 . 61
5.2 . 63
5.3 . 63

6.1 Tactics listed by their descending order of priority 69

xi

xii

CHAPTER 1

Introduction

Automated theorem proving is a relatively new and competitive research

area in mathematics and computer science. Many existing systems have made

significant progress and compete against each other at international conferences

and tournaments [8]. However, many challenges lie ahead in this field, particularly

regarding the user-friendliness of such systems, and whether it is possible to

integrate the results of recent research into traditional mathematics education in the

undergraduate level.

The goal of this project is to create a human-friendly automated theorem prover

that produces human-style proofs, and acts as a helper for students in the course

MATH-33200 Real Analysis I at The College of Wooster. The idea is based on a

published research article titled “A Fully Automatic Theorem Prover with Human-

Style Output” by M. Ganesalingam and W.T. Gowers, which outlines a program

called robotone containing a first-order logic system (with a few modifications)

able to automatically write simple direct proofs. We seek to tailor the scope of

this program to mostly proofs in Real Analysis, as well as to improve its usability.

This means creating a set of Real Analysis problems and a library of Real Analysis

definitions and theorems; lowering the software environment requirements to

install and run robotone; creating a user-friend graphical user interface; as well as

1

2 1. Introduction

understanding and hopefully adding to the proof-writing capabilities of the existing

code.

1.1 Proof Techniques

Proof writing is an important skill that all mathematics students at the college

level should have, yet many struggle with forming a logical argument to prove

a statement from the given definitions and theorems. In a similar sense, we face

challenges in creating a software system that can represent mathematical facts in a

way that both the human and the machine can understand, to create and make use

of the automatically generated proofs.

A theorem is a statement that describes a pattern or relationship among quantities

or structures, and a proof is a justification of the truth of a theorem. There are different

strategies, or techniques, that human mathematicians employ when constructing a

proof. We explore the three most common proof techniques at the undergraduate

level: direct, contrapositive, and contradiction.

1.1.1 Direct Proofs

Direct proofs should be attempted whenever possible, since it is often the most

straightforward proof. Given a conditional P =⇒ Q where P represents given facts,

the outline of a direct proof is as followed:

Proof. Assume P.

...

(Deduce Q over a sequence of steps).

...

Then Q.

Thus P =⇒ Q. �

1.1. Proof Techniques 3

Example 1.1. If a sequence (xn) of real numbers converges, then it is Cauchy.

Proof. (Direct proof) Suppose (xn) is a convergent sequence, and let its limit be

denoted by L, or lim xn = L. Let ε > 0.

Then there exists k such that n ≥ k implies |xn − L| < ε
2 .

Let n,m ≥ k be arbitrary. Then

|xm − xn| = |(xm − L) − (xn − L)| ≤ |xm − L| − |xn − L| <
ε
2

+
ε
2

= ε.

Thus (xn) is a Cauchy sequence as desired. �

Here, P is "a sequence (xn) of real numbers is convergent," and Q is "[(xn)] is a

Cauchy sequence." We first assume that (xn) is indeed convergent, and through a

series of steps, arrive at the conclusion that (xn) is a Cauchy sequence, meaning for

each ε > 0, there exists an N ∈N such that for all m,n ≤ N, |xm − xn| < ε.

1.1.2 Contrapositive Proofs

Contrapositive proofs are based on the tautology (P implies Q)⇔ (∼ Q implies ∼ P).

Thus the contrapositive proof of (P implies Q) can be outlined as the direct proof of

(∼ Q implies ∼ P) as followed:

Proof. Assume ∼ Q.

...

(Deduce ∼ P over a sequence of steps).

...

Then ∼ P.

Thus P =⇒ Q. �

Example 1.2. If a sequence of real numbers (xn) converges to L, then any subsequence

of (xn) also converges to L.

4 1. Introduction

Proof. (By contraposition). Assume there exists a subsequence (xni) of (xn) such that

(xni) does not converge to L.

Then for all k ∈ N and ε > 0 ∈ R, there exists some ni0 such that ni0 > k and

|xni0 − L| ≥ ε.

Thus for all k ∈ N and ε > 0 ∈ R, there exists some n = ni0 such that n > k and

|xn − L| ≥ ε, i.e. (xn) does not converge to L.

Therefore if a sequence of real numbers (xn) converges to L, then any subsequence

of (xn) also converges to L. �

1.1.3 Contradiction Proofs

Unlike direct and contrapositive proofs, a proof by contradiction can be used for any

proposition, not just those involving conditionals. If P is the statement or theorem

to be proved, the outline of a contradiction proof is as followed:

Proof. Assume ∼ P.

...

(Deduce some fact R and also ∼ R over a sequence of steps).

...

Thus R and ∼ R, which is a contradiction.

Therefore P. �

Example 1.3. Archimedean Property part (i): Given any number x ∈ R, there exists

an n ∈N satisfying n > x.

Proof. (By contradiction). Suppose that there exists x ∈ R such that ∀n,n ≤ x, i.e. N

is bounded above.

Thus supN exists. Let q = supN. Then n ≤ q ∀n ∈N. (*)

1.2. What is Automated Theorem Proving? 5

Consider q − 1 < q which is not an upper bound forN. By the property of sup,

there exists m ∈N such that q − 1 < m⇔ q < m + 1, but m + 1 is a natural number

which is supposed to be less than or equal to q by (*), so this is a contradiction.

Therefore for any number x ∈ R, there exists an n ∈N satisfying n > x. �

1.2 What is Automated Theorem Proving?

Logical reasoning distinguishes humans from other species. We use it to solve almost

anything from everyday matters to mathematical problems. Logical reasoning can

be defined to be the process of drawing conclusions from given facts, where these

conclusions must inevitably follow from only the given facts without resorting to

probability or common sense.

As technology rises, the following question naturally comes with it: Can

computers be taught or programmed to reason logically? More or less, yes, in

relatively more defined areas such as mathematics. We define inference rules for a

program to dictate how a conclusion or new facts can be derived from the given

facts, how to discard irrelevant facts, and how to rephrase facts into an equivalent

but more applicable form [20]. Most theorem provers are built based on the concepts

of artifacts and inference rules.

1.2.1 Artifacts

Artifacts here means the resources that the program is allowed to use in trying to

solve or prove the given problems. They include assumptions and axioms, special

facts and the special hypothesis, and the negation or denial of the goal or theorem

[20].

• Assumptions and axioms: These belong to a set of clauses that describe the

problem domain, in particular these are statements regarded as true in the

6 1. Introduction

problem domain. This set should be large enough to encompass all necessary

concepts in the problem domain that are relevant to the goal of the proof.

• Special facts: These belong to another set of clauses called the special hypothesis.

It is basically the specifically given facts and assumptions directly related

to the proof that the program needs to produce, in addition to the general,

broader assumptions and axioms of the problem domain described earlier.

• Negation or denial of the goal or theorem: This is the set of clauses that establish

the impossibility of the given problem. It can be used in contraposition or

contradiction proofs, or to check for the completion of the proof.

1.2.2 Inference Rules

An inference rule is an algorithm yielding a conclusion that follows inevitably

and logically from some set of given facts and hypotheses. Inference rules are

applied in order to derive new information from the given facts, but the resulting

conclusions may or may not be actually new. There are several different types of

inference rules defined in automated reasoning theory: unification, binary resolution,

UR-resolution, hyperresolution, negative hyperresolution, paramodulation, unit

resolution, and factoring. More details about these reference rules can be found in

Chapter 6 of [20].

This project’s software component breaks the different types of inference rules

into even smaller procedures called tactics. The tactics listed in Chapter 4 in

descending priority are from the existing source code, and the explanations are

from Ganesalingam and Gowers’ paper [7]. There are other smaller, intermediate

steps that do not contribute much to the proving process and thus are not included.

1.3. Current Theorem Provers and Research 7

1.3 Current Theorem Provers and Research

There are several existing theorem provers, such as Isabelle/HOL [16], SAT [14], EQP

[6], Vampire [19], ML4PG [9], and Coq [4]. These prove to be successful in assisting

human mathematicians in solving many difficult, sometimes decades-old problems,

such as the Robbins conjecture (EQP), the Kepler conjecture (Isabelle/HOL), and

the designing and verification of processor chips [13]. Some of these provers are

actually not automated but instead interactive, i.e. the user has to input something

other than the problem statement into the prover in order for it to proceed, in some

cases because the main purpose of the prover is actually to verify a proof written by

a human, not to produce its own proof. The time and effort required to master these

systems can be discouraging to most human mathematicians.

The program described in Ganesalingam’s and Gowers’ paper is one of the most

recent attempts at bringing technology closer to the work of human mathematicians.

The authors have many reasons behind developing a system with human-style

output. They cite evidence that many mathematical proofs in published literature

are actually incorrect. In addition, many correct, but complicated proofs are very

difficult to verify and thus a formalized proof can be of value. Thus, a system having

human-style output, placing less emphasis on correctness and more on explanations,

may be able to help mathematicians in their daily work [7]. As pioneers, certainly

some shortcomings are present in the software prototype enclosed with the paper,

which we seek to make some progress on:

• Proofs by contradiction and contraposition are not yet possible.

• The process of adding or modifying given problems and existing facts requires

recompilation of the entire code base.

• The user interface is not exactly friendly to non-technical users.

8 1. Introduction

CHAPTER 2

Formalized Logic

Computers have only been around for a few decades while mathematics was born

centuries ago. And yet, computer programs already contribute to finding answers

to unsolved mathematical questions and conjectures, such as the four-color theorem,

Robbin’s conjecture, and the Kepler conjecture [13]. However, a large part of all

of these proofs is still the work of human mathematicians, because even though

first-order logic (FOL) contains decidable fragments and can power fully automated

theorem provers, it is not expressive enough for complex problems. On the other

hand, Higher Order Logic (HOL) can express complex problems, but includes many

undecidable algorithms and proof methods, rendering automation much more

difficult [8]. This chapter gives an overview of different types of formalized logic

and its application in current proof assistants.

Logic can be considered the language of mathematics. A natural language,

like English, has the vocabulary and grammar rules (syntax) to enable a speaker

to express their ideas in a meaningful way (semantics). Analogously, logic has

specifically defined elements and rules to correctly represent mathematical ideas.

9

10 2. Formalized Logic

2.1 Propositional Logic

As suggested by its name, the elements of propositional logic consists of Boolean

variables called propositions (evaluating to either true or false), and logical con-

nectives (such as AND, OR, XOR, etc.). Propositions can be combined by Boolean

logical connectives into propositional formulas. Thus propositional logic has no

variables other than Boolean variables, no quantifiers, and no function symbols [17].

The following notions are important in propositional logic:

Definition 2.1 Interpretation (Valuation): An interpretation (or valuation) I over the

propositions {P1,P2, ...,Pn} is a function from the propositions {P1,P2, ...,Pn} to the truth

values (true or false). There are 2n interpretations over {P1,P2, ...,Pn}, since each Pi can be

either true or false. We write I � P if I(P) = true (I satisfies P) and I 2 P if I(P) = f alse.

For Boolean formulas A and B, we define their truth in I by the following rules:

• I � ¬A iff I 2 A

• I � A ∧ B iff I � A and I � B

• I � A ∨ B iff I � A or I � B

• I � A ⊃ B iff I � ¬A or I � B

• I � A ≡ B iff I � A ⊃ B and I � B ⊃ A.

Definition 2.2 Satisfiability: A formula A over {P1,P2, ...,Pn} is satisfiable if there exists

an interpretation I over {P1,P2, ...,Pn} such that I � A. Consequentially, if a formula A is not

satisfiable, A is called unsatisfiable or contradictory, i.e. for all I over {P1,P2, ...,Pn}, I 2 A.

Definition 2.3 Validity: A formula A over {P1,P2, ...,Pn} is valid if for all interpretations

I over {P1,P2, ...,Pn}, I � A. Consequentially, A is called invalid otherwise, i.e there exists

an I such that I 2 A.

2.2. First-Order Logic 11

Definition 2.4 Equivalence: Two formulas A and B are equivalent iff the formula A ≡ B

is valid.

Thus, based on propositional logic, the theorem proving problem is to determine

whether a given formula A is valid. We notice that A is valid iff ¬A is unsatisfiable.

Interestingly, determining whether a Boolean formula A is satisfiable is one of

the current NP-complete problems, i.e. at the moment it cannot be solved in

polynomial time. Using a truth table means checking each of the 2n possible

interpretations, resulting in an exponential runtime. However, it is possible to “use

partial interpretations to obtain a satisfiability testing procedure more efficient than

truth tables”, which some proof systems attempt to do [17].

2.2 First-Order Logic

2.2.1 Elements of Syntax and Semantics

Even though propositional logic is capable of expressing many problems, the

fact that it does not include additional non-Boolean variables, quantifiers, and

functions is rather limiting. First-order logic allows a wider variety of problems

to be expressed, with non-Boolean variables, function symbols, and predicate symbols

in addition to the existing elements propositional logic. Moreover, function and

predicate symbols can take a number of arguments. This number is called arity of

the function or predicate symbol. If the arity is 0, then the function symbol is called

a constant symbol or individual constant. Thus, we can roughly say that propositional

logic is a “subset” of first-order logic.

Formally, we also define the following additional elements of first-order logic as

below [17] [20]:

1. A term is either:

12 2. Formalized Logic

• A variable

• A constant symbol

• An expression f (t1, ..., tn) where f is a function symbol of arity n and the

ti are terms.

2. An atom is an expression P(t1, ..., tn) where P is a predicate symbol of arity n

and the ti are terms.

3. A formula is defined inductively by the following rules:

• If A is an atom, then A is a formula.

• If A is a formula, then ¬A is a formula.

• If A,B are formulas, then (A ∧ B), (A ∨ B), (A ⊃ B), and (A ≡ B) are also

formulas.

• If A is a formula and x is a variable, then (∀x)A and (∃x)A are formulas.

A quantifier-free formula is one without quantifiers. In a formula of the form

(∀x)A or (∃x)A, A is called the scope of the respective quantifier (∀x) or (∃x),

and x is said to be bound to the quantifier.

4. A literal is an atom (positive literal) or the negation of an atom (negative literal).

Thus by the definition of formulas, a literal is a formula.

With these extra elements, the definition of an interpretation in first-order logic

is slightly different than that in propositional logic. We define interpretation I as the

following:

Definition 2.5 Interpretation (first-order logic) [17]: An interpretation, or structure,

I consists of a domain D, where D is a nonempty collection of objects, and assignments of

meanings to variables and constants. Let αI
→ α denote “I assigns αI

∈ D to α”. Then:

2.2. First-Order Logic 13

• For a variable x: xI
→ x.

• For a constant a: aI
→ a.

• For a function constant f : f I
→ f , where f I : Dn

→ D and n is arity of f .

• For a predicate constant P: PI
→ P, where PI : Dn

→ {true, f alse} and n is arity of P.

• For a term A of the form f (t1, ..., tn) where f is a function symbol of arity n and the ti

are terms: AI
→ A, where AI = f (t1, ..., tn)I = f I(tI

1, ..., t
I
n) ∈ D.

For interpretations I and J in D, I ≡ J(mod x) iff AI and AJ are identical for all

function symbols, predicate symbols, and variables different from x. The definitions

of satisfiability, validity, and equivalence in first-order logic are analogously similar

to those in propositional logic. The truth value of formulas A,B in an interpretation

I is determined with the following rules [17]:

• I � P(t1, ..., tn) if PI(tI
1, ..., t

I
n) is true.

• I � A ∧ B iff I � A and I � B

• I � A ∨ B iff I � A or I � B

• I � ¬A iff I 2 A

• I � A ⊃ B iff I � ¬A or I � B

• I � A ≡ B iff I � A ⊃ B and I � B ⊃ A.

• I � (∀x)A iff for all J ≡ I(mod x), J � A.

• I � (∃x)A iff there exists a J ≡ I(mod x) and J � A.

14 2. Formalized Logic

2.2.2 First-Order Proof Systems

There are many existing first-order proof systems, such as Hilbert-style systems,

Gentzen-style systems, etc. [17]; however, they are outside the scope of this project.

Therefore, this section is devoted to only describing the system implemented in the

software component of this project, which is based on the “waterfall” architecture

of the Boyer-Moore provers with a few modifications [7].

Generally speaking, the system attempts to prove a claim by considering it a goal,

and applying appropriate heuristics, also called tactics, to transform it. These tactics

are ranked by their “attractiveness” based on their effects on the goal when applied.

In the software associated with this project, the goal has a list of assumptions and a

list of targets to be deduced from them [7].

The Boyer-Moore theorem prover has 7 main proof techniques [3]:

1. Simplification.

2. Destructor elimination.

3. Cross-fertilization.

4. Generalization.

5. Elimination of irrelevance.

6. Induction.

Ganesalingam and Gowers built robotone based loosely on these 7 techniques,

developing more specific tactics that are applied to goals in order of priority. These

tactics are discussed in more details in the next chapter. In addition, the program

also utilizes the following newly defined data structures [7]:

1. A box is either a nontrivial box or the special box > (which essentially means

the truth value true.

2.3. Higher-Order Logic (HOL) 15

2. A nontrivial box has a list of variables, a list of formulas (assumptions), and a

list of targets.

3. A target is either a formula or a list of boxes.

2.3 Higher-Order Logic (HOL)

We will not go into as much details of higher-order logic (HOL) as we do for

propositional and first-order logic, partly because this project only uses a minimal

amount of HOL. Simply put, HOL can be written as follows [16]:

HOL = Functional Programming + Logic

Like first-order logic, HOL also has variables (of different types), terms, and

formulas. HOL introduces λ-terms and formulas, which replace first-order terms in

first-order logic, and allows for the quantification of predicate symbols [15].

The software component of this project does not utilize much of HOL except

for the use of metavariables on the logic part, and of Haskell, a purely functional

language, on the programming part. According to Ganesalingam and Gowers,

metavariables help with the problem of choosing the right substitutions for exis-

tentially quantified variables. In this case, the decision should be delayed until

it is clear what would make the argument work [7]. It is difficult to use HOL in

automated theorem provers because of undecidable algorithms and proof tactics

[8].

16 2. Formalized Logic

CHAPTER 3

Lambda Calculus

Lambda calculus is a formalism developed by Alonzo Church in the 1930s, around

the same time as Alan Turing developed another formalism on Turing machines.

Turing proved in his thesis that the two systems are equivalent and define the same

class of computable functions. Interestingly, uncomputable problems were first

described in terms of lambda calculus when discovered [10].

Turing machines form the foundations of modern day computers with the

von Neumann architecture (conceptually Turing machines with random access

registers) as well as the imperative paradigm of programming languages, for

example Fortran and C. Meanwhile, lambda calculus provides the theory for the

functional paradigm, for example Lisp and Haskell [1]. Lambda calculus and

the functional paradigm emphasize symbolic transformation rules [18] and thus

have the potential to represent formal logic and mathematics in a way that is less

concerned with the implementation details of the imperative paradigm.

In this chapter, we introduce definitions and axioms central to the foundation of

lambda calculus.

17

18 3. Lambda Calculus

3.1 Definitions

3.1.1 λ-Terms

Computable function, without referring to any model of computation, is an informal

notion referring to a function where there exists an algorithm to take in that

function’s input and give the corresponding output [10]. Lambda calculus has

“a single transformation rule (variable substitution, also called β-conversion) and

a single function definition scheme” that allows any computable function to be

expressed and evaluated [18]. Lambda calculus centers around the concept of

λ-term, which is defined recursively as follows:

• <λ-term> := <name> | <function> | <application>

• <function> := λ<name> . <λ-term>

• <application> := <λ-term> <λ-term>

where names (also called atoms) are identifiers for some variable or constant, and

functions (also called abstractions) are represented using the symbol λ to denote its

arguments before the period (.) and its body after the (.) where it specifies how the

given arguments should be modified. As usual, parentheses around an expression

E can be used for better clarity without changing the meaning of that expression, i.e.

E is equivalent to (E) or E ≡ (E). Function application associates from the left, i.e.

E1E2E3...En ≡ (...((E1E2)E3)...En).

For example, the identity function is represented by (λx.x) where λx means the

function’s only argument is x, which is returned unchanged as x in the function’s

body.

More formally, λ-terms is defined as follows:

Definition 3.1 λ-terms [10]: Assume that there is given an infinite sequence of variables,

and a sequence of atomic constants different from the variables. (Note: When the latter

3.1. Definitions 19

sequence is empty, the system is considered pure, otherwise it is applied). The set of

expressions called λ-terms is defined as follows:

• All atoms (variables and atomic constants) are λ-terms.

• Abstractions of the form (λx.M) are λ-terms where M is a λ-term and x is a variable.

• Applications of the form (MN) are λ-terms where M,N are also λ-terms.

For convenience, λ-terms are often abbreviated to “terms” in the appropriate

contexts.

3.1.2 Free and Bound Variables

Before defining how variables are considered free or bound, we need to define

occurrence and scope.

Definition 3.2 Occurrence [10]: For λ-terms P and Q, the relation P occurs in Q is

defined as:

• P occurs in P (itself);

• if P occurs in M or P ≡ x, then P occurs in λx.M;

• If P occurs in M or in N, then P occurs in MN.

Definition 3.3 Scope [10]: Consider λx.M. M is called the scope of λx.

Definition 3.4 Free and bound variables [10]: An occurrence of a variable x in a term P

is called

• bound if it is in the scope of a λx in P,

• bound and binding if and only if it is the x in λx,

• free otherwise.

20 3. Lambda Calculus

If x has at least one binding occurrence in P, then it is a bound variable of P. If x has at least

one free occurrence in P, then it is a free variable of P.

A term is closed if it is a term without any free variables; otherwise it is an open

term [12].

Many introductory materials on lambda calculus eliminate the distinction

between bound and bound and binding variables to avoid confusion for the reader [1]

[12] [18], since it often does not matter much. We highlight the difference with an

example below.

Example 3.1. Consider (λx.2xy). Here, the first x next to the λ is bound and binding,

the second x in the middle of 2xy is bound, and y is free. The concept of free and

bound variables is analogous to multivariate integrals, for instance we evaluate the

inner integral of
!

2xy dx dy =
∫

x2y dy, “ignoring” y while integrating x because x

is bound to dx and y is free in regards to dx. Note that the second x is bound in the

context of the whole expression (λx.2xy), but free in the context of just the function

body 2xy, which makes a difference when we move on to substitution in the next

section.

3.1.3 Substitution

In this section we give a formal definition for substitution, then discuss two different

types of substitution, or reduction, called α-reduction and β-reduction.

Formally, we define substitution as follows:

Definition 3.5 FV(P) [1]: The set of all free variables of P is written as FV(P), defined

3.1. Definitions 21

inductively as follows:

FV(x) = {x};

FV(PQ) = FV(P) ∪ FV(Q);

FV(λx.P) = FV(P) − {x}.

Definition 3.6 Substitution [10]: For any terms M,N, x, let [N/x]M denote the result of

substituting N for every free occurrence of x in M, while avoiding any name clashing with

bound variables. Let y . x and z < FV(NP) for any term P. Then [N/x]M is defined as

follows:

• [N/x]x ≡ N;

• [N/x]a ≡ a for all atoms a . x;

• [N/x](PQ) ≡ ([N/x]P [N/x]Q);

• [N/x](λx.P) ≡ λx.P;

• [N/x](λy.P) ≡ λy.P if x < FV(P);

• [N/x](λy.P) ≡ λy.[N/x]P if x ∈ FV(P) and y < FV(N);

• [N/x](λy.P) ≡ λz.[N/x][z/y]P if x ∈ FV(P) and y ∈ FV(N).

Example 3.2. Using Definition 3.6, consider the following examples:

• [(uv)/x](λy.x(λw.vwx)) → λy.uv(λw.vw(uv)) since both occurrences of x in

(λy.x(λw.vwx)) are free.

• [(λy.vy)/x](y(λv.xv))→ [(λy.vy)/x](y(λt.xt))→ y(λt.(λy.vy)t) where t , x, y, v.

We rewrite (y(λv.xv)) ≡ (y(λt.xt)) to avoid using the same v to represent two

different variables in (λy.vy) and (λv.xv).

22 3. Lambda Calculus

• [(uv)/x](λx.vy)→ (λx.vy) since there is no free occurrence of x in (λx.vy).

With substitution defined, we can discuss reduction. Informally, α-reduction is

simply rewriting a function’s definition using different names for its arguments, but

in the end, it is still the same function since the arguments’ names are merely place

holders [18].

Example 3.3. Consider the identity function in the previous section. We can write it

in different but equivalent ways:

(λx.x) ≡ (λy.y) ≡ (λz.z) ≡ (λw.w).

More formally, α-reduction is denoted by λy.[y/x]M where y < FV(M), and also

called change of bound variable or α-conversion [10].

β-reduction is intuitively the replacement of the “place holders” arguments with

real values using the rules of substitution in Definition 3.6. We use the notation

[N/x]E to indicate that all free occurrences of x in the term E (for example, a function

body) are replaced by N [12] [18].

Example 3.4. By β-reduction, the application of the identity function λx.x to some a

is (λx.x)a→ [a/x]x→ a.

Example 3.5. Consider a more complicated example, (λx.x(λx.x)w)y. We notice that

in the term x(λx.x)w, we can apply α-reduction to rewrite it as x(λt.t)w for less

confusion. Thus, the application of the function (λx.x(λx.x)w) to y is (λx.x(λx.x)w)y ≡

(λx.x(λt.t)w)y→ [y/x](x(λt.t)w)→ y(λt.t)w.

Functions of multiple variables can be represented similarly in a way analogous

to function composition. Consider h(x, y) = x + y. We can write h using the

λ-notation as: λxy.x + y ≡ λx.(λy.x + y). Thus, for some x = a and y = b,

(λxy.x + y)ab = (λx.(λy.x + y))ab = (λy.a + y)b = a + b = h(a, b).

3.1. Definitions 23

Definition 3.7 Redex [10] [12]: A reducible expression, or redex for short, is any term of

the form

(λx.M)N

where M,N are λ-terms, and the corresponding term

[N/x]M

is called its contractum.

If a term P contains a redex(λx.M)N which is replaced by [N/x]M, resulting in P′, we

say P is contracted or reduced to P′ and write P→ P′.

An expression with no redex is called a β-normal form, or normal form for short.

Example 3.6. (a) λx.xy is not a redex because it is not applied to any argument.

(b) (λx.xy)N is a redex because it can be contracted to Ny using β-reduction. Ny

is considered to be in normal form since it does not contain any redex; while

(λx.xy)N has a normal form.

(c) Consider (λx.(λy.xyz)t)z. There are two ways to contract this term:

• (λx.(λy.xyz)t)v→ (λy.vyz)t→ vtz.

• (λx.(λy.xyz)t)v→ (λx.xtz)v→ vtz.

As shown in Example 3.6, expressions with more than one redex can be reduced

in different ways [12].

1. Normal-order reduction: Choose the left-most redex first.

2. Applicative-order reduction: Choose the right-most redex first.

This example also illustrates an important theorem that essentially points out that

no matter what path is taken, the end result of reducing a term, i.e. a computation

in lambda calculus, is the same [10].

24 3. Lambda Calculus

Theorem 3.1 (Church-Rosser theorem [10]).

If P→M and P→ N, then there exists a term T such that M→ T and N→ T.

3.1.4 Lambda Calculus as Formal Theory

All of the above definitions allow us to now introduce lambda calculus as formal

theory [2].

1. The principal axiom scheme of lambda calculus is

(λx.M)N = [N/x]M for all λ-terms M,N.

2. Logical axioms and rules:

Equality:

• M = M;

• M = N =⇒ N = M;

• M = N,N = L =⇒ M = L;

Compatibility rules:

• M = M′ =⇒ MZ = M′Z;

• M = M′ =⇒ ZM = ZM′;

• M = M′ =⇒ λx.M = λx.M′.

3. If M = N is provable in lambda calculus, we write λ `M = N.

3.2 Conditionals

In our natural language, conditionals are essentially “if . . . then . . . ” rules. They

require a way to represent the two values True and False, often referred to collectively

3.2. Conditionals 25

as the Boolean type in computer science, which can be represented in lambda calculus

as functions.

Definition 3.8 True and False [1]: The values True and False are defined using λ-terms

as:

• True: T ≡ λxy.x

• False: F ≡ λxy.y

Essentially, True is a function that takes two arguments and return the first one.

False is a function that takes two arguments and return the second one. Recall

Definition 3.1, which notes that a pure system does not have a set of atomic constants.

That is why True and False are defined as functions in pure lambda calculus. The

next sections illustrate how these definitions can help defining the following logical

operations: AND, OR, and NOT.

3.2.1 AND

Definition 3.9 AND [18]: The function AND of two arguments is defined as

∧ ≡ λxy.xyF

Then for any a, b, ∧ab denotes “a AND b” where the value of ∧ab is determined as follows:

a b ∧ab
T T T
T F F
F T F
F F F

Table 3.1: Truth table for AND.

26 3. Lambda Calculus

Proof. We need to show that for any a, b that can be either T ≡ λxy.x or F ≡ λxy.y,

the results of applying ∧ ≡ λxy.xyF to a and b are as outlined in Table 3.1. Consider

the following four cases:

1. a ≡ b ≡ T ≡ λxy.x. We want to show that∧ab ≡ T in this case. Using Definition

3.6 of substitution yields

∧ab→ (λxy.xyF)(ab) (substituting ∧with its definition)

→ [b/y]([a/x](λxy.xyF)) (substituting x with a, y with b in the expression λxy.xyF)

→ abF

→ (λxy.x)(bF) (substituting a with its definition)

→ [F/y]([b/x](λxy.x)) (substituting x with b, y with F in the expression λxy.x)

→ b

≡ T

as desired.

2. a ≡ T ≡ λxy.x, and b ≡ F ≡ λxy.y. We want to show that ∧ab ≡ F in this case.

Using Definition 3.6 of substitution yields

∧ab→ (λxy.xyF)(ab)

→ abF (by substituting x with a, y with b in the expression λxy.xyF)

→ (λxy.x)(bF) (substituting a with its definition)

→ [F/y]([b/x](λxy.x)) (substituting x with b, y with F in the expression λxy.x)

→ b

≡ F

as desired.

3.2. Conditionals 27

3. a ≡ F ≡ λxy.y, and b ≡ T ≡ λxy.x. We want to show that ∧ab ≡ F in this case.

Using Definition 3.6 of substitution yields

∧ab→ (λxy.xyF)(ab)

→ abF (by substituting x with a, y with b in the expression λxy.xyF)

→ (λxy.y)(bF) (substituting a with its definition)

→ [F/y]([b/x](λxy.y)) (substituting x with b, y with F in the expression λxy.x)

→ [F/y](λxy.y)

≡ F

as desired.

4. a ≡ F ≡ λxy.y, and b ≡ F ≡ λxy.y. We want to show that ∧ab ≡ F in this case.

Using Definition 3.6 of substitution yields

∧ab→ (λxy.xyF)(ab)

→ abF (by substituting x with a, y with b in the expression λxy.xyF)

→ (λxy.y)(bF)

→ [F/y]([b/x](λxy.y)) (substituting x with b, y with F in the expression λxy.x)

→ [F/y](λxy.y)

≡ F

as desired.

Therefore, ∧ ≡ λxy.xyF. �

3.2.2 OR

Similarly, we define OR as follows.

28 3. Lambda Calculus

Definition 3.10 OR [18]: The function OR of two arguments is defined as

∨ ≡ λxy.xTy

Then for any a, b, ∨ab denotes “a OR b” where the value of ∨ab is determined as follows:

a b ∨ab
T T T
T F T
F T T
F F F

Table 3.2: Truth table for OR.

The proof is very similar to the proof for AND, thus we will not elaborate here.

In short, if a is equivalent to True, then it picks the first argument from (Tb), which

is T. If a is equivalent to False, then it picks the second argument from (Tb), which

is b, meaning the value of the whole expression ∨ab now depends on the value of b.

3.2.3 NOT

Negation can be defined as a function of one argument.

Definition 3.11 NOT [18]: The function NOT of one argument is defined as

∼≡ λx.xFT

3.3. Recursion 29

Proof. We want to show that ∼ T ≡ F and ∼ F ≡ T. We can see that the negation of

True is

∼ T→ (λx.xFT)T

→ T(FT) (substituting x with T in the expression λxy.xFT)

→ (λxy.x)(FT) (substituting T with its definition)

→ F.

Similarly, the negation of False is

∼ F→ (λx.xFT)F

→ F(FT) (substituting x with F in the expression λxy.xFT)

→ (λxy.y)(FT) (substituting F with its definition)

→ T.

�

3.3 Recursion

Consider the expression (λx.xx)(λx.xx). Reducing this expression does not result in

a normal form, since

[(λx.xx)/x](λx.xx)→ (λx.xx)(λx.xx)→ [(λx.xx)/x](λx.xx)→ . . .

The idea of recursion is similar. Recursion is defined as a special function called

the Y combinator, or fixed point operator [12] [18]:

Y ≡ λ f .(λx. f (xx))(λx. f (xx))

30 3. Lambda Calculus

Applying Y to a function G yields

YG→ [G/ f](λ f .(λx. f (xx))(λx. f (xx)))

→ (λx.G(xx))(λx.G(xx))

→ G((λx.G(xx))(λx.G(xx)))

→ G(YG)

Therefore, unless G has a base case to terminate, YG goes on forever in an infinite

loop.

3.4 Functional Programming

As we can see in the previous sections of this chapter, lambda calculus can indeed

provide the basic elements of programming. While Church’s lambda calculus is

equivalent to Turing machines, in the early days of computing the first electronic

devices’ hardware was more closely designed as Turing machines with random

access memory. This led to many implementation difficulties regarding memory

usage, compilation, and run time for functional programming. Nowadays, however,

these problems are not so much of a burden due to better hardware and continuous

optimization [1].

Since an expression M in pure lambda-calculus can be reduced in different

ways, during implementation functional programming languages seek to find the

most optimized way in terms of time and space efficiency to evaluate expressions.

Haskell, for example, chooses the left-most redex first (as in normal-order reduc-

tion), but only if it is not contained within the body of a lambda abstraction [12].

This is also called lazy evaluation, a characteristic of “lazy” functional languages that

aim to increase efficiency by reducing a big redex into a potentially smaller normal

3.4. Functional Programming 31

form in a term before trying to evaluate the whole term. Languages such as Clean

and Haskell are state-of-the-art in the functional paradigm, and allow development

of many important applications such as AT&T’s Network Security division and

some internal tools at Google [1].

32 3. Lambda Calculus

CHAPTER 4

Software Architecture

In this chapter we discuss three main components of robotone: the logic frame-

work, the mathematical contents, and the LATEX writeup. The logic framework

and LATEX writeup are mainly the work of the original authors, Ganesalingam and

Gowers [7], with some improvements regarding fixed bugs and clearer source code,

while the mathematical contents for Real Analysis are developed in this project as

a new customization of robotone for The College of Wooster’s MATH-332 Real

Analysis I course.

Figure 4.1 gives a general overview of how robotone works. The user supplies

the mathematical contents (problem statements and mathematical facts) as part

of the source code. Then robotone parses each problem to form appropriate

first-order logic objects, and starts the proof engine by sequentially applying tactics

in a fixed order by priority until the problem is either solved, or no more tactics

can be used to move forward. All steps taken in a proof are logged and written in

TEX format into a .tex file, together with the original problem statement and its

complete proof (or a partial one if robotone fails to solve it). The resulting .tex

file can be compiled separately with an available TEX distribution.

Figure 4.1 may make the components of robotone look as if they worked

separately, but in reality their implementations are woven together in certain ways

to optimize runtime and source code simplicity.

33

34 4. Software Architecture

Figure 4.1: Overview of robotone’s work flow.

4.1 Logic Framework

The program robotone’s logic framework consists of definitions of the elements

in first-order logic and a collection of tactics to manipulate mathematical objects

during proofs, as well as an overall “controller” called RobotM that keeps track of

the proof’s progress so far.

4.1.1 Implementing First-Order Logic and Tactics

The theoretical foundation for robotone’s logic framework is based on first-order

logic as laid out in Chapter 2, and the collection of tactics are described in details

below.

Using Haskell as the main programming language for robotone allows the

implementation of types to follow the formal definitions as closely as possible. Of

4.1. Logic Framework 35

course, some very minor modifications have to be made to the formal definitions

during implementation, but this does not affect the overall logic. For example,

consider the almost-direct translation from the formal definition of formula in

first-order logic to the actual definition in the source code in Types.hs below.

Example 4.1. Formal definition: A formula is defined inductively by the following

rules:

• If A is an atom, then A is a formula.

• If A is a formula, then ¬A is a formula.

• If A,B are formulas, then (A∧B), (A∨B), (A ⊃ B), and (A ≡ B) are also formulas.

• If A is a formula and x is a variable, then (∀x)A and (∃x)A are formulas.

In the source code, this definition is interpreted into Haskell as:
1 data Formula = AtomicFormula Predicate [Term]
2 | Not Formula
3 | And [Formula]
4 | Or [Formula]
5 | Forall [Variable] Formula
6 | Exists [Variable] Formula
7 | UniversalImplies [Variable] [Formula] Formula
8 deriving (Eq, Ord, Show)

The only small difference is that the UniversalImplies relationship and

other helper types indirectly cover (A ⊃ B) and (A ≡ B) in the formal definition.

Everything else comes directly from the formal definition of formula.

Earlier in Chapter 1, inference rules are mentioned as the way new facts or

conclusions are derived from given ones. In the implementation, we call them

tactics, which are actions that make inferences using the user-provided definitions

and theorems in an attempt to prove a given problem. The tactics in robotone

are designed to mimic the way human mathematicians think, to a certain extent

[7]. The bulk of the logic framework lies in the implementation of tactics, which are

essentially how proofs progress forward. Tactics are arranged by their priority in

36 4. Software Architecture

Main.hs so that they can be tried out in that order for each step in a proof. Figure

4.2 illustrates how the implementation of tactics is organized in the source code.

Figure 4.2: The hierarchy of tactics’ source code. For the purpose of a well-organized software
architecture, tactics are implemented such that the lower level (ApplyingMoves.hs,
DeletionMoves.hs, TidyingMoves.hs, Suspension.hs) inherits general
definitions and methods from the ones above it.

Match.hs and Expansion.hs contain the necessary manipulations of mathe-

matical objects that all four subcategories of tactics use. Each subcategory’s name

reflects its tactics’ general purpose, as described in details below coming from the

original paper of Ganesalingam and Gowers [7].

4.1.2 Deletion/Removal Tactics (DELETIONMOVES.HS)

• deleteDone: if a previous tactic causes a target to be proven and replaced by>,

this one removes the target. The program aims to reach a goal with no targets

left.

• deleteDoneDisjunct: If a target is disjunctive (in the form “A OR B”) and either

A or B is >, then that target is automatically true and replaced by >.

4.1. Logic Framework 37

• deleteDangling: If a previously used assumption contains a variable that is

not involved in any other statements, remove that assumption.

• deleteUnmatchable: If a previously used assumption has no obvious “match”

with another unused assumption, remove the used assumption. For example,

suppose we have 2 assumptions x ∈ A and A ⊂ B. A ⊂ B can be expanded to

be ∀u(u ∈ A =⇒ u ∈ B), thus the premise u ∈ A can be “matched” with the

existing assumption x ∈ A.

4.1.3 Tidying Tactics (TIDYINGMOVES.HS)

• peelAndSplitUniversalConditionalTarget: If a target has the form ∀x(P(x) =⇒

Q(x)), then add a variable x, a new assumption P(x) and a new target Q(x).

This is similar to how humans would think, “Let x be such that P(x) is true.

We want to show Q(x) is true.” The new assumption P(x) has to be limited to

only be used to prove Q(x).

• splitDisjunctiveHypothesis: This tactic is similar to human splitting a proof

into different cases. The paper’s authors say that this is a work in progress.

• splitDisjunctiveTarget: If a target is of the form P ∨ Q, then replace it with

boxes of P and Q.

• peelBareUniversalTarget: If the target has the form ∀xP(x) and P is not a

conditional statement, then this tactic removes the universal quantifier, which

resembles a human mathematician choosing an arbitrary element and proving

that P is true for that arbitrary element.

• removeTarget: This tactic removes a target when there is an assumption equal

to the target.

38 4. Software Architecture

• collapseSubtableauTarget: If a target is in the form of a box that has no

assumptions and contains no metavariables (i.e. no variable that we need to

find or of which to prove the existence), then that target is replaced by the

targets in the box.

4.1.4 Applying Tactics (APPLYINGMOVES.HS)

• forwardsReasoning: If there are two existing assumptions of the forms

∀u(P(u) =⇒ Q(u)) and P(x), then we can obtain the new assumption

Q(x). For example, if we have x ∈ A and A ⊂ B (which is equivalent to

∀u(u ∈ A =⇒ u ∈ B)), we can deduce that x ∈ B.

• forwardsLibraryReasoning: This tactic is similar to the tactic forwardsReason-

ing above but receives a lower priority, because it requires using a fact stored in

the library. Ganesalingam and Gowers speculate that human mathematicians

tend to use facts not given explicitly in the problem only after they exhaust

all the given assumptions. Moreover, this tactic may result in irrelevant

deductions and unused terms, cluttering the final proof, and thus is limited

to be used only when not creating any new terms at all. This is one of the

tactics noted by Ganesalingam and Gowers to require more study into human

mathematicians’ behavior and thinking.

• expandPreExistentialHypothesis: This tactic replaces an assumption with its

definition which contains existential quantifiers (thus the assumption itself is

pre-existential). For example, the assumption “A is bounded” can be replaced

with “∃M such that ∀x(x ∈ A =⇒ |x| ≤M)”.

• elementaryExpansionOfHypothesis: This tactic replaces an assumption with

its elementary expansion, which means the expansion does not begin with a

4.1. Logic Framework 39

quantifier. For example, the assumption “x ∈ A ∩ B” can be replaced with two

assumptions “x ∈ A” and “x ∈ B”.

• backwardsReasoning: If there is a target Q(x) and an assumption ∀u(P(u) =⇒

Q(u)), then this tactic replaces the target with P(x) (which, by the given

assumption, would imply Q(x) as desired). If P(x) is a conjunction of several

statements, then the program is limited to apply this tactic only when all but

one of these statements are given assumptions, thus creating only one new

target to avoid combinatorial growth of targets.

• backwardsLibraryReasoning: This tactic is similar to backwardsReasoning

above except that ∀u(P(u) =⇒ Q(u)) is a fact in the library and not a given

assumption. It is subjected to the same rule above to avoid adding too many

new targets.

• elementaryExpansionOfTarget: This tactic replaces a target with its elementary

expansion, which means the expansion does not begin with a quantifier. It is

similar to elementaryExpansionOfHypothesis.

• expandPreUniversalTarget: This tactic replaces a pre-universal target (i.e.

containing the quantifier ∀) by its expansion. This is analogous to expandPre-

ExistentialHypothesis.

• solveBullets: This tactic is used to solve metavariables. It is similar to a

human mathematician choosing a specific value or expression for a variable

to complete the proof, such as the step of “Choose δ such that...” in an ε − δ

proof.

• automaticRewrite: As its name suggests, this rewrites terms in ways that a

human would, to increase the similarity of the final proof to that of a human.

40 4. Software Architecture

4.1.5 Suspension Tactics (SUSPENSION.HS)

• unlockExistentialUniversalConditionalTarget: If there is a target involving

both the universal (∀) and existential (∃) quantifiers, this tactic creates a

metavariable, denoted with a � next to the metavariable’s name, for example

x� which means x is a metavariable. The role of a metavariable translates to a

statement along the line of, “We would like to find x such that ...”.

• unlockExistentialTarget: If a target is in the form ∃xP(x), this tactic replaces

it with a box containing the variable x�, no assumption, and a single target

P(x�).

• expandPreExistentialTarget: This tactic replaces a pre-existential target (i.e.

containing the quantifier ∃) by its expansion, similar to some of the above

tactics.

• convertDiamondToBullet: This tactic resembles the human mathematician

writing “Assume that...” when dealing with a metavariable. It helps handling

the task of keeping track what other variables the metavariable is allowed or

prohibited to depend on.

• rewriteVariableVariableEquality: If there is an assumption in the form x = y,

then this tactic replaces all occurences of y by x and eliminates the original

assumption.

• rewriteVariableTermEquality: If there is an assumption of the form v = t or

t = v where v is a variable and t is a term, then this tactic replaces all occurences

of t by v.

4.2. Mathematical Contents 41

4.1.6 ROBOTM

RobotM is the interface through which the entry point to the program communicates

with the logic framework. When the program starts from Main.hs, a RobotM

instance is created to pull in the problem statements in Problem.hs and the

user-provided mathematical contents in RealAnalysis.hs as inputs, keep track

of tactics used so far for each problem in the order of their appearances, and save

all of the active variables, terms, and formulas in the proof. Having RobotM helps

abstract away the complex mechanisms of tactics, and provide a relatively smooth

integration of the different parts of robotone.

4.2 Mathematical Contents

Robotone uses the problem statements and mathematical facts provided by the

user as part of source code itself. This is an advantage coming from using Haskell,

a pure functional programming language, because code can be treated as data. On

the other hand, this does require recompilation of all the source code every time

robotone runs, but the compilation time is negligible since Haskell is an extremely

fast language. Additionally, if the user is unfamiliar with the language, it can be a

rather steep learning curve.

In an attempt to make robotone more approachable than other automated

theorem proving systems, the problems and mathematical facts are represented

using human-like notations as string patterns (described in details in Sections 4.2.1

and 4.2.2). A parser is thus implemented as the bridge between the logic framework

and the user-supplied mathematical contents.

42 4. Software Architecture

4.2.1 Inputting Problems into ROBOTONE

All problems are declared in the file Problems.hs. The format of each problem is

of the form
1 Problem String [String] String

where

• The leftmost String: The problem statement in natural language in LATEX for-

mat for the purpose of writing up the proof later.

• [String]: The list of given premises specific to the problem.

• The rightmost String: The goal of the problem, i.e. what we want to prove

from the given premises.

For example, consider the problem definition in robotone for the statement,

“If g, f are injections then g ◦ f is an injection.”
1 ifGandFareInjectionsThenGoFisInjection = Problem --New
2 "If g,f are injections then $(g \\circ f)$ is an injection."
3 ["injection(f)",
4 "injection(g)"]
5 "injection(compose(g,f))"

The first line is the declaration ofifGandFareInjectionsThenGoFisInjection

as a Problem variable. Then the next three lines initialize this variable with a

problem statement, the list of given premises (that both g and f are injections), and

the goal of proving that the composition of g and f is also an injection.

4.2.2 InputtingMathematical Facts into ROBOTONE

Mathematical facts consists of definitions and theorems. The definition for a concept

is of the form (String, String) where the first String is the name or form of

the concept, and the second String is the definition. For example, consider the

definition of injection:

4.3. LATEX Writeup 43

1 ("injection(f)", "forall x y z.(equals(applyfn(f,x),z) & equals(
applyfn(f,y),z) => equals(x,y))")

This translates to natural mathematics language as, “ f is an injection iff for all

x, y, z, f (x) = f (y) implies x = y.”

A theorem, whose type name is Result in the source code, is of the form
1 Result String [Formula] Formula

where

• String: A brief description or the name of the theorem if it has one. This is

optional and an empty string can suffice.

• [Formula]: A list of premises.

• Formula: The conclusion of the given premises above.

For example, consider the Monotone Convergence Theorem inRealAnalysis.hs:
1 Result "Monotone Convergence Theorem" [
2 parse formula "bounded(an)",
3 parse formula "monotone(an)"]
4 (parse formula "converges(an)")

This translates to natural mathematics language as, “A sequence an that is

bounded and monotone converges.” The syntax parse formula does exactly

what it looks like, parsing the given String into a Formula.

4.3 LATEX Writeup

The main files containing the mechanisms for generating the .tex file are Tex.hs,

TexBase.hs, and Writeup.hs. These files contain the general formatting config-

urations such as header, footer, and the overall presentation of a proof. However,

to optimize for better efficiency, most other source files also contain appropriate

LATEX patterns for the definitions, concepts, and tactics so that the output .tex file

can be generated while the process of solving a problem is happening.

44 4. Software Architecture

CHAPTER 5

Using ROBOTONE for Real Analysis I

This chapter discusses changes made to the original source code, how to set up

robotone, the work flow of the graphical user interface, and the analysis of seven

successful proofs and two incomplete proofs. We find that using Docker is currently

the most viable way to make robotone’s installation and usage easier for users.

The proof writing capability of the software is still rather limited, but the number of

working proofs is growing as we address different factors that cause incomplete

proofs. A major factor is that often human mathematicians know certain basic

mathematical facts after years of studying, which robotone could not have known

without those facts being explicitly programmed into the library.

5.1 Modifications to the Original Source Code

5.1.1 Customizations forMATH-332 Real Analysis I

Originally, problems are in the same files as the definitions and theorems for metric

spaces, which make up the problem domain from which the original authors,

Ganesalingam and Gowers, chose to include examples. Since the set of real

numbers R is a metric space, most of the existing definitions and theorems apply

for Real Analysis. We add ten new definitions and three new theorems in the

file src/RealAnalysis.hs, as well as seven new working problems in the file

45

46 5. Using robotone for Real Analysis I

src/Problems.hs. A full list of these are in the Appendices, Chapter A. There are

also nine new problems that could not be solved by robotone, which are analyzed

in a later section of this chapter. Currently, the total number of working proofs is

eighteen (and counting), seven of which are new.

5.1.2 Docker

The original source code is meant to be run without any virtualization. Users are left

on their own to figure out how to configure their machines to fit the requirements

of robotone. To compile successfully, the software requires ghc 7.8.3 and Cabal

1.18.0.5, while the latest version of ghc at the time of writing is 8.2.1 and of Cabal

is 1.24.2.0, thus no longer compatible with robotone and causing build errors.

On the other hand, reverting back to using the older version of Haskell (7.8.3 as

robotone needs) can cause errors in other Haskell software that the users may

have on the same machine. Therefore, we decide to integrate the source code with

Docker, a software container platform [5].

Docker aims to solve the problem of different development environments on

the same or different computers without having to use virtual machines, a more

resource-consuming intermediary. An improvement in terms of usability made to

Ganesalingam’s and Gowers’ original software is porting the code into a Docker

image and thus running it from a Docker container. We can think of a Docker image

as a static snapshot of a computer or software, and of a corresponding Docker

container as an instance of that snapshot (either running or stopped). This means

the user only needs to install Docker and then run our provided scripts in the

software package to use robotone without having to worry about any specific

dependencies.

The Docker image associated with robotone is configured in the Dockerfile

inside the root directory of the software. It is fairly simple and meant to provide the

5.1. Modifications to the Original Source Code 47

appropriate Haskell environment configurations for robotone. Users can easily

modify this Dockerfile to include additional Haskell packages and dependencies

needed in case they continue to develop robotone based on the current source

code.

Figure 5.1: Comparing Docker containers and virtual machines [5].

Figure 5.1 illustrates the differences between a Docker container and a virtual

machine. At the beginning of the project, we install robotone inside a virtual

machine running the relatively minimalist Linux distribution Debian inside Virtual-

Box. However, running robotone on a virtual machine has many disadvantages

compared to Docker and other software container platforms:

• Virtual machines can be slow to boot, since hypervisors require a lot more

resources from the host machine in order to emulate the full operating

systems and possibly unneeded pre-installed software inside virtual machines.

Meanwhile, a running Docker container does not necessarily need the full

operating systems, and users can pick and choose what they want to include

in the container by specifying their own requirements in the Dockerfile.

48 5. Using robotone for Real Analysis I

• There is a limit on how many running virtual machines can be up at the same

time, because they use up a substantial amount (at least 512MB, often 1GB) of

RAM on the host machine to maintain a smooth experience inside the virtual

operating systems. Most hypervisors also advise users not to allocate more

than half of their host machine’s RAM to a virtual machine. A running Docker

container is much more lightweight, allowing users to run several different

containers simultaneously.

• Moving files between virtual machines and host is dependent on the hypervisor,

and often has to be done manually. In the case of robotone, it means having

to copy the .tex and .pdf files to the host machine every time the program

is run. With Docker, a single command in the terminal can copy files from the

running container to the host machine, or even write the output directly at the

desired directory on the host machine, which can be automated with a bash

script as done inside the helper scripts listed in the next section.

5.1.3 Helper Scripts

Using Docker and trying to develop a graphical UI creates the need for simple

scripts. The entry point to the program Main.hs is rewritten for better modularity,

which also helps with the task of writing scripts for a simpler user experience.

Currently there are 3 main scripts in the root directory of robotone:

1. The script runfromsource.sh is for running robotone directly without

any kind of virtualization as outlined in Section 5.2.3.

2. The script rundocker.sh is for running with Docker as outlined in Section

5.2.1. For Docker, users can now specify the path to their desired output file

when using the script rundocker.sh instead of having the results written

inside the build/ directory by default. It handles the interaction between

5.2. Setting Up Robotone 49

the host machine and the Docker container during the process of running

robotone and producing the proofs without any extra efforts from the user.

3. The script run.sh is a helper script that gets run inside a Docker exec call for

robotone’s running Docker container to generate the .tex file containing

proofs.

All unneeded scripts are saved in the directory archived_scripts for reference.

5.2 Setting Up ROBOTONE

There are two ways to set up robotone for use, either by building directly from

the source code, or through Docker. The former method requires the user to install

very specific versions of robotone’s dependencies or else the build fails, therefore

making it very limiting to the user and potentially interfering with the user’s

existing Haskell programming environment. Thus the latter method is an added

improvement to the original source code, in order to make this software more usable

and portable.

5.2.1 Installation and Usage with Docker on Command Line

Interface

The instructions in this section are tested on macOS Sierra 10.12.6, but should also

work for Unix-based systems with very minor modifications if any at all. The Docker

image only contains the appropriate environment for running robotone and not

the software itself, meaning the users can freely modify the source code, the library,

and the list of problems without having to rebuild the Docker image. After setting

up to run robotone the first time, users only need to run the src/Problems.hs

as detailed below.

50 5. Using robotone for Real Analysis I

1. Make sure that a TeX distribution is available to compile the generated proofs

using the xelatex command in the terminal.

2. To install Docker, follow the instructions from [5]. After Docker is confirmed

to be installed and working properly, proceed to the next steps.

3. Open the terminal. Navigate to the robotone root directory with:

1 $ cd /path/to/robotone/directory

4. If this is NOT the first time you use robotone, skip this step. Otherwise:

(a) Build the Docker image with the provided Dockerfile with:

1 $ docker build -t robotone .

(b) Then create the Docker container named cont_robotone with:

1 $ docker run -v $(pwd):/root-robotone --name cont_robotone -it
robotone /bin/bash &

(c) Start the container created above with:

1 $ docker container start cont_robotone

If you encounter errors of the form, “Error response from daemon:

Container [...] is not running”, use the above command.

5. Now, whenever you update the problems in src/Problems.hs or the theo-

rems and definitions insrc/RealAnalysis.hs, run the scriptrundocker.sh

with:

1 $ bash rundocker.sh <path/to/desired/output/file.tex>

from the robotone root directory, and retrieve the generated proofs in both

.tex and .pdf files where expected.

5.2. Setting Up Robotone 51

5.2.2 Installation andUsage withDocker onGraphical Interface

A graphical user interface (GUI) is implemented in about 300 lines of Swift as a

Cocoa application for MacOS. The main window of robotone is shown in Figure

5.2.

Figure 5.2: The main window. From here, the user can change settings, insert or edit problems, and
run the proof engine.

For first-time users, a pop-up message as illustrated by Figure 5.3 will appear

before the main window to remind them to configure proper settings before

attempting to run the proof engine. This pop-up message only appears once the

first time; subsequent uses of robotone should not have it.

Figure 5.3: Reminder for first-time users to configure proper settings.

From the main window, clicking the button Settings opens up the Settings

window as illustrated in Figure 5.4 where the user can specify where the root

52 5. Using robotone for Real Analysis I

directory containing all robotone-related files is. Without the right path to this

directory, robotone cannot perform the proof writing capability. Also, first-time

users would need to click the button Yes, run setup now to build the Docker image

and start the corresponding Docker container to enable the proof engine. This

first-time setup is required and can take several minutes, but will only need to be

done once.

Figure 5.4: The Settings window. Here, the user can input the correct path to the robotone
directory and run the first-time setup as needed.

Once setup is done, the user can close Settings and come back to the main

window. Now, they can click Insert/Edit Problems to open Problem.hs in their

default editor as shown in Figure 5.5.

The user can specify where they want to save the output files by clicking Select

File. This opens up a file selection window as shown in Figure 5.6. The default

place to save the output files is the user’s Documents folder.

Back to the main window, clicking Write My Proofs! starts the proof engine.

If everything is set up properly, the resulting .pdf file containing all the written

proofs will be displayed as illustrated in Figure 5.7. Users can find both the .tex

and .pdf files at the location they have selected previously.

If the settings are not configured properly, running the proof engine results in

an error message as shown in Figure 5.8. If this error message pops up, users are

advised to check their Settings and/or Problem.hs again for any possible mistakes.

5.2. Setting Up Robotone 53

Figure 5.5: Opening Problems.hs for editing.

Figure 5.6: Choosing where to save the output .tex file.

54 5. Using robotone for Real Analysis I

Figure 5.7: Displaying the proofs in the .pdf file.

Figure 5.8: The error message if settings are not correctly configured, or syntax errors are detected
in Problem.hs.

The GUI is designed to be intuitive and easy to understand. The end result

would still be the same as using the command line interface to generate proofs. As

many mathematics students and teachers are unfamiliar with programming and

using the command line, the graphical user interface can help to make robotone

more user-friendly.

5.2. Setting Up Robotone 55

5.2.3 Direct Installation on HostMachine

Installing robotone directly on the user’s machine without using some kind of

virtual machines or virtual environments is discouraged for many reasons. As

mentioned earlier, latest versions of ghc and Cabal break the build, while the older

version of ghc that robotone needs might interfere with other Haskell programs

on the same machine.

The program should be compiled with ghc 7.8.3 and Cabal 1.18.0.5 using version

0.6.0.2 of the logict package. A TeX distribution is also needed to compile the

generated proofs.

To set up the environment for the program in a Unix environment, ghc and

Cabal must be installed first, preferably as one bundle in the Haskell Platform. The

official source is at https://www.haskell.org/platform/. In the terminal,

run the following commands to set up:

1. $ cd \path\to\robotone\directory

To change the current directory to the robotone root directory.

2. $ cabal update

To make sure that Cabal has the newest package installation paths.

3. $ runhaskell Setup.lhs configure --user

If prompted that certain packages are missing, install each of them with the

command $ cabal install <package name> --global. Most likely,

the packages needed to be install are QuickCheck, logict, and parsec.

4. $ runhaskell Setup.lhs build

Compile the source code.

5. $ bash runfromsource.sh

https://www.haskell.org/platform/

56 5. Using robotone for Real Analysis I

Run the program on the problems and facts. Results are saved in the build/

folder.

Steps 3 and 4 are repeated for new additions to the library of definitions and

theorems.

5.3 Proof Analysis and Examples

In this section we only discuss the newly added proofs, both working and not

working. All eighteen working proofs, including existing ones provided by the

original authors, can be found in Appendix C. Two proofs with a complete list of

steps that robotone uses to reach the conclusion (or not) can be found in Appendix

B.

5.3.1 Working Proofs

The table below is a summary of the seven new statements and theorems that

robotone can prove at the moment. Some work on the first try with existing

definitions and theorems while others (e.g. proof (7)) need additional facts before

the program can make appropriate progress on them.

5.3. Proof Analysis and Examples 57

Table 5.1: Working proofs.

No. Statements & Proofs Analysis

(1) If g, f are injections then

g ◦ f is an injection.
Proof. Let x, y and z be such that

g(f (x)) = z and g(f (y)) = z. Then,

since g is an injection, we have that

f (x) = f (y). Therefore, since f is an

injection, x = y if f (y) = f (y). Since g is

an injection and g(f (y)) = z, f (y) = f (y)

if g(f (y)) = z. But this is clearly the

case, so we are done.

This is a pretty straightforward direct

proof using the existing definition of

injection. However, there are a few

questionable wordings in the proofs,

such as the place where it needlessly

writes “Therefore, since f is an injec-

tion, x = y if f (y) = f (y).” Otherwise,

the logic steps lead to the right conclu-

sion.

(2) Prove that f (A ∩ B) ⊆ f (A) ∩ f (B).
Proof. By definition, since y ∈ f (A∩B),

there exists z ∈ A∩B such that f (z) = y.

Since z ∈ A ∩ B, z ∈ A and z ∈ B. We

would like to show that y ∈ f (A)∩ f (B),

i.e. that y ∈ f (A) and y ∈ f (B). We

would like to show that y ∈ f (A). But

this is clearly the case, so we are done.

Thus y ∈ f (B) and we are done.

The proof is overall acceptable. The

beginning of the proof is a little con-

fusing, since a human mathematician

would instead write, “Let y ∈ f (A∩B)”

instead of “since y ∈ f (A ∩ B)”. It

could be a little clearer near the end

by stating, “Since z ∈ A and y = f (z),

y ∈ f (A). Similarly, z ∈ B and y = f (z),

y ∈ f (B). Thus y ∈ f (A) ∩ f (B) and we

are done.”

58 5. Using robotone for Real Analysis I

Table 5.1 – continued from previous page

No. Statements & Proofs Analysis

(3) Prove that f −1(A∩B) ⊆ f −1(A)∩ f −1(B).
Proof. Since x ∈ f −1(A ∩ B), we have

that f (x) ∈ A ∩ B. Then f (x) ∈ A and

f (x) ∈ B. We would like to show that

x ∈ f −1(A) ∩ f −1(B), i.e. that x ∈ f −1(A)

and x ∈ f −1(B). We would like to show

that x ∈ f −1(A), i.e. that f (x) ∈ A. We

would like to show that x ∈ f −1(B), i.e.

that f (x) ∈ B. But this is clearly the

case, so we are done.

This is the forward direction (⇒) of the

proof for f −1(A ∩ B) = f −1(A) ∩ f −1(B).

Similar to the above proof, the word-

ing is a little awkward and could be

a little clearer. Interestingly, in the be-

ginning the proof didn’t work for this

statement because the program some-

how failed the first step of assuming

an arbitrary x ∈ f −1(A ∩ B), unlike the

rest of the other proofs where it has no

such problem. After that statement is

included in the given premises of the

problem, robotone can complete the

proof as it’s supposed to.

(4) Prove that f −1(A)∩ f −1(B) ⊆ f −1(A∩B).
Proof. Let x be an element of f −1(A) ∩

f −1(B). Then x ∈ f −1(A) and x ∈ f −1(B).

Then f (x) ∈ A and f (x) ∈ B. We would

like to show that x ∈ f −1(A∩B), i.e. that

f (x) ∈ A ∩ B. We would like to show

that f (x) ∈ A∩B, i.e. that f (x) ∈ A and

f (x) ∈ B. But this is clearly the case, so

we are done.

This is the backward direction (⇐) of

the proof for f −1(A ∩ B) = f −1(A) ∩

f −1(B). This proof is clear and straight-

forward.

5.3. Proof Analysis and Examples 59

Table 5.1 – continued from previous page

No. Statements & Proofs Analysis

(5) Prove that f −1(A∪B) ⊆ f −1(A)∪ f −1(B).
Proof. Let x be an element of f −1(A∪B).

Then f (x) ∈ A ∪ B. Then f (x) ∈ A or

f (x) ∈ B. We would like to show that

x ∈ f −1(A) ∪ f −1(B), i.e. that x ∈ f −1(A)

or x ∈ f −1(B). We would like to show

that x ∈ f −1(A), i.e. that f (x) ∈ A.

But this is clearly the case, so we are

done. We would like to show that

x ∈ f −1(A) ∪ f −1(B), i.e. that x ∈ f −1(A)

or x ∈ f −1(B). We would like to show

that x ∈ f −1(A), i.e. that f (x) ∈ A. We

would like to show that x ∈ f −1(B), i.e.

that f (x) ∈ B. But this is clearly the

case, so we are done.

This is the forward direction (⇒) of the

proof for f −1(A ∪ B) = f −1(A) ∪ f −1(B).

The logic of this proof is acceptable

but somewhat twisted, since there

are some unnecessarily repeated sen-

tences.

60 5. Using robotone for Real Analysis I

Table 5.1 – continued from previous page

No. Statements & Proofs Analysis

(6) Prove that f −1(A)∪ f −1(B) ⊆ f −1(A∪B).
Proof. Let x be an element of f −1(A) ∪

f −1(B). Then x ∈ f −1(A) or x ∈ f −1(B).

Since x ∈ f −1(A), we have that f (x) ∈ A.

Since x ∈ f −1(B), we have that f (x) ∈ B.

We would like to show that x ∈ f −1(A∪

B), i.e. that f (x) ∈ A ∪ B. We would

like to show that f (x) ∈ A ∪ B, i.e. that

f (x) ∈ A or f (x) ∈ B. But this is clearly

the case, so we are done. We would

like to show that x ∈ f −1(A∪B), i.e. that

f (x) ∈ A ∪ B. We would like to show

that f (x) ∈ A ∪ B, i.e. that f (x) ∈ A or

f (x) ∈ B. But this is clearly the case, so

we are done.

This is the backward direction (⇐) of

the proof for f −1(A ∪ B) = f −1(A) ∪

f −1(B). Similar to the above proof, this

one also repeats some sentences unnec-

essarily, but the overall logic works.

5.3. Proof Analysis and Examples 61

Table 5.1 – continued from previous page

No. Statements & Proofs Analysis

(7) Prove that Ac
∩ Bc

⊆ (A ∪ B)c.
Proof. Let x be an element of (A)c

∩(B)c.

Then x ∈ (A)c and x ∈ (B)c. Then x <

A ∪ B and x < A. Then it is not that

case that x ∈ A. Since x ∈ (B)c, we have

that x < B. Then it is not that case that

x ∈ B. Since x < A∪B, it is not that case

that x ∈ A ∪ B. We would like to show

that x ∈ (A∪B)c, i.e. that x < A∪B. We

would like to show that x < A ∪ B, i.e.

that it is not that case that x ∈ A ∪ B.

But this is clearly the case, so we are

done.

This is the backward direction (⇐) of

the proof for (A∪B)c = Ac
∩Bc. Similar

to the above proof, this one also repeats

some sentences unnecessarily, but the

overall logic works. Originally, the

proof didn’t work because robotone

could not deduce that x < A and x <

B implies x < A ∪ B. Thus we tried

adding into the library several different

equivalent statements of the above fact,

and in the end the following makes the

proof work,
1 Result "" [
2 parse formula "in(x,

complement(A))",
3 parse formula "in(x,

complement(B))"]
4 (parse formula "notin(x,

union(A, B))")

This does look like adding the conclu-

sion of the proof to the library, however.

A better solution would be implement-

ing a more general use of De Morgan’s

laws.

62 5. Using robotone for Real Analysis I

5.3.2 Incomplete Proofs

In this section we present two examples of incomplete proofs written by robotone,

and give some hypotheses on why they do not work. Both of them concern the

newly added definition of surjection.

5.3. Proof Analysis and Examples 63

Table 5.2: Incomplete proofs.

No. Statements & Partial Proofs Analysis

(1) If g,f are surjections then

(g o f) is a surjection.
Partial Proof. Let y be an element of C.

Then, since g from B to C is a surjection,

we have that y ∈ g(B). That is, there

exists z ∈ B such that g(z) = y. Since f

from A to B is a surjection and z ∈ B, we

have that z ∈ f (A). That is, there exists

u ∈ A such that f (u) = z. We would

like to find v ∈ A s.t. g(f (v)) = y.

We tried to add a new definition to

the program’s library of facts and the-

orems, in this case the definition of

surjection, and this is the first proof

to test the new definition out. At first,

we define surjection in a simplified

fashion as
1 ("surjection(f)", "forall y.(

exists x.(equals(applyfn(f,x)
, y)))")

Given the definition above, the pro-

gram simply makes no moves. Then

we change the definition to
1 ("surjection(f, A, B)", "forall y

.(in(y, B) => (exists x.(in(x
, A) & equals(applyfn(f,x),y)
)))")

With the new definition, robotone

manages to make much better progress

toward the complete proof. The only

missing step that this proof needs is,

“Set v = u and we are done”. Our

hypothesis is that the priority of tactics

allows the program to clean up too

early and delete some premises that

are actually needed later in the proof.

64 5. Using robotone for Real Analysis I

Table 5.2 – continued from previous page

No. Statements & Proofs Analysis

(2) If f is a surjection then f (A)c
⊂ f (Ac).

Partial Proof. Let x be an element of

(f (A))c. Then x < f (A). Then it is not

that case that x ∈ f (A). We would like

to find y ∈ (A)c s.t. f (y) = x. But

y ∈ (A)c if and only if y < A. But y < A

if and only if it is not that case that

y ∈ A.

This proof is incomplete because

robotone is not using the fact that

f is a surjection. After deducing that

x < f (A), the rest of the proof should

have been along the lines of, “Because

f is surjection, there exists t such that

f (t) = x and t < A since x < f (A). So

t ∈ Ac, therefore x = f (t) ∈ f (Ac) and

we are done.“

CHAPTER 6

Challenges and FutureWork

In this chapter we discuss robotone’s limitations and future work on the software.

We encounter typical challenges when one attempts to develop a computer system

that closely imitates the workings of the human brain, namely the human brain’s

ability to create new thoughts, and to retain a seemingly infinite number of little

facts and experiences across many different problem domains, which very few

systems can achieve, especially given the limited time frame and resources. There

is certainly much work to be done in the future regarding applying appropriate

machine learning techniques for more dynamic fact-accumulating mechanisms and

problem solving strategies within the current logic framework, as well as adding

more tactics to robotone’s arsenal of proof techniques.

6.1 Challenges

6.1.1 ROBOTONE CannotApplyCreativity inMathematical Proofs

“Creativity” in this context means the construction of new variables, functions, and

other identities that may be critical to the arguments in the proof. We find that

robotone is incapable of creating anything new; it can only work exclusively with

what is included in, or is obviously a direct result of, the premises of the given

problem.

65

66 6. Challenges and Future Work

This came up quite early in this project as we considered certain proofs regarding

sequences and series in the Real Analysis course, which often require algebraic

manipulation of ε. For example, consider the proof for the Cauchy criterion, which

states that every convergent sequence is Cauchy.

Theorem 6.1 (Cauchy criterion).

Every convergent sequence is Cauchy.

Proof. Let (xn) ∈ R be a sequence that converges to L ∈ R. Let ε > 0. Then
ε
2
> 0.

Because (xn)→ L, there exists N ∈ R such that for all k > N, | xk − L | <
ε
2

. Then for

any m > N and n > N, we have

| xm − xn | ≤ | xm − L | + | L − xn | by the triangle inequality

= | xm − L | + | xn − L |

<
ε
2

+
ε
2

= ε.

Thus (xn) is Cauchy. �

In this example, the main trick is to come up with
ε
2

instead of trying to work

directly with ε itself. As for why
ε
2

and not other expressions of ε, a human

mathematician would observe that the definition of a Cauchy sequence mentions

the distance between only two elements of the sequence beyond a certain point

N, meaning the triangle inequality can be combined directly with the inequalities

established by the definition of convergence. The logic framework that robotone

follows does not yet have this capability of noticing such subtle patterns in order to

form something new that can be useful in the proof. Another consequence is that

robotone cannot disprove a false statement by presenting a counterexample.

A huge reason is that robotone does not have a symbolic algebra engine that

6.2. Future Work 67

can manipulate expressions into a certain form, which is often required by proofs.

Existing platforms such as Maple and Mathematica have not achieved that purpose

yet, despite teams of engineers and readily available resources.

6.1.2 ROBOTONE Cannot Apply Underlying Assumptions Like Hu-

mans

Mathematics is taught as early as primary school in most places. Inevitably, over

the years of learning, human mathematicians have come to accept quite a number

of mathematical facts as true, and use them in proofs with or without stating them

explicitly. However, a program like robotone does not have those years of training

and can only work with what is manually supplied in its library of facts by the

authors and users of the program, who may or may not remember to include each

and every single one of those facts. Consequently, robotone may fail to prove a

statement successfully even though it looks obvious to a human mathematician.

6.2 FutureWork

We outline two possible ways to extend the capabilities of robotone below. There

are certainly other aspects of robotone to improve, which can be addressed in

future research.

6.2.1 Creating New Tactics

The list of tactics implemented in robotone as mentioned in Chapter 4 is by no

means an exhaustive list of strategies that human mathematicians use in proving or

disapproving statements. In the future, if a symbolic algebra system is developed

for robotone, that would call for many more new tactics regarding creating new

68 6. Challenges and Future Work

mathematical objects to assist with the proofs. For example, an additional class of

tactics that enables contradiction proofs and creation of counterexamples can greatly

enhance robotone. In addition, a more seasoned and experienced mathematician

with years into a mathematics career is more likely to be able to offer more intricate

tactics to solve a problem compared to an undergraduate student, which can be a

different extension of robotone for more advanced mathematicians.

6.2.2 Application ofMachine Learning

A potential improvement that we notice is that the priority of tactics can be more

dynamic. In their original paper, Ganesalingam and Gowers describe robotone

as deterministic, meaning it produces the exact same proof for a given problem

every time it runs, because the priority of tactics is hard-coded into the source code

[7]. However, human mathematicians do not always operate in this way. A single

mathematician certainly can devise multiple different ways to solve one problem.

Additionally, they do not follow a built-in list of logical or mathematical “tactics”,

but choose an appropriate inference rule based on how the proof progresses so far.

It is worth noting that the method Ganesalingam and Gowers use to determine

the priority of tactics is to “work through large numbers of problems [themselves],”

take notes of what tactics seem suitable, apply them to more problems, and adjust

the priority if it leads to incorrect choices, in order to eventually arrive at the list

of tactics by priority implemented in the software [7]. This process is remarkably

similar to what most machine learning algorithms do: learning certain features from

a given set of training data, making adjustments on the way, and then testing on a

set of test data to see whether further changes to the configurations of the model

are necessary, before arriving at the most viable model. Therefore, incorporating

machine learning algorithms into this central component of robotone may yield

non-deterministic yet potentially better proofs.

6.2. Future Work 69

Here, we illustrate a possible machine learning scenario for improvingrobotone’s

tactic selection mechanism. A possible way to achieve this is to create a machine

learning model that is trained by using the sequence of tactics used in each available

proof by robotone, which ends in either “we’re done” (successful) or “no moves

possible” (unsuccessful). The model should move towards sequences that end up

in a successful proof and away from those that end up in a unsuccessful one. The

initial state of the model is one already implemented in robotone at the moment as

shown by Listing 6.1 with 26 tactics in their currently fixed order. The trained model

would ingest a sequence of tactics used so far in the current proof, and output a full

list of tactics with new priority order for the next move in the proof.

1 deleteDone
2 deleteDoneDisjunct
3 deleteDangling
4 deleteUnmatchable
5 peelAndSplitUniversalConditionalTarget
6 splitDisjunctiveHypothesis
7 splitDisjunctiveTarget
8 peelBareUniversalTarget
9 removeTarget

10 collapseSubtableauTarget
11 forwardsReasoning
12 forwardsLibraryReasoning
13 expandPreExistentialHypothesis
14 elementaryExpansionOfHypothesis
15 backwardsReasoning
16 backwardsLibraryReasoning
17 elementaryExpansionOfTarget
18 expandPreUniversalTarget
19 solveBullets
20 automaticRewrite
21 unlockExistentialUniversalConditionalTarget
22 unlockExistentialTarget
23 expandPreExistentialTarget
24 convertDiamondToBullet
25 rewriteVariableVariableEquality
26 rewriteVariableTermEquality

Listing 6.1: Tactics listed by their descending order of priority

Since we are not sure exactly how to arrange tactics by their priority so that

solving problems is most successful, and different priority orders may affect the

outcome of a proof greatly, an unsupervised learning technique has more potential

70 6. Challenges and Future Work

than a supervised one. Thus, we separate the set of proofs that robotone can

generate into successful and unsuccessful ones. The successful proofs can be used

to build a model that discovers characteristics of a priority order of tactics that

results in successful proofs, which we want to achieve. Meanwhile, the unsuccessful

proofs can be used in a secondary model that discovers the characteristics a priority

order that results in the opposite, which we want to avoid. Since building these two

models are analogous (the difference lies only in how we interpret the final output),

we only describe how the model can be trained with successful proofs.

For each tactic T, we give all tactics ratings to denote how likely they would

follow T, which can be saved as a tactic transition matrix illustrated in Table 6.1.

Table 6.1: The row of Ti contains all the ratings of all 26 tactics regarding how likely each of them is
to follow Ti. So for example, after T1, since T26 has a higher rating than T2, T26 has been
observed to follow T1 more often in the data and thus more likely to follow T1 to form a
successful proof. One way to calculate this rating is by using the ratio between the
number of transitions from Ti to T j divided by the total number of tactic transitions in the
whole proof (e.g. a 50-step proof should have 49 transitions). The numbers below are for
illustration purposes only and not real values.

T1 T2 . . . T26

T1 0 0.11 . . . 0.36
T2 0 0 . . . 0.18
.
T26 0 0.07 . . . 0

Then we can think of a proof as a series of steps, [S1,S2, . . . ,Sn] where each Si is

a tactic (as listed in Listing 6.1 and described in details in Section 4.1.1). The entry

point is S1. S2 follows S1, so in the developing model, we give S2 a higher rating on

S1’s row, and so forth. It may seem that after looking at all the training data, we

should arrive at a model in the form of the above matrix with the perfect ratings for

subsequent tactics after seeing the previous ones.

Not quite. There are two main problems with this simplified model. One, it

actually modifies the probability of the next tactic based on only the last tactic used,

not the entire sequence before that. Two, there is never enough data for us to be

6.2. Future Work 71

entirely sure that the ratings are correct. Thus, to account for these nuances, we use

an unsupervised learning technique called Restricted Boltzmann Machine (RBM)

and Deep Belief Network.

RBM is a kind of Boltzmann machines, which are networks of “symmetrically

connected, neuron-like units that make stochastic decisions”. RBM is often used

as building blocks for Deep Belief Networks [11]. We can use this technique to

modify our table above to account for the mentioned disadvantages, by having

hidden layers to find certain patterns and features in the sequence of steps in a

proof. Overall, this model would look like Figure 6.1.

Figure 6.1: Proof-of-concept deep belief network model for tactic prioritization. For a model built
with successful proofs, we would sort the output nodes in descending order so that the
tactics with the higher values are tried first, and vice versa for a model built with
unsuccessful proofs.

The input to train the model is a tactic transition matrix which represents a

single successful proof. The visible layer is our input where each node is an entry in

72 6. Challenges and Future Work

our transition matrix, meaning there are 262 = 676 nodes total. The hidden layers

extract and encode different features from this matrix. Finally, the output layer

consists of 26 nodes, one for each tactic, that contain the output “rating” for each

tactic. We can then sort the tactics by these numbers to arrive at the new priority

order for the tactics.

Consider an example use case where we are in the middle of a proof whose

sequence of steps so far is [T7,T3,T20,T8,T7,T3,T9,T7]. This is encoded into a tactic

transition matrix using the process detailed above. We want to use the trained

model to get the list of 26 tactics in a new priority order such that it maximizes

the chance of success for the proof. It is worth noting that we are not picking

only one tactic for the next move, but instead getting the whole list in the best

priority order. The reason is because the tactic with the highest rating might not

be applicable for the proof at hand; there might be too many or too few variables

for example. So suppose after sorting the output of the model, the new order of

tactics is [T3,T8,T20, ...,T1,T26]. Robotone tries the first two T3 and T8 but they are

not applicable to the proof, so the next move in the proof is T20. Then the sequence

of steps in this proof is now [T7,T3,T20,T8,T7,T3,T9,T7,T20], and we continue to

run the model, get all the tactics in a new priority order after each step from our

machine learning model, and pick the next move as the first applicable one from

that order, until the problem is solved or no move is possible (meaning we look

for other factors in robotone to improve). This shows that the model can help

robotone become more dynamic in its tactic selection mechanism to maximize the

success of a proof.

CHAPTER 7

Conclusion

Automated theorem proving is a new and very promising area of research as

a combination of pure mathematics and theoretical computer science. Lambda

calculus and functional programming languages can offer a new way to implement

automated theorem provers based on first-order logic in addition to the traditional

logic programming paradigm. It is another direction that can have great potential

by representing and manipulating math problems and proofs as λ-terms. However,

one of the most prominent problems in the field of automated theorem proving

is that most systems are not exactly user-friendly and often the learning curve is

very steep. Thus, most human mathematicians and mathematics students in the

undergraduate level are not familiar with them despite their benefits in helping

with problem solving and solution verification.

This work investigates formal logic and lambda calculus theories, explores

the use of an automated theorem prover software called robotone in the course

MATH-332 Real Analysis I at The College of Wooster, and expands the software in

the following ways:

• Added 16 problems in Problems.hs, seven of which result in successful

proofs.

• Separated mathematical library into its own module RealAnalysis.hs, and

enriched its Real Analysis contents.

73

74 7. Conclusion

• Rewrote Main.hs for better modularity and cleaned up unnecessary code for

easier future maintenance and development.

• Created a Docker image that contains all of robotone’s dependencies and

compilation requirements, thus making the software’s installation and usage

much easier.

• Built a GUI on the MacOS platform for a user-friendly interaction with

robotone.

Ganesalingam and Gowers definitely have made great progress with the first

prototype of robotone in creating an automated theorem prover that produces

proofs easy to understand by human mathematicians even if they do not know

much about the program. However, the learning curve before being able to

use or modify this program is still pretty steep because Haskell is a superb but

unforgiving functional programming language, in which the problem statements

and mathematics library are written. This is a universal problem for most automated

theorem proving systems, which can be addressed in future research.

Furthermore, since robotone is mainly based on first-order logic and written in

a functional programming language, its proof mechanism is rather limited and not

robust enough to model all of the workings of a human mathematician’s thinking.

This project has tried to address some of those problems, but many challenges still

lie ahead. The biggest one would be how to incorporate some creativity aspects into

the program so that the program can come up with a new construction or example

to complete a proof.

APPENDIX A

Newly Added Definitions and Theorems

Here we list the new definitions and theorems added to RealAnalysis.hs file.

These additions customize robotone for delivering proofs for the course MATH-332

Real Analysis I.

A.0.1 New Definitions

1. Surjection: Let f : A → B. f is a surjection if and only if for all y ∈ B, there

exists some x ∈ A such that f (x) = y.

1 ("surjection(f, A, B)", "forall y.(in(y, B) => (exists x.(in(x,
A) & equals(applyfn(f,x),y))))")

2. Limit point: x is a limit point of a set A if there exists a sequence an in A such

that an → x and for all n, x , an.

1 ("islimitpoint(x, A)", "exists an.(sequencein(an, A) &
tendsto(an, x) & forall n.(~equals(x, kthterm(an, n))))")

3. Bounded: A set A is bounded if there exists N > 0 such that for all a ∈ A,

N ≥ |a|. It gets interesting here because as humans, we can instinctively

consider sequences as sets and thus this definition of being bounded can apply.

The program, however, needs 2 different definitions of bounded-ness, one for

sequences:

1 ("bounded(an)", "exists N.(forall n.(lessthan(d(0,kthterm(an,n)), N
)))")

75

76 A. Newly Added Definitions and Theorems

And one for sets:
1 ("bounded(A)", "exists N.(forall a.(in(a,A) => lessthan(a

, N)))")

4. Compact:
1 ("compact(A)", "closed(A) & bounded(A)")

5. Increasing:
1 ("increasing(an)", "forall m n.(lessthan(m,n) => lessthan

(kthterm(an, m), kthterm(an, n)))")

6. Decreasing:
1 ("decreasing(an)", "forall m n.(lessthan(m,n) => lessthan

(kthterm(an, n), kthterm(an, m)))")

7. Monotone:
1 ("monotone(an)", "increasing(an) | decreasing(an)")

8. Supremum:
1 ("sup(s, A)", "forall a.(in(a, A) => lessthan(a, s)) &

forall v.(lessthan(v, s) => exists b.(in(b, A) & lessthan(v, b))
)")

9. Infimum:
1 ("inf(s, A)", "forall a.(in(a, A) => lessthan(s, A)) &

forall v.(lessthan(s, v) => exists b.(in(b, A) & lessthan(b, v))
)")

A.0.2 New Theorems

1. Monotone Convergence Theorem:
1 Result "Monotone Convergence Theorem" [
2 parse formula "bounded(an)",
3 parse formula "monotone(an)"]
4 (parse formula "converges(an)")

2. Every convergent sequence is bounded:
1 Result "every convergent sequence is bounded" [
2 parse formula "converges(an)"]
3 (parse formula "bounded(an)")

APPENDIX B

Examples of Proofs with Steps

This appendix demonstrates 2 proofs including detailed steps, one is successful and

the other is not. The final proofs are given at the top below the problem statements.

After that, on the left are the steps of how the program arrives at the final proof are

listed out in boxes as they are represented in the logic. On the right, we can see

what steps correspond to what sentences in the final proof. A summary of the two

proofs is below:

If f is an injection then f (A) ∩ f (B) ⊂ f (A ∩ B)

Let x be an element of f (A) ∩ f (B). Then x ∈ f (A) and x ∈ f (B).

That is, there exists y ∈ A such that f (y) = x and there exists z ∈ B

such that f (z) = x. Since f is an injection, f (y) = x and f (z) = x,

we have that y = z. We would like to find u ∈ A ∩ B s.t. f (u) = x.

But u ∈ A ∩ B if and only if u ∈ A and u ∈ B. Since y = z, we have

that y ∈ B. Therefore, setting u = y, we are done.

If g,f are surjections then (g o f) is a surjection.

Let y be an element of C. Then, since g from B to C is a surjection,

we have that y ∈ g(B). That is, there exists z ∈ B such that g(z) = y.

Since f from A to B is a surjection and z ∈ B, we have that z ∈ f (A).

That is, there exists u ∈ A such that f (u) = z. We would like to

find v ∈ A s.t. g(f (v)) = y.

77

f f(A) ∩ f(B) ⊂ f(A ∩ B)

x f(A) ∩ f(B) x ∈ f(A) x ∈ f(B)
y ∈ A f(y) = x z ∈ B

f(z) = x f f(y) = x f(z) = x
y = z u ∈ A ∩ B f(u) = x

u ∈ A ∩ B u ∈ A u ∈ B y = z
y ∈ B u = y

f

f(A) ∩ f(B) ⊂ f(A ∩ B)

f

∀x.(x ∈ f(A) ∩ f(B) ⇒ x ∈ f(A ∩ B))

x
f(A) ∩ f(B)x

f
x ∈ f(A) ∩ f(B)

x ∈ f(A ∩ B)

x ∈ f(A) ∩ f(B)
x ∈ f(A) x ∈ f(B)

x
f
x ∈ f(A)
x ∈ f(B)

x ∈ f(A ∩ B)

x ∈
f(A) y ∈ A

f(y) = x
x y

f
y ∈ A
f(y) = x
x ∈ f(B)

x ∈ f(A ∩ B)

x ∈
f(B) z ∈ B

f(z) = x
x y z

f
y ∈ A
f(y) = x
z ∈ B
f(z) = x

x ∈ f(A ∩ B)

f
f(y) = x f(z) = x

y = z

x y z
f
y ∈ A
f(y) = x
z ∈ B
f(z) = x
y = z

x ∈ f(A ∩ B)

u ∈
A ∩ B f(u) = x

x y z
f
y ∈ A
f(y) = x
z ∈ B
f(z) = x
y = z

∃u.(u ∈ A ∩ B ∧ f(u) = x)

u ∈
A ∩ B f(u) = x

x y z
f
y ∈ A
f(y) = x
z ∈ B
f(z) = x
y = z

u!

u! ∈ A ∩ B
f(u!) = x

!

u ∈ A ∩ B
u ∈ A u ∈ B

x y z
f
y ∈ A
f(y) = x
z ∈ B
f(z) = x
y = z

u!

u! ∈ A
u! ∈ B
f(u!) = x

!

z y y = z
y ∈ B

x y z
f
y ∈ A
f(y) = x
y ∈ B

u!

u! ∈ A
u! ∈ B
f(u!) = x

!

x

x y z
f
y ∈ A
y ∈ B

u!

u! ∈ A
u! ∈ B

f(y) = x

f(u!) = x

!

u! = y ! !

u = y

x y z
f
y ∈ A
y ∈ B

!

y C g B C
u ∈ B g(u) = y f A B

u ∈ B v ∈ A f(v) = u
x ∈ A g(f(x)) = y

f A B
g B C

g ◦ f A C

f A B
g B C

∀y.(y ∈ C ⇒ ∃x.(x ∈ A ∧ g(f(x)) = y))

y C

y
f A B
g B C
y ∈ C

∃x.(x ∈ A ∧ g(f(x)) = y)

g B C
y ∈ C

u ∈ B
g(u) = y

y u[y]
f A B
g B C
y ∈ C
u[y] ∈ B
g(u[y]) = y

∃x.(x ∈ A ∧ g(f(x)) = y)

y u[y]
f A B
g B C
y ∈ C
u[y] ∈ B
g(u[y]) = y

∃x.(x ∈ A ∧ g(f(x)) = y)

C

y u[y]
f A B
g B C
y ∈ C
u[y] ∈ B
g(u[y]) = y

∃x.(x ∈ A ∧ g(f(x)) = y)

f A B
u ∈ B

v ∈ A
f(v) = u

y u[y] v[u[y]]
f A B
g B C
y ∈ C
u[y] ∈ B
g(u[y]) = y
v[u[y]] ∈ A
f(v[u[y]]) = u[y]

∃x.(x ∈ A ∧ g(f(x)) = y)

y u[y] v[u[y]]
f A B
g B C
y ∈ C
u[y] ∈ B
g(u[y]) = y
v[u[y]] ∈ A
f(v[u[y]]) = u[y]

∃x.(x ∈ A ∧ g(f(x)) = y)

B

y u[y] v[u[y]]
f A B
g B C
y ∈ C
u[y] ∈ B
g(u[y]) = y
v[u[y]] ∈ A
f(v[u[y]]) = u[y]

∃x.(x ∈ A ∧ g(f(x)) = y)

x ∈
A g(f(x)) = y

y u[y] v[u[y]]
f A B
g B C
y ∈ C
u[y] ∈ B
g(u[y]) = y
v[u[y]] ∈ A
f(v[u[y]]) = u[y]

x!

x! ∈ A
g(f(x!)) = y

!

APPENDIX C

List of All Proofs

83

If f is an injection then f(A) ∩ f(B) ⊂ f(A ∩ B)

Let x be an element of f(A) ∩ f(B). Then x ∈ f(A) and x ∈ f(B).
That is, there exists y ∈ A such that f(y) = x and there exists z ∈ B
such that f(z) = x. Since f is an injection, f(y) = x and f(z) = x,
we have that y = z. We would like to find u ∈ A ∩ B s.t. f(u) = x.
But u ∈ A ∩ B if and only if u ∈ A and u ∈ B. Since y = z, we have
that y ∈ B. Therefore, setting u = y, we are done.

If g, f are injections then (g ◦ f) is an injection.

Let x, y and z be such that g(f(x)) = z and g(f(y)) = z. Then,
since g is an injection, we have that f(x) = f(y). Therefore, since
f is an injection, x = y if f(y) = f(y). Since g is an injection and
g(f(y)) = z, f(y) = f(y) if g(f(y)) = z. But this is clearly the case,
so we are done.

A ⊆ f−1(f(A))

Let x be an element of A. We would like to show that x ∈ f−1(f(A)),
i.e. that f(x) ∈ f(A). But this is clearly the case, so we are done.

f(f−1(A)) ⊂ A

Let x be an element of f(f−1(A)). Then there exists y ∈ f−1(A) such
that f(y) = x. Since y ∈ f−1(A), we have that f(y) ∈ A. Since
f(y) = x, we have that x ∈ A. But this is clearly the case, so we are
done.

f(A ∩ B) ⊆ f(A) ∩ f(B)

By definition, since y ∈ f(A ∩ B), there exists z ∈ A ∩ B such that
f(z) = y. Since z ∈ A ∩ B, z ∈ A and z ∈ B. We would like to show
that y ∈ f(A) ∩ f(B), i.e. that y ∈ f(A) and y ∈ f(B). We would
like to show that y ∈ f(A). But this is clearly the case, so we are done.
Thus y ∈ f(B) and we are done.

f−1(A ∩ B) ⊆ f−1(A) ∩ f−1(B)

Since x ∈ f−1(A∩B), we have that f(x) ∈ A∩B. Then f(x) ∈ A and
f(x) ∈ B. We would like to show that x ∈ f−1(A) ∩ f−1(B), i.e. that
x ∈ f−1(A) and x ∈ f−1(B). We would like to show that x ∈ f−1(A),
i.e. that f(x) ∈ A. We would like to show that x ∈ f−1(B), i.e. that
f(x) ∈ B. But this is clearly the case, so we are done.

1

f−1(A) ∩ f−1(B) ⊆ f−1(A ∩ B)

Let x be an element of f−1(A) ∩ f−1(B). Then x ∈ f−1(A) and x ∈
f−1(B). Then f(x) ∈ A and f(x) ∈ B. We would like to show that
x ∈ f−1(A ∩ B), i.e. that f(x) ∈ A ∩ B. We would like to show that
f(x) ∈ A ∩ B, i.e. that f(x) ∈ A and f(x) ∈ B. But this is clearly the
case, so we are done.

f−1(A ∪ B) ⊆ f−1(A) ∪ f−1(B)

Let x be an element of f−1(A∪B). Then f(x) ∈ A∪B. Then f(x) ∈ A
or f(x) ∈ B. We would like to show that x ∈ f−1(A) ∪ f−1(B),
i.e. that x ∈ f−1(A) or x ∈ f−1(B). We would like to show that
x ∈ f−1(A), i.e. that f(x) ∈ A. But this is clearly the case, so we
are done. We would like to show that x ∈ f−1(A) ∪ f−1(B), i.e. that
x ∈ f−1(A) or x ∈ f−1(B). We would like to show that x ∈ f−1(A),
i.e. that f(x) ∈ A. We would like to show that x ∈ f−1(B), i.e. that
f(x) ∈ B. But this is clearly the case, so we are done.

f−1(A) ∪ f−1(B) ⊆ f−1(A ∪ B)

Let x be an element of f−1(A) ∪ f−1(B). Then x ∈ f−1(A) or x ∈
f−1(B). Since x ∈ f−1(A), we have that f(x) ∈ A. Since x ∈ f−1(B),
we have that f(x) ∈ B. We would like to show that x ∈ f−1(A ∪ B),
i.e. that f(x) ∈ A ∪ B. We would like to show that f(x) ∈ A ∪ B, i.e.
that f(x) ∈ A or f(x) ∈ B. But this is clearly the case, so we are done.
Wewould like to show that x ∈ f−1(A∪B), i.e. that f(x) ∈ A∪B. We
would like to show that f(x) ∈ A∪B, i.e. that f(x) ∈ A or f(x) ∈ B.
But this is clearly the case, so we are done.

If A and B are open sets, then A ∪ B is also open.

Let x be an element of A ∪ B. Then x ∈ A or x ∈ B. Since A is open
and x ∈ A, there exists α > 0 such that w ∈ A whenever d(x,w) < α.
Since B is open and x ∈ B, there exists β > 0 such that p ∈ B
whenever d(x, p) < β. We would like to find η > 0 s.t. z ∈ A ∪ B
whenever d(x, z) < η. But z ∈ A ∪ B if and only if z ∈ A or z ∈ B.
We know that z ∈ A if d(x, z) < α. Therefore, setting η = α, we are
done. Wewould like to find θ > 0 s.t. u ∈ A∪B whenever d(x, u) < θ.
But u ∈ A ∪ B if and only if u ∈ A or u ∈ B. We know that u ∈ B if
d(x, u) < β. Therefore, setting θ = β, we are done.

If A, B,and C are open sets, then A ∪ (B ∪ C) is also open.

2

Let x be an element of A ∪ B ∪ C . Then x ∈ A or x ∈ B ∪ C . Since
A is open and x ∈ A, there exists α > 0 such that w ∈ A whenever
d(x,w) < α. Since x ∈ B ∪ C , x ∈ B or x ∈ C . Since B is open
and x ∈ B, there exists δ′ > 0 such that r ∈ B whenever d(x, r) < δ′.
Since C is open and x ∈ C , there exists δ′′ > 0 such that s ∈ C
whenever d(x, s) < δ′′. We would like to find η > 0 s.t. z ∈ A∪B ∪C
whenever d(x, z) < η. But z ∈ A ∪ B ∪ C if and only if z ∈ A or
z ∈ B ∪ C . We know that z ∈ A if d(x, z) < α. Therefore, setting
η = α, we are done. We would like to find β > 0 s.t. v ∈ A ∪ B ∪ C
whenever d(x, v) < β. But v ∈ A ∪ B ∪ C if and only if v ∈ A or
v ∈ B ∪ C . We would like to show that v ∈ B ∪ C , i.e. that v ∈ B or
v ∈ C . We know that v ∈ B if d(x, v) < δ′. Therefore, setting β = δ′,
we are done. We would like to find γ > 0 s.t. p ∈ A∪B ∪C whenever
d(x, p) < γ. But p ∈ A ∪ B ∪ C if and only if p ∈ A or p ∈ B ∪ C . We
would like to show that p ∈ B ∪C , i.e. that p ∈ B or p ∈ C . We know
that p ∈ C if d(x, p) < δ′′. Therefore, setting γ = δ′′, we are done.

If A and B are open sets, then A ∩ B is also open.

Let x be an element of A∩B. Then x ∈ A and x ∈ B. Therefore, since
A is open, there exists η > 0 such that u ∈ A whenever d(x, u) < η
and since B is open, there exists θ > 0 such that v ∈ B whenever
d(x, v) < θ. We would like to find δ > 0 s.t. y ∈ A ∩ B whenever
d(x, y) < δ. But y ∈ A ∩ B if and only if y ∈ A and y ∈ B. We
know that y ∈ A whenever d(x, y) < η and that y ∈ B whenever
d(x, y) < θ. Assume now that d(x, y) < δ. Then d(x, y) < η if δ ⩽ η
and d(x, y) < θ if δ ⩽ θ. We may therefore take δ = min(η, θ) and we
are done.

If A and B are closed sets, then A ∩ B is also closed.

Let (an) and a be such that (an) is a sequence in A ∩ B and an → a.
Then (an) is a sequence in A and (an) is a sequence in B. Therefore,
since A is closed and an → a, we have that a ∈ A and since B is
closed and an → a, we have that a ∈ B. We would like to show that
a ∈ A ∩ B, i.e. that a ∈ A and a ∈ B. But this is clearly the case, so
we are done.

The pre-image of a closed set U under a continuous function f
is closed.

Let (an) and a be such that (an) is a sequence in f−1(U) and an → a.
Then f(an) is a sequence inU . Wewould like to show that a ∈ f−1(U),
i.e. that f(a) ∈ U and sinceU is closed, f(a) ∈ U if f(an) → f(a). Let
ϵ > 0. We would like to find N s.t. d(f(a), f(an)) < ϵ whenever n ⩾
N . Since f is continuous, there exists δ > 0 such that d(f(a), f(an)) <
ϵ whenever d(a, an) < δ. Since an → a, there exists N ′ such that
d(a, an) < δ whenever n ⩾ N ′. Therefore, setting N = N ′, we are
done.

3

The pre-image of an open set U under a continuous function f
is open.

Let x be an element of f−1(U). Then f(x) ∈ U . Therefore, since U is
open, there exists η > 0 such that u ∈ U whenever d(f(x), u) < η.
We would like to find δ > 0 s.t. y ∈ f−1(U) whenever d(x, y) < δ.
But y ∈ f−1(U) if and only if f(y) ∈ U . We know that f(y) ∈ U
whenever d(f(x), f(y)) < η. Since f is continuous, there exists θ > 0
such that d(f(x), f(y)) < η whenever d(x, y) < θ. Therefore, setting
δ = θ, we are done.

If f and g are continuous functions, then g ◦ f is continuous.

Take x and ϵ > 0. We would like to find δ > 0 s.t.
d(g(f(x)), g(f(y))) < ϵ whenever d(x, y) < δ. Since g is continu-
ous, there exists η > 0 such that d(g(f(x)), g(f(y))) < ϵ whenever
d(f(x), f(y)) < η. Since f is continuous, there exists θ > 0 such that
d(f(x), f(y)) < η whenever d(x, y) < θ. Therefore, setting δ = θ, we
are done.

If f is a continuous function and (an) → a, then (f(an)) → f(a)

Let ϵ > 0. We would like to find N s.t. d(f(a), f(an)) < ϵ when-
ever n ⩾ N . Since f is continuous, there exists δ > 0 such that
d(f(a), f(an)) < ϵ whenever d(a, an) < δ. Since an → a, there ex-
ists N ′ such that d(a, an) < δ whenever n ⩾ N ′. Therefore, setting
N = N ′, we are done.

Ac ∩ Bc ⊆ (A ∪ B)c.

Let x be an element of (A)c ∩ (B)c. Then x ∈ (A)c and x ∈ (B)c. Then
x /∈ A ∪ B and x /∈ A. Then it is not that case that x ∈ A. Since
x ∈ (B)c, we have that x /∈ B. Then it is not that case that x ∈ B.
Since x /∈ A ∪ B, it is not that case that x ∈ A ∪ B. We would like to
show that x ∈ (A ∪ B)c, i.e. that x /∈ A ∪ B. We would like to show
that x /∈ A ∪ B, i.e. that it is not that case that x ∈ A ∪ B. But this is
clearly the case, so we are done.

If g, f are surjections then (g ◦ f) is a surjection.

Let y be an element of C . Then, since g from B to C is a surjection,
there exists u ∈ B such that g(u) = y and g(u) ∈ C . Since f from A
to B is a surjection and u ∈ B, there exists v ∈ A such that f(v) = u
and f(v) ∈ B. We would like to find x ∈ A s.t. g(f(x)) = y and
g(f(x)) ∈ C .

4

If f is a surjection then f(A)c ⊂ f(Ac)

Let x be an element of (f(A))c. Then x /∈ f(A). Then it is not that
case that x ∈ f(A). We would like to find y ∈ (A)c s.t. f(y) = x. But
y ∈ (A)c if and only if y /∈ A. But y /∈ A if and only if it is not that
case that y ∈ A.

(A ∩ B)c ⊂ Ac ∪ Bc

Let x be an element of (A ∩ B)c. Then x /∈ A ∩ B. Then it is not that
case that x ∈ A ∩ B. We would like to show that x ∈ (A)c ∪ (B)c,
i.e. that x ∈ (A)c or x ∈ (B)c. We would like to show that x ∈ (A)c,
i.e. that x /∈ A. We would like to show that x /∈ A, i.e. that it is not
that case that x ∈ A. We would like to show that x ∈ (B)c, i.e. that
x /∈ B. We would like to show that x /∈ B, i.e. that it is not that case
that x ∈ B.

Ac ∪ Bc ⊂ (A ∩ B)c

Let x be an element of (A)c ∪ (B)c. Then x ∈ (A)c or x ∈ (B)c. Since
x ∈ (A)c, we have that x /∈ A. Then it is not that case that x ∈ A.
Since x ∈ (B)c, we have that x /∈ B. Then it is not that case that
x ∈ B. We would like to show that x ∈ (A ∩ B)c, i.e. that x /∈ A ∩ B.
We would like to show that x /∈ A ∩ B, i.e. that it is not that case
that x ∈ A ∩ B. We would like to show that x ∈ (A ∩ B)c, i.e. that
x /∈ A ∩ B. We would like to show that x /∈ A ∩ B, i.e. that it is not
that case that x ∈ A ∩ B.

(A ∪ B)c = Ac ∩ Bc

Wewould like to show that (A∪B)c ⊂ (A)c∩(B)c, i.e. that (A∪B)c ⊂
(A)c and (A ∪ B)c ⊂ (B)c.

If A, B,and C are open sets, then A ∩ (B ∩ C) is also open.

Let x be an element ofA∩B∩C . Then x ∈ A and x ∈ B∩C . Therefore,
sinceA is open, there exists η > 0 such that u ∈ Awhenever d(x, u) <
η and x ∈ B and x ∈ C . Therefore, since B is open, there exists θ > 0
such that v ∈ B whenever d(x, v) < θ and sinceC is open, there exists
α > 0 such that w ∈ C whenever d(x,w) < α. We would like to find
δ > 0 s.t. y ∈ A ∩ B ∩ C whenever d(x, y) < δ. But y ∈ A ∩ B ∩ C
if and only if y ∈ A and y ∈ B ∩ C . We know that y ∈ A whenever
d(x, y) < η. But y ∈ B ∩ C if and only if y ∈ B and y ∈ C . We
know that y ∈ B whenever d(x, y) < θ and that y ∈ C whenever
d(x, y) < α. Assume now that d(x, y) < δ. Then d(x, y) < η if δ ⩽ η,
d(x, y) < θ if δ ⩽ θ and d(x, y) < α if δ ⩽ α.

If A and B are closed sets, then A ∪ B is also closed.

Let (an) and a be such that (an) is a sequence in A ∪ B and an → a.
We would like to show that a ∈ A ∪ B, i.e. that a ∈ A or a ∈ B. Since
A is closed and an → a, a ∈ A if (an) is a sequence in A. Since B is
closed and an → a, a ∈ B if (an) is a sequence in B. Take n. Take n′.

5

References

1. Barendregt, H. P., Wil Dekkers, Richard Statman, and Fabio Alessi. Lambda
Calculus with Types. New York: Cambridge University Press: Ohio Library and
Information Network, and Association for Symbolic Logic, 2013.

2. Barendsen, Erik, and Henk Barendregt. Introduction to Lambda Calculus. Institute
for Computing and Information Sciences, Radboud University, 2000. ftp:
//ftp.cs.ru.nl/pub/CompMath.Found/lambda.pdf.

3. Boyer, R. S., M. Kaufmann, and J. S. Moore. “The Boyer-Moore Theorem Prover
and Its Interactive Enhancement.” Computers and Mathematics with Applications
29, 2: (1995) 27–62. http://rave.ohiolink.edu/ejournals/article/
327666409.

4. Coq Community. “The Coq Proof Assistant.”, 2017. https://coq.inria.fr/.
Accessed on 02/17/2017.

5. Docker Inc. “Docker.”, 2017. https://www.docker.com. Accessed on
08/17/2017.

6. EQP Community. “EQP: Equational Prover.”, 2017. http://www.cs.unm.
edu/~mccune/eqp/. Accessed on 02/17/2017.

7. Ganesalingam, M., and W.T. Gowers. “A Fully Automatic Theorem Prover
with Human-Style Output.” Journal of Automated Reasoning 58: (2017) 253–291.
http://rave.ohiolink.edu/ejournals/article/345367909.

8. Gransden, Thomas. “Boosting Automated Reasoning by Mining Existing
Proofs.”, 2013. http://www.cs.le.ac.uk/people/tg75/arw13.pdf.
Accessed on 02/17/2017.

9. Heras, Jónathan, and Ekaterina Komendantskaya. “ML4PG in Computer
Algebra Verification.” CoRR abs/1302.6421. http://arxiv.org/abs/1302.
6421.

10. Hindley, J. Roger, and J. P. Seldin. Lambda-calculus and Combinators, an Introduction.
Cambridge, UK;New York: Cambridge University Press, 2008.

89

ftp://ftp.cs.ru.nl/pub/CompMath.Found/lambda.pdf
ftp://ftp.cs.ru.nl/pub/CompMath.Found/lambda.pdf
http://rave.ohiolink.edu/ejournals/article/327666409
http://rave.ohiolink.edu/ejournals/article/327666409
https://coq.inria.fr/
https://www.docker.com
http://www.cs.unm.edu/~mccune/eqp/
http://www.cs.unm.edu/~mccune/eqp/
http://rave.ohiolink.edu/ejournals/article/345367909
http://www.cs.le.ac.uk/people/tg75/arw13.pdf
http://arxiv.org/abs/1302.6421
http://arxiv.org/abs/1302.6421

90 References

11. Hinton, G. E. “Boltzmann Machine.” Scholarpedia 2, 5: (2007) 1668. Revision
#91075.

12. Hudak, Paul. “Lecture notes in CPSC-201 Introduction to Computer Science.”,
2008. http://www.cs.yale.edu/homes/hudak/CS201S08/lambda.pdf.
Accessed on 09/17/2017.

13. Kragl, Bernhard. “Machine Learning for Automated Theorem Proving.”, 2015.
http://pub.ist.ac.at/~chl/ML2015/kragl-sma2015.pdf. Accessed
on 02/17/2017.

14. Mcgregor, Ralph Eric. Automated Theorem Proving Using Sat. Ph.D. thesis,
Clarkson University, Potsdam, NY, USA, 2011. AAI3471671.

15. Miller, Dale, and Gopalan Nadathur. Programming with Higher-Order Logic. New
York, NY: Cambridge University Press, 2012.

16. Nipkow, Tobias, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A
Proof Assistant for Higher-Order Logic, volume 2283. New York, Berlin: Springer,
2002, 1st edition.

17. Plaisted, David A. “Automated Theorem Proving.” Wiley Interdisciplinary
Reviews: Cognitive Science 5: (2014) 115–128. http://rave.ohiolink.edu/
ejournals/article/321835984.

18. Rojas, Raúl. “A Tutorial Introduction to the Lambda Calculus.” CoRR
abs/1503.09060. http://arxiv.org/abs/1503.09060.

19. Vampire Community. “The Vampire Theorem Prover.”, 2017. http://www.
vprover.org. Accessed on 02/17/2017.

20. Wos, Larry et al. Automated Reasoning: Introduction and Applications. Englewood
Cliffs, N.J: Prentice-Hall, 1984.

http://www.cs.yale.edu/homes/hudak/CS201S08/lambda.pdf
http://pub.ist.ac.at/~chl/ML2015/kragl-sma2015.pdf
http://rave.ohiolink.edu/ejournals/article/321835984
http://rave.ohiolink.edu/ejournals/article/321835984
http://arxiv.org/abs/1503.09060
http://www.vprover.org
http://www.vprover.org

	The College of Wooster Libraries
	Open Works
	2017

	Pretending To Be Human: An Automated Theorem Prover To Write Mathematical Proofs
	Khoa Nguyen
	Recommended Citation

	Abstract
	Acknowledgments
	Contents
	List of Listings
	Introduction
	Proof Techniques
	Direct Proofs
	Contrapositive Proofs
	Contradiction Proofs

	What is Automated Theorem Proving?
	Artifacts
	Inference Rules

	Current Theorem Provers and Research

	Formalized Logic
	Propositional Logic
	First-Order Logic
	Elements of Syntax and Semantics
	First-Order Proof Systems

	Higher-Order Logic (HOL)

	Lambda Calculus
	Definitions
	-Terms
	Free and Bound Variables
	Substitution
	Lambda Calculus as Formal Theory

	Conditionals
	AND
	OR
	NOT

	Recursion
	Functional Programming

	Software Architecture
	Logic Framework
	Implementing First-Order Logic and Tactics
	Deletion/Removal Tactics (DeletionMoves.hs)
	Tidying Tactics (TidyingMoves.hs)
	Applying Tactics (ApplyingMoves.hs)
	Suspension Tactics (Suspension.hs)
	RobotM

	Mathematical Contents
	Inputting Problems into Robotone
	Inputting Mathematical Facts into Robotone

	LaTeX Writeup

	Using robotone for Real Analysis I
	Modifications to the Original Source Code
	Customizations for MATH-332 Real Analysis I
	Docker
	Helper Scripts

	Setting Up Robotone
	Installation and Usage with Docker on Command Line Interface
	Installation and Usage with Docker on Graphical Interface
	Direct Installation on Host Machine

	Proof Analysis and Examples
	Working Proofs
	Incomplete Proofs

	Challenges and Future Work
	Challenges
	Robotone Cannot Apply Creativity in Mathematical Proofs
	Robotone Cannot Apply Underlying Assumptions Like Humans

	Future Work
	Creating New Tactics
	Application of Machine Learning

	Conclusion
	Newly Added Definitions and Theorems
	New Definitions
	New Theorems

	Examples of Proofs with Steps
	List of All Proofs
	References

