
The College of Wooster Libraries
Open Works

Senior Independent Study Theses

2017

The Search for GTO: Determining Optimal Poker
Strategy Using Linear Programming
Stuart Young
The College of Wooster, syoung17@wooster.edu

Follow this and additional works at: https://openworks.wooster.edu/independentstudy

This Senior Independent Study Thesis Exemplar is brought to you by Open Works, a service of The College of Wooster Libraries. It has been accepted
for inclusion in Senior Independent Study Theses by an authorized administrator of Open Works. For more information, please contact
openworks@wooster.edu.

© Copyright 2017 Stuart Young

Recommended Citation
Young, Stuart, "The Search for GTO: Determining Optimal Poker Strategy Using Linear Programming" (2017). Senior Independent
Study Theses. Paper 7807.
https://openworks.wooster.edu/independentstudy/7807

https://openworks.wooster.edu?utm_source=openworks.wooster.edu%2Findependentstudy%2F7807&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openworks.wooster.edu/independentstudy?utm_source=openworks.wooster.edu%2Findependentstudy%2F7807&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openworks.wooster.edu/independentstudy?utm_source=openworks.wooster.edu%2Findependentstudy%2F7807&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openworks.wooster.edu/independentstudy/7807?utm_source=openworks.wooster.edu%2Findependentstudy%2F7807&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openworks.wooster.edu/independentstudy/7807
mailto:openworks@wooster.edu

The Search for GTO:
Determining Optimal Poker

Strategy Using Linear
Programming

Independent Study Thesis

Presented in Partial Fulfillment of the
Requirements for the Degree Bachelor of Arts in
the Department of Mathematics and Computer

Science at The College of Wooster

by
Stuart Young

The College of Wooster
2017

Advised by:

Dr. Matthew Moynihan

Abstract

This project applies techniques from game theory and linear programming

to find the optimal strategies of two variants of poker. A set of optimal poker

strategies describe a Nash equilibrium, where no player can improve their

outcome by changing their own strategy, given the strategies of their

opponent(s). We first consider Kuhn Poker as a simple application of our

methodology. We then turn our attention to 2-7 Draw Poker, a modern variant

onto which little previous research is focused. However, the techniques that

we use are incapable of solving large, full-scale variants of poker such as 2-7

Draw. Therefore, we utilize several abstractions techniques to render a

computationally-feasible LP that retains the underlying spirit of the game. We

use the Gambit software package to build and solve LPs whose solutions are

the optimal strategies for each game.

iii

Acknowledgements

To my advisor, Dr. Moynihan, thank you. You have consistently pushed

me to achieve, and have remained supportive during difficult moments. You

have furthered my abilities in mathematics, critical thinking, and writing;

these are skills I will always value.

To my parents, Lee Stivers and Peter Young, thank you. Beyond just

providing me with this education, you taught me why its so important. Mom,

you have inspired my love of scientific inquiry and desire for new knowledge.

Most importantly, you are supportive, reassuring, and always there for me.

To my friend and roommate, Parker Ohlmann, thank you. Your constant

support over the last 4 years has been invaluable, as you remind me to keep all

of this in perspective. I am inspired every day by your dedication,

compassion, and kindness in life.

This project, and my time at the College of Wooster, would not have been

possible without each of you.

v

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

2 Linear Programming 3

2.1 Basic Theory . 4

2.1.1 Constraints . 4

2.1.2 Solutions . 7

2.2 Duality . 9

2.2.1 Motivation . 9

2.2.2 Theory . 12

3 Game Theory 17

3.1 Background . 17

3.2 Normal (Strategic) Form . 19

3.2.1 Equilibrium . 23

vii

viii CONTENTS

3.3 Extensive Form . 30

3.3.1 Perfect Information . 30

3.3.2 Imperfect Information . 36

3.3.3 Nash Equilibrium . 40

3.4 Sequence Form . 41

3.4.1 Linear Programming Theory 48

4 Kuhn Poker 55

4.1 Rules . 55

4.2 Extensive Form . 56

4.3 Normal Form . 56

4.3.1 Strategies . 58

4.3.2 Payoffs . 61

4.3.3 Player 1’s Optimal Strategy 62

4.3.4 Player 2’s Optimal Strategy 69

4.4 Sequence Form . 72

4.4.1 Sequences and Information Sets 72

4.4.2 Payoffs . 74

4.4.3 Strategy Constraint Matrices and Realization Plans 77

4.4.4 Player 2’s Optimal Strategy 79

4.4.5 Player 1’s Optimal Strategy 83

5 2-7 Draw Poker 89

5.1 Rules . 89

5.2 Abstractions . 92

5.2.1 Deck Reduction . 92

5.2.2 Betting Abstractions . 93

5.2.3 Bucketing . 94

5.3 Simulation . 98

5.4 Results . 105

5.4.1 2 Initial Buckets . 105

5.4.2 3 Initial Buckets . 109

6 Conclusion 111

A Gambit 113

B Simplified 2-7 Draw LP Results 117

List of Figures

3.1 Generalized Two-player Strategic Game 22

3.2 Prisoner’s Dilemma . 24

3.3 Extensive Form Game with Perfect Information 33

3.4 Extensive Form Game with Imperfect Information and Perfect

Recall . 38

3.5 Sequence Form Example . 45

4.1 Extensive Form of Kuhn Poker . 57

4.2 Player 1’s pure strategies in Kuhn Poker 59

4.3 Player 2’s pure strategies in Kuhn Poker 60

4.4 Subtree of Kuhn Poker . 73

4.5 Payoff function example, with g(s∅, sa, sm) = −1 shown in blue. . . 75

5.1 Initial Transition Probabilities to 2 Buckets 97

5.2 Initial Transition Probabilities to 3 Buckets 97

5.3 Final Transition Probabilities from 2 Buckets 98

5.4 Final Transition Probabilities from 3 Buckets 98

xi

xii LIST OF FIGURES

A.1 Part of the Extensive Form of Kuhn Poker in the Gambit GUI . . . 114

List of Tables

4.1 Solutions to Player 1’s LP . 85

4.2 Player 1’s Optimal Behavioral Strategy 88

5.1 Hand Rankings with Frequencies in Simplified 2-7 Draw Poker . 93

5.2 Initial Buckets . 96

5.3 Final Buckets . 96

B.1 Optimal Realization Plan for 2 Initial Buckets 118

B.2 Optimal Realization Plan for 3 Initial Buckets 126

i

ii LIST OF TABLES

Chapter 1

Introduction

Game theory is a unique field of mathematics; it attempts to model the

interactions of conflict and cooperation between rational decision-makers.

Game theoretic tools are used in a variety of disciplines, including economics,

political science, and philosophy, as well as the study of traditional games.

While the models retain mathematical rigor, the underlying concepts are

rather interdisciplinary. Modern game theory began in 1928, with John von

Neumann’s proof of the existence of mixed strategy equilibria in zero-sum

two-person games [7]. Another major development was John Forbes Nash Jr’s

proof of the existence of his namesake Nash equilibrium in any

non-cooperative game. Developments in game theory have often followed

historical context, most notably World War II [4].

Within the broader field of operations research, linear programming is an

optimization technique used specifically for problems described by linear

objective functions and constraints. Various solution algorithms, such as the

Simplex method, offer well-defined methods to find optimal solutions to

1

2 CHAPTER 1. INTRODUCTION

broad classes of linear programs. Linear programming methods are frequently

used to model business operations and models of economic competition.

Developments in linear programming were also motivated by World War II;

George Dantzig developed the general theory and Simplex method in

1946-1947 in response to personnel and equipment planning problems in the

US Air Force [12].

Poker is a fascinating game, requiring both psychological and deductive

ability to win. In the last ten years, understanding of poker strategy has

undergone a radical shift. What was once viewed as a simple card game based

mostly on luck is now seen as a highly mathematical, deductive game with

complex strategies. Many of today’s top professional players use strategies

based heavily on game theory and probability; if they use a strategy superior

to their opponents, they stand to make millions of dollars. Poker strategy

interests academic researchers, who until recently only made incremental

progress in understanding the optimal strategies of commonly played

variants. In 2015, researchers at the University of Alberta announced a Nash

equilibrium solution to Limit Texas Hold’Em [3]. In early 2017, researchers at

Carnegie Mellon University developed a Artificial Intelligence system that

resoundingly defeated a group of professionals at No-Limit Texas Hold’Em

[10]. While not quite a Nash-optimal solution, it represents a dramatic

advance in the understanding of poker strategy. Little formal work has

studied games other than Texas Hold’Em.

Chapter 2

Linear Programming

The basic purpose of linear programming is to find the optimal solution to

a linear function that is limited by a set of constraints. These methods have a

wide variety of applications, including economics, business, and engineering.

For example, a factory might use linear programming methods to determine a

production schedule that satisfies product demand while minimizing total

cost. Fortunately, we can also use them to determine optimal strategies for

games such as poker. We present a basic overview of linear programming

theory in this chapter, which will be an important technique in our analysis of

poker strategy. This section is based on theory from [12], which contains much

more detail on linear programming and the Simplex method than we explore

here.

3

4 CHAPTER 2. LINEAR PROGRAMMING

2.1 Basic Theory

Every linear program (LP) has a set of decision variables, x j for

j = 1, 2, . . . ,n that we wish to optimize. Decision variables could represent

types of products that a company produces, types of raw materials, and

production methods, to name just a few. We wish to maximize or minimize

some linear function of these variables

f (x) = c1x1 + c2x2 + · · · + c jx j.

This f (x) is called the objective function of the LP. Each c j ∈ R is a coefficient

for a particular decision variable x j. These coefficients can have different

interpretations, depending on context; for example, if f (x) is a revenue

function, each c j would represent the unit cost of good x j. A particular LP can

seek to either maximize or minimize this function; a business could want to

minimize cost or maximize profit. Fortunately, we can easily convert between

a minimization LP and maximization LP by changing the sign; minimizing

f (x) is equivalent to maximizing − f (x).

2.1.1 Constraints

This objective function is maximized or minimized according to a set of

constraints, which have the general form

a1x1 + a2x2 + · · · + anxn

≤

=

≥

b.

CHAPTER 2. LINEAR PROGRAMMING 5

For example, an LP that seeks to maximize profit could have a constraint

specifiying the minimum number of each product x j that must be produced in

order to meet demand. We can convert between equality and inequality

constraints as follows. If we have an inequality constraint of the form

a1x1 + a2x2 + · · · + anxn ≤ b,

we can convert it to an equality constraint by adding a nonnegative slack

variable w such that

a1x1 + a2x2 + · · · + anxn + w = b.

For a constraint of the form

a1x1 + a2x2 + · · · + anxn ≥ b,

we can convert it to an equality constraint by subtracting a nonnegative

surplus variable v such that

a1x1 + a2x2 + · · · + anxn − v = b.

Finally, an equality constraint of the form

a1x1 + a2x2 + · · · + anxn = b

6 CHAPTER 2. LINEAR PROGRAMMING

can be converted to inequality form by replacing it with the two constraints

a1x1 + a2x2 + · · · + anxn + w ≥ b,

a1x1 + a2x2 + · · · + anxn + w ≤ b,

since a particular x satisfies both constraints only at equality. The final

components of an LP are the sign restrictions on each decision variable x j. For

an LP with a maximization objective function, we use the sign restrictions

x j ≥ 0 for j = 1, 2, . . . ,n. For a minimization LP, we also use x j ≥ 0 for

j = 1, 2, . . . ,n. These sign restrictions are additional constraints, in the sense

that they restrict the allowable values of x j.

We now define the standard form representation of a linear program as

Maximize: f (x) = c1x1 + c2x2 + · · · + c jx j

subject to: a11x1 + a12x2 + · · · + a1 jx j ≤ b1

a21x1 + a22x2 + · · · + a2 jx j ≤ b2

...

ai1x1 + ai2x2 + · · · + ai jxn ≤ bi

x1, x2, · · · , xn ≥ 0.

(2.1)

We can also write the standard form with matrix notation,

Maximize: cTx

subject to: Ax ≤ b

x ≥ 0.

(2.2)

CHAPTER 2. LINEAR PROGRAMMING 7

where A is an m by n matrix of constraint coefficients ai j, c is a vector of length

n of objective function coefficients, and b is a vector of right-hand side

coefficients of length m.

2.1.2 Solutions

We now consider the solution methods and solution types of LPs. Most

LPs are much too complex to solve by hand or by graphical methods. Instead,

we typically use the Simplex method algorithm. Broadly, the Simplex method

searches the vertices of the feasible region to find the optimal solution. The

mechanics of the Simplex method are not a focus of this project and are well

documented elsewhere, including in [12].

Using the Simplex method, we can find several different types of solutions.

An n-tuple (x1, x2, · · · , xn) specifying a value for each decision variable is a

solution; it is a feasible solution if it satisfies all of the constraints of the LP

and an optimal solution if it corresponds to the actual maximum or minimum

of the LP. The optimal solution is also a feasible solution, by definition. Any

solution that fails to satisfy one or more constraints is an infeasible solution.

The following definitions further detail types of solutions.

Definition 1. A constraint ax ≤ b is active at a particular solution x̄ if ax̄ = b.

Definition 2. A solution x̄ is a basic feasible solution if it has at least n linearly

independent active constraints.

Definition 3. A solution x̄ is a basic optimal solution if it has n linearly

independent active constraints and f (x̄) is the desired minimum or maximum.

Linear programs that have no optimal solution are split into two

8 CHAPTER 2. LINEAR PROGRAMMING

categories. Some LPs have no feasible solutions; that is, the space defined by

the constraints is empty. For example, consider the LP

Maximize: f (x) = 3x1 + 2x2 + 4x3

subject to: x1 + x2 + x3 ≤ 5

− x1 − x2 − x3 ≤ −8

2x1 + x2 ≤ 10

x1, x2, x3 ≥ 0.

(2.3)

Note that the second constraint can be rewritten as x1 + x2 + x3 ≥ 8. This is

contrary to the first constraint; there is no (x1, x2, x3) that satisfies

x1 + x2 + x3 ≤ 5 and x1 + x2 + x3 ≥ 8. Thus, there are no feasible solutions to this

LP. We call an LP that has no feasible solutions infeasible.

In contrast, some LPs are said to be unbounded. An unbounded LP has

feasible solutions for arbitrarily large objective function values. For example,

consider the LP

Maximize: f (x) = x1 − 6x2

subject to: − 4x1 + x2 ≤ −1

− x1 − 4x2 ≤ −2

x1, x2 ≥ 0.

(2.4)

Let x1 ≥ 2 and x2 = 0; any solution of this form satisfies both constraints and is

feasible. As x1 increases, so does f (x) = x1 − 6x2. Thus, f (x) takes on arbitrarily

large values and is unbounded. We can now categorize the solution categories

CHAPTER 2. LINEAR PROGRAMMING 9

of all linear programs with the following theorem.

Theorem 1. (Fundamental Theorem of Linear Programming) For an arbitrary linear

program in standard form, the following statements are true:

1. If there is no optimal solution, then the problem is either infeasible or unbounded.

2. If a feasible solution exists, then a basic feasible solution exists.

3. If an optimal solution exists, then a basic optimal solution exists.

For more detail and a proof of this theorem, see [12].

2.2 Duality

For many applications of linear programming, it is useful to consider the

dual LP associated with a particular primal LP. These structures come in

pairs; the following section details their relationship. In short, every feasible

solution for one of the programs characterizes a bound on the optimal

objective function value of the other. In fact, both LPs will have the same

optimal objective function value.

2.2.1 Motivation

Before exploring duality theory in general, we offer a motivating example.

Consider the following LP:

Maximize: f (x) = 2x1 + x2 + 3x3

subject to: 3x2 + x3 ≤ 5

x1 + x2 + x3 ≤ 10

3x1 + 2x2 ≤ 8.

(2.5)

10 CHAPTER 2. LINEAR PROGRAMMING

Denote the optimal solution to this LP x∗, and the corresponding optimal

objective function value as f (x∗). Consider a particular feasible solution

(x1, x2, x3) = (2, 0, 5), which has a objective function value of z = 19. In effect,

this z acts as a lower bound for the optimal objective function value z∗. Since

we are attempting to maximize our objective function, the optimal solution

must satsify z∗ ≥ 19. If we cannot find another feasible solution such that this

is true, it must be the case that f (x∗) = 19 and x∗ = (x1, x2, x3) = (2, 0, 5). Thus,

each f (x) acts as a lower bound for the optimal f (x∗).

We can also place upper bounds on f (x∗), as follows. Consider the sum of

the three constraints,

3x2 + x3 ≤ 5

x1 + x2 + x3 ≤ 10

+ 3x1 + 2x2 ≤ 8

4x1 + 6x2 + 2x3 ≤ 23

Since each variable is nonnegative, this sum forms an upper bound on the

optimal objective function value; that is,

2x1 + x2 + 3x3 ≤ 4x1 + 6x2 + 2x3 ≤ 23.

Therefore, we have 19 ≤ f (x∗) ≤ 23. We can find other upper bounds by

considering any linear combination of the constraints of the LP in (2.5).

We have significantly narrowed the range of possible values for f (x∗), but

we can further reduce the size of this interval. Before, we considered a

particular linear combination of the constraint vectors. We now consider a

CHAPTER 2. LINEAR PROGRAMMING 11

linear combination with variables y1, y2, and y3 as the respective constants,

and find these y values that give an upper bound of 0 on f (x). We have

y1(3x2 + x3) ≤ 5y1

y2(x1 + x2 + x3) ≤ 10y2

+ y3(3x1 + 2x2) ≤ 8y3

(y2 + 3y3)x1 + (3y1 + y2 + 2y3)x2 + (y1 + y2)x3 ≤ 5y1 + 10y2 + 8y3

Assume that each of the xi coefficients is the same as in the original objective

function. That is,

y2 + 3y3 ≥ 2

3y1 + y2 + 2y3 ≥ 1

y1 + y2 ≥ 3.

(2.6)

Thus,

f (x) = 2x1 + x2 + 3x3

≤ (y2 + 3y3)x1 + (3y1 + y2 + 2y3)x2 + (y1 + y2)x3

≤ 5y1 + 10y2 + 8y3.

Since f (x) is bounded above by 5y1 + 10y2 + 8y3, we can minimize this sum in

order to find the most specific upper bound for the original LP. This new

12 CHAPTER 2. LINEAR PROGRAMMING

objective function is constrained by (2.6), and we naturally have the dual LP

Minimize: g(y) = 5y1 + 10y2 + 8y3

subject to: y2 + 3y3 ≥ 2

3y1 + y2 + 2y3 ≥ 1

y1 + y2 ≥ 3.

(2.7)

This is the dual LP associated with the given primal LP (2.5). Intuitively, the

dual LP seeks to minimize (maximize) the upper (lower) bound on the primal

objective function, respectively.

2.2.2 Theory

We now present the formal theory of duality, emphasizing the relationship

between primal-dual LP pairs and their respective solutions. We also consider

the relationship between various solution types and the dual LP.

Definition 4. For a primal LP in the standard form of

Maximize:
n∑

j=1

c jx j

subject to:
n∑

j=1

ai jx j ≤ bi 1 ≤ i ≤ m

x j ≥ 0 1 ≤ j ≤ n

(2.8)

CHAPTER 2. LINEAR PROGRAMMING 13

the corresponding dual LP is given by

Minimize:
m∑

i=1

biyi

subject to:
m∑

i=1

yiai j ≥ c j 1 ≤ j ≤ n

yi ≥ 0 1 ≤ i ≤ m.

(2.9)

Proposition 1. The dual of a dual LP is the primal LP.

Proof. To verify this relationship, we must first write the dual problem in

standard form. Recall that a standard form LP maximizes its objective

function and has ≤ constraints. The sign restrictions remain the same. Since

minimizing a function is equivalent to maximizing its negative, we have

min
m∑

i=1

biyi = −max

 m∑
i=1

biyi

We can convert the ≥ constraints to ≤ by multiplying both sides by -1. Thus,

the standard form of the dual LP is given by

Maximize:
m∑

i=1

biyi

subject to:
m∑

i=1

−yiai j ≤ −c j 1 ≤ j ≤ n

yi ≥ 0 1 ≤ i ≤ m.

14 CHAPTER 2. LINEAR PROGRAMMING

The dual of this LP is

Minimize:
n∑

j=1

−c jx j

subject to:
n∑

j=1

(−ai j)x j ≥ −bi 1 ≤ i ≤ m

x j ≥ 0 1 ≤ j ≤ n,

which is equivalent to the primal LP given by

Maximize:
n∑

j=1

c jx j

subject to:
n∑

j=1

ai jx j ≤ bi 1 ≤ i ≤ m

x j ≥ 0 1 ≤ j ≤ n.

�

We can also characterize the relationship between the feasible solutions of

the primal and dual LPs.

Theorem 2. [12] Weak Duality Theorem: If (x1, x2, · · · , xn) is a feasible solution for

the primal LP and (y1, y2, · · · , yn) is feasible for the associated dual LP, then∑
j c jx j ≤

∑
i biyi.

CHAPTER 2. LINEAR PROGRAMMING 15

Proof. We have the following series of inequalities

∑
j

c jx j ≤

∑
j

∑
i

yiai j

 x j

=
∑

i j

yiai jx j

=
∑

i

∑
j

ai jx j

 yi

≤

∑
i

biyi.

(2.10)

For the first inequality, we know that each x j ≥ 0 by (2.8) that c j ≤
∑

i yiai j for

each j by (2.9). The second inequality is similar; yi ≥ 0 by (2.9) and
∑

j ai jx j ≤ bi

by (2.8) for each i. �

From the Weak Duality Theorem, we know that all of the primal objective

function values (for feasible solutions) are less than all of the dual objective

function values. For an arbitrary primal feasible solution x, f (x) ≤ g(y) for all

dual feasible solutions y, where f and g are the primal and dual objective

functions, respectively. This provides an upper bound for every primal

objective function value. Similarly, the objective function value for any primal

optimal solution provides a lower bound for every dual objective function

value. Therefore, we can characterize the optimal solutions x and y as those

for which f (x) = g(y).

We now have the necessary background to draw a connection between the

optimal solutions of a primal-dual LP pair. We present the following theorem

without proof, as the particular mechanics are outside the scope of this project.

16 CHAPTER 2. LINEAR PROGRAMMING

For more detail, see [12]. Intuitively, this theorem states that the objective

functions for a primal-dual pair of LPs is equal precisely at the optimal

solution to each.

Theorem 3. [12] Strong Duality Theorem: For an optimal solution x∗ ∈ Rn to a

primal LP, there is a dual LP which has an optimal solution y∗ ∈ Rn such that∑
j c jx∗j =

∑
i biy∗i .

Chapter 3

Game Theory

This chapter presents several concepts in game theory that are central to

this project. We focus on the various representations and types of games, as

well as the associated Nash equilibria. These concepts will later be used in

conjunction with the linear programming theory of the previous chapter to

develop a method of representing and solving two variants of poker.

3.1 Background

The purpose of game theory is to develop mathematical models that

represent decision-making interactions among individuals. We assume that

these individuals are both rational in their own decisions and take into

account expectations of how the other decision-makers will act [7]. Game

theory can be used to model a wide range of situations, including business

negotiations, political competition, and economic models of oligopolistic

competition, as well as traditional ‘games‘, such as chess, checkers, and poker.

Game theoretic models are highly abstracted versions of the actual situation.

17

18 CHAPTER 3. GAME THEORY

Unlike many other fields of mathematics, the study of game theory attempts to

both positively describe how individuals do make decisions, and normatively

how they should under the assumption of perfect rationality.

The modern field of game theory is relatively new, and is generally

considered to have begun in the 19th century with Cournot, Bertrand, and

Edgeworth’s respective work on models of oligopoly pricing [4]. These ideas

developed to a more general theory of games in the mid-19th century with

John von Neumann’s proof of the existence of mixed-strategy equilibria in

two-person zero-sum games. He later co-authored the seminal Theory of Games

and Economic Behavior with Oskar Morgenstern [4]. This text considered

theoretical results about cooperative games with several players, and offered a

axiomatic conception of utility theory that allowed mathematicians to

formalize decision-making under uncertainty. Additionally, it introduced the

concepts of the normal (or strategic) and extensive forms, as well as a proof of

the existence of a maximin equilibrium for all two-player zero-sum games [4].

With zero-sum games fairly well understood, attention turned to the more

general case of non zero-sum games, which are perhaps more common. In

1950, John Forbes Nash Jr. proved the existence of an optimal strategy for each

player in every non-cooperative game [4]. The Nash equilibrium is a

generalization of Morgenstern’s maximin theorem for non zero-sum games,

and requires that each player’s optimal strategy be a payoff-maximizing

response to his correct expectation of his opponents strategy. This guarantee

was a significant advance in the field, and allowed the study of a broader class

of games [4].

CHAPTER 3. GAME THEORY 19

3.2 Normal (Strategic) Form

One of the most common representations of a game is the normal form,

also known as the strategic form. Intuitively, it represents a game as a payoff

matrix with each player’s (pure) strategies as particular rows and columns.

The payoffs to each player are determined by their respective strategies. The

normal form is the typical representation for small 2-player games with

simultaneous decision making, but can be extended to larger games and those

that initially appear to have non-simultaneous decision making. The concepts

in this section are based heavily on [7]. We begin with the formal definition of

a normal form game.

Definition 5. A game in normal (strategic) form is a tuple
〈
N, (Ai), (%i)

〉
, with

• a finite set of N players

• for each player i ∈ N, the nonempty set of available actions Ai

• a set of action profiles a = (a j) for j ∈ N, where each a j corresponds to a

particular action in A j

• for each player i ∈ N, a preference relation %i on A1 × A2 × . . . × A j for j ∈ N

Any such game with a finite set of actions Ai for each player i is considered finite.

Notice that the preferences of each player i are defined over A, instead of

Ai; that is, their preferences are defined over each combination of the other

player’s outcomes, as well as their own. This distinguishes a strategic game

from a more general decision problem; players are concerned with their

20 CHAPTER 3. GAME THEORY

opponents actions and payoffs, as well as their own. The normal form model

of a game is intentionally abstract, allowing it to be applied to a wide variety

of situations. The set of players N may consist of individuals, animals,

governments, businesses, etc. Likewise, the set of actions Ai may contain only

a few simple actions or complicated sets of contingencies over many potential

outcomes. The primary restriction on the elements of N and each A is that

each player has a well-defined preference relation over all outcomes of action

profile combinations. For example, the preference relation for a business

might be a function that maps particular actions to profit levels.

This definition considers a generalized preference relation %i; typically, and

for our purposes, we can use a more intuitive payoff function ui. In this case,

we denote a particular game as
〈
N, (Ai), (ui)

〉
. This payoff function ui maps a

particular combination of action profiles to a numerical payoff value. These

inputs can be represented either as a singular action profile a ∈ A or as a tuple

to highlight the actions of individual players. For example, a particular u1(a)

represents the payoff to player 1 for a particular combination of each player’s

actions a ∈ A. This action profile a defines a particular action a j for each player

j from their action set A j. Alternatively, we may wish to highlight particular

action profiles from distinct players as separate inputs to ui. Players typically

wish to choose a set of actions that maximize this value, wish could represent

profit, utility, etc. The utility function describes how a particular player feels

about a particular combination of actions of all of the players in the game.

Definition 6. For a game with a set of outcomes A = A1 × A2 × . . . × A j for j ∈ N,

the function ui : A 7→ R is the payoff function with ui(a) ≥ ui(b) whenever a %i b for

CHAPTER 3. GAME THEORY 21

combinations of actions a, b ∈ A.

In a game, players make choices about how they will play. Each of these

choices is a particular action take by a player at some point in the game. In a

game with more than one such set of action choices, players employ a

strategy, which is an algorithmic prescription of every action that a player will

choose. A particular strategy could be a simple choice between two actions, or

a complicated set of prescriptions to choose actions based on various

contingencies of how the other players act. These choices may or may not be

identical across iterations of the game, motivating the following distinction.

Definition 7. A pure strategy si is a deterministic prescription of how an individual

will play a game, choosing the same action at every iteration. A strategy set Si is the

set of all pure strategies available to player i. A mixed strategy σi assigns a

probability to each pure strategy.

The probabilities assigned to each pure strategy s in a mixed strategy σ are

governed by a global probability distribution. For example, let S1 = (s1, s2, s3)

represent the strategy set of player 1 with pure strategies s1, s2, and s3 in some

strategic game. A particular mixed strategy σ = (0.4, 0.1, 0.5) represents player

1 employing each pure strategy with the respective probabilities.

A generalized strategic game is presented in Figure 3.2. Player 1 is the row

player with choice of pure strategies s1 and s2, and player 2 is the column

player with choice of pure strategies s1 and s2. Each player chooses a strategy

simultaneously, and each ordered pair represents the respective real-valued

payoffs for the set of chosen strategies. For example, if player 1 chooses s1 and

player 2 chooses s3, they will receive respective payoffs w1 and w2. Formally,

22 CHAPTER 3. GAME THEORY

u1(s1, s3) = w1 and u2(s1, s3) = w2.

p2

s3 s4

p1
s1 (w1,w2) (x1, x2)
s2 (y1, y2) (z1, z2)

Figure 3.1: Generalized Two-player Strategic Game

However, each player need not always play the same strategy in this

game. It may be necessary to vary their play in order to optimize their

expected payoff. This is the motivation behind the concept of a mixed strategy.

Recall that a mixed strategy σi is a probability distribution over all of player i’s

pure strategies. The probabilities assigned to each pure strategy determine the

expected payoff of the mixed strategy. For example, consider a particular

mixed strategy σ1 in which player 1 chooses s1 with probability 0.7 and s2 with

probability 0.3. Player 2 uses mixed strategy σ2 , where he chooses s3 and s4

with equal probability. Then the payoff to player 1 is

u1(σ1, σ2) = 0.7(0.5w1+0.5x1)+0.3(0.5y1+0.5z1) = 0.35w1+0.35x1+0.15y1+0.15z1.

(3.1)

More generally, the payoff for a mixed strategy profile is a linear function

of the probabilities assigned to each pure strategy [4]. In (3.1), the coefficient

associated with a particular payoff value is the product of the probabilities

assigned to the particular pure strategy of each player in their mixed strategy.

Player 1 uses pure strategy s1 with probability 0.7 in his mixed strategy σ1, and

player 2 uses pure strategy s3 with probability 0.3 in his mixed strategy σ2. In

this case, player 1’s payoff is w1. This occurs with probability 0.7 × 0.5 = 0.35.

CHAPTER 3. GAME THEORY 23

Therefore, the overall expected value to player 1 for this σ1, σ2 combination is

a weighted sum of the payoffs to each combination of pure strategies.

3.2.1 Equilibrium

In any game, each player tries to maximize their own payoff. Payoffs are

dependent on the combination of strategies that each employs. Thus, the

decision of which strategy to employ is critical. This section begins by

considering the Nash equilibrium of any normal form game, and then

considers the more specific case of Maximin equilibrium in strictly competitive

games. Both refer to a steady state wherein each player correctly assumes how

the other(s) will play and chooses his own strategy rationally in response.

Generally, a game is said to be in equilibrium if no player can improve their

payoff by unilaterally changing strategy.

Nash Equilibria

The concept of the Nash equilibrium is well illustrated through the classic

example of the Prisoner’s Dilemma, as shown through a normal form

representation in Figure 3.2. This is a standard example in game theory

literature, and illustrates several important concepts. The rules of the game are

as follows: Two individuals are arrested by the police, and are suspected of

committing a crime together. The police lack sufficient evidence to convict

either on the most serious charge, but enough to convict either on a less

serious charge. Each individual is offered a choice: betray the other and testify

to the police that the other committed the most serious crime, or stay silent

and accept the conviction of the lesser charge. If both betray each other, the

24 CHAPTER 3. GAME THEORY

penalty is reduced by one year for each. The individuals cannot communicate

with each other as they decide whether or not to betray their co-conspirator.

Unsurprisingly, they each want to minimize the number of years that they

spend in prison. The potential payoffs, in years in prison respectively, are

shown in Figure 3.2.

p2

Betray Silent

p1
Betray (3, 3) (0, 4)
Silent (4, 0) (1, 1)

Figure 3.2: Prisoner’s Dilemma

We can determine each player’s best strategy by considering the potential

payoffs of each of their choices, along with the other player’s choices. Each

player chooses if they want to confess. If the row player stays silent, he will

serve 3 years in prison if the column player also stays silent, or he will walk

free if the column player confesses. Conversely, if the row player does confess,

he will serve 4 years or 1 year, respectively. In either case the dominant

strategy is for the row player to confess, since he will receive less prison time

in each contingency of the column player’s choice. We can repeat this analysis

for the column player, and find that his dominant strategy is also to confess. If

both players choose rationally and consider what the other may do, they will

both choose to confess. This is the Nash equilibrium of the Prisoner’s

Dilemma.

With this intuitive understanding, we can now formalize this logic and

develop the theory more generally. This section focuses on the Nash

equilibrium of the normal form representation; the concept extends naturally

CHAPTER 3. GAME THEORY 25

to the extensive form and will be discussed in section 3.3.

Definition 8. A Nash equilibrium of a normal form game
〈
N, (Ai), (%i)

〉
is a profile

a∗ ∈ A of actions with the property that for every player i ∈ N we have

(a∗
−i, a

∗

i) %i (a∗
−i, ai) ∀ai ∈ Ai, ∀i ∈ N.

For a game with defined utility functions ui, this condition is

ui(a∗−i, a
∗

i) ≥ ui(a∗−i, a
∗

i) ∀ai ∈ Ai, ∀i ∈ N.

In this definition, we denote an optimal action profile for player i as a∗i , and

a non-optimal action profile ai. All players other than i are denoted by −i. For

a profile a∗ to be a Nash equilibrium, it must be the case that no player i has an

action with an outcome preferable to the corresponding outcome in the

optimal a∗i , given that every other player chooses their optimal a∗j. Here, we

consider a utility function with multiple inputs of action profiles (each

representing one or more players), whose union is a member of A. Consider

the second case, with specified utility functions. Player i uses his optimal

action profile a∗i , as do all other players −i. The payoff to player i, defined by ui,

is greater than or equal to his payoff when all other players continue to use

their optimal a∗
−i and he uses a non-optimal ai. No player has reason to deviate

from their strategy, given the strategy of the other players. A similar

conception of the Nash equilibrium applies to other game forms.

While this extends to n-player games, we are most concerned with the two

26 CHAPTER 3. GAME THEORY

player case. Here, the Nash equilibrium criterion is given by

u1(a∗2, a
∗

1) ≥ u1(a∗2, a1) ∀ai ∈ Ai

and

u2(a∗1, a
∗

2) ≥ u2(a∗1, a2) ∀ai ∈ Ai.

The payoff to each player is at least as great playing their optimal action

profile a∗1 or a∗2 than by playing any non-optimal a1 or a2. This combination of

action profiles a∗1 and a∗2 is a Nash equilibrium.

Maximin Equilibrium

We now turn our attention to the specific case of Nash equilibria for a

two-person, zero-sum game. This section is heavily derived from [7],

beginning with the following definition.

Definition 9. A strategic game
〈
{1, 2}, (Ai), (%i)

〉
is strictly competitive or zero

sum if for any a, b ∈ A we have a %1 b if and only if b %2 a. For utility functions u1

and u2, this condition is u1(a) ≥ u1(b) if and only if u2(b) ≥ u2(a).

Recall that the inputs to each ui are either elements of A, which are tuples of

actions profiles for multiple players, or elements of Ai, which are individual

player’s action profiles. If player 1’s preference relation %1 is given by the

payoff function u1, then player 2’s payoff function u2 is such that

u1(s1, s2) + u2(s1, s2) = 0 for any strategies s1 ∈ A1, s2 ∈ A2, and (s1, s2) ∈ A. That

is, a payoff gain for either player corresponds to an equivalent payoff loss for

the other. This structure influences each player’s strategy, as they have no

incentive to cooperate.

CHAPTER 3. GAME THEORY 27

In a zero-sum game, each player uses a maximin strategy in Nash

equilibrium. A player i maximinimizes if he chooses a strategy that

maximizes his own payoff, with the assumption that player j will choose a

strategy attempting to minimize player i’s payoff. Each player’s loss is the

other’s gain; therefore, they both assume that they will choose strategies that

benefit themselves and hurt the other. In a zero-sum game, a pair of strategies

is a Nash equilibrium of and only if it is a pair of maximinimizing strategies.

Further, any such Nash equilibria have identical payoffs to each player. We

begin with the following definition, followed by several proofs of the

relationship between maximin and Nash equilibrium.

Definition 10. Let
〈
{1, 2}, (Ai), (%i)

〉
be a strictly competitive game. The action

x∗ ∈ A1 is a maxminimizer for player 1 if

min
y∈A2

u1(x∗, y) ≥ min
y∈A2

u1(x, y) ∀x ∈ A1.

An action y∗ ∈ A2 is a maxminimizer for player 2 if

min
x∈A1

u2(x, y∗) ≥ min
x∈A1

u2(x, y) ∀y ∈ A2.

By playing a maximin strategy, each player is attempting to maximize their

minimum payoff against all possible strategies that their opponent could

utilize. Player 1 chooses a strategy by solving maxx miny u1(x, y), and player 2

chooses a strategy by solving maxy minx u2(x, y). Since neither player knows

how the other will play, they choose their own strategy to optimize their

respective worst-case scenario’s. This is precisely how we determined each

28 CHAPTER 3. GAME THEORY

player’s optimal strategy in the Prisoner’s Dilemma (Figure 3.2).

Theorem 4. For any strictly competitive game with Nash equilibria, a pair of action

profiles is a Nash equilibrium if and only if the action profile of each player is a

maximinimizer.

In other words, we may find a Nash equilibrium in a strictly competitive game

by examining the maximin strategies of each player.

Lemma 1. Let G =
〈
{1, 2}, (Ai), (%i)

〉
be a strictly competitive strategic game. Then

maxy∈A2 minx∈A1 u2(x, y) = −miny∈A2 maxx∈A1 u1(x, y). Further, y ∈ A2 solves the

problem maxy∈A2 minx∈A1 u2(x, y) if and only if it also solves the problem

miny∈A2 maxx∈A1 u1(x, y).

Proof. Since G is a strictly competitive game, we have that u1(x) = −u2(y) for

any pair of strategies x and y. For an arbitrary function f ,

minz(− f (z)) = −maxz f (z) and arg minz(− f (z)) = arg maxz f (z). These arg

values are the z values for which minz(− f (z)) and maxz f (z) attain their

equivalent minimum and maximum f (z) values. Let x ∈ A1 and y ∈ A2 be (not

necessarily optimal) strategies for players 1 and 2, respectively. For every

y ∈ A2, we have

−min
x∈A1

u2(x, y) = max
x∈A1

(−u2(x, y)) = max
x∈A1

u1(x, y).

Thus,

max
y∈A2

[max
x∈A1

u2(x, y)] = −min
y∈A2

[−min
x∈A1

u2(x, y)] = −miny∈A2 max
x∈A1

u1(x, y).

�

CHAPTER 3. GAME THEORY 29

Proposition 2. Let G =
〈
{1, 2}, (Ai), (%i)

〉
be a strictly competitive game.

(a) If (x∗, y∗) is a Nash equilibrium of G then x∗ is a maximin strategy for player 1

and y∗ is a maximin strategy for player 2.

(b) If (x∗, y∗) is a Nash equilibrium of G, then

maxx miny u1(x, y) = miny maxx u1(x, y) = u1(x∗, y∗), and all Nash equilibria

of G yield identical payoffs.

(c) If x∗ and y∗ are maximin strategies for player’s 1 and 2 respectively, then (x∗, y∗)

is a Nash equilibrium of G.

Proof. We first prove (a) and (b) in conjunction. Let (x∗, y∗) be a Nash

equilibrium of G. Then u2(x∗, y∗) ≥ u2(x∗, y) for all y ∈ A2. Likewise, since

u2 = −u1, u1(x∗, y∗) ≤ u1(x∗, y) for all y ∈ A2. Therefore,

u1(x∗, y∗) = miny u1(x∗, y) ≤ maxx miny u1(x, y). Similarly, u1(x∗, y∗) ≥ u1(x, y∗) for

all x ∈ A1. Therefore, u1(x∗, y∗) ≥ miny u1(x, y) for all x ∈ A1, so that

u1(x∗, y∗) ≥ maxx miny u1(x, y). Therefore, u1(x∗, y∗) = maxx miny u1(x, y) and x∗

is a maximin strategy for player 1. An analogous argument shows that y∗ is a

maximin strategy for player 2 and that u2(x∗, y∗) = maxy minx(x, y), so that

u1(x∗, y∗) = miny maxx u1(x, y).

For part (c), let v∗ = maxx miny u1(x, y) = miny maxx u1(x, y). From Lemma

1, we know that maxy minx u2(x, y) = −v∗. Since x∗ is a maximin strategy for

player 1, we have u1(x∗, y) ≥ −v∗ for all y ∈ A2. Likewise, since y∗ is a maximin

strategy for player 2, we have u2(x, y∗) ≥ −v∗ for all x ∈ A2. Setting y = y∗ and

30 CHAPTER 3. GAME THEORY

x = x∗, we have u1(x∗, y∗) = v∗. Since u2 = −u1, we conclude that (x∗, y∗) is a

Nash equilibrium of G.

�

A crucial implication of part (c) is that a Nash equilibrium can be found by

solving the problem maxx miny u1(x, y). For a strictly competitive game, the

Nash-optimal strategy is precisely the solution to the maximin problem. If

maxx miny u1(x, y) = miny maxx u1(x, y), we define this equilibrium payoff to

player 1 as the value of the game. From Proposition 2, we know that if v∗ is the

value of a strictly competitive game, then any equilibrium strategy gives a

payoff to player 1 of at least v∗ and to player 2 at least −v∗ [7].

3.3 Extensive Form

A second representation of many games is the extensive form. The

extensive form represents a game as a directed graph that maps all possible

moves and outcomes. The extensive form best represents sequential games of

non-simultaneous decision-making. It is particularly amenable to imperfect

information games, such as poker, where some information about the game

state is hidden from each player. The following section details the theory of

the extensive form, including a discussion of the associated Nash equilibrium.

We also distinguish between the extensive form games with perfect and

imperfect information. This section closely follows [7].

3.3.1 Perfect Information

Definition 11. An extensive form game with perfect information is represented

by the tuple
〈
N,H,P,%i

〉
, where:

CHAPTER 3. GAME THEORY 31

• A finite set N (the set of players)

• A set H of sequences (finite or infinite) that satisfies the following three

properties:

– The empty sequence ∅ is a member of H.

– If (ak)k=1,...,K ∈ H (where K may be infinite) and L < K then (ak)k=1,··· ,L ∈ H.

– If an infinite sequence (ak)k=1,··· satisfies (ak)k=1,··· ,L ∈ H for every positive

integer L then (ak)k=1,··· ∈ H.

• Each member of H is a history; each component of a history is an action taken

by a player. A history (ak)k=1,··· ,K ∈ H is terminal if it is infinite or if there is no

ak+1 such that (ak)k=1,··· ,k+1 ∈ H. The set of terminal histories is denoted Z.

• A function P that assigns to each nonterminal history (each member of H \ Z) a

member of N ∪ {c}. This P is the player function, P(h) being the player who

takes an action after the history h. If P(h) = c, then chance determines the action

taken after the history h.

• For each player i ∈ N, a preference relation %i on Z.

Let h be a history of length k; the ordered pair (h, a) is the history of length

k + 1 consisting of h followed by a. For any non-terminal history h, the player

function P(h) chooses an action a from the set

A(h) = {a : (h, a) ∈ H}.

At the beginning of any extensive game, this history is empty; no actions have

previously occurred. For the empty sequence ∅ ∈ H, the player P(∅) chooses a

32 CHAPTER 3. GAME THEORY

member of A(∅). Each member of A(∅) is an action a0. For each of these

choices, the player defined by P(a0) chooses a member of the set A(a0). For

each possible choice in A(a0), denoted a1, player P(a1) chooses a member of the

set A(a1). This process iterates until the game reaches a terminal history.

The concepts illustrated in this definition are best illustrated through an

example, shown graphically in Figure 3.3. This game is the tuple
〈
N,H,P,%i

〉
,

where

• N = {1, 2};

• H has as elements the 11 histories

∅, (A), (B), (A,E), (A,F), (B,G), (B,H), (B,G,C), (B,G,D), (B,H,C), (B,H,D);

• P(∅) = P(B,G) = P(B,H) = 1 and P(A) = P(B) = 2.

• The respective preference relations defined by

(B,H,D) �1 (B,H,C) �1 (B,G,C) ∼1 (A,F) �1 (A,E) �1 (B,G,D) and

(B,G,D) �2 (A,E) �2 (B,G,C) ∼2 (A,F) �2 (B,H,C) �2 (B,H,D).

In Figure 3.3, the node at the top of the graph represents the history ∅. Here,

player 1 chooses between actions A and B, which are the members of A(∅).

These actions are shown as line segments originating from the initial node.

Once the first player has chosen either A or B, it is player 2’s turn,

P(A) = P(B) = 2. If player 1 chose action B, player 2 chooses between the

members of A(B), which are the actions G and H. Then, player 1 chooses

between actions C and D. The preference relations %1 and %2 define the

ordering of each player’s preference of outcomes; they can also be utility

functions u1 and u2 with the same ordering.

CHAPTER 3. GAME THEORY 33

p1

p2

1, 4

E

3, 2

F

A
p2

3, 2

C

0, 5

D

G

4, 1

C

5, 0

D

H

B

Figure 3.3: Extensive Form Game with Perfect Information

Definition 12. A strategy of player i ∈ N in an extensive game with perfect

information
〈
N,H,P,%i

〉
is a function that assigns an action in A(h) to each

non-terminal history h ∈ H \ Z for which P(h) = i.

Definition 13. A particular action in a strategy s is denoted by a ∈ s. A strategy

set, denoted Si, is the set of a game’s legal strategies for player i with s ∈ Si. The entire

strategy profile for a game with n players is S = S1 × S2 × · · · × Sn.

A strategy is a contingency plan for every possible choice of action in a

game, given each choice that another player may make. In the game described

in Figure 3.3, player 1 always chooses an action at the initial history ∅, and

makes a later choice between C and D if they previously chose B. Thus, player

1’s 5 strategies can be described as

S1 = (A), (B, (G,C), (H,C)), (B, (G,C), (H,D)), (B, (G,D), (H,C)), (B, (G,D), (H,D)).

(3.2)

The interpretation of these last four strategies is important, as they are

34 CHAPTER 3. GAME THEORY

contingent on player 2’s actions. For example, the strategy (B, (G,C), (H,D))

represents the following contingency plan: after first choosing action B, if

player 2 chooses G, take action C. Otherwise, if player 2 takes action H, player

1 chooses D. Player 2’s strategies are simpler, and can be described as

S2 = ((A,E), (B,G)), ((A,E), (B,H)), ((A,F), (B,G)), ((A,F), (B,H)). (3.3)

The strategy ((A,E), (B,G)) is interpreted as follows: if player 1 chooses A,

choose E. Otherwise, if player 1 chooses B, choose G.

It is important to note that a particular strategy defines the action to be

chosen for each history, even if that history is never reached when the strategy

is employed. For example, consider the strategy (A, (G,C), (H,C)) for player 1.

If he chooses action A, the later choice between C and D cannot happen.

Despite this, we still specify what player 1 would do in that scenario. In this

way, a formal strategy in an extensive game differs from an intuitive plan of

action.

Definition 14. A pure strategy si of player i ∈ N in an extensive game
〈
N,H,P,%i)

〉
is a deterministic prescription of how to play a game. A mixed strategy σi is a

probability distribution over all pure strategies.

This concepts of pure and mixed strategies is similar to that in the normal

form representation. For the game in Figure 3.3, (3.2) and (3.3) are the pure

strategies. We use the following notation to distinguish between the pure and

mixed strategies of the various players in any game. We often consider the

strategy of a particular player i, while holding the strategies of his opponents

fixed. Let s−i ∈ S−i denote the strategy selection for all other players than i, and

CHAPTER 3. GAME THEORY 35

write (s′i , s−i) for the profile

(s1, · · · , si−1, s
′

i , si+1, · · · , si).

For mixed strategies, we let

(σ
′

i , σ−i) = (σ1, · · · , σi−1, σ
′

i , σi+1, · · · , σi).

How do players choose which strategy to use? In some games, certain

strategies will be clearly superior to others, based on a comparison of the

payoffs. For example, consider player 2’s choice between moves E and F in

Figure 3.3. Since player 2’s payoff to E is strictly greater than his payoff to F, he

should use an overall strategy that chooses the former. Any pure strategy that

prescribes choosing F is inferior to one that prescribes choosing E. This is an

example of a strictly dominated strategy, defined below. This game has no

weakly dominated strategies.

Definition 15. A pure strategy si is strictly dominated for player i if there exists a

mixed strategy σ′i such that

ui(σ
′

i , s−i) > ui(si, s−i) ∀s−i ∈ S−i

The strategy si is weakly dominated if there exists a σ′i such that this holds with

weak inequality, and the inequality is strict for at least one s−i.

36 CHAPTER 3. GAME THEORY

3.3.2 Imperfect Information

Thus far, we have described an extensive form game with perfect

information, where each player is perfectly knowledgeable about their

opponents actions and the state of the game. A generalization of this is games

with imperfect information, where players are not aware of all relevant

information about the game. Poker is an example of this type of game; during

a hand, neither player knows which cards the other is holding.

Definition 16. An extensive game with imperfect information is defined as a

tuple
〈
N,H,P,%i, fc, (Ii)i∈N)

〉
with analogous structures as Definition 11, with the

addition of the following

• A function fc that associates with every history h for which P(h) = c a

probability measure fc(· | h) on A(h), where each such probability measure is

independent of every other such measure. A particular fc(a | h) is the probability

that a occurs after the history h.

• For each player i ∈ N a partition Ii of {h ∈ H : P(h) = i} with the property that

A(h) = A(h′) whenever h and h′ are in the same member of the partition. For

Ii ∈ Ii we denote by A(Ii) the player P(h) for any h ∈ Ii. The partition Ii is the

information partition of player i; a set Ii ∈ Ii is an information set of player

i.

In a imperfect information game, players are often uncertain of the exact

game state, given that their opponent(s) have hidden information and vice

versa. While the player does not know the particular game state, they are

aware of its composition, rules, and number of its possible states. Chance

CHAPTER 3. GAME THEORY 37

determines the particular game state. The “Chance player“ c is represented by

fc, which defines a probability measure for each history h such that P(h) = c.

For example, consider a card game in which two players hold one of three

cards with none repeated. Since there are 6 possible combinations of cards,

fc(a | h) = 1
6 for the relevant history h. This probability is uniform across each

deal, defining a complete probability distribution.

The final key structures in an imperfect information game are the

information partitions Ii and information sets Ii. Each player i has a singular

Ii that partitions the set of histories H into information sets Ii. An information

set describes all of the histories that are identical from the point of view of a

particular player. Of course, these histories are not actually identical; they

differ only in the hidden information. Two histories h and h′ are in the same

information set only if A(h) = A(h′). That is, the set of actions available for the

two histories is identical. Notice that this implies the known information is

identical for all elements of an information set; the player cannot distinguish

between them.

Definition 17. An extensive form game has perfect recall if for each player i we have

Xi(h) = Xi(h′) wherever the histories h and h′ are in the same information set of player

i.

In a game with perfect recall, no player forgets information that they knew

at a previous state. This information includes previous actions and any hidden

information known only to that player, as well as previous information sets.

Later information sets must refine previous information sets from earlier

histories. If this is not the case, then the game has imperfect recall. It is not

38 CHAPTER 3. GAME THEORY

necessary that an extensive form game with imperfect information have

perfect recall; some have imperfect recall. However, the variants of poker

examined in later sections are both games of perfect recall.

p1

p2

p1

−1, 1

l

1,−1

r

O

p1

3,−3

l

−2, 2

r

P

M

p2

p1

0, 0

L

1,−1

R

O

p1

1,−1

L

3,−3

R

P

N

Figure 3.4: Extensive Form Game with Imperfect Information and Perfect Recall

Figure 3.4 shows an extensive form game with imperfect information and

perfect recall. In this example, neither player knows which action that the

other takes. For example, when player 2 is deciding between actions O and P,

he does not know if player 1 has previously chosen M or N. Player 2 has a

single information set, comprising both of his decision nodes and all four

associated actions. This information set is represented by the first dashed line;

at these nodes, he does not know if player 1 just took action M or N. Player 1

has two information sets, each with two nodes and four associated actions.

His first information set represents the two possible moves by player 2 (O and

P), after he chose action M at the beginning of the game. His second

CHAPTER 3. GAME THEORY 39

information set contains the two game states possible after he chose action N

originally. Notice that these player 1’s information sets refine previous

distinctions; there is one set where he previously took action M, and another

where he took action N. Further, notice that player 1’s possible actions are

identical across all nodes in an information set, but are also unique to that

information set. He faces the choice between l and r only when he previously

chose M, and between L and R only when he previously chose N.

Definition 18. A pure strategy of player i ∈ N in an extensive game with imperfect

information
〈
N,H,P,%i, fc, (Ii)i∈N)

〉
is a function that assigns an action in A(Ii) to

each information set Ii ∈ Ii.

Definition 19. A mixed strategy of player i in an extensive game with imperfect

information
〈
N,H,P,%i, fc, (Ii)i∈N)

〉
is a probability measure over the set of player i’s

pure strategies. A behavioral strategy of player i is a collection (βi(Ii))Ii∈Ii of

independent probability measures, where βi(Ii) is a probability measure over A(Ii).

For any history h ∈ Ii ∈ Ii and action a ∈ A(h) we denote by βi(h)(a) the

probability βi(Ii)(a) assigned by βi(Ii) to the action a. That is, βi(Ii)(a) is the

probability that player i will choose action a information set Ii. The collection

of these probabilities, for each possible action within each information set,

defines a behavioral strategy. This distinction between a mixed strategy and a

behavioral strategy illustrates two ways in which a player may choose to

randomize their behavior. A mixed strategy uses a probability distribution

over all possible pure strategies, whereas a behavioral strategy uses separate

probability distribution for each information set. The resulting randomized

strategy appears identical to an observer of the game, and may be outcome

40 CHAPTER 3. GAME THEORY

equivalent.

Definition 20. Let σ = (σi)i∈N be a profile of mixed or behavioral strategies for an

extensive game with imperfect information. The outcome O(σ) of σ is the probability

distribution over the terminal histories that results when each player i follows the

strategy specification of σi.

Definition 21. Two strategies, either mixed or behavioral, are outcome equivalent

if for every collection of pure strategies of the other players the two strategies induce

the same outcome.

Proposition 3. For any mixed strategy of a player in a finite extensive game with

perfect recall, there is an outcome-equivalent behavioral strategy.

3.3.3 Nash Equilibrium

We now present a brief theory of the Nash equilibrium for extensive form

games with imperfect information.

Definition 22. A Nash equilibrium in mixed strategies of an extensive game is a

profile σ∗ of mixed strategies with the property that for every player i ∈ N we have

O(σ∗
−i, σ

∗

i) %i O(σ∗
−i, σi)

for every mixed strategy σi of player i. A Nash equilibrium in behavioral

strategies is defined analogously.

This version of the Nash equilibrium is very similar to that of the normal form

and the extensive form perfect information case. The optimal mixed strategy

CHAPTER 3. GAME THEORY 41

σ∗i has a more preferable outcome O than any non-optimal strategy σi. No

player can benefit by unilaterally changing his strategy. In a mixed strategy

Nash equilibrium, we have a probability distribution over each possible pure

strategy. In a behavioral strategy Nash equilibrium, we have a probability

distribution over the actions in each information set. The following lemma is

implied by Proposition 3.

Lemma 2. For an extensive game with perfect recall, the Nash equilibria in mixed

and behavioral strategies are equivalent.

3.4 Sequence Form

The final game representation that we consider is the sequence form,

which is related to the extensive form. The extensive form describes a

imperfect information game, specifying its information sets, actions, payoffs,

etc. While the graphical representation allows the reader to quickly

understand the mechanics of the game well, it does not allow for efficient

computation of an optimal strategy. Typically, an extensive form game must be

converted to normal form, and a maximin LP algorithm considers all possible

pure strategies of the game. For an example of this process, see Section 4.3.

The number of pure strategies is exponential in the size of the game tree; this

often makes efficient computation of an optimal strategy infeasible [13].

The purpose of the sequence form is to overcome this disadvantage, and

allow the efficient computation of an optimal strategy. It is represented as a

matrix scheme, similar to the normal form. However, the pure strategies from

the normal form are replaced with sequences of consecutive moves. Instead of

42 CHAPTER 3. GAME THEORY

computing the probabilities assigned to each pure strategy, we consider the

realization probabilities of these sequences actually being played. These

realization probabilities can be used to construct a behavior strategy, which

describes the probability distribution over each information set. These optimal

behavior strategies can be found using an LP algorithm; each player’s optimal

behavior strategy is an optimal solution to the primal and dual LPs,

respectively. This section develops the theory of the sequence form, based on

the original development in [13].

Many of the structures of the sequence form are similar to those in the

extensive form. Recall that an extensive form game has a chance player and N

personal players. The chance player governs the chance node(s) by one or

more probability distributions, and the personal players govern the decision

nodes by their prescribed strategy. The sequence form defines a strategy

differently; instead of defining a probability distribution over all pure

strategies or over each information set, the player considers each payoff node

of the game tree and the sequence of actions necessary to get there. These

sequences are the basic unit of analysis in this form.

Definition 23. A sequence s of choices of player i defined by a node a of the game

tree, is the set of actions in H on the path from the root node to a. The set of sequences

of player i is denoted Si.

We now denote s as a sequence, instead of a strategy as in previous

sections. It is clear from context which is being used. A sequence is defined by

the particular set of action labels that a player takes on his path to some node

a. In a game with perfect recall, members of a particular information set must

CHAPTER 3. GAME THEORY 43

have identical histories; thus, a sequence can be defined completely in terms of

the actions made to arrive at the given node. The set of all sequences Si

replaces the set of pure strategies Si in the normal form. We also consider the

sequences of the chance player 0, where each chance node has an associated

probability distribution. Payoffs are defined by combinations of sequences,

including those of the chance player and all personal players.

Definition 24. Let h(a) be a function that maps each terminal node a to a payoff

vector in Rn. The payoff function g : S0 × S1 × · · · × Sn 7→ RN is defined by

g(s) = h(a) if s is the (N + 1)-tuple (s0, s1, · · · , sN) of sequences defined by a leaf a of

the game tree, and by g(s) = (0, · · · , 0) ∈ RN otherwise. Note that the chance player

sequence s∅ occurs with probability 1 and will always be the first input in g.

The tuple (s0, s1, . . . , sN) is unique for a particular node a in the game tree;

therefore, the payoff function g is well defined. The number of sequences is at

most the number of nodes, which grows linearly with the size of the game

tree. In contrast, the number of pure strategies in the normal form grows

exponentially, since each pure strategy must consider each combination of

actions at all possible information sets. For a two-player game with a known

chance player, the matrix P is the payoff matrix with each of player 1 and 2’s

sequences as the rows and columns, respectively. A particular entry Pi j is the

payoff of sequences si and s j being played by the two respective personal

players; that is, Pi j = g(s∅, si, s j). Many combinations of sequences between the

two players are impossible; they define combinations of actions that cannot

occur in conjunction with each other. Thus, the number of non-zero entries in

A is at most the number of leaves in the game tree. All other entries are 0, since

44 CHAPTER 3. GAME THEORY

they have no defined payoff.

We must also consider how particular sequences are chosen by a player.

For a normal form game, players can use either a pure or mixed strategy; both

define a choice of action in every possible contingency of the game. In the

sequence form, the player must define a probability distribution for each

information set. This distribution determines the frequency of choosing each

action, with its associated sequence. For example, consider Figure 3.5; this

game is identical to Figure 3.4, but with player 1’s initial action known to

player 2. Note that player 2 can now distinguish between his two decision

nodes, and that the actions stemming from each are now unique. Player 2

must choose between sequences o and p if player 1 chooses M, as well as O and

P if player 1 chooses N. For example, he may always choose o when player 1

choose M, and always P when player 1 chooses N. This is the pure strategy

(o,P). In terms of sequences, this corresponds to assigning probabilities

(1, 1, 0, 0, 1) to his sequences (s∅, so, sp, sO, sP). Instead of mixed strategy

probabilities, the sequence form uses the realization probabilities of sequences

when the player uses a behavior strategy. Intuitively, the realization plan for a

particular sequence is a product of individual decision probabilities of the

actions c necessary to reach that sequence.

Definition 25. The realization plan of βi is a function ri : Si 7→ R defined as

ri(si) =
∏
c∈si

βi(c),

where c is an action in a sequence si. This ri follows (3.4), (3.5), and (3.6).

CHAPTER 3. GAME THEORY 45

p1

p2

p1

−1, 1

l

1,−1

r

o

p1

3,−3

l

−2, 2

r

p

M

p2

p1

0, 0

L

1,−1

R

O

p1

1,−1

L

3,−3

R

P

N

Figure 3.5: Sequence Form Example

Each ri(si) is a real value that represents the product of the individual

decision probabilities of the actions leading to si. We now explore the

particular properties of this ri, based on [13]. In a game with perfect recall,

every member of an information set u ∈ Ii of player i has an identical history.

Let Cu be the set of actions possible at u. Consider a particular sequence su,

which we call the sequence leading to u. An action c chosen at this information

set extends u. This extended sequence is given by

suc = su ∪ {c} ∀c ∈ Cu.

Since the choices made by the player up until that information set are the

same, any nonempty sequence is uniquely specified by its last action c. We can

now formally define the set of sequences Si, which has 1 +
∑

u∈Ii
|Cu| elements;

46 CHAPTER 3. GAME THEORY

one for each action in each information set, and one for the empty sequence s∅.

Each elemenet in Si is a particular sequence s. Notice that the number of

sequences in a game is at most the number of terminal (payoff) nodes; an LP

that considers individual sequences will typically have fewer variables than

an LP that considers all possible pure strategies.

Definition 26. The set of sequences Si is defined as Si = {∅} ∪ {suc | u ∈ Ii, c ∈ Cu}.

In order to account for the non-terminal decision nodes, the realization

plan ri has the following constraints. The initialization of the game,

represented by the empty sequence s∅, has probability 1. Every game has

exactly one of these sequences. That is,

ri(s∅) = 1 (3.4)

Since each behavior strategy is a probability distribution over an information

set, we know that
∑

c∈Cu
βi(c) = 1. Therefore, the realization probability of a

sequence must equal the sum of the realization probabilities for that sequence

extended over all of its possible extending actions c. We can think of the

probability of reaching a particular sequence as being “distributed” over all of

these extending actions. Formally,

−ri(su) +
∑
c∈Cu

ri(suc) = 0 ∀u ∈ Ii ∀su ∈ Si. (3.5)

Finally, realization probabilities are non-negative:

ri(si) ≥ 0 ∀si ∈ Si. (3.6)

CHAPTER 3. GAME THEORY 47

The following proposition links a realization plan with a behavior strategy.

Recall that a behavior strategy, as opposed to a mixed strategy, defines a

probability distribution over all of the actions in each information set.

Proposition 4. Any realization plan arises from a suitable behavior strategy.

Proof. Consider a realization plan ri with associated behavior strategy βi, and

an arbitrary information set u ∈ Ii. Define the behavior at u by

βi(c) =
ri(suc)
ri(su)

∀c ∈ Cu

if ri(su) > 0 and arbitrarily such that

∑
c∈Cu

βi(c) = 1

if ri(su) = 0. By induction on the length of a sequence, we have Definition 25 by

definition. Thus, any realization plan arises from a suitable behavior

strategy. �

Definition 27. Any information set u for which ri(su) = 0 in behavior strategy βi is

called irrelevant.

A behavior strategy does not prescribe any action over an irrelevant

information set because it will never be reached, given earlier prescriptions of

the behavior strategy. This will be an important point in Chapters 4 and 5; the

sequence form linear programming algorithms output initially surprising

results for some information sets. These particular values will be irrelevant, as

those information sets cannot be realized under the optimal behavioral

48 CHAPTER 3. GAME THEORY

strategy.

Mixed strategies can also be represented by a realization plan. Recall that a

mixed strategy is a combination of pure strategies with probabilities assigned

to each. This mixed strategy has a corresponding set of realization plans that

follow Definition 25. However, information is lost in converting a mixed

strategy to a realization plan, since the later does not need to cover every

possible contingency of the game. It only must cover the sequences and

information sets that the player will actually need to choose from with their

behavior strategy. Fortunately, the realization plan does retain the strategically

relevant aspects.

Definition 28. A set of mixed strategies are realization equivalent if for any fixed

strategies (pure or mixed) of the other players, all of the mixed strategies define the

same probabilities for reaching the nodes of the game tree.

Proposition 5. Mixed strategies are realization equivalent if and only if they have the

same realization plan.

Corollary 1. For a player with perfect recall, any mixed strategy is realization

equivalent to a behavior strategy.

Thus, a realization plan corresponds to a behavior strategy, which in turn

corresponds to a mixed strategy. By defining a realization plan for each player,

we are essentially describing a mixed strategy.

3.4.1 Linear Programming Theory

We now define the necessary linear programming theory to find the

optimal strategy for a two-player zero-sum extensive game with perfect recall,

CHAPTER 3. GAME THEORY 49

based on [13]. This game is first converted to sequence form using the theory

of the previous section. The sequence form structures are used to build a

primal-dual pair of LPs. We want to find a pair of realization plans, which can

be converted into behavior strategies. The components of an optimal

realization plan are probability distributions over each information set. The

sequence form translates to a primal-dual pair of LPs, whose solutions are the

optimal realization plans for each player.

This section uses the following notation. The realization plans r1 and r2 are

denoted as column vectors x and y which have |S1| and |S2| entries,

respectively. The constraint matrices E and F show that x and y are valid

realization plans in accordance with Definition (25), with Ex = e and Fy = f .

Here, E and F have |S1| and |S2| columns, respectively. They have 1 + |I1| and

1 + |I2| rows, respectively. Both e and f are unit vectors of the appropriate

dimension. The payoff matrix P has |S1| rows and |S2| columns, and individual

payoff entries are calculated according to Definition (24). The payoffs are with

respect to player 1; in this zero-sum game, player 2’s expected payoffs are

given by −P. The expected payoff to realization plans x and y are xTPy and

−xTPy for the respective players.

We first consider an LP to find the best response y of player 2 to a fixed

realization plan x of player 1. If player 1 plays according to x, then player 2’s

best response is the optimal solution to the LP

Maximize: f (y) = −(xTP)y

subject to: Fy = y

y ≥ 0.

(3.7)

50 CHAPTER 3. GAME THEORY

In this LP, player 2 wants to utilize a realization plan y that maximizes his

payoff given by −(xTP)y. This realization plan must correspond to a legal set

of moves, giving the constraint Fy = y. Finally, since each element of y is a

probability, we have y ≥ 0. We also have the dual of this LP, given by

Minimize: f (q) = qT f

subject to: qTF ≥ −xTP.
(3.8)

The dual variables are given by the vector q, which has 1 + |I2| elements.

We have an analogous pair of LP’s for the best response x of player 1 given

realization plan y for player 2. This finds a realization plan x that maximizes

player 1’s payoff xT(Py). This x must satisfy the constraints xTET = eT and x ≥ 0

that define a valid realization plan. The primal is

Maximize: f (x) = xT(Py)

subject to: xTET = eT

x ≥ 0.

(3.9)

The dual problem uses the unconstrained vector p, which has 1 + |I2|

elements. It is given by

Minimize: f (p) = eTp

subject to: ETp ≥ Py.
(3.10)

These LPs describe algorithms for finding the optimal realization plans of

one player, given a particular realization plan of the other. We require an LP

CHAPTER 3. GAME THEORY 51

that generates the Nash equilibrium strategies, in which each player actively

considers the other’s strategy. Consider that (3.7) and (3.10) have the same

optimal objective function value; that is xT(Ay) = eTp. This is the payoff to

player 1, given that player 2 uses realization plan y. If y is not fixed and can be

varied by player 2, he will try to minimize this payoff. Since this is a zero-sum

game, player 2 wants to minimize any payoff he gives to player 1, as this will

maximize his own payoff. If we consider that y can vary, it must be subject to

the same constraints as (3.9). Thus, player 1’s optimal strategy is the solution

to the following LP:

Minimize: f (y, p) = eTp

subject to: − Py + ETp ≥ 0

Fy = f

y ≥ 0.

(3.11)

Player 2’s optimal strategy is the solution to the dual LP, given by

Maximize: f (x, q) − qT f

subject to: xT(−P) − qTF ≤ 0

xTET = eT

x ≥ 0.

(3.12)

Theorem 5. The equilibria of a zero sum game with perfect recall are the optimal

primal and dual solutions of this sequence form linear program whose size, in sparse

representation, is linear in the size of the game tree.

52 CHAPTER 3. GAME THEORY

Proof. Consider the primal LP in (3.11) with optimal solution y, p and the dual

LP in (3.12) with optimal solution x, q. Based on previous discussion, the

number of nonzero entries of the payoff matrix P and of the constraint

matrices E and F grows linearly with the game tree. By definition, y and p are

feasible solutions to (3.7) and (3.8), respectively. Likewise, x and q are feasible

solutions to (3.9) and (3.10). Multiplying the Fy = f constraint in (3.7) by qT

and the constraint in (3.8) gives

qT f = qTFy ≤ −xTPy. (3.13)

For player 1, the same process yields

eTp = xETp ≥ xTPy. (3.14)

We can combine these expressions as

eTp ≥ xTPy ≥ −qT f . (3.15)

The inequality in (3.13) is the Weak Duality Theorem (2). The value of the

objective function xTPy from (3.7) is bounded from above by its dual objective

function value qT f from (3.8). Analogously, (3.14) shows this bound for the

primal-dual pair of (3.9) and (3.8) and (3.15) for (3.11) and (3.12). Recall the

Strong Duality Theorem (3), which states that a pair of primal/dual solutions

are optimal only if the associated objective functions are equal. Applying this

to (3.11) and (3.12), we have that eTp = −qT f . This implies that equality holds

in (3.13), (3.14), and (3.15). Thus, x is an optimal solution to (3.9) and a best

CHAPTER 3. GAME THEORY 53

response to y, and vice versa. Therefore, x and y represent an equilibrium.

For the dual LP, any equilibrium x and y are solutions to (3.7) and (3.9).

Then, equality analogously holds in (3.13), (3.14), and (3.15), implying that

(3.11) and (3.12) are solved optimally.

�

54 CHAPTER 3. GAME THEORY

Chapter 4

Kuhn Poker

In this chapter, we consider the simple game of Kuhn Poker [5].

Developed in 1950 by Harold W. Kuhn as an example of a two-person

zero-sum imperfect information game, it is an appropriate starting point in

our study of general Nash-optimal poker strategy. We present a graphic

version of the extensive form, as well solutions using linear programming

methods for both the normal and sequence forms.

4.1 Rules

In Kuhn Poker, there are two players and a deck containing the cards Jack,

Queen, and King. No card is repeated. First, each player antes one unit. Each

player is then dealt one card, and the player with the highest card wins the pot

at showdown, provided neither player has folded. After the random deal, the

subsequent betting structure of Kuhn poker is as follows. Player 1 can choose

to either bet one unit or check. If player 1 bets, player 2 has the option of

calling the bet or folding. If player 1 checks, player 2 can either bet one unit or

55

56 CHAPTER 4. KUHN POKER

check. If player 2 bets, player 1 can either call or fold. At this point, if neither

has folded, the hand goes to showdown and the player with the highest card

wins the total pot [5].

4.2 Extensive Form

Figure 4.1 shows the complete extensive form for Kuhn poker. For more

information on the extensive form generally, see Section 3.3. Each node

represents a history, and each edge is an available action that progresses the

game to a new history. The leaves at the bottom of the tree specify the payoff

to player 1 of that particular set of actions and dealt cards. Since this is a

zero-sum game, the payoff to player 2 is simply the negative of player 1’s

payoff. For each edge lower than the results of the deal, a move to the left

represents a check or fold and a move to the right represents a bet or call,

depending on the situation. Each letter adjacent to an edge labels a sequence

and each pair of node colors describes a sample information set, both

described in Section 4.4. In contrast to the normal and sequence forms in the

following sections, the extensive form depiction does not directly translate to a

linear program. This background on the extensive form was found in [1].

4.3 Normal Form

In addition to the extensive form representation of Kuhn poker, we can

also describe its normal form representation. The theory of the normal form

and the associated linear program in this section are modeled on [1]. The

normal form shows the payoffs of particular combinations of each player’s

strategy as an entry of a matrix. We first consider all possible strategy

CHAPTER 4. KUHN POKER 57

D
ea

l

JQ

-1 -1
-21

-2

JK

-1 -1
-21

-2

Q
J

1 -1
21

2

Q
K

-1 -1
-21

-2

K
J

1 -1
21

2

K
Q

1 -1
21

2

a

m
n

g
h

b

o
p

a

q
r

g
h

b

s
t

c

u
v

i
j

d

w
x

c

q
r

i
j

d

s
t

e

u
v

k
l

f

w
x

e

m
n

k
l

f

o
p

Fi
gu

re
4.

1:
Ex

te
ns

iv
e

Fo
rm

of
K

uh
n

Po
ke

r

58 CHAPTER 4. KUHN POKER

combinations for each player and particular dealing of the three cards.

4.3.1 Strategies

Recall that a pure strategy s in a normal form game is a deterministic

prescription of the strategy set used by a player in a game. A mixed strategy σ

is a strategy that assigns a probability to each pure strategy. A pure strategy as

a special case of mixed strategy, with all but one strategy having probability

zero. A player using a pure strategy would play a game the same way every

time, while a player using a mixed strategy would vary their strategy

randomly with known distribution. For example, in Kuhn Poker, a (poor) pure

strategy would be to always bet as player 1. A mixed strategy would be to

always bet while holding a Jack or King, while betting with a Queen half of the

time.

Each entry in Figure 4.2 represents a complete pure strategy that player 1

could choose, covering all deals and both betting rounds. The prescribed pure

strategy for each held card (J, Q, K) is read from the left, and the comma

delineates player 1’s first round betting strategy from his second round betting

strategy. A P represents a check or fold , B represents a bet or call, and O

represents a non-existent move option in player 1’s second betting round.

Player 1 will use the pass P to fold if player 2 has just bet, and to check if

player 2 has not just bet. For example, PPB, PPO represents player 1 betting

only while holding a King in the first round, and folding all hands if player 2

bets. If player 2 chooses not to bet after we check, the hand goes to showdown;

in this case, the second half of the strategy above is irrelevant. Note that there

is no prescribed strategy (O) for having a King in the second round after

CHAPTER 4. KUHN POKER 59

player 2 has bet, since this sequence of actions is impossible if player 1 always

bets while holding a King in the first round. Player 2 can only call or fold;

player 1 would never face a bet from player 2.

PPP, PPB PPP, PBB BPP, OBB
BPP, OPB BPB, OPO BPB, OBO
PPB, PPO PPB, PBO PBB, POO
PPP, PPP BPP, OPP BPP, OBP
BBP, OOP PBP, POP PBP, BOP
PPP, BBP PPP, BPP PPP, PBP
PPP, BBB PBB, BOO PBP, BOB
PPB, BBO PPB, BPO PPP, BPB
BBP, OOB PBB, POO PBP, POB

Figure 4.2: Player 1’s pure strategies in Kuhn Poker

These pure strategies are found by manually generating every possible

(legal) combination of actions for player 1, including all possible cards held

and betting opportunities. Player 1 can hold any of three potential cards, and

will encounter up to two rounds of betting for each. Thus, each pure strategy

must define what he will do with each card in each betting opportunity. A

unique feature to player 1’s pure strategies in Kuhn Poker is that he will not

always have a second opportunity to bet; this only occurs when he checks and

player 2 bets. Thus, any pure strategy that bets with a particular card first

need not prescribe an action for this non-existent second round. This is a

feature unique to pure strategies in the normal form of a game; in the

extensive form, pure strategies must specify an action for every possible

contingency. The pure strategies show in Figures 4.2 and 4.3 represent all

possible combinations of betting actions for each player.

Player 1 has 27 pure strategies, and player 2 has 64 pure strategies. Each B

60 CHAPTER 4. KUHN POKER

PPB,PPB BPB,PPB PPB,PBB BPB,PBB
PPP,PPP BBP,BPP PPP,PPB PPP,BPB PPB,BBB
BPP,PPP BPB,BPP BPP,PPB BPP,BPB PBB,PPB
PBP,PPP PBB,BPP PBP,PPB PBP,BPB BBP,PBB
PPB,PPP BBB,BPP BBP,PPB BBP,BPB PBB,PBB
BBP,PPP PPP,PBP PPP,BBP PPP,PBB BBB,PBB
BPB,PPP BPP,PBP BPP,BBP BPP,PBB BBB,PPB
PBB,PPP PBP,PBP PBP,BBP PBP,PBB BPB,BPB
BBB,PPP PPB,PBP PPB,BBP PPP,BBB BPB,BBB
PPP,BPP BBP,PBP BBP,BBP BPP,BBB PBB,BPB
BPP,BPP BPB,PBP BPB,BBP PBP,BBB PBB,BBB
PBP,BPP PBB,PBP PBB,BBP BBP,BBB BBB,BPB
PPB,BPP BBB,PBP BBB,BBP PPB,BPB BBB,BBB

Figure 4.3: Player 2’s pure strategies in Kuhn Poker

and P entry has the same meaning, and the comma separates the actions that

player 2 will take after player 1 checks from when player 1 bets. The letters to

the left of the comma prescribe strategy for when player 1 has just checked,

and to the right for when he has just bet. Note that since none of player 2’s

betting actions are dependent on his own previous actions, all combinations of

bets are defined for each round. For example, PPB, PPB represents player 2

always calling or betting while holding a King, and checking or folding

otherwise.

The strategy sets S1 and S2 contain as elements each of the strategies

shown in Figures 4.2 and 4.3. A particular strategy s ∈ S1 is an element in the

set; for example PPP, PPB. An action within a strategy a ∈ s is a particular

prescription for a player’s action when faced with a particular situation. For

example, many strategies prescribe that player 1 bet while holding a King in

the first round of betting. Note that many actions are common to multiple

strategies, such as this example.

CHAPTER 4. KUHN POKER 61

Each player in Kuhn Poker has many weakly dominated strategies, which

typically stem from a particular action a that is never advantageous to do.

Since the purpose of our analysis is to determine the optimal strategy for each

player, we can ignore these weakly dominated strategies. These can be

identified intuitively. For example, we can eliminate all of player 1’s strategies

involving folding a King after player 2 has bet. Player 1 will always win at

showdown with that hand, and gives up their ante by folding. Thus, those

strategies are weakly dominated by all others. We also eliminate any player 1

strategy that calls a bet with a Jack, bets in the first round with a Queen, as

well as any player 2 strategy that prescribes a bet with a Queen after player 1

has passed. In these last two cases, the player has nothing to gain by betting

with a Queen; the opposing player will always pass with a worse hand (a Jack)

and bet with a better hand (a King). In each case, the payoff expectation is at

least as great if the player passes while holding a Queen. The bolded strategies

in Figures 4.2 and 4.3 represent the non-weakly dominated strategies.

4.3.2 Payoffs

In order to find the Nash equilibria of Kuhn poker, we must first calculate

the payoffs for the entire strategy set. This corresponds to the normal form

representation, shown in (4.1). This matrix represents the payoffs to player 1

for each pair of pure strategies employed, with player 1 as the row player and

player 2 as the column player. The value in each matrix entry is the overall

payoff of the game to player 1; since this is a zero-sum game, the payoffs to

player 2 are simply the corresponding negatives. Each matrix entry is the sum

62 CHAPTER 4. KUHN POKER

of all payoff values over the 6 potential deals, {(JQ), (JK), (QJ), (QK), (KJ), (KQ)}.

PPB,PPB BPB,PPB PPB,PBB BPB,PBB

PPP,PPB 0 −1 0 −1

PPP,PBB −1 1 −1 1

BPP,OBB 0 2 −3 −1

BPP,OPB 1 0 −2 −3

BPB,OPO 1 −1 −1 −3

BPB,OBO 0 1 −2 −1

PPB,PPO 0 −2 1 −1

PPB,PBO −1 0 0 1

= P (4.1)

4.3.3 Player 1’s Optimal Strategy

Using the normal form representation, we can use linear programming to

determine an optimal strategy for each player. We define a normal form mixed

strategy vector σi as a row vector with m elements, where m is the number of

non weakly-dominated pure strategies for player i. We wish to find the

optimal distribution of all pure strategies for each player. For Kuhn Poker, we

have

σ1 =
(
a b c d e f g h

)
σ2 =

(
q r s t

)
,

where each entry represents a strategy for the respective players, as shown in

payoff matrix P. Let σ1∗ and σ2∗ be Nash-optimal strategies for players 1 and 2,

respectively. Note that these could be either pure or mixed strategies. Then,

CHAPTER 4. KUHN POKER 63

σk
1∗ is the probability that player 1 will play a particular pure strategy k. Note

that the sum of all of the pure strategy probabilities must sum to 1;

∑
k

σk
1∗ = 1 ,

∑
k

σk
2∗ = 1. (4.2)

For example, a valid pure strategy for player 1 would be

σ1 =
(
0 1 0 0 0 0 0 0

)
,

and a valid mixed strategy for player 2 would be

σ2 =
(

1
2 0 1

2 0
)
.

This particular σ1 denotes always employing PPP,PBB, and σ2 denotes

employing PPB,PPB and PPB,PBB with equal frequency. Note that in both

cases the entries of σ sum to 1, as per (4.2).

Let M as the normal form payoff matrix P with a constant of 4 added to

each entry to make each positive. Define z∗ as the expected value of the game

with payoff matrix P, and z as the expected value of the game with payoff

matrix M. Both z and z∗ are from player 1’s perspective. The reason for this

modification of P will soon become clear; in short, it allows us to define

necessary sign restrictions on our LP. This does not change the optimal

strategy, as it holds the relative payoffs between the two players constant.

However, the optimal objective function value z that we find in the LP will

differ from the true expected value of the game z∗. We later find z∗ through a

different method; the purpose of this analysis is to find the probabilities

64 CHAPTER 4. KUHN POKER

assigned to each pure strategy in an optimal mixed strategy.

PPB,PPB BPB,PPB PPB,PBB BPB,PBB

PPP,PPB 4 3 4 3

PPP,PBB 3 5 3 5

BPP,OBB 4 6 1 3

BPP,OPB 5 4 2 1

BPB,OPO 5 3 3 1

BPB,OBO 4 5 2 3

PPB,PPO 4 5 2 3

PPB,PBO 3 4 4 5

= M (4.3)

Since σ1∗ and σ2∗ are the optimal strategies for each player and M is the

payoff matrix for each combination of those strategies, we have

σ1∗MσT
2∗ = z. (4.4)

That is, the payoff z is the matrix product of each player’s mixed strategy σ

with the payoff matrix P. Player 1’s optimal strategy σ1∗ will maximize the

minimum of z against any of player 2’s pure strategies. Since player 1 does not

know in advance the counter-strategy that player 2 will use, he wants to

employ a strategy that gives the best worst-case scenario payoff. An arbitrary

strategy of player 1 will have at best expected payoff z against an arbitrary

strategy σ2;

σ1MσT
2 ≤ z. (4.5)

CHAPTER 4. KUHN POKER 65

In building our LP model, we consider the 4 pure strategies of player 2.

These are represented by the vectors

σ2 =
(
1 0 0 0

)
,(

0 1 0 0
)
,(

0 0 1 0
)
,(

0 0 0 1
)

(4.6)

respectively, for each of the strategies denoted by the columns in (4.1) and

(4.3). We then find σ1Mσ2 for each σ2, and combine these four sums with the

upper bound of z from (4.5). This gives the constraints

4a + 3b + 4c + 5d + 5e + 4 f + 4g + 3h ≤ z

3a + 5b + 6c + 4d + 3e + 5 f + 2g + 4h ≤ z

4a + 3b + c + 2d + 3e + 2 f + 5g + 4h ≤ z

3a + 5b + 3c + d + e + 3 f + 3g + 5h ≤ z.

(4.7)

Dividing by z, we have

4a
z

+
3b
z

+
4c
z

+
5d
z

+
5e
z

+
4 f
z

+
4g
z

+
3h
z
≤ 1

3a
z

+
5b
z

+
6c
z

+
4d
z

+
3e
z

+
5 f
z

+
2g
z

+
4h
z
≤ 1

4a
z

+
3b
z

+
c
z

+
2d
z

+
3e
z

+
2 f
z

+
5g
z

+
4h
z
≤ 1

3a
z

+
5b
z

+
3c
z

+
d
z

+
e
z

+
3 f
z

+
3g
z

+
5h
z
≤ 1.

(4.8)

66 CHAPTER 4. KUHN POKER

Then, define i, j, . . . , p as

i =
a
z
, j =

b
z
, . . . , p =

h
z
. (4.9)

Since each a, b, ..., h are probabilities, they are all non-negative. Since we

modified the payoff matrix P to have strictly positive entries in M, we know

that z > 0. This gives the sign restrictions i ≥ 0, j ≥ 0, . . . , p ≥ 0. Combining

(4.8) and (4.9), we have

4i + 3 j + 4k + 5l + 5m + 4n + 4o + 3p ≤ 1

3i + 5 j + 6k + 4l + 3m + 5n + 2o + 4p ≤ 1

4i + 3 j + k + 2l + 3m + 2n + 5o + 4p ≤ 1

3i + 5 j + 3k + l + m + 3n + 3o + 5p ≤ 1.

(4.10)

From 4.4, we know that a + b + . . . + h = 1. Thus, we have

a
z

+
b
z

+ . . . +
h
z

=
1
z

=⇒ i + j + ... + p =
1
z
. (4.11)

Maximizing i + j + . . . + p would minimize z, which is player 1’s goal. By

combining this objective function with the constraints and sign restrictions, we

have player 1’s LP,

CHAPTER 4. KUHN POKER 67

Minimize: z = i + j + k + l + m + n + o + p

subject to: 4i + 3 j + 4k + 5l + 5m + 4n + 4o + 3p ≤ 1

3i + 5 j + 6k + 4l + 3m + 5n + 2o + 4p ≤ 1

4i + 3 j + k + 2l + 3m + 2n + 5o + 4p ≤ 1

3i + 5 j + 3k + l + m + 3n + 3o + 5p ≤ 1

i, j, k, l,m,n, o, p ≥ 0.

(4.12)

Observe that without the sign restrictions, each variable could be

arbitrarily small; since this is a minimization problem, we would have an

unbounded LP. The modification of the payoff matrix from P to M was

necessary to guarantee that z > 0, which allows us to define the appropriate

sign restrictions. A solution to this LP corresponds to an optimal σ1∗. Using

the Simplex method, we find that there are infinitely many optimal solutions

to this LP, all with z = 3
11 . One such solution is j = 1

11 ,n = 2
33 , o = 4

33 , with all

other variables equal to 0. Since

σ1∗ =
(
a b c d e f g h

)
=

(
iz jz kz lz mz nz oz pz

)
, (4.13)

we can solve these equations to find an optimal strategy for player 1, in terms

of his potential pure strategies. This mixed strategy is b = 1
3 , f = 2

9 , g = 4
9 , and

is given by σ1∗ =
(
0 1

3 0 0 0 2
9

4
9 0

)
. Note that the sum of the entries in

s1∗ is 1, as required by (4.4). These values represent the probabilities of player 1

using each of his pure strategies. He will use pure strategy PPP,PPB with

68 CHAPTER 4. KUHN POKER

probability 1
3 , BPB,OBO with probability 2

9 , and PPB,PPO with probability 4
9 .

This corresponds to the following mixed strategy. In the first betting round,

Player 1 will bet with probability 2
9 with a Jack, always pass with a Queen, and

bet with probability 2
3 with a King. On the second betting round for player 1,

he should always fold a Jack facing a bet, call with a Queen with probability 5
9 ,

and always call with a King. The other optimal solutions prescribe a similar

strategy; player 1 should vary bluffing with a Jack and slowplaying with a

King. In poker, slowplaying involves checking with a good hand to induce the

other player to bluff with a poor hand.

CHAPTER 4. KUHN POKER 69

4.3.4 Player 2’s Optimal Strategy

We can also compute the Nash equilibria strategy for player 2, using a

similar Minimax LP method. Working from (4.4), we determine the optimal

strategy σ1∗ given any σ2∗. The pure strategies for player 2 are given by the

columns in matrix P, and are abbreviated as u, v,w, x respectively. Player 2’s

optimal strategy minimizes the maximum of z against any of player 1’s pure

strategies. This LP is the dual of (4.12),

Maximize: z = u + v + w + x

subject to: 4u + 3v + 4w + 3x ≤ 1

3u + 5v + 3w + 5x ≤ 1

4u + 6v + 1w + 3x ≤ 1

5u + 4v + 2w + x ≤ 1

5u + 3v + 3w + x ≤ 1

4u + 5v + 2w + 3x ≤ 1

4u + 2v + 5w + 3x ≤ 1

3u + 4v + 4w + 5x ≤ 1

u, v,w, x ≥ 0

(4.14)

where u =
q
z , v = r

z , w = s
z , and x = t

z . This LP has a unique optimal solution,

u = 2
11 , x = 1

11 , and z = 3
11 . This optimal solution corresponds to

σ2∗ =
(

2
3 0 0 1

3

)
. (4.15)

70 CHAPTER 4. KUHN POKER

These values prescribe the probability with which player 2 should utilize each

of his pure strategies. He should use PPB,PPB with probability 2
3 and

BPB,PBB with probability 1
3 . This optimal σ2∗ corresponds to a strategy as

follows. When holding a Jack, player 2 should always fold when facing a bet

and bet with probability 1
3 if player 1 checks. With a Queen, they should call a

bet with probability 1
3 and always check when facing a check from player 1.

When holding a King, they should always call when facing a bet or bet when

player 1 checks.

Now that we have the optimal strategies s1∗ and s2∗, we can find the

expected value of the game for both the original payoff matrix P and the

modified matrix M. This z∗ is the expected value of the game to player 1, if

each player utilizes strategy. For the original case, we have

6z = σ1∗PσT
2∗

=
(
0 1

3 0 0 0 2
9

4
9 0

)

0 −1 0 −1

−1 1 −1 1

0 2 −3 −1

1 0 −2 −3

1 −1 −1 −3

0 1 −2 −1

0 −2 1 −1

−1 0 0 1

2
3

0

0

1
3

= −
1
3
.

(4.16)

Since 6z = −1
3 , this implies that z = − 1

18 .

CHAPTER 4. KUHN POKER 71

For the modified payoff matrix case,

6z + 4 = σ1∗MσT
2∗

=
(
0 1

3 0 0 0 2
9

4
9 0

)

4 3 4 3

3 5 3 5

4 6 1 3

5 4 2 1

5 3 3 1

4 5 2 3

4 2 5 3

3 4 4 5

2
3

0

0

1
3

=
11
3
.

(4.17)

Since 6z = −1
3 , this implies that z = − 1

18 . In both cases, we divide the matrix

product by 6 to find the average payoff over all 6 possible card combinations.

In the modified payoff matrix M case, we also subtract 4 from the z value. This

corrects for the 4 that we added to each entry. Note that the optimal z-value is

identical in both cases; this shows modifying the payoff matrix in this way has

no effect on the optimal solution. Player 1 can expect to lose an average of 1
18 of

a betting unit to player 2 in each hand of Kuhn Poker, provided that both

players play their optimal strategies. If either plays a non-optimal strategy,

this expectation will change.

72 CHAPTER 4. KUHN POKER

4.4 Sequence Form

The normal form representation provides a succinct correspondence with

an LP, particularly for small games. However, this model quickly becomes

intractable for large games. While the normal form payoff matrix is generally

exponential with the size of the game tree, growth in the sequence form is at

most linear [13]. As such, the sequence form representation is more

appropriate for larger games. This difference is not as apparent in the

sequence form representation of Kuhn Poker, as it is a relatively small game.

This will become more apparent in Chapter 5, when we consider a much

larger game. This section applies the theory of Section 3.4 to Kuhn Poker. We

define and solve linear programs to find the optimal strategies (as realization

plans) for each player.

4.4.1 Sequences and Information Sets

Recall that a fundamental concept in the sequence form representation is

the information set. An information set in an imperfect information game is a

set of possible game states that are identical from the point of view of a

particular player. In Kuhn Poker, an information set for a player consists in

knowing what card they hold as well as the betting sequence thus far in the

hand. They do not know what card their opponent holds. Since there is

hidden information throughout the game, there are multiple elements in each

information set. Note that distinct elements in an information set can

represent very different positions on the game tree. Different nodes represent

distinct positions on the game tree, but nodes in the same information set are

CHAPTER 4. KUHN POKER 73

identical from that player’s perspective.

In Figure 4.4, the pair of red nodes is an information set. They represent an

information set for player 1 where they know that they hold a Jack, and no

betting has taken place thus far. Player 1 has identical pieces of information

but his place on the game tree is different, as player 2 holds different cards.

Note that a player must have an identical strategy across all nodes in his

information set; they have no way to strategically distinguish elements of an

information set, and must play uniformly across all. Kuhn Poker is an example

of an extensive form game with imperfect information and perfect recall.

Deal

JQ

-1

-1 -2

1 -2

JK

-1

-1 -2

1 -2

a

m n

g h

b

o p

a

q r

g h

b

s t

Figure 4.4: Subtree of Kuhn Poker

Sequences represent an intermediate move within the game tree, as

opposed to a full path from the root to a payoff leaf. For example, the sequence

xa of player 1 only defines the action of checking while holding a Jack in the

first betting round. Each lettered edge in Figure 4.1 represents a sequence.

74 CHAPTER 4. KUHN POKER

Note that each player in Kuhn Poker has a unique set of sequences, given by

S0 = {s∅},

S1 =

l⋃
i=a

si,

S2 =

x⋃
i=m

si,

The S0 set represents the chance player, who initializes the game at the root by

generating a random deal of the cards for each player.

4.4.2 Payoffs

We now turn our attention to defining the payoff matrix P in the sequence

form representation of Kuhn Poker. Since the payoffs at each leaf are unique to

their preceding sequences, the payoff function g is well defined. There are at

most as many sequences as nodes for a particular player, so the number of

sequences is linear in the size of the game tree. Since the number of nonzero

entries of this matrix is at most the number of sequences of player i, this matrix

is sparse. Most entries will be 0, as they represent combinations of sequences

that are not possible and have no associated payoff [13]. Consider

g(s∅, sa, so) = 0; this defines the payoff to player 1 checking while holding a Jack

and player 2 betting while holding a Queen after player 1 has bet. Since this

combination is not possible, the payoff is 0. Examining Figure 4.1, we can see

that most combinations of sequences s are impossible and are assigned a

payoff of 0 by default.

In Kuhn Poker, we consider g(s∅, s1, s2) to be the payoff to player 1 from

CHAPTER 4. KUHN POKER 75

Deal

JQ

-1

-1 -2

1 -2

a

m n

g h

b

o p

Figure 4.5: Payoff function example, with g(s∅, sa, sm) = −1 shown in blue.

arbitrary sequence s1 ∈ S1 and s2 ∈ S2. Since this is a zero-sum game, the payoff

to player 2 is simply −g(s∅, s1, s2). For example, we have g(s∅, sa, sm) = −1. This

represents player 1 holding a Jack and checking, followed by player 2

checking while holding a Queen. The hand would then go to showdown, and

player 2 would win player 1’s ante. This is shown in blue Figure 4.5.

We now define the payoff matrix P, which represents the payoff from

player 1’s perspective for each combination of sequences played. Since this is

a zero-sum game, the payoffs from player 2’s perspective for each combination

of sequences is simply −P. For the realization plans x and y, the payoffs to

each player are xTPy and −xPyT, where P is a |S1| × |S2|matrix. Each entry in P

is given by ∑
s0∈S0

g(s0, s1, s2)r0(s0).

Each entry in P can be computed as follows. Consider a triple of sequences

(s0, s1, s2) that corresponds to a payoff leaf on the game tree. This payoff

76 CHAPTER 4. KUHN POKER

g1(s0, s1, s2) is multiplied by r0(s0), which represents the chance probabilities on

the path to the leaf. In the case of Kuhn Poker, our chance node representing

the random deal of the cards takes each branch (a particular deal) with

probability 1
6 . This product is added to the initial zero matrix at position s1, s2.

Any combination s1, s2 of sequences that does not correspond to a legal

sequence of moves and has no payoff leaf has a 0 in its corresponding entry.

Since most combinations of sequences are not possible, the resulting matrix is

sparse. It will have at most as many non-zero entries as leaves of the game tree.

Consider the matrix entry Pam = −1
6 . To calculate this, we first observe that

the payoff of the sequence combination sa and sm is −1. We then multiply this

value by the probability that the players will have an opportunity to play these

sequences. That is, we consider the chance node outcomes necessary. The

random deal of the cards represents the only chance node. This sequence

combination can only occur if player 1 is dealt a Jack and player 2 is dealt a

Queen, which happens with probability 1
6 . We multiply this by the direct

payoff of −1 to find Pam = − 1
6 . All of the other entries in P are calculated by the

same method; the complete payoff matrix P for player 1 is shown in (4.18).

CHAPTER 4. KUHN POKER 77

θ m n o p q r s t u v w x

θ 0 0 0 0 0 0 0 0 0 0 0 0 0

a 0 −
1
6 0 0 0 −

1
6 0 0 0 0 0 0 0

b 0 0 0 1
6 −

1
3 0 0 1

6 −
1
3 0 0 0 0

c 0 0 0 0 0 −
1
6 0 0 0 1

6 0 0 0

d 0 0 0 0 0 0 0 1
6 −

1
3 0 0 1

6
1
3

e 0 1
6 0 0 0 0 0 0 0 1

6 0 0 0

f 0 0 0 1
6

1
3 0 0 0 0 0 0 1

6
1
3

g 0 0 −
1
6 0 0 0 −

1
6 0 0 0 0 0 0

h 0 0 −
1
3 0 0 0 −

1
3 0 0 0 0 0 0

i 0 0 0 0 0 0 −
1
6 0 0 0 −

1
6 0 0

j 0 0 0 0 0 0 −
1
3 0 0 0 2

3 0 0

k 0 0 −
1
6 0 0 0 0 0 0 0 −

1
6 0 0

l 0 0 1
3 0 0 0 0 0 0 0 2

3 0 0

= P (4.18)

4.4.3 Strategy Constraint Matrices and Realization Plans

The final structures necessary to construct the sequence form LPs for Kuhn

Poker specify the legal ways to play the game. We define the vectors x and y to

be realization plans with |S1| = |S2| = 13 entries each, for each sequence of the

respective players. Each entry in x and y corresponds to a particular sequence

s of the respective players, which are the rows and column heading in

(4.18).The two strategy constraint matrices E and F, which define x and y as

realization plans. The vectors p and q, which represent the dual variables in

78 CHAPTER 4. KUHN POKER

each LP; they have 1 + |I1| and 1 + |I2| entries respectively. Finally, we have

vectors e and f , which are unit vectors of an appropriate dimension that satisfy

Ex = e and Fy = y. These elements are based on the properties of realization

plans in (3.4), (3.5), and (3.6).

The strategy constraint matrices E and F define the legal combinations of

sequences that each player can choose. The dimensions of E and F are

(1 + |I1|) × |S1| and (1 + |I2|) × |S2|. Since each player has 6 information sets

and 13 sequences, both matrices are 7 × 13. Each row in these matrices

represent a particular information set, and each column represents a particular

sequence. The fact that both matrices are the same size is a coincidence based

on the structure of Kuhn Poker, as both player 1 and player 2 happen to have 6

information sets and 12 sequences. The first row in E and F represents the 0th

information set corresponding to the random deal, and the first column

represents the sequence s∅ of the random deal.

These matrices can be constructed as follows. We place a 1 in this first

entry to initialize the game. For each subsequent information set row, we place

a −1 in the sequence that is required to happen before the player is in the

information set. Then, we place a 1 in each sequence in the information set.

For example, sequence sa must occur before player 1 can be in information set

4 where he can choose to play sequence g or h. Since the previous “move” for

player 2 is the random deal θ, each information set row in F initializes with a

−1 at θ. Using this process, we have E and F as shown in (4.19) and (4.20).

CHAPTER 4. KUHN POKER 79

θ a b c d e f g h i j k l

0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 1 1 0 0 0 0 0 0 0 0 0 0

2 −1 0 0 1 1 0 0 0 0 0 0 0 0

3 −1 0 0 0 0 1 1 0 0 0 0 0 0

4 0 −1 0 0 0 0 0 1 1 0 0 0 0

5 0 0 0 −1 0 0 0 0 0 1 1 0 0

6 0 0 0 0 0 −1 0 0 0 0 0 1 1

= E (4.19)

θ m n o p q r s t u v w x

0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 1 1 0 0 0 0 0 0 0 0 0 0

2 −1 0 0 1 1 0 0 0 0 0 0 0 0

3 −1 0 0 0 0 1 1 0 0 0 0 0 0

4 −1 0 0 0 0 0 0 1 1 0 0 0 0

5 −1 0 0 0 0 0 0 0 0 1 1 0 0

6 −1 0 0 0 0 0 0 0 0 0 0 1 1

= F (4.20)

4.4.4 Player 2’s Optimal Strategy

We now have all of the necessary theory and structures to write the

sequence form representation of Kuhn Poker. Recall from Section 3.4.1 that

80 CHAPTER 4. KUHN POKER

player 2’s optimal realization plan is the solution to

Minimize: f (x, q) = −qT f

subject to: xT(−P) − qTF ≤ 0

xTET = eT

x ≥ 0.

(4.21)

With the structures defined in the previous sections, our LP is

Minimize: q0

subject to: q0 − q1 − q2 − q3 ≥ 0

1
6

xm +
1
6

xr + q2 − q4 ≥ 0

−
1
6

x∅ +
1
3

xp −
1
6

xs +
1
3

xt + q1 ≥ 0

1
6

xq −
1
6

xu + q2 − q5 ≥ 0

−
1
6

xs +
1
3

xt −
1
6

xw −
1
3

xx + q2 ≥ 0

−
1
6

xm −
1
6

xu + q3 − q6 ≥ 0

−
1
6

xo −
1
3

xp −
1
6

xw −
1
3

xx + q3 ≥ 0

1
6

xn +
1
6

xr + q4 ≥ 0

1
3

xn +
1
3

xr + q4 ≥ 0

1
6

xr +
1
6

xv + q5 ≥ 0

1
3

xr −
1
3

xv + q5 ≥ 0

(4.22)

CHAPTER 4. KUHN POKER 81

1
6

xn +
1
6

xv + q6 ≥ 0

−
1
3

xn −
1
3

xv + q6 ≥ 0

x∅ = 1

−x∅ + xm + xn = 0

−x∅ + xo + xp = 0

−x∅ + xq + xr = 0

−x∅ + xs + xt = 0

−x∅ + xu + xv = 0

−x∅ + xw + xx = 0.

Using Mathematica’s built-in LP solvers, we find the optimal solution

x∅ = 1 xm = 1 xn = 0 xo =
2
3

xp =
1
3

xq = 0 xr = 1 xs = 0 xt = 1 xu =
2
3

xv =
1
3

xw = 1 xx = 0 q0 = −
1
18

q1 = −
1
3

q2 = −
1
9

q3 =
7
18

q4 = −
1
6

q5 = −
2
9

q6 =
1
9
.

(4.23)

This optimal realization plan directly corresponds to an optimal behavioral

strategy. Each optimal x value corresponds to the frequency with which player

2 should utilize the corresponding sequence s. For each information set, the x

values represent a probability distribution. For example, consider the optimal

values xa = 1 and xb = 0. These values correspond to the sequence sa and sb,

which represent player 2’s choice of checking or betting when holding a

Queen, after player 1 has checked on the first betting round. In this optimal

82 CHAPTER 4. KUHN POKER

strategy, player 2 should always choose sequence sa. This makes intuitive

sense; if player 2 bets in this situation, player 1 will always call the bet when

holding a King, and fold when holding a Jack. In both cases, player 2 is better

off choosing not to bet. The action of player 2 betting while holding a Queen

after player 1 has checked to him is an example of a weakly-dominated action.

This solution does not prescribe a pure strategy for every information set;

instead, optimal strategy sometimes prescribes a mix of actions. For example,

consider xc = 2
3 and xd = 1

3 . The corresponding sequences represent player 2’s

betting choice when holding a Queen, and player 1 has just bet. Optimal

strategy dictates that player 2 should pass with probability 2
3 and bet with

probability 1
3 . The non-deterministic strategy in that information set means

that the optimal strategy for player 2 is a mixed strategy.

In addition to describing the optimal strategy for player 2, the solution to

this LP also shows the value of Kuhn Poker from player 1’s perspective. The

value of the game is the optimal objective function value, which in this case is

simply q0 = − 1
18 . Note that this is identical to the optimal z value found using

the normal form LPs. In each hand of Kuhn Poker, player 1 can expect to lose

1
18 of a betting unit. Note that this is player 1’s expectation only if both players

utilize their Nash optimal strategies; if either deviate, his expectation can

change significantly. It is not surprising that optimally-played Kuhn poker

inherently favors player 2; it is well known that players who act after their

opponent hold an advantage. This is a concept known as “position”, and is

particularly important in poker variants with more rounds of betting.

CHAPTER 4. KUHN POKER 83

4.4.5 Player 1’s Optimal Strategy

To find the optimal strategy for player 1, we solve the dual of player 2’s LP.

This LP is given by

Minimize: f (y, p) = eTp

subject to: − Py + Etp ≥ 0

Fy = f

y ≥ 0.

(4.24)

This corresponds to the following LP, where each y corresponds to a particular

sequence s,

Maximize − p0

subject to: p0 − p1 − p2 − p3 − p4 − p5 − p6 ≥ 0

−
1
6

ya +
1
6

ye + p1 ≥ 0

−
1
6

yg −
1
3

yh −
1
6

yo +
1
3

yp + p1 ≥ 0

1
6

yb +
1
6

y f + p2 ≥ 0

−
1
3

yb +
1
3

y f + p2 ≥ 0

−
1
6

ya −
1
6

yc + p3 ≥ 0

−
1
6

yg −
1
3

yh −
1
6

yk −
1
3

yl + p3 ≥ 0

1
6

yb +
1
6

yd + p4 ≥ 0

−
1
3

yb −
1
3

yd + p4 ≥ 0

(4.25)

84 CHAPTER 4. KUHN POKER

1
6

yc +
1
6

ye + p5 ≥ 0

−
1
6

yk +
1
3

yl −
1
6

yo +
1
3

yp + p5 ≥ 0

1
6

yd +
1
6

y f + p6 ≥ 0

1
3

yd +
1
3

y f + p6 ≥ 0

y∅ = 1

−y∅ + ya + yb = 0

−y∅ + yc + yd = 0

−y∅ + ye + y f = 0

−ya + yg + yh = 0

−yc + yk + yl = 0

−ye + yo + yp = 0.

While player 2 has a single optimal strategy, player 1 has infinitely many

optimal strategies. Mathematica’s Linear Programming function has three

optional methods to compute numerical solutions, Simplex, Revised Simplex,

and Interior Point. The first two methods compute the endpoint solutions,

while Interior Point finds the midpoint solution. With these methods, we can

characterize all possible optimal strategies. These are reported as behavior

strategies with a probability distribution defined on each information set. The

value of each y is the probability that player 1 should utilize the corresponding

sequence s when in the relevant information set. The particular p values are

unimportant in this analysis. These results are shown in Table 4.1.

As these results demonstrate, player 1 has infinitely many optimal

CHAPTER 4. KUHN POKER 85

Simplex Interior Point Revised Simplex

y∅ 1 1 1

ya 1 5
6

2
3

yb 0 1
6

1
3

yc 1 1 1

yd 0 0 0

ye 1 1
2 0

yf 0 1
2 1

yg 1 5
6

2
3

yh 0 0 0

yi
2
3

1
2

1
3

yj
1
3

1
2

2
3

yk 0 0 0

yl 1 1
2 0

p0 −
1

18 −
1
18 −

1
18

p1 0 −
1
18 −

1
9

p2 0 1
9

2
9

p3 −
7

18 −
7
18 −

7
18

p4 0 −
1
18 −

1
9

p5
1
3

1
4

1
6

p6 0 421
5000

1
6

Table 4.1: Solutions to Player 1’s LP

86 CHAPTER 4. KUHN POKER

strategies. Since the Simplex and Revised Simplex solutions represent the

endpoint solutions, all intermediate solutions are also optimal. We can

characterize player 1’s optimal strategies as dependent on a parameter

α ∈ [0, 1
3], which is the probability that they will bet on their first turn while

holding a Jack. When holding a King, player 1 should bet with probability 3α

on their first turn. When holding a Queen, player 1 should always check on

their first betting round. If player 2 bets after this check, player 1 should call

the bet with probability α + 1
3 . Finally, player 1 should always fold a Jack and

call with a King when facing a bet from player 2.

Unlike player 1’s LP solution (4.1), player 2’s LP solution does not

correspond neatly to a behavioral strategy. Recall that the optimal values

calculated by the sequence form LP describe a realization plan, which are

relative to the realization probability of an information set. Consider that

player 1 will not always have a second choice to bet; this only occurs when he

checks and player 2 bets. There are many other paths down the game tree that

do not involve these moves, such as both players checking or player 2 folding

to player 1’s bet. Since player 2 always faces a decision to check, bet, or fold

regardless of player 1’s action, the sum of each pair of sequences s for each

information set is 1. The same is not true for player 1, who will not always get

to play sequences sg through sl. Consider the optimal ya = 5
6 in the Interior

Point solution (α = 1
6). Since player 1’s potential later choice between sg and sl

is dependent on him also playing sa, yg + yl = 5
6 in the solution to the LP. We use

a similar process to convert each of the values in the realization plan to a full

behavioral strategy. In a sense, the probability of the base sequence (ya = 5
6)

becomes the new “1” for its subsequent sequences further down the game tree.

CHAPTER 4. KUHN POKER 87

In player 1’s optimal realization plan, some sequences will never be used.

Consider the sequences sk and sl, both with realization probability 0 in the

Revised Simplex solution. Both are members of the same information set, in

which player 1 was dealt a King, checked initially, and now faces a bet from

player 2. However, he will never reach this information set if he plays

according to other elements of his optimal realization plan. In the Revised

Simplex solution, ye = 0; that is, he never checks initially while holding a King.

Since se is necessary for both sk and sl, he will never face the choice. Therefore,

an optimal realization plan does not have to specify frequencies for these

actions. Table 4.2 shows the optimal realization plan converted to an optimal

behavior strategy as above, with *** denoting sequences that are never reached.

The Simplex solution represents the case α = 0. In this case, player 1

always checks in the first round; that is, ya = yc = ye = 1 and yb = yd = y f = 0.

Since he chooses to never bluff (by betting when holding a Jack), he must

balance his strategy by also never betting a King for value. He must call a bet

from player 2 while holding a Queen with probability 1
3 . The Revised Simplex

method gives the other endpoint solution, with α = 1
3 . In this strategy, player 1

bluffs with a Jack with probability 1
3 (yb = 1

3), and always value bets with a

King (y f = 1). He always checks with a Queen in the first round (yc = 1), and

calls a bet from player 2 with probability 2
3 (y j = 2

3). In all optimal strategies,

player 1 folds with a Jack and calls with a King when facing a bet. He cannot

win a showdown with a Jack, and cannot lose a showdown with a King; thus,

any strategy that did not prescribe these sequences is weakly dominated by

those that do. The Simplex solution (α = 0) represents player 1’s most

conservative strategy, as he never bluffs with a Jack and never value bets with

88 CHAPTER 4. KUHN POKER

a King. Conversely, the Revised Simplex solution (α = 1
3) represents player 1’s

most aggressive strategy, as he frequently bluffs with a Jack and always value

bets with a King.

Simplex Interior Point Revised Simplex

s∅ 1 1 1

sa 1 5
6

2
3

sb 0 1
6

1
3

sc 1 1 1

sd 0 0 0

se 1 1
2 0

sf 0 1
2 1

sg 1 1 1

sh 0 0 0

si
2
3

1
2

1
3

sj
1
3

1
2

2
3

sk 0 0 ***

sl 1 1 ***

Table 4.2: Player 1’s Optimal Behavioral Strategy

Chapter 5

2-7 Draw Poker

Although Kuhn Poker serves as a useful example in understanding

concepts in game theory and the method of the sequence form, it bears little

resemblance to actual variants of poker. Other variants play with more cards,

more betting rounds, and more players. In turn, these games are much more

complex to analyze; for comparison, 2-player no-limit Texas Hold’em has

approximately 10160 information sets [10]. That is many more atoms than exist

in the known universe. While games of this size are significantly beyond the

capabilities of this approach, we are able to analyze abstracted versions of

more complex games. In this chapter, we develop an abstracted version of 2-7

Draw poker and use the sequence form LP methodology to determine an

optimal strategy.

5.1 Rules

While poker variants such as Texas Hold’em and Omaha have become

very popular in recent years, variants such as 2-7 Draw still have a loyal

89

90 CHAPTER 5. 2-7 DRAW POKER

following. Its structure and game play are very different, and little previous

work has been published on game-theoretic optimal play. As such, it is a

fruitful area of research. This section details the rules of full-scale, two player

2-7 Draw based on [8]. 2-7 Draw is a lowball variant, meaning that traditional

hand rankings are reversed; the worst traditional hand wins the pot, if the

hand goes to showdown. Additionally, as the name suggests, it is a draw

variant. Each player is dealt a private hand, and has the opportunity to

discard and redraw any number of their own cards after each betting round.

These features contrast with games such as Texas Hold’em and Omaha, where

players share a common set of community cards and the highest hand wins.

At the start of each hand, each player is dealt 5 cards. There is a round of

betting, where each player has the option to check, bet, raise, or fold,

depending on the actions of previous players. Betting in 2-7 Draw games can

have a limit structure, with fixed bet sizes, or a no-limit betting structure,

where players can bet any amount. Then, each player discards any or all of

their hand, and replaces them with cards from the deck. 2-7 Draw is most

commonly played with one or three discard rounds; our version uses one

discard round. If there is more than one person who has not previously

folded, the hand goes to showdown, and the player with the worst hand wins

the pot. Thus, a hand of 2-7 (Single) Draw has the following structure:

1. Five cards are dealt to each player

2. Betting round #1

3. Discard and redraw (up to 5 cards)

4. Betting round #2

CHAPTER 5. 2-7 DRAW POKER 91

5. Showdown (if necessary)

Hand rankings in 2-7 Draw are reversed in comparison to poker variants

such as Texas Hold’em and Omaha. From best to worst, they are as follows:

1. No Pair

2. One Pair

3. Two Pair

4. Three of a Kind

5. Straight

6. Flush

7. Full House

8. Four of a Kind

9. Straight Flush

10. Royal Flush

Within each of these categories, there is a further ordering. The best possible

No Pair hand is 7, 5, 4, 3, 2, not of the same suit. The best possible One Pair

hand is 2, 2, 5, 4, 3, which is worse than all No Pair hands. Ordering in each

category is determined first by the highest card (or pair), and subsequently by

the next highest card. For example, 4, 4, 4, 2, 2 beats 4, 4, 4, 3, 3. Each category

admits a similar ordering structure.

92 CHAPTER 5. 2-7 DRAW POKER

5.2 Abstractions

In order to analyze a poker variant using the sequence form LP method, it

is necessary to reduce the size of the game. There are several types of these

abstractions, all of which aim to simplify the game without losing the

underlying strategy. The abstractions that we use to simplify 2-7 Draw are

outlined in this section, and are based on ideas from [2].

5.2.1 Deck Reduction

One abstraction technique to reduce the size of the game is to reduce the

number of cards in the deck. This simplifies the game by drastically reducing

the number of potential hands and, by extension, the size of the game tree. For

example, a 52 card deck has

(
52
5

)
= 2, 598, 960

unique 5 card hands. In using this type of abstraction, it is important to choose

a deck size that maintains an equivalent ordering of hand strengths. In other

words, the frequencies of each hand category must remain generally

consistent between the original game and the abstraction. For example, One

Pair must be more common than a Straight, which in turn must be more

common than a Flush. To accomplish this, we experimented with several

combinations of deck size and hand size. We settle on a 21 card deck with 3

card hands for each player. This deck contains the cards 2 through 8 of each of

CHAPTER 5. 2-7 DRAW POKER 93

three suits: clubs (♣), spades (♠), and hearts (♥). This deck has

(
21
3

)
= 1, 330

unique 3 card hands. The hand rankings for this abstraction and their relative

frequencies are shown in Table 5.1. While these hand rankings do not

correspond precisely to the original game, they retain enough similarity to

make valid strategic comparisons between the two games.

Hand Type Example Combinations Probability
Three of a Kind (6♣, 6♠, 6♥) 7 0.005
Straight Flush (4♣, 3♣, 2♣) 15 0.011

Flush (7♥, 4♥, 2♥) 90 0.068
Straight (6♣, 5♣, 4♠) 120 0.090

Pair (8♠, 8♥, 4♥) 378 0.284
High Card (8♥, 6♣, 5♣) 720 0.542

Table 5.1: Hand Rankings with Frequencies in Simplified 2-7 Draw Poker

5.2.2 Betting Abstractions

We can also simplify the game by changing the number and structure of

betting rounds. In a typical game of 2-7 (Triple) Draw, there are up to three

opportunities (provided at least two players do not fold) for players to discard

and obtain new cards. Players can discard and redraw up to 5 cards each time.

Before the first and following every discard, there is a round of betting in

which players can either bet a fixed amount or any amount; 2-7 Draw can be

played as a limit or no-limit game, respectively.

Each round of betting and subsequent discard exponentially increases the

size of the game tree. We simplify this by allowing a single discard round,

94 CHAPTER 5. 2-7 DRAW POKER

preceded and followed by a round of betting. Additionally, we specify that

each player must discard exactly one card. While this discard rule is a

significant deviation from the original rules, it is necessary for our game to be

tractable. Additionally, we suggest that this does not deviate radically from

actual strategy; it would be unusual for a player to receive such a good hand

in the original deal that they have no desire to draw any cards. It is not

possible to give this a precise probability; it would depend on the player’s

strategy and their opponent’s strategy.

Additionally, we impose a limit betting structure, with no raises possible.

This is identical to the betting structure of Kuhn Poker. In each betting round,

player 1 first decides to check or bet. If player 1 checks, player 2 can also check

or bet. If player 2 bets, player 1 must fold or call. If player 1 bets originally,

player 2 must fold or call. The elimination of raising, where one player

increases the previous bet, represents a significant strategic deviation in our

simplified game. Raising gives players more opportunities to bluff and win

the pot.

5.2.3 Bucketing

The most important abstraction technique is known as bucketing, where

each possible hand is partitioned into one of several equivalence classes

(’buckets’) through a many-to-one mapping function. Instead of considering

the optimal strategies for individual hands, we group them by strategic

similarity and find the optimal strategy for playing each bucket as a whole. If

the hands are grouped into buckets in a cogent way, all hands in a bucket can

be played identically without significant issue [2]. Note that each of these sets

CHAPTER 5. 2-7 DRAW POKER 95

of buckets are particular to the game state; in our case, there is one set of

buckets for hands determined by the initial deal, and another for hands after

the discard round.

The most intuitive method of bucketing is by raw hand strength; that is, by

the absolute hand rank relative to all possible hands. Using this method,

bucket composition would be determined by simply partitioning the ordered

set of all possible hands into some number of equivalence classes. This is an

appropriate method for the second set of buckets, when no new cards will be

drawn. However, this method loses any conception of hand potential, which

is critical in early stages of the hand. A player may be initially dealt a hand

with poor absolute hand strength, but with a high probability of improving

significantly during the discard round. This hand is said to have high roll-out

hand strength. Conversely, a hand with poor roll-out hand strength has little

chance of improving to a absolutely strong hand after the discard and redraw.

Thus, we categorize the first set of buckets according to roll-out hand strength,

and the second according to absolute hand strength. The process of

determining bucket composition is detailed further in Section 5.3.

In both sets of buckets, the number of member hands is not uniform.

Buckets representing hands of middling strength are larger, and buckets

representing very strong or very weak hands are smaller. This is done in order

to better discriminate hands that should be played very aggressively or those

that should be folded early in the hand. The sizes and characteristics of the

respective buckets are shown in Table 5.2. Given the computational

restrictions of Gambit, we develop simplified games with 2 and 3 initial

buckets, each with 3 final buckets. The first set of initial buckets are denoted A

96 CHAPTER 5. 2-7 DRAW POKER

Bucket Size (# of hands) Example Hand
A 444 (7♥, 3♠, 3♥)
B 886 (7♥, 6♠, 5♠)
C 331 (7♥, 2♠, 2♥)
D 668 (6♠, 4♠, 2♠)
E 331 (7♠, 7♣, 4♣)

Table 5.2: Initial Buckets

Bucket Size (# of hands) Example Hands
1 332 (8♣, 6♣, 4♣)
2 666 (3♣, 2♠, 3♥)
3 332 (5, 3♠, 2♥)

Table 5.3: Final Buckets

and B, the second set C, D, and E, and the set of final buckets 1, 2, 3. The best

initial buckets are A and C, and the best final bucket is 3.

Finally, we need sets of transition probabilities that model the move into

the initial buckets from the original deal and from the initial to the final

buckets. In this abstract game, there are no individual cards, only buckets. The

effect of the original deal node is to determine the probability of initialization

to each pair of initial buckets. Likewise, the effect of the discard round is to

determine the probability of moving from one pair of initial buckets to one

pair of final buckets. Conceptualizing the game in this way drastically reduces

the number of nodes; instead of

(
21
3

)
∗

(
18
3

)
= 1, 085, 280

possible initial deals, there are only 4 or 9 bucket combinations, depending on

the model.

The first set of transition probabilities, is an n × n matrix, where n is the

CHAPTER 5. 2-7 DRAW POKER 97

(Bucket A Bucket B
Bucket A 0.437 0.229
Bucket B 0.229 0.105

)
Figure 5.1: Initial Transition Probabilities to 2 Buckets

Bucket C Bucket D Bucket E

Bucket C 0.057 0.126 0.066
Bucket D 0.126 0.251 0.125
Bucket E 0.066 0.126 0.058

Figure 5.2: Initial Transition Probabilities to 3 Buckets

number of initial buckets. Since each matrix represents a probability

distribution,
∑

ai j = 1, where each ai j is the matrix entry representing the

probability of player 1 being dealt a hand in the ith bucket and player 2 being

dealt a hand in the jth bucket. Since each player has an equal likelihood of

receiving a particular hand, transition matrices are symmetric; that is, ai j = a ji

for all i, j. For computational feasibility, our simulations iterate over a subset

of all possible hand combinations. Therefore, the matrices shown in Figures

5.1 and 5.2 are only approximately symmetric.

The second set of transition probabilities is an (n × n) to (m ×m) transition

network, where m is the number of final buckets. In these m2
× n2 matrices,

each column represents a probability distribution. That is,
∑

j bi j = 1, where

each bi j is the matrix entry representing the probability that the players move

from initial bucket combination j to final bucket combination i with the

discard round. Each ordered pair represents the pair of buckets each player’s

hand is in, respectively. For example, the transition probability from state A,A

to 1, 1 is 0.174. This is interpreted as follows: given that both players are

98 CHAPTER 5. 2-7 DRAW POKER

(A, A) (A, B) (B, A) (B, B)
(1, 1) 0.174 0.100 0.103 0.068
(1, 2) 0.170 0.168 0.098 0.108
(1, 3) 0.077 0.149 0.046 0.089
(2, 1) 0.167 0.100 0.17 0.107
(2, 2) 0.154 0.158 0.154 0.145
(2, 3) 0.069 0.134 0.074 0.137
(3, 1) 0.079 0.046 0.143 0.089
(3, 2) 0.072 0.078 0.144 0.128
(3, 3) 0.038 0.067 0.068 0.129

Figure 5.3: Final Transition Probabilities from 2 Buckets

(C, C) (C, D) (C, E) (D, C) (D, D) (D, E) (E, C) (E, D) (E, E)
(1, 1) 0.257 0.164 0.111 0.167 0.125 0.09 0.109 0.083 0.059
(1, 2) 0.197 0.194 0.204 0.14 0.142 0.152 0.103 0.091 0.105
(1, 3) 0.056 0.122 0.172 0.035 0.09 0.131 0.026 0.06 0.084
(2, 1) 0.199 0.156 0.103 0.192 0.14 0.088 0.198 0.149 0.109
(2, 2) 0.157 0.161 0.165 0.165 0.145 0.153 0.165 0.143 0.15
(2, 3) 0.039 0.107 0.143 0.037 0.095 0.131 0.042 0.111 0.134
(3, 1) 0.045 0.038 0.021 0.129 0.094 0.061 0.17 0.13 0.089
(3, 2) 0.042 0.034 0.042 0.11 0.102 0.104 0.145 0.138 0.137
(3, 3) 0.008 0.024 0.039 0.025 0.067 0.09 0.042 0.096 0.133

Figure 5.4: Final Transition Probabilities from 3 Buckets

initially dealt hands in bucket A, the probability that they will both have

hands in bucket 1 after the discard round is 0.174.

5.3 Simulation

An important element of our simplified version of 2-7 Draw is the

transition probabilities between each game state, conceived as the associated

buckets of each player’s hand. Recall that in this game, we do not consider

individual hands as nodes in the game tree, only pairs of buckets. However,

CHAPTER 5. 2-7 DRAW POKER 99

the probability of the game being in each of these bucket combination states is

not uniform. Therefore, we must determine the individual transition

probabilities between each bucket pairing through simulation. This section

presents an overview of the algorithms necessary to model this and other

elements of the game, before we use the sequence form LP method to find the

optimal strategy. All of the following code was written in Python.

The first step is to generate an ordered list of all possible 3 card hands,

based on hand strength. There are

(
21
3

)
= 1, 330

total hands. The ordering of the hands has two levels. First, we place the

hands into the ranking categories shown in Table 5.1 such as Three of a Kind,

Flush, One Pair, etc. This is done through conditional statements based on

card values and suits of each hand. Within each of these categories, we then

sort based on the highest card in the hand to create a sub ordering. This

process is repeated for each ranking category, and the ordered categories are

appended to an overall list OrderedHands. Algorithm 1 shows a schemitization

of this process for the Three of a Kind category.

for AllHands do
if Card1Value = Card2Value = Card3Value then

Append(Hand) to ThreeKindList
end

end
Sort(ThreeKindList);
Append(ThreeKindList) to OrderedHands

Algorithm 1: Hand Sorting Algorithm

100 CHAPTER 5. 2-7 DRAW POKER

Recall that the particular hand composition of our initial buckets is based

on the roll-out strength of each hand, given all possible draw possibilities. We

iterate each hand over all possible draws and determine the average final hand

ranking, based on its index in OrderedHands. In order to determine which card

to discard, we use the following rule: if their hand is a pair or three of a kind,

discard one those cards. Otherwise, discard the highest card in the hand.

A general version of this process is shown in Algorithm 2. First, we

remove each of the three cards in the original hand from the available Deck,

since players cannot redraw a card that they discard. Then, if the original

hand is a Pair or Three of a Kind (PairsThreeKind), that card is replaced with

one from the Deck. Otherwise, the highest card is replaced with one from the

Deck. We then find the Strength of the new hand, given by its index in the

OrderedHands. This process iterates for each of the 18 possible cards to be

drawn. Then, for each hand, we compute the average Strength and place the

hand into a bucket with similar Strength values.

CHAPTER 5. 2-7 DRAW POKER 101

for OrderedHands do

Hand=Card1, Card2, Card3;

Remove(Card1, Card2, Card3) from Deck;

for Deck do

if Hand in PairsThreeKind then
Replace PairCard with Decki

end

else
Replace HighCard with Decki

end

Strength = OrderedHands.index(NewHand)

end

if Average(Strength) < value then
Append(Hand) to BucketA

end

else
Append(Hand) to BucketB

end

Add(Card1, Card2, Card3) to Deck;

end
Algorithm 2: Roll-Out Hand Strength Algorithm

Now that we have defined the composition of individual buckets

following the initial deal, we can determine the frequency of each pair of

bucket combinations for each player. For example, we want to determine the

probability that both players will have a hand in bucket A after the initial deal.

For each of the 1330 possible Hands, first remove each card from the remaining

102 CHAPTER 5. 2-7 DRAW POKER

Deck. Then, generate each 3 card combination of the Deck as the list structure

Combos. For each of these, the ordered pair HandPair is the combination of the

original Hand and an element of Combos. This pair of two hands is then sorted

into the appropriate paired bucket, based on the original membership of each

of its component hands. For example, if both Hand and a particular element of

Combos were originally members of bucket A (defined in Algorithm 2), this

HandPair would be appended to BucketAA. Then, the probability that

BucketAA is reached after the initial deal is 1
Length(BucketAA) . A generalized version

of this process is shown in Algorithm 3.

for Hands do

Hand=Card1, Card2, Card3;

Remove(Card1, Card2, Card3) from Deck;

Combos = Combinations(Deck, 3);

Sort(Combos);

for Combos do
HandPair=(Hand, Combos)

end

Add(Card1, Card2, Card3) to Deck;

end

if Hand in BucketA and Combos in BucketA then
Append(HandPair) to BucketAA

end

Length(BucketAA)
Algorithm 3: Initial Bucket Probability Algorithm

We now turn our attention to the second set of buckets, representing game

states after each player has discarded and redrawn. Their hand is now fixed,

CHAPTER 5. 2-7 DRAW POKER 103

and we can consider a new set of buckets based only on the strength of their

hand. These buckets are defined in Table 5.3, and we define these in our code

by iterating over all 1, 085, 280 two-player hand combinations and sorting

based on the respective indices in OrderedHands. The result is a set of 9 list

structures, Bucket11, Bucket12, etc, which contain pairs of hands meeting the

criteria for each single hand bucket. For example, if both players held a hand

in the top 25% of overall hands, it would be placed in Bucket33.

With this second set of buckets defined, we now determine the transition

probabilities for moving between each first round bucket pair (defined in

Algorithm 2) and each second round bucket pair. This is the most

computationally intensive step of this simulation process, and required

time-saving measures at multiple points. This algorithm is shown in

generalized form in Algorithm 4 First, we initialize a counter Count11,

representing the number of hand pairs that fall into Bucket11. For each hand

pair in BucketAA, remove each of the six cards that one of the players holds

from the available Deck. Then, generate all permutations of Deck of length 2.

This is an ordered pair representing the cards that each player will receive

after they discard one card, respectively. For computational efficiency,

randomly select one of these and assign it to Draw. Then, replace one card in

each player’s hand with one of the cards in Draw. The particular card to be

replaced is determined by the same discard rule: if holding One Pair or Three

of a Kind, discard one of those cards. Otherwise, discard the highest card.

With the resulting pair of hands, check the membership of each in the

previously defined final buckets and increment the corresponding counter.

For example, if the both of the hands are in the strongest category in Bucket11

104 CHAPTER 5. 2-7 DRAW POKER

after the particular Draw, add 1 to Counter11. Then, Counter11
1,085,280 is the approximate

probability that given original membership in BucketAA, the players will end

in Bucket11 after the discard and redraw. This value has a corresponding entry

in Figure 5.3 or 5.4 for the 2 and 3 initial bucket cases, respectively.

Count11=0;

for BucketAA do

HandPair = [(Card1, Card2, Card3), (Card4, Card5, Card6)];

P1Hand = (Card1, Card2, Card3);

P2Hand = (Card4, Card5, Card6);

Remove (Card1, Card2, Card3, Card4, Card5, Card6) from Deck;

Draws = Permutations(Deck, 2);

Draw = RandomSample(Draws, 1);

if P1Hand in PairsThreeKind and P2Hand in PairsThreeKind then
Replace P1PairCard with Draw(1) and P2PairCard with Draw(2)

else if P1Hand in PairsThreeKind and P2Hand not in PairsThreeKind then
Replace P1PairCard with Draw(1) and P2HighCard with Draw(2)

else if P1Hand not in PairsThreeKind and P2 in PairsThreeKind then
Replace P1HighCard with Draw(1) and P2PairCard with Draw(2)

else
Replace P1HighCard with Draw(1) and P2HighCard with Draw(2)

FinalPair = (P1Hand, P2Hand);

if FinalPair in Bucket11 then
Count11 = Count11 + 1

end

Add(Card1, Card2, Card3, Card4, Card5, Card6) to Deck;
Algorithm 4: First to Second Round Transition Probabilities Algorithm

CHAPTER 5. 2-7 DRAW POKER 105

5.4 Results

We solve the sequence form LP of Simplified 2-7 Draw using the Gambit

software package, for both the 2 and 3 initial bucket cases. The solutions to

these LPs are the optimal realization plans for each game. These LPs also

compute an expected value of the game, which is simply the optimal objective

function value. Gambit’s sequence form LP algorithms compute only one

optimal solution; there may be other optimal realization plans for Simplified

2-7 Draw. This section provides a brief discussion of Gambit’s computed

solution; for more detail, see Appendix B.

5.4.1 2 Initial Buckets

For the 2 initial bucket case, both player’s optimal realization plans

characterize a relatively conservative strategy. We begin by discussing player

1’s optimal play. Player 1 is first dealt a random hand, which is a member of

either Bucket A or Bucket B. Hands in Bucket A have a higher average roll-out

hand strength than hands in Bucket B. On his first opportunity to bet, player 1

should always check. If player 2 bets after player 1 checks, player 1 should

always call the bet. Thus, player 1’s strategy for the first round is simple:

regardless of Bucket, check and call a bet if necessary.

After the first round of betting, each player discards and redraws one card

from the remaining deck. At this point, player 1’s optimal realization plan

becomes more complicated. It defines optimal play for each combination of

original bucket and final bucket. Recall that in the final round, hands are

sorted by absolute strength into Buckets 1 − 3, in ascending order. Hands in

106 CHAPTER 5. 2-7 DRAW POKER

Bucket 3 are superior to those in Bucket 2, which are in turn superior to those

in Bucket 1. If player 1’s hand was originally in Bucket A and both players

checked in the first betting round, he should bet with probability 0.178 while

holding a hand in Bucket 1, always check with Bucket 2, and always bet with

Bucket 3. If he does check and player 2 then bets, player 1 should always fold

with Bucket 1 and always call with Bucket 2. Notice that this optimal

realization plan does not specify what player 1 should do with a hand in

Bucket 3 after player 2 has bet; since it is optimal for player 1 to always bet

with Bucket 1 initially, he will simply never be in this situation. These

irrelevant sequences are denoted *** in the full table of results in Appendix B.

If player 1’s hand was originally in Bucket A and the betting sequence of

the first round was player 1 checks, player 2 bets, and player 1 calls, player 1

should bet with probability 0.122 while holding a hand in Bucket 1, always

check with Bucket 2, and always bet with Bucket 3. If player 1 checks and

player 2 bets, player 1 should always fold with Bucket 1 and always call with

Bucket 2. If player 1’s hand was originally in Bucket B and both player’s

checked in the first round, player 1 should always check with Bucket 1, bet

with probability 0.233 with Bucket 2, and always bet with Bucket 3. If player 1

checks and player 2 bets, always fold with Bucket 1 and call with Bucket 2. If

player 1’s hand was originally in Bucket B and the betting sequence of the first

round was player 1 checks, player 2 bets, and player 1 calls, player 1 should

always bet with Bucket 1, check with Bucket 2, and always bet with Bucket 3.

If player 1 checks and player 2 bets, always call with Bucket 2.

Player 2’s first round strategy is more aggressive and complex than player

1’s. If player 1 checks, player 2 should always check with Bucket A and always

CHAPTER 5. 2-7 DRAW POKER 107

bet with Bucket B. If player 1 bets, player 2 should call with probability 0.983

with Bucket A and always call with Bucket B. The discard and redraw follows

this round of betting. If player 2 originally had a hand in Bucket A and both

players checked in the first round, and player 1 bets in the final round, player

2 should always fold with Bucket 1, call with probability 0.891 with Bucket 2,

and always call with Bucket 3. Since player 2 never checks in the first round

with Bucket B, we need not define a realization plan for the second round.

If player 2 originally had a hand in Bucket B, the first round betting action

was player 1 checks, player 2 bets, and player 1 calls, and player 1 checks after

the discard and redraw, player 2 should always bet with Bucket 1, bet with

probability 0.435 with Bucket 2, and always bet with Bucket 3. Instead, if

player 1 bets, player 2 should call with probability 0.415 with Bucket 1, and

always call with Buckets 2 and 3.

If player 2 originally had a hand in Bucket A, the first round betting action

was player 1 bets and player 2 calls, and player 1 bets after the discard and

redraw, player 2 should call with probability 0.664 with Bucket 1, always with

Bucket 2, and with probability 0.640 with Bucket 3. If player 1 checks, player 2

should always check with every Bucket. If player 2 instead originally had a

hand in Bucket B, he should always call with Buckets 1 and 2, and with

probability 0.595 with Bucket 3. If player 1 checks, player 2 should always

check with every Bucket.

When each player uses these optimal realization plans, the value of the

game is approximately − 14
100 . This value is from player 1’s perspective; for each

hand of Simplified 2-7 Draw played according to these optimal realization

plans, player 1 can expected to lose 14
100 betting units to player 2. Recall that the

108 CHAPTER 5. 2-7 DRAW POKER

value of optimally-played Kuhn Poker is − 1
18 . In Simplified 2-7 Draw, player 2

has an even greater advantage than in Kuhn Poker. This is likely due to an

even greater positional advantage; player 2 acts second on two rounds of

betting, instead of only one. In each round, player 2 can observe player 1’s

actions before making his own decision.

Some parts of these optimal realization probabilities are surprising, while

others square with previous intuition about poker strategy. The most

surprising results are player 2’s optimal probabilities in the final betting

round, after a first round in which the betting action was player 1 bets and

player 2 calls. In this situation, the LP results dictate that player 2 should

sometimes fold while facing a bet and always check back while holding a

hand in Bucket 3. This is extremely suprising; since Bucket 3 is the strongest

possible bucket, player 2 can never outright lose the hand. Therefore, we

would expect that he should want to bet as much as possible. The reason for

this prescribed strategy is not clear; it may be a coding error or an inherent

issue related to the structure of the game.

However, the majority of these optimal realization plans are congruent

with our intuitive sense of poker strategy. For example, player 1 consistently

folds a poor hand from Bucket 1 and calls a strong hand from Bucket 3 when

facing a bet in the final round. For the most part, each player follows a

strategy of betting with a combination of bluffs (Bucket 1) and strong hands

(Bucket 3). In addition, they often call with medium strength hands (Bucket 2),

hoping that their opponent is bluffing. These strategies are similar to those in

Kuhn Poker; Buckets 1,2, and 3 play similarly to a Jack, Queen, and King,

respectively.

CHAPTER 5. 2-7 DRAW POKER 109

Finally, it is notable that little folding should occur in the first betting

round. Player 2 folds with probability 0.017 when holding a hand in Bucket A

when player 1 bets. Otherwise, each player’s optimal realization plan involves

always remaining in the hand until the final betting round. This highlights the

importance of the discard and redraw phase, where each player’s hand

strength can change dramatically. Each initial buckets contained plenty of

hands that could become very strong after the discard and redraw; this was

simply more likely with Bucket A. This feature illustrates a considerable issue

with the abstraction techniques that we used to reduce 2-7 Draw to a tractable

size. It is likely that more specific buckets, a bigger deck, bigger individual

hands, and more betting rounds would incentivize players to fold more often

before the final betting round.

5.4.2 3 Initial Buckets

We hypothesized that a different version of Simplified 2-7 Draw with an

additional bucket in the first betting round would provide a more robust set of

initial betting strategies. However, the computational limits of the Gambit

software package made this difficult. When solving a sequence form LP,

Gambit allows the user to specify computation using rational or non-rational

values. The rational method is more accurate, but the computation time

required is much greater. One of Gambit’s developers notes that the use of

floating point arithmetic can lead to numerical instability, and strongly

recommends using the rational algorithm [11].

We initially attempted to solve our 3 initial bucket model using the

rational method; after 4 days, the program did not output a solution. It is not

110 CHAPTER 5. 2-7 DRAW POKER

clear how long a game of this size would take to run, but we were surprised

that the algorithm could not finish. The 2 initial bucket LP with 80 information

sets computed a solution rationally within 20 minutes, and the 3 initial bucket

LP only has 120 information sets. Fortunately, the non-rational algorithm for

the 3 initial bucket LP finishes within an hour. However, these results are

clearly flawed, and are shown in Appendix B. Many of the supposed optimal

probabilities cannot even be such; they often do not sum to 1 in each

information set, are negative, or are greater than 1. We report these results for

the sake of completeness of the project, but they cannot accurately describe an

optimal realization plan for the game. Future versions of Gambit and more

powerful computers may be able to find the exact rational solution.

Chapter 6

Conclusion

This Independent Study is an exposition of the use of linear programming

and game theoretic techniques to find optimal poker strategies. Game theory

represents games in a variety of forms, some of which can be used to find the

Nash equilibrium strategies using linear programming techniques. In

particular, we used the sequence form representation to find Nash-optimal

strategies for Kuhn Poker and a novel, simplified version of 2-7 Draw. The

Gambit software package was a critical tool, in both constructing and solving

the sequence form LPs. The particular optimal strategies for Simplified 2-7

Draw are less robust than we hoped; they prescribe a relatively simple

strategy for both players. These strategies may not be particularly applicable

to the actual game of 2-7 Draw, given the degree of abstraction and

simplification necessary in our model.

These results could be extended in several ways. For example, we could

consider a version of Simplified 2-7 Draw that uses more buckets, more

rounds of betting, or more cards. Any of the abstraction techniques presented

111

112 CHAPTER 6. CONCLUSION

in Section 5.2.2 could be modified to create a more realistic game. While our

version is a reasonable approximation, it loses many key facets of the game.

For example, players are not actually required to discard and redraw a card at

every opportunity, nor by our specific discard rule. Thus, a natural extension

of this project is to analyze a version with fewer abstractions.

Computational constraints played a significant role in our analysis of

Simplified 2-7 Draw, and considering a more accurate version would require

better computational tools. The current version of Gambit can compute

solutions for medium-sized games like ours, but quickly fails when faced with

truly large-scale games. The current version of Gambit is unable to find

optimal strategies of large games using the sequence form LP method, but

may be able to using other methods. Although not discussed or utilized in this

project, Gambit does have a variety of other methods of finding optimal

strategies [6]. Building the sequence form LPs manually, instead of

automatically with Gambit, would be difficult and prone to error. However,

they could be solved using external solvers, which are much more able to

handle large LPs. For example, a sequence form LP with over 1.1 million

variables was used to solve an abstracted game of Rhode Island Hold’Em with

external LP solvers [9]. Future work based on computational improvement

could use a more advanced version of Gambit, a different solution method, or

external LP solvers.

Appendix A

Gambit

The primary computational tool used in this project is Gambit, an

open-source library of game theory tools [6]. It allows construction of finite

strategic and extensive games using both an intuitive graphical user interface

(GUI) and a set of command-line tools for larger games. These tools allow the

full specification of a game, including players, actions, strategies, information

sets, etc. In addition, Gambit has a variety of solution algorithms that compute

the Nash equilibrium of a given game. Most relevant to this project is its

sequence form LP method, which converts an extensive form game to

sequence form and solves an LP based on the theory of [13]. The author of this

paper, Bernhard von Stengel, was directly involved in the development of

Gambit.

Figure A.1 shows a portion of the Kuhn Poker extensive form game tree

constructed in the Gambit GUI. It allows the user to specify and label players,

actions, nodes, information sets, and payoffs. Since Kuhn Poker is relatively

small, we compute the Nash equilibrium both using the sequence form LP

113

114 APPENDIX A. GAMBIT

Figure A.1: Part of the Extensive Form of Kuhn Poker in the Gambit GUI

method in Gambit and by building the LP manually and solving in

Mathematica. Gambit can also generate and calculate the equilibria for normal

form games, albeit with a different methodology.

Although greatly simplified relative to the original game, our version of

2-7 Draw is much too large for the GUI to construct and analyze. The version

with 2 initial buckets has 80 information sets, 160 sequences, and 1009 total

nodes, while the version with 3 initial buckets has 120 information sets, 240

sequences, and 2269 total nodes. Building a game of this size graphically

causes the program to crash. Fortunately, Gambit offers a set of command-line

Python tools that perform the solution algorithms on a game manually

designed and imported through an external text file.

Designing a text file to accurately describe the game of Simplified 2-7

Draw Poker was a significant undertaking within this overall project. The

Gambit websites describes the specific format for an extensive form game

(.efg) text file, representing each player, chance, or terminal node as a line with

particular actions, payoffs, information sets, etc. The required formatting is

APPENDIX A. GAMBIT 115

very specific, and is described in more detail on Gambit’s website. To generate

this .efg text file, we utilize an original Python script that utilizes several types

of symmetry present in the game tree. Since the betting structure is uniform

across different bucket combinations, appropriate for loops can be used to

iterate over the entire game tree. These files also specify the transition

probabilities for each chance node, as detailed in Sections 5.2.3 and 5.3. These

scripts are developed for both the 2 and 3 initial bucket cases. The results of

the scripts are text files that are 1135 and 2550 lines, respectively.

These text files are then imported to an installed Python environment

containing Gambit’s solver algorithms and other commands. The

gambit.nash.lp solve() command generates and solves the sequence form LP

and returns complete Nash-optimal behavior strategies for each sequence. For

many of the information sets, optimal play dictates taking a particular action

with probability 1. For any such information set, sequences later in the game

that require the other action are reported as being played with the default

probability 0.5. For example, the optimal strategy in the 2 initial bucket case

includes always checking in the first betting round as player 1. Consequently,

any sequence in the second betting round that involves player 1 previously

betting in the first betting round are reported as 0.5. Since these later

information sets will never be reached, these values are irrelevant in our

analysis.

The first version of Simplified 2-7 Triple Draw that we developed involved

combinations of 5 buckets for the first round of betting, transitioning to

combinations of 3 buckets for the second round. This is in contrast to the 2 and

3 initial bucket versions for which we present solutions in Chapter 5. The 5

116 APPENDIX A. GAMBIT

bucket case is more complex, with 200 information sets, 400 sequences, and

6301 nodes. Attempts to find a Nash equilibrium for this game with Gambit

return an unexplained error. Direct correspondence with Gambit developer

Theodore Turocy suggests that a solving a game of this size is infeasible in

Gambit’s current version [11].

Appendix B

Simplified 2-7 Draw LP Results

The following tables show the results of the Simplified 2-7 Draw sequence

form LPs. Each row denotes an information set for a particular player, each of

which has two possible actions. The Information column denotes the

previous action and information known to the player; this describes the

information set. The P(C/F) column lists the probability that the optimal

player should check or fold, depending on context. The P(B/C column lists the

corresponding probability that of the other action, either betting or calling. For

example, information set 1 for player 1 prescribes checking with probability

0.822 and betting with probability 0.178, given that player 1 initially had a

hand in Bucket 1, then both players checked, and now he has a hand in Bucket

1. Many of the information sets with ‘optimal‘ probabilities of 0.5 for each

action is a history that the player will never face, given the other prescriptions

of strategy. For example, consider information set 14 for player 1. In the

associated history, player 1 bet after the initial deal; since he always checks in

the situation per information set 0, he will never face the choice of actions in

117

118 APPENDIX B. SIMPLIFIED 2-7 DRAW LP RESULTS

information set 14. We denote these irrelevant sequences with ***.

Table B.1: Optimal Realization Plan for 2 Initial Buckets

Player Info Set # Information P(C/F) P(B/C)

1 0 Deal to Bucket A 1 0

1 1 Bucket A, p1 check, p2 check,

Bucket 1

0.822 0.178

1 2 Bucket A, p1 check, p2 check,

Bucket 1, p1 check, p2 bet

1 0

1 3 Bucket A, p1 check, p2 check,

Bucket 2

1 0

1 4 Bucket A, p1 check, p2 check,

Bucket 2, p1 check, p2 bet

0 1

1 5 Bucket A, p1 check, p2 check,

Bucket 3

0 1

1 6 Bucket A, p1 check, p2 check,

Bucket 3, p1 check, p2 bet

*** ***

1 7 Bucket A, p1 check, p2 bet 0 1

1 8 Bucket A, p1 check, p2 bet,

p1 call, Bucket 1

0.878 0.122

B.1 (continued)

APPENDIX B. SIMPLIFIED 2-7 DRAW LP RESULTS 119

Player Info Set # Information P(C/F) P(B/C)

1 9 Bucket A, p1 check, p2 bet,

p1 call, Bucket 1, p1 check, p2

bet

1 0

1 10 Bucket A, p1 check, p2 bet,

p1 call, Bucket 2

1 0

1 11 Bucket A, p1 check, p2 bet,

p1 call, Bucket 2, p1 check, p2

bet

0 1

1 12 Bucket A, p1 check, p2 bet,

p1 call, Bucket 3

0 1

1 13 Bucket A, p1 check, p2 bet,

p1 call, Bucket 3, p1 check, p2

bet

*** ***

1 14 Bucket A, p1 bet, p2 call,

Bucket 1

*** ***

1 15 Bucket A, p1 bet, p2 call,

Bucket 1, p1 check, p2 bet

*** ***

1 16 Bucket A, p1 bet, p2 call,

Bucket 2

*** ***

1 17 Bucket A, p1 bet, p2 call,

Bucket 2, p1 check, p2 bet

*** ***

B.1 (continued)

120 APPENDIX B. SIMPLIFIED 2-7 DRAW LP RESULTS

Player Info Set # Information P(C/F) P(B/C)

1 18 Bucket A, p1 bet, p2 call,

Bucket 3

*** ***

1 19 Bucket A, p1 bet, p2 call,

Bucket 3, p1 check, p2 bet

*** ***

1 20 Deal to Bucket 2 1 0

1 21 Bucket B, p1 check, p2 check,

Bucket 1

1 0

1 22 Bucket B, p1 check, p2 check,

Bucket 1, p1 check, p2 bet

1 0

1 23 Bucket B, p1 check, p2 check,

Bucket 2

0.767 0.233

1 24 Bucket B, p1 check, p2 check,

Bucket 2, p1 check, p2 bet

0 1

1 25 Bucket B, p1 check, p2 check,

Bucket 3

0 1

1 26 Bucket B, p1 check, p2 check,

Bucket 3, p1 check, p2 bet

*** ***

1 27 Bucket B, p1 check, p2 bet 0 1

1 28 Bucket B, p1 check, p2 bet, p1

call, Bucket 1

0 1

B.1 (continued)

APPENDIX B. SIMPLIFIED 2-7 DRAW LP RESULTS 121

Player Info Set # Information P(C/F) P(B/C)

1 29 Bucket B, p1 check, p2 bet, p1

call, Bucket 1, p1 check, p2

bet

*** ***

1 30 Bucket B, p1 check, p2 bet, p1

call, Bucket 2

1 0

1 31 Bucket B, p1 check, p2 bet, p1

call, Bucket 2, p1 check, p2

bet

0 1

1 32 Bucket B, p1 check, p2 bet, p1

call, Bucket 3

0 1

1 33 Bucket B, p1 check, p2 bet, p1

call, Bucket 3, p1 check, p2

bet

*** ***

1 34 Bucket B, p1 bet, p2 call,

Bucket 1

*** ***

1 35 Bucket B, p1 bet, p2 call,

Bucket 1, p1 check, p2 bet

*** ***

1 36 Bucket B, p1 bet, p2 call,

Bucket 2

*** ***

1 37 Bucket B, p1 bet, p2 call,

Bucket 2, p1 check, p2 bet

*** ***

B.1 (continued)

122 APPENDIX B. SIMPLIFIED 2-7 DRAW LP RESULTS

Player Info Set # Information P(C/F) P(B/C)

1 38 Bucket B, p1 bet, p2 call,

Bucket 3

*** ***

1 39 Bucket B, p1 bet, p2 call,

Bucket 3, p1 check, p2 bet

*** ***

2 0 Bucket A, p1 check 1 0

2 1 Bucket A, p1 check, p2 check,

Bucket 1, p1 check

0.900 0.100

2 2 Bucket A, p1 check, p2 check,

Bucket 1, p1 bet

1 0

2 3 Bucket A, p1 check, p2 check,

Bucket 2, p1 check

0.879 0.121

2 4 Bucket A, p1 check, p2 check,

Bucket 2, p1 bet

0.109 0.891

2 5 Bucket A, p1 check, p2 check,

Bucket 3, p1 check

0 1

2 6 Bucket A, p1 check, p2 check,

Bucket 3, p1 bet

0 1

2 7 Bucket A, p1 check, p2 bet,

p1 call, Bucket 1, p1 check

*** ***

2 8 Bucket A, p1 check, p2 bet,

p1 call, Bucket 1, p1 bet

*** ***

B.1 (continued)

APPENDIX B. SIMPLIFIED 2-7 DRAW LP RESULTS 123

Player Info Set # Information P(C/F) P(B/C)

2 9 Bucket A, p1 check, p2 bet,

p1 call, Bucket 2, p1 check

*** ***

2 10 Bucket A, p1 check, p2 bet,

p1 call, Bucket 2, p1 bet

*** ***

2 11 Bucket A, p1 check, p2 bet,

p1 call, Bucket 3, p1 check

*** ***

2 12 Bucket A, p1 check, p2 bet,

p1 call, Bucket 3, p1 bet

*** ***

2 13 Bucket A, p1 bet 0.017 0.983

2 14 Bucket A, p1 bet, p2 call,

Bucket 1, p1 check

1 0

2 15 Bucket A, p1 bet, p2 call,

Bucket 1, p1 bet

0.336 0.664

2 16 Bucket A, p1 bet, p2 call,

Bucket 2, p1 check

1 0

2 17 Bucket A, p1 bet, p2 call,

Bucket 2, p1 bet

0 1

2 18 Bucket A, p1 bet, p2 call,

Bucket 3, p1 check

1 0

2 19 Bucket A, p1 bet, p2 call,

Bucket 3, p1 bet

0.361 0.639

B.1 (continued)

124 APPENDIX B. SIMPLIFIED 2-7 DRAW LP RESULTS

Player Info Set # Information P(C/F) P(B/C)

2 20 Bucket B, p1 check 0 1

2 21 Bucket B, p1 check, p2 check,

Bucket 1, p1 check

*** ***

2 22 Bucket B, p1 check, p2 check,

Bucket 1, p1 bet

*** ***

2 23 Bucket B, p1 check, p2 check,

Bucket 2, p1 check

*** ***

2 24 Bucket B, p1 check, p2 check,

Bucket 2, p1 bet

*** ***

2 25 Bucket B, p1 check, p2 check,

Bucket 3, p1 check

*** ***

2 26 Bucket B, p1 check, p2 check,

Bucket 3, p1 bet

*** ***

2 27 Bucket B, p1 check, p2 bet, p1

call, Bucket 1, p1 check

0 1

2 28 Bucket B, p1 check, p2 bet, p1

call, Bucket 1, p1 bet

0.585 0.415

2 29 Bucket B, p1 check, p2 bet, p1

call, Bucket 2, p1 check

0.565 0.435

2 30 Bucket B, p1 check, p2 bet, p1

call, Bucket 2, p1 bet

0 1

B.1 (continued)

APPENDIX B. SIMPLIFIED 2-7 DRAW LP RESULTS 125

Player Info Set # Information P(C/F) P(B/C)

2 31 Bucket B, p1 check, p2 bet, p1

call, Bucket 3, p1 check

0 1

2 32 Bucket B, p1 check, p2 bet, p1

call, Bucket 3, p1 bet

0 1

2 33 Bucket B, p1 bet 0 1

2 34 Bucket B, p1 bet, p2 call,

Bucket 1, p1 check

1 0

2 35 Bucket B, p1 bet, p2 call,

Bucket 1, p1 bet

0 1

2 36 Bucket B, p1 bet, p2 call,

Bucket 2, p1 check

1 0

2 37 Bucket B, p1 bet, p2 call,

Bucket 2, p1 bet

0 1

2 38 Bucket B, p1 bet, p2 call,

Bucket 3, p1 check

1 0

2 39 Bucket B, p1 bet, p2 call,

Bucket 3, p1 bet

0.405 0.595

B.1 (continued)

While Table B.1 describes cogent realization plans based on Gambit’s

rational computation for the 2 initial bucket case, Table B.2 describes the raw

results of Gambit’s non-rational computation of the 3 initial bucket case. Due

to numerical instabilities, we strongly suspect that these results are incorrect.

126 APPENDIX B. SIMPLIFIED 2-7 DRAW LP RESULTS

Notice that the values do not describe probability distributions over each

information set; they sometimes do not sum to 1, are greater than 1, or less

than 0. The values in Table B.2 are unedited, and directly reflect Gambit’s

output. We do not identify irrelevant sequences, but these are likely to be

information sets where both sequences are played with probability 0.5.

Table B.2: Optimal Realization Plan for 3 Initial Buckets

Player Info Set # Information P(C/F) P(B/C)

1 0 Deal to Bucket C 1 0

1 1 Bucket C, p1 check, p2 check,

Bucket 1

1 0

1 2 Bucket C, p1 check, p2 check,

Bucket 1, p1 check, p2 bet

0.907 0.093

1 3 Bucket C, p1 check, p2 check,

Bucket 2

1 0

1 4 Bucket C, p1 check, p2 check,

Bucket 2, p1 check, p2 bet

0 1

1 5 Bucket C, p1 cheeck, p2

check, Bucket 3

0 1

1 6 Bucket C, p1 check, p2 check,

Bucket 3, p1 check, p2 bet

0.5 0.5

B.2 (continued)

APPENDIX B. SIMPLIFIED 2-7 DRAW LP RESULTS 127

Player Info Set # Information P(C/F) P(B/C)

1 7 Bucket C, p1 check, p2 bet 0 1

1 8 Bucket C, p1 check, p2 bet,

p1 call, Bucket 1

1 0

1 9 Bucket C, p1 check, p2 bet,

p1 call, Bucket 1, p1 check, p2

bet

1 0

1 10 Bucket C, p1 check, p2 bet,

p1 call, Bucket 2

1 0

1 11 Bucket C, p1 check, p2 bet,

p1 call, Bucket 2, p1 check, p2

bet

0 1

1 12 Bucket C, p1 check, p2 bet,

p1 call, Bucket 3

0 1

1 13 Bucket C, p1 check, p2 bet,

p1 call, Bucket 3, p1 check, p2

bet

0.5 0.5

1 14 Bucket C, p1 bet, p2 call,

Bucket 1

0.5 0.5

1 15 Bucket C, p1 bet, p2 call,

Bucket 1, p1 check, p2 bet

0.5 0.5

B.2 (continued)

128 APPENDIX B. SIMPLIFIED 2-7 DRAW LP RESULTS

Player Info Set # Information P(C/F) P(B/C)

1 16 Bucket C, p1 bet, p2 call,

Bucket 2

0.5 0.5

1 17 Bucket C, p1 bet, p2 call,

Bucket 2, p1 check, p2 bet

0.5 0.5

1 18 Bucket C, p1 bet, p2 call,

Bucket 3

0.5 0.5

1 19 Bucket C, p1 bet, p2 call,

Bucket 3, p1 check, p2 bet

0.5 0.5

1 20 Deal to Bucket D 1 0

1 21 Bucket D, p1 check, p2 check,

Bucket 1

0.8852 0.1148

1 22 Bucket D, p1 check, p2 check,

Bucket 1, p1 check, p2 bet

1 0

1 23 Bucket D, p1 check, p2 check,

Bucket 2

1 0

1 24 Bucket D, p1 check, p2 check,

Bucket 2, p1 check, p2 bet

0 1

1 25 Bucket D, p1 check, p2 check,

Bucket 3

0.2705 0.7295

1 26 Bucket D, p1 check, p2 check,

Bucket 3, p1 check, p2 bet

0 1

B.2 (continued)

APPENDIX B. SIMPLIFIED 2-7 DRAW LP RESULTS 129

Player Info Set # Information P(C/F) P(B/C)

1 27 Bucket D, p1 check, p2 bet 0 1

1 28 Bucket D, p1 check, p2 bet,

p1 call, Bucket 1

0.3701 0.63

1 29 Bucket D, p1 check, p2 bet,

p1 call, Bucket 1, p1 check, p2

bet

1 0

1 30 Bucket D, p1 check, p2 bet,

p1 call, Bucket 2

1 0

1 31 Bucket D, p1 check, p2 bet,

p1 call, Bucket 2, p1 check, p2

bet

0 1

1 32 Bucket D, p1 check, p2 bet,

p1 call, Bucket 3

0 1

1 33 Bucket D, p1 check, p2 bet,

p1 call, Bucket 3, p1 check, p2

bet

0.5 0.5

1 34 Bucket D, p1 bet, p2 call,

Bucket 1

0.5 0.5

1 35 Bucket D, p1 bet, p2 call,

Bucket 1, p1 check, p2 bet

0.5 0.5

B.2 (continued)

130 APPENDIX B. SIMPLIFIED 2-7 DRAW LP RESULTS

Player Info Set # Information P(C/F) P(B/C)

1 36 Bucket D, p1 bet, p2 call,

Bucket 2

0.5 0.5

1 37 Bucket D, p1 bet, p2 call,

Bucket 2, p1 check, p2 bet

0.5 0.5

1 38 Bucket D, p1 bet, p2 call,

Bucket 3

0.5 0.5

1 39 Bucket D, p1 bet, p2 call,

Bucket 3, p1 check, p2 bet

0.5 0.5

1 40 Deal to Bucket E 1 0

1 41 Bucket E, p1 check, p2 check,

Bucket 1

1 0

1 42 Bucket E, p1 check, p2 check,

Bucket 1, p1 check, p2 bet

1 0

1 43 Bucket E, p1 check, p2 check,

Bucket 2

1 0

1 44 Bucket E, p1 check, p2 check,

Bucket 2, p1 check, p2 bet

0 1

1 45 Bucket E, p1 check, p2 check,

Bucket 3

0 1

1 46 Bucket E, p1 check, p2 check,

Bucket 3, p1 check, p2 bet

0.5 0.5

B.2 (continued)

APPENDIX B. SIMPLIFIED 2-7 DRAW LP RESULTS 131

Player Info Set # Information P(C/F) P(B/C)

1 47 Bucket E, p1 check, p2 bet 0.5 1

1 48 Bucket E, p1 check, p2 bet, p1

call, Bucket 1

1 0

1 49 Bucket E, p1 check, p2 bet, p1

call, Bucket 1, p1 check, p2

bet

1 0

1 50 Bucket E, p1 check, p2 bet, p1

call, Bucket 2

1 0

1 51 Bucket E, p1 check, p2 bet, p1

call, Bucket 2, p1 check, p2

bet

0 1

1 52 Bucket E, p1 check, p2 bet, p1

call, Bucket 3

0 1

1 53 Bucket E, p1 check, p2 bet, p1

call, Bucket 3, p1 check, p2

bet

0.5 0.5

1 54 Bucket E, p1 bet, p2 call,

Bucket 1

0.5 0.5

1 55 Bucket E, p1 bet, p2 call,

Bucket 1, p1 check, p2 bet

0 -35.323

B.2 (continued)

132 APPENDIX B. SIMPLIFIED 2-7 DRAW LP RESULTS

Player Info Set # Information P(C/F) P(B/C)

1 56 Bucket E, p1 bet, p2 call,

Bucket 2

0.5 0.5

1 57 Bucket E, p1 bet, p2 call,

Bucket 2, p1 check, p2 bet

-0.013 0

1 58 Bucket E, p1 bet, p2 call,

Bucket 3

0.5 0.5

1 59 Bucket E, p1 bet, p2 call,

Bucket 3, p1 check, p2 bet

0 1.074

2 0 Bucket C, p1 check 0 2.093

2 1 Bucket C, p1 check, p2 check,

Bucket 1, p1 check

1 0

2 2 Bucket C, p1 check, p2 check,

Bucket 1, p1 bet

0 0

2 3 Bucket C, p1 check, p2 check,

Bucket 2, p1 check

1 0

2 4 Bucket C, p1 check, p2 check,

Bucket 2, p1 bet

-1.02 0

2 5 Bucket C, p1 check, p2 check,

Bucket 3, p1 check

0 1

2 6 Bucket C, p1 check, p2 check,

Bucket 3, p1 bet

0 -0.424

B.2 (continued)

APPENDIX B. SIMPLIFIED 2-7 DRAW LP RESULTS 133

Player Info Set # Information P(C/F) P(B/C)

2 7 Bucket C, p1 check, p2 bet,

p1 call, Bucket 1, p1 check

0 -0.211

2 8 Bucket C, p1 check, p2 bet,

p1 call, Bucket 1, p1 bet

-9.932 0

2 9 Bucket C, p1 check, p2 bet,

p1 call, Bucket 2, p1 check

0 1

2 10 Bucket C, p1 check, p2 bet,

p1 call, Bucket 2, p1 bet

0 -1.423

2 11 Bucket C, p1 check, p2 bet,

p1 call, Bucket 3, p1 check

0 -11.206

2 12 Bucket C, p1 check, p2 bet,

p1 call, Bucket 3, p1 bet

0 0

2 13 Bucket C, p1 bet 1 0

2 14 Bucket C, p1 bet, p2 call,

Bucket 1, p1 check

0.5 0.5

2 15 Bucket C, p1 bet, p2 call,

Bucket 1, p1 bet

0.5 0.5

2 16 Bucket C, p1 bet, p2 call,

Bucket 2, p1 check

0.5 0.5

2 17 Bucket C, p1 bet, p2 call,

Bucket 2, p1 bet

0.5 0.5

B.2 (continued)

134 APPENDIX B. SIMPLIFIED 2-7 DRAW LP RESULTS

Player Info Set # Information P(C/F) P(B/C)

2 18 Bucket C, p1 bet, p2 call,

Bucket 3, p1 check

0.5 0.5

2 19 Bucket C, p1 bet, p2 call,

Bucket 3, p1 bet

0.5 0.5

2 20 Bucket D, p1 check 1 0

2 21 Bucket D, p1 check, p2 check,

Bucket 1, p1 check

0.522 0.478

2 22 Bucket D, p1 check, p2 check,

Bucket 1, p1 bet

1 0

2 23 Bucket D, p1 check, p2 check,

Bucket 2, p1 check

0.661 0.339

2 24 Bucket D, p1 check, p2 check,

Bucket 2, p1 bet

0.126 0.874

2 25 Bucket D, p1 check, p2 check,

Bucket 3, p1 check

0 1

2 26 Bucket D, p1 check, p2 check,

Bucket 3, p1 bet

0 1

2 27 Bucket D, p1 check, p2 bet,

p1 call, Bucket 1, p1 check

0.5 0.5

2 28 Bucket D, p1 check, p2 bet,

p1 call, Bucket 1, p1 bet

0.5 0.5

B.2 (continued)

APPENDIX B. SIMPLIFIED 2-7 DRAW LP RESULTS 135

Player Info Set # Information P(C/F) P(B/C)

2 29 Bucket D, p1 check, p2 bet,

p1 call, Bucket 2, p1 check

0.5 0.5

2 30 Bucket D, p1 check, p2 bet,

p1 call, Bucket 2, p1 bet

0.5 0.5

2 31 Bucket D, p1 check, p2 bet,

p1 call, Bucket 3, p1 check

0.5 0.5

2 32 Bucket D, p1 check, p2 bet,

p1 call, Bucket 3, p1 bet

0.5 0.5

2 33 Bucket D, p1 bet 1 0

2 34 Bucket D, p1 bet, p2 call,

Bucket 1, p1 check

0.5 0.5

2 35 Bucket D, p1 bet, p2 call,

Bucket 1, p1 bet

0.5 0.5

2 36 Bucket D, p1 bet, p2 call,

Bucket 2, p1 check

0.5 0.5

2 37 Bucket D, p1 bet, p2 call,

Bucket 2, p1 bet

0.5 0.5

2 38 Bucket D, p1 bet, p2 call,

Bucket 3, p1 check

0.5 0.5

2 39 Bucket D, p1 bet, p2 call,

Bucket 3, p1 bet

0.5 0.5

B.2 (continued)

136 APPENDIX B. SIMPLIFIED 2-7 DRAW LP RESULTS

Player Info Set # Information P(C/F) P(B/C)

2 40 Bucket E, p1 check 0 1

2 41 Bucket E, p1 check, p2 check,

Bucket 1, p1 check

0.5 0.5

2 42 Bucket E, p1 check, p2 check,

Bucket 1, p1 bet

0.5 0.5

2 43 Bucket E, p1 check, p2 check,

Bucket 2, p1 check

0.5 0.5

2 44 Bucket E, p1 check, p2 check,

Bucket 2, p1 bet

0.5 0.5

2 45 Bucket E, p1 check, p2 check,

Bucket 3, p1 check

0.5 0.5

2 46 Bucket E, p1 check, p2 check,

Bucket 3, p1 bet

0.5 0.5

2 47 Bucket E, p1 check, p2 bet, p1

call, Bucket 1, p1 check

0 1

2 48 Bucket E, p1 check, p2 bet, p1

call, Bucket 1, p1 bet

0.572 0.4278

2 49 Bucket E, p1 check, p2 bet, p1

call, Bucket 2, p1 check

0.676 0.324

2 50 Bucket E, p1 check, p2 bet, p1

call, Bucket 2, p1 bet

0 1

B.2 (continued)

APPENDIX B. SIMPLIFIED 2-7 DRAW LP RESULTS 137

Player Info Set # Information P(C/F) P(B/C)

2 51 Bucket E, p1 check, p2 bet, p1

call, Bucket 3, p1 check

0 1

2 52 Bucket E, p1 check, p2 bet, p1

call, Bucket 3, p1 bet

0 1

2 53 Bucket E, p1 bet 1 0

2 54 Bucket E, p1 bet, p2 call,

Bucket 1, p1 check

0.5 0.5

2 55 Bucket E, p1 bet, p2 call,

Bucket 1, p1 bet

0.5 0.5

2 56 Bucket E, p1 bet, p2 call,

Bucket 2, p1 check

0.5 0.5

2 57 Bucket E, p1 bet, p2 call,

Bucket 2, p1 bet

0.5 0.5

2 58 Bucket E, p1 bet, p2 call,

Bucket 3, p1 check

0.5 0.5

2 59 Bucket E, p1 bet, p2 call,

Bucket 3, p1 bet

0.5 0.5

B.2 (continued)

138 APPENDIX B. SIMPLIFIED 2-7 DRAW LP RESULTS

Bibliography

[1] Rickard Andersson. Pseudo-Optimal Strategies in No-Limit Poker.

Master’s thesis, Umea University, 2006.

[2] D. Billings, N. Burch, A. Davidson, R. Holte, J. Schaeffer, T. Schauenberg,

and D. Szafron. Approximating Game-Theoretic Optimal Strategies for

Full-Scale Poker. Proceedings of the 18th International Joint Conference on

Artificial Intelligence, 2003. University of Alberta.

[3] Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin.

Heads-up Limit Holdem Poker is Solved. Science, 347(6218):145–149, 2015.

[4] Drew Fudenberg and Jean Tirole. Game Theory. Massachusetts Institute of

Technology, Boston, MA, 1995.

[5] Harold W. Kuhn. Contributions to the Theory of Games, pages 97–103.

Princeton University Press, 1950.

[6] Richard D. McKelvey, Andrew M. McLennan, and Theodore L. Turocy.

139

140 BIBLIOGRAPHY

Gambit: Software Tools for Game Theory, Version 15.1.0, 2014.

http://www.gambit-project.org.

[7] Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory.

Massachusetts Institute of Technology Press, 1994.

[8] Pokerstars. 2-7 (Deuce to Seven) Single Draw Lowball Rules, 2017.

https://www.pokerstars.com/poker/games/draw/2-7/single/.

[9] Tuomas Sandholm and Andrew Gilpin. Optimal Rhode Island Hold’em

Poker. National Conference on Artificial Intelligence (AAAI), Intelligent

Systems Demonstration Program, 2005.

[10] Byron Spice. Carnegie Mellon Artificial Intelligence Beats Top Poker

Pros. 2017. https://www.cmu.edu/news/stories/archives/2017/january/AI-

beats-poker-pros.html.

[11] Ted Turocy. Personal correspondence. Gambit Technical Support, 2017.

https://github.com/gambitproject/gambit/issues/211.

[12] Robert J. Vanderbei. Linear Programming: Foundations and Extensions.

Springer US, Boston, MA, 2014.

[13] Bernhard von Stengel. Efficient Computation of Behavior Strategies.

Games and Economic Behavior, 14:220–246, 1996.

	The College of Wooster Libraries
	Open Works
	2017

	The Search for GTO: Determining Optimal Poker Strategy Using Linear Programming
	Stuart Young
	Recommended Citation

	tmp.1489072968.pdf.pZ19h

