
The College of Wooster Libraries
Open Works

Senior Independent Study Theses

2016

A Comparative Analysis of Photon and Electron
Wave Functions in Spherically Symmetric
Potentials
Michael Bush
The College of Wooster, mbush16@wooster.edu

Follow this and additional works at: http://openworks.wooster.edu/independentstudy

This Senior Independent Study Thesis Exemplar is brought to you by Open Works, a service of The College of Wooster Libraries. It has been accepted
for inclusion in Senior Independent Study Theses by an authorized administrator of Open Works. For more information, please contact
openworks@wooster.edu.

© Copyright 2016 Michael Bush

Recommended Citation
Bush, Michael, "A Comparative Analysis of Photon and Electron Wave Functions in Spherically Symmetric Potentials" (2016). Senior
Independent Study Theses. Paper 7105.
http://openworks.wooster.edu/independentstudy/7105

http://openworks.wooster.edu?utm_source=openworks.wooster.edu%2Findependentstudy%2F7105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openworks.wooster.edu/independentstudy?utm_source=openworks.wooster.edu%2Findependentstudy%2F7105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openworks.wooster.edu/independentstudy?utm_source=openworks.wooster.edu%2Findependentstudy%2F7105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openworks.wooster.edu/independentstudy/7105?utm_source=openworks.wooster.edu%2Findependentstudy%2F7105&utm_medium=PDF&utm_campaign=PDFCoverPages
http://openworks.wooster.edu/independentstudy/7105
mailto:openworks@wooster.edu


A Comparative Analysis of
Photon and ElectronWave

Functions in Spherically
Symmetric Potentials

Independent Study Thesis

Presented in Partial Fulfillment of the
Requirements for the Degree Bachelor of Arts in
the Departments of Mathematics and Computer
Science and Physics at The College of Wooster

by
MICHAEL BUSH

The College of Wooster
2016

Advised by:

CODY LEARY

JENNIFER BOWEN





Abstract

In this paper, we derived the wave function for light in a finite spherical well

potential by drawing an analogy to an electron in an analogous potential

energy well. In order to solve this problem, the theory behind vector calculus

on a spherical basis was examined. The wave equation for light, derived from

Maxwell’s equations, and the Pauli equation for electrons were combined into

a unified form that was solved separation of variables, infinite series solutions,

and numerical methods. The potential well for light was established by

considering an environment with a constant index of refraction inside a

spherical boundary and a different, but still constant, index of refraction

outside the boundary. It was determined that the radial part of the wave

function oscillated more inside the boundary as radial quantum number

increased. The distance between the origin and the first peak amplitude inside

the boundary increased as the angular momentum quantum number

increased. For light, the wave number was found to be complex, therefore the

temporal part of the wave function was a dampened oscillator. The time

constant of the temporal part of the wave function increased as angular

momentum quantum number increased and decreased when the radial

quantum number increased.
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Chapter 1

Introduction

Wave-particle duality is a fundamental principle of quantum mechanics. The

idea that we can represent an object that is seemingly discrete and finite as a

continuous wave with potentially infinite extent is a very unintuitive

principle. Yet, over one hundred years later, the theory based on this

paradoxical idea, quantum mechanics, is still integral to our understanding of

physics today [4]. In this thesis, we will draw an analogy between photons,

whose wave equations can be derived from classical physics, to electrons,

whose wave nature follows directly from quantum mechanical principles.

Our investigation will begin where multivariable calculus courses often

end: vector differential operations. In single variable calculus derivatives only

take on one form, that is the ordinary derivative of a scalar function is a scalar

function. But, when one considers functions with multiple dimensional

domain and codomain, a myriad of possibilities arise. It is this mathematical

richness that will allow us to tame our physics problem in an elegant manner.

As previously mentioned, this thesis will be comparing and contrasting

1



2 CHAPTER 1. INTRODUCTION

the wave nature of two fundamental particles: electrons and photons. These

two particles are radically different. Electrons have mass, while photons are

massless. Photons are spin one particles, but electrons are spin one-half

particles. The differences between these two particles are numerous and

certainly non-negligible.

In wave physics, we use wave functions to describe the behavior of objects

and systems, such as fundamental particles [4]. The wave equation for a

particle is the differential equations whose solutions are the wave functions.

We will show that the wave equations for electrons and photons in a

spherically symmetric potential can ultimately be massaged into a single

unified form, and as such will have analogous solutions.

Obtaining solutions to the unified wave equation will require several

advanced differential equations techniques. Since the unified wave equation is

a partial differential equation, we will need to split the unified wave equation

into a set of ordinary differential equations using separation of variables. In

order to solve the set of ordinary differential equations that results from

separation of variables, we will use infinite series and solutions to similar

differential equations.

In order to obtain wave functions from a wave equation, we must solve a

boundary value problem (BVP) [5]. That is, we must impose a set of

conditions that functions in the solution set must meet in addition to being

solutions to the wave equation. The implication of this statement is an

important nuance in wave physics and BVPs in general; a function that solves

the differential equation is not necessarily a solution to the BVP. Once we have

derived the solutions to the BVP, we will analyze the behavior of a sample of
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wave functions in two ways. We will graphically examine the behavior of the

radial portion of various wave functions as angular momentum and solution

order varies. The other method through which we will analyze the wave

functions is through looking at amplitude decay as angular momentum and

radial momentum varies.
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Chapter 2

Vector Calculus

In this chapter we will review the four vector calculus differential operations

as they are usually taught in multivariable calculus using rectangular

coordinates. Then, we will describe these operations in a more compact form

using the del operator. After this, we will generalize these operations to an

arbitrary orthogonal basis before considering the specific case of spherical

coordinates.

Throughout this thesis, we will use square brackets [ ] to denote function

arguments and parentheses ( ) will be used exclusively for grouping terms for

arithmetic. For all of the definitions in this chapter, let f [x, y, z] be a scalar

function and v
[
x, y, z

]
=

〈
vx

[
x, y, z

]
, vy

[
x, y, z

]
, vz

[
x, y, z

]〉
be a vector field in

R3. Moving forward, we will not write the functional dependence of f or v,

but it is important to remember that f and the components of v are all

functions of x, y, and z. We will also use the convention of using the symbol v

to denote the magnitude of the vector v, that is v = ‖v‖.

There are four differential operations from vector calculus that we will be

5



6 CHAPTER 2. VECTOR CALCULUS

using. The gradient is an operation that produces a vector field from a scalar

function [9].

Definition 1. The gradient of a scalar function f , denoted by grad
[

f
]
, is given by,

grad
[

f
]

=
〈
∂x f , ∂y f , ∂z f

〉
, (2.1)

where ∂x f is the partial derivative of f with respect to x and so forth.

The divergence and the curl are both operations that act on a vector field.

Computing the divergence of a vector field results in a scalar, while the curl of

a vector field is another vector field [9].

Definition 2. The divergence of a vector field v, denoted by div [v], is given by,

div [v] = ∂xvx + ∂yvy + ∂zvz. (2.2)

Definition 3. The curl of a vector field v, denoted by curl [v], is given by,

curl [v] =
〈(
∂yvz − ∂zvy

)
,
(
∂zvx − ∂xvz

)
,
(
∂xvy − ∂yvx

)〉
. (2.3)

The last operation that we will discuss is the Laplacian, which acts on

scalar function quantities to produce another scalar function [9].

Definition 4. The Laplacian of a scalar function f , denoted by 4 f , is given by,

4 f = ∂2
x f + ∂2

y f + ∂2
z f , (2.4)

where ∂2
x f is the second partial derivative of f with respect to x twice and so forth.
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Before we discuss the del operator, we will look at a cross product identity

known as the BAC CAB Rule. This identity will prove useful in later

calculations.

Theorem 1 (BAC CAB Rule). Let A =
〈
ax, ay, az

〉
, B =

〈
bx, by, bz

〉
, and

C =
〈
cx, cy, cz

〉
such that A,B,C ∈ R3. Then,

A × (B × C) = B (A · C) − C (A · B) . (2.5)

Proof. The proof of the BAC CAB rule is straightforward. Consider the

product A × (B × C),

A × (B × C) =
〈
ax, ay, az

〉
×

〈
bycz − bzcy, bzcx − bxcz, bxcy − bycx

〉
(2.6)

=
〈
ay

(
bxcy − bycx

)
− az (bzcx − bxcz) ,

az

(
bycz − bzcy

)
− ax

(
bxcy − bycx

)
,

ax (bzcx − bxcz) − ay

(
bycz − bzcy

) 〉
(2.7)

=
〈
aybxcy − aybycx − azbzcx + azbxcz,

azbycz − azbzcy − axbxcy + axbycx,

axbzcx − axbxcz − aybycz + aybzcy

〉
(2.8)

=
〈
aybxcy − aybycx − azbzcx + azbxcz + axbxcx − axbxcx,

azbycz − azbzcy − axbxcy + axbycx + aybycy − aybycy,

axbzcx − axbxcz − aybycz + aybzcy + azbzcz − azbzcz

〉
(2.9)
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=
〈
bx

(
axcx + aycy + azcz

)
− cx

(
axbx + ayby + azbz

)
,

by

(
axcx + aycy + azcz

)
− cy

(
axbx + ayby + azbz

)
,

bz

(
axcx + aycy + azcz

)
− cz

(
axbx + ayby + azbz

) 〉
(2.10)

=
〈
bx (A · C) − cx (A · B) , by (A · C) − cy (A · B) ,

bz (A · C) − cz (A · B)
〉

(2.11)

=
〈
bx, by, bz

〉
(A · C) −

〈
cx, cy, cz

〉
(A · B) (2.12)

= B (A · C) − C (A · B) . (2.13)

�

2.1 The Del Operator

We can restate the gradient, divergence, curl, and Laplacian in a more compact

form by introducing the del operator 5. The del operator is a vector operator

whose components are derivatives in the corresponding coordinate. In R3 we

have 5 =
〈
∂x, ∂y, ∂z

〉
for Cartesian coordinates [5]. We define the action of 5 on

a function f to be to be 5 f =
〈
∂x f , ∂y f , ∂z f

〉
.

Theorem 2. The four vector calculus differential operations, the gradient, divergence,

curl, and Laplacian, are equivalent to applying the following vector operations using

the del operator:

grad
[

f
]

= 5 f (2.14)

div [v] = 5 · v (2.15)
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curl [v] = 5 × v (2.16)

4 f = 5 · 5 f , (2.17)

where we define the operation 5 · 5 f to be 52 f .

Proof. By definition 5 f =
〈
∂x f , ∂y f , ∂z f

〉
= grad

[
f
]
, so we have verified Eqn.

2.14. Let us examine the divergence relationship. By computing we can see,

5 · v =
〈
∂x, ∂y, ∂z

〉
·

〈
vx, vy, vz

〉
(2.18)

= ∂xvx + ∂yvy + ∂zvz (2.19)

= div [v] . (2.20)

Hence, Eqn. 2.15 has been verified. Next, we will prove the curl relationship:

5 × v =
〈
∂x, ∂y, ∂z

〉
×

〈
vx, vy, vz

〉
(2.21)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

∂x ∂y ∂z

vx vy vz

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.22)

=
〈
∂yvz − ∂zvy, ∂zvx − ∂xvz, ∂xvy − ∂yvx

〉
(2.23)

= curl [v] . (2.24)

Thus, we have verified Eqn. 2.16. Now we will verify the Laplacian
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relationship,

5
2 f = 5 · 5 f (2.25)

=
〈
∂x, ∂y, ∂z

〉
·

〈
∂x f , ∂y f , ∂z f

〉
. (2.26)

Recall that when we apply the divergence, we differentiate each component

with respect to its corresponding variable, then sum the components. As such,

the divergence of a gradient is a sum of second derivatives,

5
2 f = ∂2

x f + ∂2
y f + ∂2

z f (2.27)

= 4 f . (2.28)

With this, Eqn. 2.17 is verified. So we have shown that all four of our vector

calculus differential operations can be expressed in terms of del. �

Now we will derive a product rule for the divergence of a vector field that

has been multiplied by a function.

Theorem 3. For a scalar function f and a vector field v,

5 · ( f v) = f (5 · v) + v · 5 f . (2.29)

Proof. We can show that this theorem is true by applying the single variable

product rule,

5 · ( f v) = 5 ·
(

f
〈
vx, vy, vz

〉)
(2.30)

= 5 ·
〈

f vx, f vy, f vz

〉
(2.31)
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= ∂x
(

f vx
)

+ ∂y

(
f vy

)
+ ∂z

(
f vz

)
(2.32)

= vx∂x f + f∂xvx + vy∂y f + f∂yvy + vz∂z f + f∂zvz (2.33)

= f∂xvx + f∂yvy + f∂zvz + vx∂x f + vy∂y f + vz∂z f (2.34)

= f
(
∂xvx + ∂yvy + ∂zvz

)
+

〈
vx, vy, vz

〉
·

〈
∂x f , ∂y f , ∂z f

〉
(2.35)

By substituting in the definitions of v, the divergence and the gradient into

Eqn. 2.35, we have

5 · ( f v) = f (5 · v) + v · 5 f ,

as desired. �

2.2 Vector Calculus on an Arbitrary Basis

Until now, we have only discussed the four vector differential operations in

terms of rectangular coordinates in R3. We will solve problems that involve

the Laplacian in spherical coordinates. In order to proceed, we will first derive

relationships for three of the four vector differential operations for an arbitrary

orthogonal basis. Then, we will consider the case of spherical coordinates

specifically.

Let B = {u,v,w} be an arbitrary orthogonal basis forR3. That is, any vector

in R3 can be written as a linear combination of u, v, and w and u, v, and w are

linearly independent and are all orthogonal to each other. Consider a vector

function

` =
〈
x [u, v,w] , y [u, v,w] , z [u, v,w]

〉
. (2.36)
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Note that {u, v,w} are the variables that we associate with the directions of

{u,v,w}, just as we traditionally associate {x, y, z}with {î, ĵ, k̂}. We will calculate

an infinitesimal change in ` by taking the total differential of `.

Definition 5. The total differential of a function ` in terms of the basis

B = {u,v,w} is given by,

d` = ∂u`du + ∂v`dv + ∂w`dw. (2.37)

Now, for each term in the right hand side of the total differential, we will

divide and multiply by the magnitude of the respective partial derivative of `,

d` =
∂u`
‖∂u`‖

‖∂u`‖du +
∂v`
‖∂v`‖

‖∂v`‖dv +
∂w`
‖∂w`‖

‖∂w`‖dw. (2.38)

The quantity ∂q`/‖∂q`‖ is equal to the unit vector q̂, where q ∈ {u, v,w}. We

define the set of coefficient functions { f , g, h} by

f = ‖∂u`‖, (2.39)

g = ‖∂v`‖, (2.40)

h = ‖∂w`‖. (2.41)

Note that f , g, h , 0. If at least one of them were equal to zero, then the

dimension of the span of {u,v,w}would have to be less than three, which

would contradict that {u,v,w} spans R3. Substituting the expressions for f , g,

and h into Eqn. 2.38 yields the expression for the line element in terms of our

arbitrary basis B.
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Definition 6. The line element d` of the arbitrary basis B = {u,v,w} with

coefficient functions { f , g, h} is given by,

d` = f duû + gdvv̂ + hdwŵ. (2.42)

We will now use the line element in order to derive the gradient and the

divergence in terms of an arbitrary basis.

Lemma 1. In terms of an arbitrary basis B = {u,v,w}, the gradient of a scalar

function t is given by,

5t =
1
f
∂utû +

1
g
∂vtv̂ +

1
h
∂wtŵ. (2.43)

Proof. Consider the total differential of the function t,

dt = ∂utdu + ∂vtdv + ∂wtdw, (2.44)

in terms of our basis {u,v,w}. We can also express the total differential of a

function in terms of its gradient and the line element,

dt = 5t · d` = (5t)u f du + (5t)vgdv + (5t)whdw, (2.45)

where (5t)u is the u component of 5t and so forth [5]. By equating Eqn. 2.44 to
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Eqn. 2.45, we get the following relationships,

(5t)u =
1
f
∂ut, (2.46)

(5t)v =
1
g
∂vt, (2.47)

(5t)w =
1
h
∂wt. (2.48)

Hence, in terms of our arbitrary basis, the gradient of a function t can be

expressed as

5t =
1
f
∂utû +

1
g
∂vtv̂ +

1
h
∂wtŵ.

�

Next, we will examine the divergence of a vector vield using an arbitrary

basis.

Lemma 2. In terms of an arbitrary basis B = {u,v,w}, the divergence of a vector field

A = 〈Au,Av,Aw〉 is given by,

5 ·A =
1

f gh
(
∂u

(
ghAu

)
+ ∂v

(
h f Av

)
+ ∂w

(
f gAw

))
. (2.49)

Proof. This proof follows techniques presented in [5]. In order to construct the

divergence in an arbitrary basis, we will seek to invoke the divergence

theorem, $
V

(5 ·A) dτ =

	
∂V

A · da (2.50)

where V is a volume bounded by a closed surface ∂V, dτ is the volume

element in our basis, and da is an area element in our basis [9], [5]. Consider
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an infinitesimal “box” in our basis, that is an object whose sides are “straight

lines” with respect to our coordinates as shown in Fig. 2.1. Note that our

coordinates could be angles, so our “straight lines” could be curves. In

particular, we will consider a box whose dimensions are du by dv by dw and is

oriented in space such that the upper left corner on its front face is the point

(u0, v0,w0). We will construct the surface integral from the divergence theorem

for our infinitesimal box. Then, we will equate that surface integral to the

volume integral of the divergence theorem and deduce the divergence of A.

First, we will compute the volume element in terms of our arbitrary basis.

Note that by the definition of the line element, the distance between u0 and

u0 + du is f du, not simply du. Similarly, the distance between v0 and v0 + dv is

gdv and the distance between w0 and w0 + dw is hdw. Hence, the volume of

our infinitesimal box is the product of these three distances,

dτ = f ghdudvdw. (2.51)

Next we will look at the contribution of each face of the box to the surface

integral in the divergence theorem. Consider the front face of the rectangle.

The infinitesimal area vector dafront will be in the −û direction and its

magnitude will simply be the area of the face ghdvdw,

dafront = −ghdvdwû |u=u0 . (2.52)

It is important to note that on the front face u = u0, since the functions g and h
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Figure 2.1: An infinitesimal “box” in a curvilinear coordinate system with basis
B = {u,v,w}. Adapted from [5].

could depend on u. The area element for the back face of the box daback is

similar to the area element for the front face of the box, except that it faces in

the opposite direction and that u = u0 + du on the back face,

daback = ghdvdwû |u=u0+du. (2.53)

Constructing the integrands and differentials of the surface integrals for the
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front and the back we have,

A ·
(
−ghdvdwû

)
|u=u0 + A ·

(
ghdvdwû

)
|u=u0+du

= −Aughdvdw|u=u0 + Aughdvdw|u=u0+du. (2.54)

Now, we will use the following identity,

F [u + du] − F [u] = ∂uFdu , (2.55)

which is derived from the limit definition of the derivative [5]. By applying

this identity to Eqn. 2.54 with F = Aughdvdw we get,

Aughdvdw|u=u0+du − Aughdvdw|u=u0 = ∂u
(
Aughdvdw

)
du (2.56)

= ∂u
(
Augh

)
dvdwdu. (2.57)

Using Eqn. 2.51, we can substitute dτ/
(

f gh
)

for dvdwdu into Eqn. 2.57,

∂u
(
Augh

)
dvdwdu =

1
f gh

∂u
(
Augh

)
dτ. (2.58)

Through analogous processes, it can be shown that the contribution of the left

and right sides of the box to the surface integral is

1
f gh

∂v
(
Avh f

)
dτ

and that the contribution of the top and bottom side of the box to the surface



18 CHAPTER 2. VECTOR CALCULUS

integral is
1

f gh
∂w

(
Aw f g

)
dτ.

We have computed A · da for all six sides of the infinitesimal box. Hence, we

can now construct the integral for the closed surface of the box by summing

the integrals of our three integrands and differentials,

	
∂V

A · da =

$
V

1
f gh

(
∂u

(
Augh

)
+ ∂v

(
Avh f

)
+ ∂w

(
Aw f g

) )
dτ. (2.59)

Thus, we have the integral of the dot product of a vector field A and an

infinitesimal area vector da over a closed surface ∂V equal to the integral of a

quantity over the volume V. By the Divergence Theorem, Eqn. 2.59 implies

$
V

(5 ·A) dτ =

$
V

1
f gh

(
∂u

(
Augh

)
+ ∂v

(
Avh f

)
+ ∂w

(
Aw f g

) )
dτ. (2.60)

The integrand of the right hand side must be the divergence of A. Hence,

5 ·A =
1

f gh
(
∂u

(
ghAu

)
+ ∂v

(
h f Av

)
+ ∂w

(
f gAw

))
, (2.61)

as desired. �

Now that we have expressions for the gradient and the divergence in an

arbitrary basis, we can derive an expression for the Laplacian in a arbitrary

basis.

Theorem 4. The Laplacian of a scalar function t, expressed in terms of an arbitrary
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basis B = {u,v,w}, is given by,

5
2t =

1
f gh

(
∂u

(
gh
f
∂ut

)
+ ∂v

(
h f
g
∂vt

)
+ ∂w

(
f g
h
∂wt

))
. (2.62)

Proof. By Theorem 2, we have that 52t = 5 · 5t. From Lemma 1, we have that

in an arbitrary basis B = {u,v,w}, the gradient of a scalar function is,

5t =
1
f
∂utû +

1
g
∂vtv̂ +

1
h
∂wtŵ.

Now, we will take the divergence of this vector using Lemma 2,

5
2t = 5 · 5t (2.63)

=
1

f gh

(
∂u

(
gh

1
f
∂ut

)
+ ∂v

(
h f

1
g
∂vt

)
+ ∂w

(
f g

1
h
∂wt

))
(2.64)

=
1

f gh

(
∂u

(
gh
f
∂ut

)
+ ∂v

(
h f
g
∂vt

)
+ ∂w

(
f g
h
∂wt

))
. (2.65)

Hence, the claim has been shown. �

2.3 Vector Calculus in Spherical Coordinates

Next, we will consider the specific case of when we choose spherical

coordinates. The orthogonal basis B = {u,v,w} for spherical coordinates is

{r̂, θ̂, ϕ̂}. We can express the rectangular coordinates in terms of the spherical

coordinates in the vector function

` =
〈
r sin [θ] cos

[
ϕ
]
, r sin [θ] sin

[
ϕ
]
, r cos [θ]

〉
. (2.66)
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We will derive the coefficient functions for the line element,

d` = f drr̂ + gdθθ̂ + hdϕϕ̂. (2.67)

We will first compute the coefficient function f associated with the variable r

by substituting into Eqn 2.39,

f = ‖∂r`‖ (2.68)

= ‖∂r
〈
r sin [θ] cos

[
ϕ
]
, r sin [θ] sin

[
ϕ
]
, r cos [θ]

〉
‖ (2.69)

= ‖
〈
sin [θ] cos

[
ϕ
]
, sin [θ] sin

[
ϕ
]
, cos [θ]

〉
‖ (2.70)

=

√
sin2 [θ] cos2

[
ϕ
]
+ sin2 [θ] sin2 [ϕ]

+ cos2 [θ] (2.71)

=

√
sin2 [θ]

(
cos2

[
ϕ
]
+ sin2 [ϕ])

+ cos2 [θ] (2.72)

=

√
sin2 [θ] + cos2 [θ] (2.73)

= 1. (2.74)

Similarly, we will compute the coefficient function g associated with the

variable θ by substituting into Eqn 2.40,

g = ‖∂θ`‖ (2.75)

= ‖∂θ
〈
r sin [θ] cos

[
ϕ
]
, r sin [θ] sin

[
ϕ
]
, r cos [θ]

〉
‖ (2.76)

= ‖
〈
r cos [θ] cos

[
ϕ
]
, r cos [θ] sin

[
ϕ
]
,−r sin [θ]

〉
‖ (2.77)
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=

√
r2 cos2 [θ] cos2

[
ϕ
]
+ r2 cos2 [θ] sin2 [ϕ]

+ r2 sin2 [θ] (2.78)

= r
√

cos2 [θ] cos2
[
ϕ
]
+ cos2 [θ] sin2 [ϕ]

+ sin2 [θ] (2.79)

= r
√

cos2 [θ]
(
cos2

[
ϕ
]
+ sin2 [ϕ])

+ sin2 [θ] (2.80)

= r
√

cos2 [θ] + sin2 [θ] (2.81)

= r, (2.82)

and the coefficient function h associated with the variable ϕ by substituting

into Eqn 2.41,

h = ‖∂ϕ`‖ (2.83)

= ‖∂ϕ
〈
r sin [θ] cos

[
ϕ
]
, r sin [θ] sin

[
ϕ
]
, r cos [θ]

〉
‖ (2.84)

= ‖
〈
−r sin [θ] sin

[
ϕ
]
, r sin [θ] cos

[
ϕ
]
, 0

〉
‖ (2.85)

=

√
r2 sin2 [θ] sin2 [ϕ]

+ r2 sin2 [θ] cos2
[
ϕ
]

(2.86)

= r sin [θ]
√

sin2 [ϕ]
+ cos2

[
ϕ
]

(2.87)

= r sin [θ] . (2.88)

Hence, the Laplacian in spherical coordinates can be computed by substituting

into Eqn. 2.62,

5
2t =

1
1 · r · r sin [θ]

(
∂r

(r · r sin [θ]
1

∂rt
)

+ ∂θ

(r sin [θ] 1
r

∂θt
)

+ ∂ϕ

(
1 · r

r sin [θ]
∂ϕt

))
(2.89)

=
1

r2 sin [θ]

(
∂r

(
r2 sin [θ] ∂rt

)
+ ∂θ (sin [θ] ∂θt) + ∂ϕ

(
1

sin [θ]
∂ϕt

))
(2.90)
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=
1

r2 sin [θ]

(
sin [θ] ∂r

(
r2∂rt

)
+ ∂θ (sin [θ] ∂θt) +

1
sin [θ]

∂ϕ
(
∂ϕt

))
(2.91)

=
1
r2∂r

(
r2∂rt

)
+

1
r2 sin [θ]

∂θ (sin [θ] ∂θt) +
1

r2 sin2 [θ]
∂2
ϕt. (2.92)

Thus, we have derived the Laplacian in spherical coordinates. This differential

operator is some ways the mathematical crux of this thesis. We will be

exploring the solutions to differential equations containing this operator.

These solutions will then be applied in order to analyze physical systems that

are modeled by differential equations containing the Laplacian in spherical

coordinates.



Chapter 3

Preliminaries

In this chapter, we will derive a unified wave equation that describes the

behavior of an electron placed in a given potential energy and a photon subject

to an analogous potential due to the index of refraction of a medium. In order

to do so, we will begin with the quantum mechanical description of the

electron wave equation and Maxwell’s equations for electromagnetic waves.

Through substituting the definitions of relevant physical quantities, we will be

able to write the electron wave equation and the photon wave equation in the

same form.

3.1 Electron Wave Equation

In order to describe the wave functions of electrons in spherically symmetric

potentials we will begin with the Pauli equation.

Definition 7. The Pauli equation for a particle with mass m in a potential energy

23
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distribution U [r] is given by,

−
}2

2m
5

2 ψ + U [r]ψ + H′ψ − Eψ = 0, (3.1)

where } is the reduced Planck constant, ψ is the wave function of the particle, H′ is a

relativistic correction term, and E is the total energy of the particle [3].

We would like to isolate the Laplacian acting on ψ, so we multiply through

by −2m/}2,

5
2ψ −

2m
}2 U [r]ψ −

2m
}2 H′ψ +

2m
}2 Eψ = 0. (3.2)

Now, we can multiply and divide the second term in our sum by the rest mass

energy of the electron mc2 [6],

5
2ψ −

2m2c2

}2

U [r]
mc2 ψ −

2m
}2 H′ψ +

2m
}2 Eψ = 0, (3.3)

where c is the speed of light in a vacuum. Next, we will express the constants

in this expression in more succinct forms. The Compton wavelength of a

particle λc is given by h/(mc), where h is Planck’s constant [6]. So we will

define the reduced Compton wavelength oc of a particle to be }/(mc),

5
2ψ −

2
o2

c

U [r]
mc2 ψ −

2m
}2 H′ψ +

2m
}2 Eψ = 0. (3.4)

Since mc2 has units of energy, the quantity U [r] /(mc2) is dimensionless. Hence

we define the dimensionless potential energy for an electron We [r] to be

U [r] /(mc2),

5
2ψ −

2We [r]
o2

c
ψ −

2m
}2 H′ψ +

2m
}2 Eψ = 0. (3.5)
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We will define a new corrective term H′e to be −2mH′}−2,

5
2ψ −

2We [r]
o2

c
ψ −H′eψ +

2m
}2 Eψ = 0. (3.6)

The energy of a free particle is related to its momentum p by the expression

E = p2/(2m). The momentum of a particle is given by p = }/o f , where o f is the

reduced de Broglie wavelength of the particle [6]. Substituting these

relationships into Eqn. 3.6 and simplifying yields,

5
2ψ −

2We [r]
o2

c
ψ −H′eψ +

1
o2

f

ψ = 0. (3.7)

Now we have a wave equation in terms of the Laplacian, dimensionless

potential energy, wavelengths, and the corrective term all acting on the wave

function. We will stop simplifying the electron case in isolation here and we

will derive a similar form for the photon wave equation into in the next section.

3.2 Photon Wave Equation

Maxwell’s equations are a set of partial differential equations that describe the

electric field E and the magnetic field B present in a system given the charge

density ρ and current density J present in that system [5].
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Definition 8. In free space, Maxwell’s equations are:

5 · E =
1
ε0
ρ Gauss’s law (3.8)

5 · B = 0 Unnamed field equation (3.9)

5 × E = −∂tB Faraday’s law (3.10)

5 × B = µ0J + µ0ε0∂tE Ampére-Maxwell law, (3.11)

where ε0 is the permittivity of free space and µ0 is the permeability of free space.

Three of Maxwell’s equations are named for the scientists that discovered

them; Gauss, Faraday, Ampére, and Maxwell [5]. We will refer to Eqn. 3.9 as

the Equation of Magnetic Divergence. We will be analyzing Maxwell’s

equations in a vacuum. In a vacuum, charge density is zero and the current

density is the zero vector, so Maxwell’s equations simplify,

5 · E = 0 (3.12)

5 · B = 0 (3.13)

5 × E = −∂tB (3.14)

5 × B = µ0ε0∂tE (3.15)

Note that Faraday’s law and the Ampére-Maxwell law have both terms that

depend on the electric field and terms that depend on the magnetic field.

Maxwell’s equations are system of four first order partial differential equations

(two scalar equations and two vector equations, equivalent to a total of eight

scalar equations) with both E and B as objective functions. This system can be
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simplified into two vector second order partial differential equations

(equivalent to six scalar equations), one with E as the objective function and

one with B as the objective function [5]. Consider taking the curl of both sides

of Eqn. 3.14,

5 × (5 × E) = 5 × (−∂tB). (3.16)

Since the del operator only contains spatial derivatives, we can exchange the

order of the time derivative and the curl in the right hand side of Eqn. 3.16.

We can also apply the triple product “BAC CAB” rule to the left hand side of

Eqn. 3.16,

5(5 · E) − (5 · 5)E = −∂t(5 × B). (3.17)

Now we can substitute Eqn. 3.12 and Eqn. 3.15 into Eqn. 3.17 and simplify,

5(0) − (5 · 5)E = −∂t(µ0ε0∂tE) (3.18)

− 5
2 E = −∂t(µ0ε0∂tE) (3.19)

− 5
2 E = −µ0ε0∂

2
t E (3.20)

5
2E − µ0ε0∂

2
t E = 0. (3.21)

Hence, we have a second order partial differential equation depending only on

E. Through an similar process, we can derive an identical second order partial

differential equation for B,

5
2B − µ0ε0∂

2
t B = 0. (3.22)

Now that we have simplified Maxwell’s equations in a vacuum, we will
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examine Maxwell’s equations in media. In media, we can no longer assume

that the permittivity ε and the permeability µ are the constants ε0 and µ0,

respectively; we must consider ε and µ as functions of spatial variables. In

order to account for this we need to define two new fields D and H,

D = εE, (3.23)

H =
1
µ

B. (3.24)

Using these new fields, we can redefine Maxwell’s equations.

Definition 9. In media, Maxwell’s equations are:

5 ·D = ρ f Gauss’s law (3.25)

5 · B = 0 Unnamed field equation (3.26)

5 × E = −∂tB Faraday’s law (3.27)

5 ×H = Jf + ∂tD Ampére-Maxwell law, (3.28)

where ρ f is the free charge density and Jf is the free current density [5].

In a medium there are inherently charges and currents due to the nature of

atoms. The charge and current densities that we care about for Maxwell’s

equations are the charge and current densities that are not negated by being

paired with an equal and opposite charge or current density [5]. If all of the

positive charges in an atom are paired with negative charges of equal

magnitude, then the atom is electrically neutral and there is no free charge.

Thus, we only want to consider unpaired charges for Maxwell’s equations.
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Similarly, it is the unpaired magnetic spins that lead to free current and

therefore we only want to take into account currents resulting from unpaired

magnetic spins. Hence, we refer to these unpaired current and charge

densities as “free” current and charge densities in the definition of Maxwell’s

equations in media.

As previously stated, in general, ε and µ are arbitrary functions of spatial

variables. For the systems that we will be considering, however, we can make

simplifications. The media that we are concerned with will be non-ferrous, so

we can set µ = µ0. We will also only be considering cases when the

permittivity is spherically symmetric. So if we choose to use spherical

coordinates (r, θ, φ), then ε would depend only on r. Taking these assumptions

into consideration, we will reduce Maxwell’s equations in media from four

first order partial differential equations that have E and B interdependent to a

set of two second order partial differential equations, one equation for E and

one equation for B. We will do so using similar methods to the reduction of

Maxwell’s equations in free space [5]. By taking the the curl of Eqn. 3.27 and

applying derivative identities we get,

5(5 · E) − 52E = −∂t(5 × B). (3.29)

In a vacuum, at this point we could substitute two other Maxwell equations

for 5 · E and 5 × B. In media, however, we do not have explicit equations for

5 · E and 5 × B, we must solve for them. First we will solve for 5 · E beginning
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with Eqn. 3.25 and substituting Eqn. 3.23,

5 ·D = ρ f

5 · (εE) = ρ f (3.30)

ε(5 · E) + E · 5ε = ρ f (3.31)

5 · E =
1
ε

(
ρ f − E · 5ε

)
. (3.32)

Note that here we have implicitly included our assumption that ε is

dependent on a spatial variable by using Eqn 2.29, a vector calculus product

rule, to expand Eqn. 3.30 into Eqn. 3.31. Similarly, we can also solve for 5 × B

by substituting Eqn. 3.23 and Eqn. 3.24 into Eqn. 3.28,

5 ×H = Jf + ∂tD

5 ×

(
1
µ0

B
)

= Jf + ∂t (εE) (3.33)

1
µ0

(5 × B) = Jf + ε∂tE (3.34)

5 × B = µ0Jf + µ0ε∂tE. (3.35)

Once again, we have implicitly used our physical assumptions about µ and ε,

setting µ = µ0 and considering ε as a function of only space variable and hence

constant with respect to a time derivative when going from Eqn. 3.33 to

Eqn. 3.34. Now we can substitute Eqns. 3.32 and 3.35 into Eqn. 3.29 and
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simplify,

5(5 · E) − 52E = −∂t(5 × B)

5

(1
ε

(
ρ f − E · 5ε

))
− 5

2E = −∂t
(
µ0Jf + µ0ε∂tE

)
(3.36)

5

(ρ f

ε
−

E · 5ε
ε

)
− 5

2E = −µ0∂tJf − µ0ε∂
2
t E (3.37)

Note that since ε is a function of r only, the gradient of ε is simply ∂rε. By the

Chain Rule, ∂r ln [ε] = (∂rε) /ε. So in this case, (5ε) /ε = 5 ln [ε]. Substituting

this relationship, we have:

5
2E − 5

(ρ f

ε
− E · 5 ln [ε]

)
− µ0ε∂

2
t E = µ0∂tJf (3.38)

5
2E − µ0ε∂

2
t E − 5

(ρ f

ε

)
+ 5 (E · 5 ln [ε]) = µ0∂tJf (3.39)

5
2E − µ0ε∂

2
t E + 5 (E · 5 ln [ε]) = 5

(ρ f

ε

)
+ µ0∂tJf. (3.40)

Now if we assume that our system has zero free charge density and zero free

current density, set ρ f = 0 and Jf = 0, the right hand side of Eqn. 3.40 becomes

0,

5
2E − µ0ε∂

2
t E + 5 (E · 5 ln [ε]) = 0. (3.41)

By comparing Eqn. 3.41, the second order partial differential equation for E in

a media with no free current and no free charge, with Eqn. 3.21, the second

order partial differential equation for E in a vacuum, we can see that the two

equations are nearly identical. The only differences are that in media we have

ε as a function (that we choose as an initial condition) and the addition of the

term 5 (E · 5 ln [ε]). We will use this additional term to define the corrective
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term for photons H′γE.

We choose H′γ to represent the coefficient of the corrective term in order to

draw a parallel between the mathematical structure of the photon differential

wave equation to that of the electron differential wave equation. Now we

perform further algebraic manipulation on the photon differential wave

equation. We can express the temporal dependence of the electric field as

E
[
r, θ, φ, t

]
= E

[
r, θ, φ

]
e−iωt, where ω is the temporal frequency of the wave [5].

With this statement, we can evaluate the time derivative in Eqn. 3.41,

5
2E − µ0εω

2E + H′γE = 0. (3.42)

The permittivity in media ε [r] is proportional to the square of the index of

refraction of that media, ε [r] = ε0n2 [r]. By substituting this relationship along

with the fact that the speed of light in a vacuum c is related to ε0 and µ0 by

ε0µ0 = c−2 we have,

5
2E −

ω2n2 [r]
c2 E + H′γE = 0. (3.43)

Here we explicitly write the functional dependence of the index of refraction

squared in preparation for a non-intuitive substitution. We will multiply the

second term of our sum by n2 [0] /n2 [0] (note that the index of refraction is

never zero),

5
2E −

ω2n2 [0]
c2

n2 [r]
n2 [0]

E + H′γE = 0. (3.44)

Now we define two quantities, the first is a function Wγ [r] = n2 [r] /n2 [0]. This

term is analogous to a potential energy function for an electron, as it describes

the index of refraction at a particular point r relative to a reference point 0.
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Note that the collection of constants (ωn [0]) /c has units of inverse wavelength.

Hence, the wavelength of the photon in the medium is c/ (ωn [0]). We will use

λγ0 to denote this wavelength. Making these replacements, we have,

5
2E −

1
λ2
γ0

Wγ [r] E + H′γE = 0. (3.45)

Given the conditions of our problem, we can express Wγ [r] in a manner that

will allow us to draw a direct analogy to the form of the electron wave

equation. We will do so in the next section.

3.3 Unifying Electron and Photon Wave Equations

Let us begin our comparative analysis of photon and electron behavior in

spherically symmetric potentials by reminding ourselves of their respective

wave equations. For photons we have Eqn. 3.45,

5
2E −

1
λ2
γ0

Wγ [r] E + H′γE = 0,

and for electrons we have Eqn. 3.7,

5
2ψ −

2We [r]
o2

c
ψ −H′eψ +

1
o2

f

ψ = 0,

where E is the electric field of the photon and ψ is the wave function of the

electron.

Now we will relabel our objective functions. We will call the objective

function for the electron wave equation ψe and the objective function for the
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photon wave equation ψγ,

5
2ψγ −

1
λ2
γ0

Wγ [r]ψγ + H′γψγ = 0, (3.46)

5
2ψe −

2We [r]
o2

c
ψ −H′eψe +

1
o2

f

ψe = 0. (3.47)

Note is that the electron wave equation has a scalar objective function, while

the photon wave equation has a vector objective function. As can be derived

from work presented in [7], the vector nature of E under a spherically

symmetric potential does not depend on r or t. That is, we could write E as a

scalar function dependent on only r and t multiplied by a vector function only

dependent on θ and ϕ. Hence, it will be sufficient to treat the wave equation

for E as a scalar equation for the sake of analyzing the radial and temporal

behavior of E.

We will solve the wave equations with the corrective factors H′e and H′γ set

equal to zero,

5
2ψγ −

1
λ2
γ0

Wγ [r]ψγ = 0, (3.48)

5
2ψe −

2We [r]
o2

c
ψ +

1
o2

f

ψe = 0. (3.49)

Our two wave equations are still not quite analogous, but by taking advantage

of the spherical symmetry of the problem, we can make a substitution that will

make the equations analogous. For electrons, the effective potential We [r] is

given by U [r] /(mc2). Since m and c are constants, the functional dependence

of We on r will be directly proportional to the functional dependence of U on r.
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Figure 3.1: Graphs illustrating choices for χ [r] for electrons (left) and photons
(right).

That is, if U [r] = f [r], then We [r] = α f [r], where α is a proportionality

constant. So we will work directly with the dependence of U on r and

propagate our results to We. For photons we have a similar result, the effective

potential Wγ [r] is given by n2 [r] /n2 [0]. Since n2 [0] is a constant, the functional

dependence of Wγ on r is directly proportional to the functional dependence of

n2 [r] and thus we will work directly with the dependence of n2 [r] on r.

For the photon, we will consider spheres in which the index of refraction

squared is finite and greater than one at r = 0 and is equal to one at r ≥ a,

where a is the effective radius of the potential. For electrons, we will consider

spherically symmetric potentials that are finite and less than zero at r = 0 and

are equal to zero for r ≥ a, where a is once again the radius of the sphere. For

0 < r < a, the potential U [r] and the index of refraction squared n2 [r] could be

any arbitrary function of r. In order to encapsulate this behavior we will

introduce an abstract function χ [r] defined on [0, a] with only two constraints,

χ [0] = 0 and χ [a] = 1. The idea that U [r] and n2 [r] could be any arbitrary
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function inside the boundary is illustrated by the two graphs in Fig. 3.1, with

the different colored curves in the graphs corresponding to different choices for

potential energy and index of refraction. Thus, each of the curves in the graphs

of Fig. 3.1 also correspond to different choices for χ [r]. Now, we will rewrite

the potential and the index of refraction squared functions in terms of χ [r],

n2 [r] = n2 [0] + χ [r]
(
n2 [a] − n2 [0]

)
, (3.50)

U [r] = U [0] + χ [r] (U [a] −U [0]) , (3.51)

where n2 [a] = 1 and U [a] = 0. Note that the index of refraction and the

electron potential still obey the previously discussed constraints. Next, by

multiplying Eqn. 3.50 by 1/(mc2) and Eqn. 3.51 by 1/(n2 [0]), we obtain a new

form for our effective potentials,

Wγ [r] = Wγ [0] + χ [r]
(
Wγ [a] −Wγ [0]

)
, (3.52)

We [r] = We [0] + χ [r] (We [a] −We [0]) . (3.53)

At this point, we can make a few simplifications. In Eqn. 3.52, we have

Wγ [0] = n2 [0] /(n2 [0]) = 1 and we will define the quantity ∆γ to be

Wγ [0] −Wγ [a]. In Eqn. 3.53, we have We [a] = U [a] /(mc2) = 0 and we will

define the quantity ∆e to be −We [0]. Substituting these relationships we have,

Wγ [r] = 1 − ∆γχ [r] , (3.54)

We [r] = −∆e + ∆eχ [r] . (3.55)
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We can now substitute the effective potentials back into the wave equations.

Substituting Eqn. 3.54 into the photon wave equation Eqn. 3.48 and

simplifying yields,

5
2ψγ −

1
λ2
γ0

ψγ +
∆γχ [r]

λ2
γ0

ψγ = 0. (3.56)

Substituting Eqn. 3.55 into Eqn 3.49 and simplifying results in,

5
2ψe +

2∆eχ [r]
o2

c
ψe −

1
o2

f

ψe −
2∆e

o2
c
ψe = 0. (3.57)

Recalling the definitions of o f , ∆e, and oc we can combine the last two terms of

Eqn. 3.57,

5
2ψe +

2∆eχ [r]
o2

c
ψe −

2m
}

(
ω −

mc2We [0]
}

)
ψe = 0. (3.58)

Note that the constant coefficients of the last term in our differential equation

have units of inverse squared wavelength. We will define these constants to be

1/
(
λ2

e0

)
,

5
2ψe +

2∆eχ [r]
o2

c
ψe −

1
λ2

e0

ψe = 0. (3.59)

Now we can finally express our differential equations in a single form,

5
2ψi +

αi∆iχ [r]
λ2

i

ψi −
1
λ2

i0

ψi = 0, (3.60)

where αi is a constant and i is replaced by γ for the photon equation and by e

in the electron equation (αγ = 1 and αe = 2). The general form of a wave

equation is 52ψ − k2ψ = 0; as such we will define,

k2
i = −

αi∆iχ [r]
λ2

i

ψi +
1
λ2

i0

, (3.61)
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and substitute this definition to arrive at the final form for the differential

wave equation for both electrons and photons,

5
2ψi − k2

iψi = 0. (3.62)

Note that ki is only a function of r. This will become important when we

separate variables.

In this chapter, we derived the wave equation for photons using Maxwell’s

equations. We also manipulated both the photon wave equation and the

Schroedinger equation, which describes the wave nature of electrons, into an

identical form. Now, we are able to solve a single differential equation and

gain intuition about the photon problem by drawing analogies to the electron

case.



Chapter 4

Differential Equations Techniques

In this chapter, we examine three techniques that are used in solving

differential equations. First, we will explore separation of variables, a technique

that is used in order to turn a single partial differential equation into a set of

ordinary differential equations. For the other two techniques, we will use

differential equations that will appear during the process of solving Eqn. 3.62

as examples. We will use infinite series solutions in order to solve Legendre’s

differential equation. Then, we will use the solutions of the Bessel differential

equation to derive the associated solutions of the Spherical Bessel differential

equation

4.1 Separation of Variables

Definition 10. Linear homogeneous partial differential equations (LHPDEs)

are differential equations with objective function of n variables y [x1, x2, . . . , xn] that

have only a linear dependence derivatives of y and have no terms that are purely

39
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functions of {x1, x2, . . . , xn}.

In particular, we will be considering LHPDEs in which there are no terms

that involve mixed partial derivatives of the objective function. That is, we

will be looking at differential equations of the form

0 =

n∑
i=1

m∑
k=0

qki [x1, x2, . . . , xn] ∂k
xi

y, (4.1)

where m is the highest order derivative that our differential equation has and

qki is a function that is the coefficient for the kth derivative of y with respect to xi

k times. For example, in the LHPDE

0 =
(
x2

1 + x2

)
∂2

x1
y + x1∂x2 y, (4.2)

y is a function of two variables, so n = 2. The highest order derivative in

Eqn. 4.2 is 2, thus m = 2. The coefficient functions are q21 = x2
1 + x2, q11 = 0,

q22 = 0, and q12 = x1.

Theorem 5. Let F be a field and let D [Fn
→ F] be the set of all infinitely

differentiable functions from Fn to F. D [Fn
→ F] is a vector space [8]. Vector

addition is defined as function addition and scalar multiplication defined to be the

multiplication operation of the field F.

In our case, we will have R as the field. The solutions to an LHPDE ζ must

be differentiable functions. Let S [ζ] be the set of all solutions to ζ. Clearly, S [ζ]

is a subset of the set D [Rn
→ R]. In fact, S [ζ] forms a subspace of D [Rn

→ R].

The method for solving LHPDEs that we are about to explore is also a method

for forming a basis of the vector space S [ζ].
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Separation of variables is a technique that can be used to solve some

LHPDEs. When performing separation of variables, we assume a solution of

the form

y [x1, x2, . . . , xn] = X1 [x1]X2 [x2] . . .Xn [xn] . (4.3)

Solutions to an arbitrary LHPDE ζ of this form are called the product solutions

of ζ. Note that the product solutions of ζ are not the only solutions to ζ, but

they do form a basis for S [ζ]. That is, we can construct any solution of ζ by

using a linear combination of the product solutions of ζ. After assuming a

product solution and substituting this assumption, we then perform algebraic

manipulations on ζ seeking to put ζ in the form

m∑
k=0

qk1 [x1] ∂k
x1
X1 [x1] +

n∑
i=2

m∑
k=0

qki [x2, . . . , xn] ∂k
xi
X2 [x2] . . .Xn [xn] = 0. (4.4)

If we cannot algebraically manipulate the LHPDE ζ into the form of Eqn 4.4,

then we say that ζ is non-separable. Let λ and ρ be defined by

λ =

m∑
k=0

qk1 [x1] ∂k
x1
X1 [x1] (4.5)

ρ =

n∑
i=2

m∑
k=0

qki [x2, . . . , xn] ∂k
xi
X2 [x2] . . .Xn [xn] . (4.6)

Observe that the λ is a function of only x1 and that ρ is not a function of x1, but

ρ is a function of {x2, . . . , xn}. Consider the partial derivative of ρ with respect

to x1. Since ρ does not depend on x1, ∂x1ρ = 0. Thus, ρ must be a constant.

Similarly, by considering the partial derivative of λ with respect to x2, it is

clear that λ must be a constant. In fact, the sum of these constants must equal
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zero, that is ρ = −λ. Substituting this result into Eqn 4.6, we have

−λ =

n∑
i=2

m∑
k=0

qki [x2, . . . , xn] ∂k
xi
X2 [x2] . . .Xn [xn] . (4.7)

We call λ the separation constant of this LHPDE. Notice that we have

separated the LHPDE ζ into two equations. We now have Eqn 4.5, an ordinary

differential equation, and Eqn 4.7, an LHPDE with n − 1 variables. Next, we

would seek to separate Eqn 4.7 into an ordinary differential equation and a

new LHPDE with n − 2 variables. For an LHPDE with n variables, we seek to

perform separation of variables n − 1 times. The net result of separation of

variables is turning an LHPDE with n variables into n ordinary differential

equations.

4.2 Series Solutions and Legendre’s Equation

Legendre’s differential equation is

(
1 − x2

)
∂2

xy − 2x∂xy + ` (` + 1) y = 0, (4.8)

where ` ∈ Z+ and Z+ is the set of all nonnegative integers. In order to solve

Legendre’s differential equation, we will need to take arbitrarily large

derivatives of a product of functions. Therefore, it will be useful to recall

Leibniz’ rule for differentiation.

Definition 11 (Leibniz’ rule). The n-th derivative with respect to x of a product of
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functions f [x] and g [x] is

∂n
x( f g) =

n∑
i=0

(
n
i

)
∂i

x f∂n−i
x g. (4.9)

Now, we are ready to seek solutions to Legendre’s differential equation.

Theorem 6. The Legendre polynomials are solutions to Legendre’s differential

equation and are given by Rodrigues’s formula,

P` =
1

2``!
∂`x

(
x2
− 1

)`
. (4.10)

Proof. The techniques used in this proof are presented in [1]. We can solve this

differential equation by looking for a power series solution, so let y, ∂xy and

∂2
xy be the following,

y = a0 + a1x + a2x2 + · · · + anxn + . . . (4.11)

∂xy = a1 + 2a2x + 3a3x2 + · · · + nanxn−1 + . . . (4.12)

∂2
xy = 2a2 + 6a3x + 12a4x2 + · · · + n (n + 1) anxn−2 = . . . , (4.13)

where ai is a constant for all i ∈N. Substituting Eqn. 4.11, Eqn. 4.12, and

Eqn. 4.13 into Eqn. 4.8 and combining like terms we get

0 = (2a2 + ` (` + 1) a0) x0+(
6a3 +

(
`2 + ` − 2

)
a1

)
x1+(

12a4 +
(
`2 + ` − 6

)
a2

)
x2 + · · ·+

((n + 2) (n + 1) an+2 + (` − n) (` + n + 1) an) xn + . . . . (4.14)
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By the Fundamental Theorem of Algebra, if two polynomials are equal, then

their coefficients must be equal identically. Hence, the xn term of Eqn. 4.14

implies that,

an+2 = −
(` − n) (` + n + 1)

(n + 2) (n + 1)
an. (4.15)

So, we can recursively define all of the even coefficients in terms of a0 and the

odd coefficients in terms of a1 in Eqn. 4.11,

y = a0

(
1 −

(` − 0) (` + 1)
2 · 1

x2 +

(
−

(` − 0) (` + 1)
2 · 1

)
·

(
−

(` − 2) (` + 3)
4 · 3

)
x4 + . . .

)
+ a1

(
x −

(` − 1) (` + 2)
3 · 2

x3 +

(
−

(` − 1) (` + 2)
3 · 2

)
·

(
−

(` − 3) (` + 4)
5 · 4

)
x5 + . . .

)
(4.16)

= a0

(
1 −

` (` + 1)
2!

x2 +
` (` + 1) (` − 2) (` + 3)

4!
x4
− . . .

)
+ a1

(
x −

(` − 1) (` + 2)
3!

x3 +
(` − 1) (` + 2) (` − 3) (` + 4)

5!
x5
− · · ·

)
. (4.17)

For ` = 0, the terms in the series expansion of y with a1 as a coefficient are

x −
(−1) · (2)

3!
x3 +

(−1) · (2) · (−3) · (4)
5!

x5
− . . . = x +

x3

3
+

x5

5
+ . . . (4.18)

=

∞∑
n=0

1
2n + 1

x2n+1. (4.19)

This series diverges, therefore a1 = 0. The terms with a0 as a coefficient are

zero, except the x0 term, so P0 [x] = 1. Similarly, for ` = 1, the terms of the
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series expansion of y with a0 as a coefficient are

1 −
(1) · (2)

2!
x2 +

(1) · (2) · (−1) · (4)
4!

x4
− . . . = 1 −

x1

1
−

x4

3
− . . . (4.20)

=

∞∑
n=0

−
1

2n − 1
x2n. (4.21)

This series diverges, so a0 = 0. The terms with a1 as a coefficient are zero,

except the x1 term, so P1 [x] = x. In general, for even values of ` the odd terms

in the series diverge and the terms of the even sequence that are of order

greater than ` are zero and for odd values of ` the even terms in the series

diverge and the terms of the odd sequence that are of order greater than ` are

zero. Note that for negative values of `, we obtain redundant solutions [1].

Thus, it makes sense that we only consider ` to be a nonnegative integer. So we

have a set of polynomials, the Legendre polynomials, that solve the Legendre

differential equation. Below we list the first four Legendre polynomials:

P0 [x] = 1 (4.22)

P1 [x] = x (4.23)

P2 [x] =
3
2

x2
−

1
2

(4.24)

P3 [x] =
5
2

x3
−

3
2

x. (4.25)

Now we will show that Rodrigues’ formula serves as a generating function

for Legendre Polynomials. First we will consider the function

v [x] =
(
x2
− 1

)`
, (4.26)
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We will show that the quantity ∂`xv is a solution to the Legendre differential

equation, up to a constant. Consider
(
x2
− 1

)
∂xv,

(
x2
− 1

)
∂xv =

(
x2
− 1

)
`
(
x2
− 1

)`−1
· 2x

= 2`xv. (4.27)

Next, we can differentiate Eqn. 4.27 ` + 1 times using Leibniz’ rule,

∂`+1
x

((
x2
− 1

)
∂xv

)
= ∂`+1

x (2`xv) (4.28)
`+1∑
i=0

(
` + 1

i

)
∂i

x

(
x2
− 1

)
∂`+1−i

x ∂xv = 2`
`+1∑
i=0

(
` + 1

i

)
∂i

xx∂`+1−i
x v (4.29)

Note that for for i ≥ 3 the terms of the sum on the left hand side of Eqn. 4.29

are zero since ∂i
x
(
x2
− 1

)
= 0 for i ≥ 3. Similarly, the terms in the sum right

hand side of Eqn. 4.29 are zero for i ≥ 2 as ∂i
xx = 0 for i ≥ 2. Thus, expanding

the sums yields

(
x2
− 1

)
∂`+2

x v + 2x (` + 1) ∂`+1
x v + ` (` + 1) ∂`+1

x v = 2`x∂`+1
x v + 2` (` + 1) ∂`xv. (4.30)

We can further simplify this equation to obtain the Legendre differential

equation with ∂`xv as the objective function,

0 = −
(
x2
− 1

)
∂`+2

x v + (2`x − 2x (` + 1)) ∂`+1
x v + (2` (` + 1) − ` (` + 1)) ∂`xv (4.31)

=
(
1 − x2

)
∂`+2

x v − 2x∂`+1
x v + ` (` + 1) ∂`xv (4.32)

=
(
1 − x2

)
∂2

x

(
∂`xv

)
− 2x∂x

(
∂`xv

)
+ ` (` + 1) ∂`xv. (4.33)
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Thus, we have shown that the functional dependence of Rodrigues’ formula on

x, ∂`xv, is a solution to the Legendre differential equation. As a normalization

condition, we require that P` [1] = 1 for all ` ∈ Z+. Multiplying ∂`x
(
x2
− 1

)` by

the constant
(
2``!

)−1
satisfies this normalization as shown in [1]. �

4.3 Associated Solutions and Bessel’s Equation

The Bessel differential equation is

x2∂2
xy + x∂xy +

(
x2
− p2

)
y = 0, (4.34)

where p is a constant. It is important to note that p is not necessarily an integer.

Before we discuss solutions to this differential equation, recall the Gamma

Function Γ,

Definition 12. The Gamma Function Γ [x] is given by [2],

Γ [x] =

∫
∞

0
tx−1e−tdt. (4.35)

The solutions to the Bessel differential equation are the Bessel functions [1].

Definition 13. The Bessel functions of the first kind Jp and the Bessel

functions of the second kind Np are given by

Jp [x] =

∞∑
n=0

(−1)n

Γ [n + 1] Γ
[
n + 1 + p

] (x
2

)2n+p
, (4.36)

Np [x] =
1

sin
[
pπ

] (
cos

[
pπ

]
Jp [x] − J−p [x]

)
. (4.37)
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These solutions can be derived using infinite series as shown in [1]. Since

the Bessel differential equation is a second order ordinary differential

equation, we expect two linearly independent solutions and, in fact, Jp and Np

are linearly independent functions [1].

The Spherical Bessel differential equation is

x2∂2
xy + 2x∂xy +

(
x2
− ` (` + 1)

)
y = 0. (4.38)

In order to derive the relationship between the solutions to the Spherical

Bessel differential equation and the ordinary Bessel functions, we will begin

with the Spherical Bessel differential equation. Consider a solution to the

Spherical Bessel differential equation of the form

y [x] = f [x] · x−1/2, (4.39)

where f [x] is an arbitrary function of x. We seek to place constraints on f .

Now, we will compute the first and second derivative of y with respect to x,

∂xy = x−1/2∂x f −
1
2

x−3/2 f , (4.40)

∂2
xy = x−1/2∂2

x f −
1
2

x−3/2∂x f −
1
2

x−3/2∂x f +
3
4

x−5/2 f (4.41)

= x−1/2∂2
x f − x−3/2∂x f +

3
4

x−5/2 f . (4.42)

Now we will substitute Eqn. 4.39, Eqn. 4.40, and Eqn. 4.42 into Eqn. 4.38 and
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simplify,

0 = x2
(
x−1/2∂2

x f − x−3/2∂x f +
3
4

x−5/2 f
)

+ 2x
(
x−1/2∂x f −

1
2

x−3/2 f
)

+
(
x2
− ` (` + 1)

) (
f · x−1/2

)
(4.43)

= x2
(
∂2

x f − x−1∂x f +
3
4

x−2 f
)

+ 2x
(
∂x f −

1
2

x−1 f
)

+
(
x2
− ` (` + 1)

)
f (4.44)

= x2∂2
x f − x∂x f +

3
4

f + 2x∂x f − f +
(
x2
− `2
− `

)
f . (4.45)

= x2∂2
x f + (2x − x) ∂x f +

(3
4
− 1 + x2

− `2
− `

)
f . (4.46)

= x2∂2
x f + x∂x f +

(
x2
−

(
`2 + ` +

1
4

))
f . (4.47)

= x2∂2
x f + x∂x f +

(
x2
−

(
` +

1
2

)2)
f . (4.48)

Observe that Eqn 4.48 is Eqn 4.38, the Bessel differential equation, with

p = ` + 1/2. Therefore, the allowed choices for f are the linear combinations of

the Bessel functions. Hence the allowed forms of y are Bessel functions

multiplied by x−1/2. As with the Bessel functions, the Spherical Bessel

functions have two kinds, denoted by j` for the first kind and n` for the second

kind. As a convention, we choose the following:

Definition 14. The Spherical Bessel functions of the first kind j` and second kind

n` are given by

j` [x] =

√
π
2x

J`+1/2 [x] , (4.49)

n` [x] =

√
π
2x

N`+1/2 [x] . (4.50)
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Also note that just as with the Bessel functions, j` and n` are linearly independent.

Another equivalent set of linearly independent solutions to the Spherical

Bessel differential equation are the Spherical Hankel functions, which are given

by,

h(1)
` [x] = j` [x] + in` [x] , (4.51)

h(2)
` [x] = j` [x] − in` [x] . (4.52)

In this chapter, we developed three techniques for solving differential

equations. The first of these techniques is separation of variables, which we

will in use Chapter 5 in order to turn the partial differential equation Eqn. 3.62,

our unified wave equation, into three ordinary differential equations. The

remaining two techniques, infinite series solutions and associated function

solutions, will then be used to solve two of the three ordinary differential

equations that will result from the separation of Eqn. 3.62.



Chapter 5

Solutions to Unified Wave Equation

Now we are ready to solve Eqn. 3.62, our unified wave equation, for the

objective function ψi,

5
2ψi − k2

iψi = 0.

We will begin by substituting Eqn. 2.92, the Laplacian in spherical coordinates,

0 =
1
r2∂r

(
r2∂rψi

[
r, θ, φ

])
+

1
r2 sin [θ]

∂θ
(
sin [θ] ∂θψi

[
r, θ, φ

])
+

1
r2 sin2 [θ]

∂2
ϕψi

[
r, θ, φ

]
− k2

i [r]ψi

[
r, θ, φ

]
. (5.1)

Note that we have written the functional dependence of ψi and ki. Next we

will apply separation of variables in order to solve Eqn. 5.1.

51
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5.1 Applying Separation of Variables

First, we will assume a product solution for ψi. Let ψi = Ri [r] Yi
[
θ,ϕ

]
. Making

this substitution gives us,

0 =
1
r2∂r

(
r2∂rRi [r] Yi

[
θ,ϕ

])
+

1
r2 sin [θ]

∂θ
(
sin [θ] ∂θRi [r] Yi

[
θ,ϕ

])
+

1
r2 sin2 [θ]

∂2
ϕRi [r] Yi

[
θ,ϕ

]
− k2

i [r] Ri [r] Yi
[
θ,ϕ

]
. (5.2)

Since Ri only depends on r, Ri is constant with respect to θ and ϕ derivatives.

Similarly, since Yi only depends on θ and ϕ, Yi is constant with respect to r

derivatives. Taking advantage of these facts we can simplify our differential

equation,

0 =
Yi

[
θ,ϕ

]
r2 ∂r

(
r2∂rRi [r]

)
+

Ri [r]
r2 sin [θ]

∂θ
(
sin [θ] ∂θYi

[
θ,ϕ

])
+

Ri [r]
r2 sin2 [θ]

∂2
ϕYi

[
θ,ϕ

]
− k2

i [r] Ri [r] Yi
[
θ,ϕ

]
. (5.3)

Now we will multiply our equation by r2/(RiYi) and simplify,

0 =
1

Ri [r]
∂r

(
r2∂rRi [r]

)
+

1
sin [θ] Yi

[
θ,ϕ

]∂θ (sin [θ] ∂θYi
[
θ,ϕ

])
+

1
sin2 [θ] Yi

[
θ,ϕ

]∂2
ϕYi

[
θ,ϕ

]
− r2k2

i [r] . (5.4)

Notice that we can collect terms that only depend on r and terms that are only

dependent on θ and ϕ. Hence, we can perform separation of variables on this

differential equation. In Section 4.1, we derived the separation constant to

have a completely arbitrary form λ. However, in some differential equations it
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is useful to assume a particular form for the separation constant. In this case,

we will choose ` (` + 1) as the separation constant,

` (` + 1) =
1

Ri [r]
∂r

(
r2∂rRi [r]

)
− r2k2

i [r] , (5.5)

−` (` + 1) =
1

sin [θ] Yi
[
θ,ϕ

]∂θ (sin [θ] ∂θYi
[
θ,ϕ

])
+

1
sin2 [θ] Yi

[
θ,ϕ

]∂2
ϕYi

[
θ,ϕ

]
. (5.6)

where ` is a nonnegative integer. The motivation of why we choose a

separation constant of the form ` (` + 1) can be found in [1]. Now, we have an

ordinary differential equation in r for the objective function Ri and a partial

differential equation in θ and ϕ for the objective function Yi.

Note that the Yi differential equation contains no terms that are different

between electrons and photons, as such we will drop the i subscript and

simply call the objective function Y. We will perform separation of variables

again in order to separate Y into two ordinary differential equations.

Multiplying Eqn. 5.6 by sin2 [θ] Y yields,

−` (` + 1) sin2 [θ] Y = sin [θ] ∂θ
(
sin [θ] ∂θY

[
θ,ϕ

])
+ ∂2

ϕY
[
θ,ϕ

]
. (5.7)

Now we will assume a product solution, Y
[
θ,ϕ

]
= Θ [θ] Φ

[
ϕ
]
. After

substituting in our product solution into Eqn. 5.7, then multiplying by 1/(ΘΦ)

and simplifying we have,

0 =
1

Θ [θ]
sin [θ] ∂θ (sin [θ] ∂θΘ [θ]) + ` (` + 1) sin2 [θ] +

1
Φ

[
ϕ
]∂2

ϕΦ
[
ϕ
]
. (5.8)
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Since we can collect terms that only depend on θ and terms that only depend

on ϕ, we can separate variables. We will choose m2 as the separation constant,

m2 =
1

Θ [θ]
sin [θ] ∂θ (sin [θ] ∂θΘ [θ]) + ` (` + 1) sin2 [θ] (5.9)

−m2 =
1

Φ
[
ϕ
]∂2

ϕΦ
[
ϕ
]
. (5.10)

Once again, the motivation of why we choose a separation constant of the

form m2 is shown in [1].

5.2 Solutions to the Angular Differential Equations

The solution to Eqn. 5.10 is easy; it is a linear combination of complex

exponential functions,

Φ
[
ϕ
]

= C1eimϕ + C2e−imϕ, (5.11)

where C1 and C2 are arbitrary constants [4]. When solving the differential

equation for Θ, we will allow m to be negative. If m is allowed to be negative,

then eimϕ and e−imϕ are not linearly independent functions. Therefore, we can

discard one of the two terms in Eqn. 5.11. We choose to discard the second

term, setting C2 = 0. We will absorb the arbitrary constant C1 into the

aribitrary constant for the solution to the differential equation for Θ. Thus, our

final solution to the differential equation for Φ is given by,

Φ
[
ϕ
]

= eimϕ, (5.12)



CHAPTER 5. SOLUTIONS TO UNIFIED WAVE EQUATION 55

Since ϕ is the azimuthal coordinate, it is reasonable to require that

Φ
[
ϕ
]

= Φ
[
ϕ + 2π

]
. Applying this restriction results in ei2πm = 1, which implies

that m ∈ Z.

Eqn. 5.9, the differential equation for Θ, is the associated Legendre differential

equation, (
1 − x2

)
∂2

xy − 2x∂xy +

(
` (` + 1) −

m2

1 − x2

)
y = 0, (5.13)

with the object function y being Θ and the independent variable x = cos [θ].

The solutions to the Eqn. 5.9 are of the form,

Θ [θ] = C`Pm
` [cos [θ]] , (5.14)

where C` is a constant, and Pm
` is the associated Legendre function, which is

given by,

Pm
` [x] =

(
1 − x2

)|m|/2
∂|m|x P` [cos [θ]] , (5.15)

where Pl is the Legendre polynomial with index ` [4]. Recall that the Legendre

polynomials are given by Rodrigues’s formula,

P` =
1

2``!
∂`x

(
x2
− 1

)`
.

The degree of
(
x2
− 1

)` is 2`. Since we apply ` derivatives to
(
x2
− 1

)` in order

to obtain P`, the degree of P` equal to `. Thus, if |m| > `, then Eqn. 5.15 will be

zero; that is, we have an additional restriction that −` ≤ m ≤ `. Hence for

every value of ` there are 2` + 1 allowed values for m, as shown in [4]. Now we
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can write our full angular equation,

Y`,m
[
θ,ϕ

]
= C`Pm

` [cos [θ]] eimϕ. (5.16)

5.3 Solutions to the Radial Differential Equation

Next, we will solve Eqn. 5.5, the differential equation for Ri. We must make a

choice for χ [r] in order to solve for Ri. The choice of χ [r] represents the

physics of the system that we are analyzing. We will look at a system in which

the effective potential in constant inside a boundary at r = a and is a different

constant outside of that boundary. Thus we choose χ [r] to be piecewise

constant,

χ [r] =

 0 r < a,

1 r ≥ a.
(5.17)

Making this choice causes Eqn. 5.5 to reduce to the Spherical Bessel differential

equation,

x2∂2
xy + 2x∂xy +

(
x2
− ` (` + 1)

)
y = 0,

with objective function y being rRi and independent variable x = kir. The

solutions to this equation are the spherical Bessel functions of the first kind j`

and spherical Bessel functions of the second kind n` as derived in Chapter 4.

Since j` and n` are linearly independent, the general solution to Eqn. 5.5, the

radial differential equation, is a linear combination of these functions,

rRi = C1 j` [kir] + C2n` [kir] . (5.18)
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Our full solution in terms of the Spherical Bessel functions is

ψ`,mi

[
r, θ, φ

]
=

(
C1 j` [kir] + C2n` [kir]

)
C`Pm

` [cos [θ]] eimϕ (5.19)

=
(
A` j` [kir] + B`n` [kir]

)
Pm
` [cos [θ]] eimϕ, (5.20)

where we have absorbed the indexed arbitrary constant C` into C1 and C2 and

relabeled them A` and B`, respectively.

Now, we will use boundary conditions in order to determine the constants

A`, B`, and ki in Eqn. 5.20. Note that since the undetermined constants only

appear in the radial part of the solution, we can simply work with the radial

part of the equation,

rRi = A` j` [kir] + B`n` [kir] . (5.21)

Recall that our system involves a spherical boundary with a radius of a. This

means that the wave function could be different both inside and outside of the

boundary, as such we will let Rin
i be the wave function inside of the sphere and

Rout
i be the wave function outside of the sphere,

rRin
i = Ain

` j`
[
kin

i r
]

+ Bin
` n`

[
kin

i r
]
. (5.22)

rRout
i = Aout

` j`
[
kout

i r
]

+ Bout
` n`

[
kout

i r
]
. (5.23)

Our first boundary condition is that we will require that the inside wave

function be finite as the radius goes to zero. Bessel functions of the second

kind have a vertical asymptote at the origin, thus Bin
` = 0 for all ` ∈N and the
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radial equation inside the sphere becomes,

rRin
i

[
kin

i r
]

= Ain
` j`

[
kin

i r
]
. (5.24)

In order to simplify Rout
i , we will first re-express Rout

i in terms of an equivalent

basis, the Spherical Hankel functions,

rRout
i

[
kout

i r
]

= Cout
` h(1)

`

[
kout

i r
]

+ Dout
` h(2)

`

[
kout

i r
]
. (5.25)

Note that the Spherical Hankel functions of the first kind correspond to waves

propagating away from the origin and the Spherical Hankel functions of the

second kind correspond to waves propagating away from the origin. We will

not be considering a case in which waves are being introduced to the system

from outside of the boundary, hence we can set Dout
` = 0,

rRout
i

[
kout

i r
]

= Cout
` h(1)

`

[
kout

i r
]
. (5.26)

We will apply the usual quantum mechanical boundary conditions, requiring

that the wave function be continuous at the boundary,

Rin
i

[
kin

i a
]

= Rout
i

[
kout

i a
]
, (5.27)

and be differentiable at the boundary,

∂rRin
i

[
kin

i r
]∣∣∣∣

r=a
= ∂rRout

i

[
kout

i r
]∣∣∣∣

r=a
. (5.28)
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Note that the boundary conditions that we would normally apply when

working with Maxwell’s equations are fundamentally different from the

quantum mechanical boundary conditions, partially due to the fact that

electric fields (photon wave functions) are vector quantities and electron wave

functions are scalar quantities. In a similar manner to proving the assertion

that considering a scalar wave equation is sufficient to fully analyze the radial

and temporal behavior of the electric field in Chapter 3, using ideas from [7], it

can be shown that in our problem, the usual quantum mechanical boundary

conditions and usual electrodynamic boundary conditions are logically

equivalent. Next, we will substitute Eqn. 5.24 and Eqn. 5.26 into Eqn. 5.27,

Ain
` j`

[
kin

i a
]

= Cout
` h(1)

`

[
kout

i a
]
. (5.29)

We also substitute Eqn. 5.24 and Eqn. 5.26 into Eqn. 5.28 and simplify to get

Ain
` ∂r j`

[
kin

i r
]∣∣∣∣

r=a
= Cout

` ∂rh
(1)
`

[
kout

i r
]∣∣∣∣

r=a
. (5.30)

Now, we can divide Eqn. 5.30 by Eqn. 5.29 and multiply by r to get

kin
i r∂r j`

[
kin

i r
]

j`
[
kin

i r
] ∣∣∣∣∣∣∣

r=a

=
kout

i r∂rh
(1)
`

[
kout

i r
]

h(1)
`

[
kout

i r
] ∣∣∣∣∣∣∣

r=a

. (5.31)

Eqn. 5.31 is called the characteristic equation of our system. In order to begin

solving the characteristic equation we will first recall Eqn. 3.61,

k2
i = −

αi∆iχ [r]
λ2

i

ψi +
1
λ2

i0

,
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and the definitions of the constants in Eqn. 3.61 for photons,

αγ = 1, (5.32)

∆γ =
n2 [0] − n2 [a]

n2 [0]
, (5.33)

λ2
i = λ2

i0 =
c2

ω2n2 [0]
. (5.34)

Substituting Eqn. 5.32, Eqn. 5.33, and Eqn. 5.34 into Eqn. 3.61 and

resimplifying yeilds,

k2
γ =

ω2n2 [0]
c2

(
1 − ∆γχ [r]

)
. (5.35)

Recall Eqn. 5.17 and note that we are considering the case in which χ [r] is a

piecewise function with a discontinuity at the boundary,

χ [r] =

 0 r < a,

1 r ≥ a.

By subsisting Eqn. 5.17 into Eqn. 5.35 and simplifying, we get expressions for

kin
γ and kout

γ ,

kin
γ =

ω2n2 [0]
c2 (5.36)

kout
γ =

ω2n2 [0]
c2

√
1 − ∆γ = kin

γ

√
1 − ∆γ. (5.37)

In order to make the algebra simpler, we define new constants to indicate the
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function arguments of the left and right hand side of our expression,

uin = kin
γ a =

ω2n2 [0]
c2 a, (5.38)

uout = kout
γ a = uin

√
1 − ∆γ. (5.39)

Hence, our characteristic equation becomes,

uin∂r j` [uin]
j` [uin]

=
uin

√
1 − ∆γ∂rh

(1)
`

[
uin

√
1 − ∆γ

]
h(1)
`

[
uin

√
1 − ∆γ

] , (5.40)

where the notation ∂r j` [uin] means to take the r derivative of j`, then evaluate

the result at uin, and so forth. So we have an equation with one unknown uin.

Unfortunately, this equation is not analytically solvable for uin. However, we

can numerically solve for uin.

5.4 Numerical Solutions to the Characteristic

Equation

We derived the Spherical Bessel functions in terms of the normal Bessel

functions. When seeking numerical solutions to the characteristic equation, it

will be useful to use the following generating function for the Spherical Bessel

function of the first kind [4],

j` [x] = (−x)`
(1
x
∂x

)` (sin [x]
x

)
.
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There are actually a countably infinite number of characteristic equations, one

for each value of `. Also, for each choice of the “quantum number” ` there are

a countably infinite number of solutions for uin. We speak of quantum

numbers in quotations because we are not truly applying quantum mechanics

to the photon case, but we are borrowing ideas from quantum mechanics to

analyze the photon case. We label the solutions for a particular ` with a new

index, the order n. We also refer to n as the radial quantum number. The n = 1

solution corresponds to the smallest value of uin for which the characteristic

equation is satisfied and the higher order solutions are labeled in ascending

order. Since we have an infinite number of possible numerical solutions, we

will only be examining solutions for select values of ` and n.

In order to use numerical methods to approximate solutions to the

characteristic equation, we must first choose values for the physical

parameters of the problem. We will choose the radius of the sphere to be 1 µm

and set the index of refraction of the inside of the sphere to 1.5 and outside of

the sphere to 1. Making these substitutions, for this particular example we

have

∆γ = 5/9, (5.41)

uout =
2
3

uin. (5.42)

Now, we will use numerical solving techniques in Mathematica to obtain

numerical solutions to Eqn. 5.40, the characteristic equation. We will visualize

these solutions in two ways. First, we will plot the numerical solution for R2
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Figure 5.1: Several Plots of the Radial Part R2 of the Wave Function ψ versus
the radial coordinate r

versus r for particular values of ` and n. A sample of four plots, spanning two

different angular momentum values ` ∈ {1, 5} and two different orders

n ∈ {1, 10} are shown in Fig. 5.1. Remember that peaks in E2, and therefore

peaks in R2, correspond to points of maximal intensity for the light. Notice

that as the angular momentum quantum number increases, the peaks inside

the boundary bunch up closer to the boundary. If you consider the nature of

the centrifugal pseudo-force on a classical object, this makes sense intuitively.

As we increase the velocity of an orbiting classical object inside a sphere, it can

orbit further away from the origin, going against the centrifugal pseudo-force.

This is analogous to increasing the angular momentum quantum number of
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light causing the light to be more intense closer the boundary of the sphere. It

is also important to note that as the radial quantum number increases, the

number of peaks that there are inside the boundary also increases. Once again,

this makes sense in the classical analogue. If we impart more radial

momentum on an object, then it will have more motion along its radial axis.

The second key feature of the numerical solutions that we will be

analyzing is the temporal behavior of the wave function. When first solving

our general differential equation, we immediately solved for the temporal part

of our equation,

ψi
[
r, θ, ϕ, t

]
= ψi

[
r, θ, ϕ

]
e−iωt. (5.43)

The temporal frequency ω is simply the spatial frequency k multiplied by the

speed of light in the medium, c/nin. But k is complex in general, so Eqn. 5.43

becomes

ψi
[
r, θ, ϕ, t

]
= ψi

[
r, θ, ϕ

]
e(ckimt)/nine(−ickret)/nin , (5.44)

where kre and kim are the real and imaginary parts of k, respectively. Eqn. 5.44

demonstrates the solutions for the wave number inside the spherical

boundary k, in order to obtain the wave number for outside the boundary kout,

we require continuity of the wave in time. This requires that ωin = ωout,

koutc
nout =

kinc
nin (5.45)

kout =
nout

nin kin. (5.46)

Hence, we will only be examining time constants corresponding to kin since

the time constants corresponding to kout will just be a positive constant
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Figure 5.2: Logarithm of Time Constant vs Angular Momentum for the First
Four Solution Orders

multiple of the time constants for kin. Note that for electrons k turns out to be

real, so we do not see amplitude decay in electrons [4]. It is also important to

note that for all of the choices of ` and n that we have computed numerically,

kin
im is negative. Therefore, our amplitude will decay in time. In particular, we

will define the time constant τ as the time at which the amplitude of the radial

function has decayed by 1/e,

τ = −
1

ckim
. (5.47)

Just as with the plots of R versus r, we are going to visualize the time constants

in such a way that we see the behavior of the time constants as we vary

angular momentum and radial solution order. In Fig 5.2, we have the

logarithm of the time constant τ versus the angular momentum from ` = 1 to

` = 10 for the first four orders of solutions n = 1 to n = 4. This graph highlights
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two key relationships: as the angular momentum quantum number increases,

the longevity of the solution increases, but as the radial quantum number

increases, the longevity of the solution decreases. Both of these relationships

are physically logical in a classical analogue. A rotating system with more

angular momentum will spin for longer periods of time and is more likely to

stay in a configuration that is spinning. This corresponds to light staying

inside the sphere longer. A classical rotating system with more radial

momentum will not spin for as long because it has more energy along the

radial direction, which is the direction orthogonal to the rotation. This

corresponds to light leaving the sphere. For the shown values of n and `, the

time constants were on the order of femtoseconds.

Another way that we can analyze the temporal decay of the solutions is to

look at the ratio of the time constants to the period of oscillation. That is, we

will examine how many times the solution goes through a full period of

oscillation before the amplitude of the solutions decays by a factor of 1/e. In

order to do so, we will compute the period of oscillation T of the system. The

frequency of oscillation f is given by f = ωin
re/(2π) = ckin

re/(2πnin). The period

of oscillation is the reciprocal of the frequency, hence

T =
2πnin

ckin
re
. (5.48)

We can compute the ratio of the time constant to the period of oscillation by
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Figure 5.3: Logarithm of Ratio of Time Constant to Period of Oscillation vs
Angular Momentum Quantum Number for several choices of radial quantum
number.

dividing Eqn. 5.47 by Eqn. 5.48,

τ
T

= −
kin

re

2πkin
im

. (5.49)

In Fig. 5.3 we plotted τ/T versus the angular momentum quantum number for

several choices radial quantum in several orders of magnitude,

n ∈ {1, 2, 5, 10, 20, 50, 100}. An interesting feature of the solutions that this plot

illustrates is that increasing the angular momentum quantum number has a

much more dramatic effect on τ/T for lower radial quantum number solutions

than higher radial quantum number solutions. For example, cosider the range
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of ` = 1 to ` = 10. For n = 1 τ/T, increases from 0.621 to 21.4. But, for n = 100

τ/T, increases from 62.1 to 65.1 on the same interval. So by increasing the

angular momentum quantum number from ` = 1 to ` = 10, the n = 1 solution

will have 34.4 times more oscillations before its amplitude decays by a factor

of 1/e, but the n = 100 solution only sees an 1.05 times more oscillations with

the same increase in angular momentum. This idea makes sense intuitively.

Consider a classical rotating system with a given value of angular momentum.

As we increase the radial momentum of the system, the overall impact of

imparting extra angular momentum on the system will decrease because the

angular momentum constitutes a lower percentage of the system’s total

momentum.

Another feature of our solution set that Fig. 5.3 allows us to compare the

number of oscillations before the amplitude decays by a factor of 1/e for

various choices of radial quantum number for a particular angular momentum

quantum number. For example, for 1 ≤ ` ≤ 3, the first radial quantum number

solution (n=1) has the least amount of cycles before the amplitude decays by

1/e. But at ` = 4, the n = 2 solution has less cycles before amplitude decays by

a factor of 1/e than the n = 1 solution. In general as the angular momentum

quantum number increases, the radial quantum number with the least amount

of cycles before the amplitude decays by a factor of 1/e increases.

We can also compute the wavelength of light that will be bound in the

sphere for a given value of n and `. The wavelength will be the product of the
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speed of the wave and its period,

λin = vinT (5.50)

=
( c
nin

)
(

2πnin

ckin
re

)
(5.51)

=
2π
kin

re
. (5.52)

For the (n = 1, ` = 1) solution, we have kin
re = 2.8 · 106 m−1. Therefore the

wavelength of light inside the sphere is approximately 2200 nm. We could

determine the wavelength of light in a vacuum that would be needed to excite

the the (n = 1, ` = 1) solution λexc,

λexc = λinnin. (5.53)

With nin = 1.5, we would need a 3300 nm light source to excite the (n = 1, ` = 1)

solution.

In this chapter, we solved the unified differential equation and analyzed

several solutions for the photon case. We analyzed both the radial and

temporal behavior of several numerical solutions and found behavior that

follows intuition based on Newtonian dynamics.
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Chapter 6

Conclusion and Future Work

Electrons and photons are fundamentally distinct objects with striking

similarities. We have shown that the differential wave equations for electrons

and photons in a spherically symmetric potential can be expressed in a

compact unified form, (
5

2
− k2 + H′

)
ψ = 0. (6.1)

The solutions to this differential equation are different for electrons and

photons, the primary feature of this difference being that the wave number k

must be real for electrons and can be complex for photons. The electron

solution is well known as the three-dimensional finite spherical well problem

in quantum mechanics [4].

We determined equivalent solutions for the photon case that had rich and

intuitive dynamics. We found that the radial part of the photon wave function

exhibited behavior that would be expected of a classical orbiting object. As we

increase the angular momentum of the light wave, the peak intensity of the
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light shifted further away from origin. Increasing the radial momentum of the

light caused the light wave to oscillate more times inside the sphere. For

photons, the wave number was found to be complex, while electrons have a

real wave number. This meant that the temporal part of the photon wave

function behaved like a dampened oscillator. The longevity of the solution

increased as radial momentum decreased and as angular momentum

increased. This makes intuitive sense as well, an orbiting object will stay in its

orbit for longer if given more angular momentum. An orbiting object whose

radial momentum is increasing will become increasingly more likely to leave

its orbit.

There are several directions in which this project could continue. One such

avenue is exploring the corrective term H′. The form of this term appears to be

different for photons and electrons. However, as demonstrated by our work

with algebraically manipulating k, there may be a sequence of substitutions

and relabelling that would result in in these terms looking analogous. Another

path that could be explored is other choices of χ, in particular choosing χ to

have an inverse square dependence on r. The photon solution for this χ would

correspond to an electron in a hydrogen atom.
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