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Abstract

There are many factors characterizing plants and pollinators that have been shown

to correlate to the specialist or generalist pollination syndrome displayed by an

angiosperm. Such factors include plant longevity, pollinator efficiency, pollinator

abundance, etc. and are essential to understanding a plant-pollinator system. Two

distinct models were created to examine the individual effects of each factor, the

interactions between factors, and to determine if any values of the factors lead

to changes in the frequency of plants displaying a given pollination syndrome.

A Java model, utilizing stochastic cellular automata and agent based modeling,

simulates a patch of flowers, their pollinators, and the evolutionary progression of

each pollination syndrome. A system of differential equation model examines a few

factors that are predicted to greatly affect the favoured pollination syndrome. The

results indicate the Java model is most sensitive to changes in pollinator efficiency

and pollinator abundance and least sensitive to plant longevity. When combining

variations in multiple factors, the outcomes could not be predicted from the addition

of the effects of each individual factor. The results indicate that the included factors

may interact differently under different conditions. Similarly, the results of the

differential equation models indicate that there is a great deal of interaction among

the included factors. Consequently, while nearly all of the hypotheses proposed

in this study were rejected, the results strongly support the hypothesis that the

interactions among the factors of a plant-pollinator system are key to understanding

and predicting which pollination syndrome is evolutionarily favoured.
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CHAPTER 1

Introduction

The angiosperms, or flowering plants, inhabit nearly every terrestrial habitat and

display a startling array of variation. They are the most successful and abundant

of all plant phyla (Friis et al. [2006]) and their diversity is unrivaled by any other

plant phyla (Govaerts [2001]). Angiosperms are unique among plant phyla in

that they utilize flowers which are hypothesized to have coevolved with insects

as pollinators (Friis et al. [2006]). Consequently, a majority of angiosperm species

require pollinators to transfer pollen between individuals of the same species in

order to outcross (Friis et al. [2006]). It has been hypothesized that pollinators are

one of the major evolutionary pressures behind the great diversity found among

angiosperms (Johnson and Steiner [2000], Niet and Johnson [2012], Pauw [1998],

Schemske and Bradshaw [1999]).

The use of flower and pollinators for pollination creates a complex form of

symbiotic relationship between plants and their pollinators. This relationship may

be beneficial and/or detrimental to the plant. The plant receives a benefit by having

its pollen transferred to another flower of the same species, but also incurs a cost

by rewarding the pollinator or by maintaining some floral trait that is needed for

pollination. Each species of pollinator varies in their ability to transfer pollen and

in the floral traits that attract them (Padysakova et al. [2013]). Consequently, the

variations in the different qualities of pollinators create a multitude of different

1



2 1. Introduction

relationships (beneficial or detrimental) between plants and their pollinators. It is

these variations in the relationship between flowering plants and their pollinators

that are the underlying cause of the evolutionary pressures exerted on angiosperms

by their pollinators (Schemske and Bradshaw [1999]).

The variations in the relationships arise from differences in both pollinator

efficiency and pollinator abundance (Ollerton [1996]). The efficiency of a pollinator

is measured using two concepts: the amount of pollen an individual pollinator

will transfer to conspecific flowers after one visit to the flower and the number of

calories an angiosperm expends through the maintenance or production of a floral

trait (Lau and Galloway [2004]). Some floral traits may be immediately consumed

by the pollinator (nectar and pollen) and other floral traits such as scent, colouration,

and shape are maintained throughout the flower’s life and are not consumed by the

pollinator. Consequently, it can be difficult to obtain a per visit caloric expenditure

of non-consumed floral traits. Therefore, in many cases, it is useful to measure the

amount of pollen and nectar consumed per visit to obtain the caloric expenditure of

the flower. These two concepts of pollinator efficiency, while measured individually,

produce a ratio of pollen transferred per calorie expended and it is this ratio that is

used to determine the efficiency of individuals of a given pollinator species.

The ratio of pollinator efficiency represents a continuous scale where efficiency

can take any value ranging from negative to positive (Willmer [2011]). Likewise,

the efficiency of one pollinator species may vary between individual plants with a

species of pollinator potentially having a negative efficiency for one species of plants

and a high efficiency for another (Larsson [2005]). Similarly, because pollinators

may not deposit all of the pollen that is taken from a flower (Padysakova et al.

[2013]), the efficiency of a pollinator can be measured in probabilistic terms. Hence,

there are many factors that can affect the efficiency of a pollinator, which can cause

the ratio to take values ranging from negative to positive on a continuous scale.
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Although pollinator efficiency is continuous, pollinators can be categorized

according to their efficiency. Some species of pollinators are extremely efficient

pollinators and each individual greatly increases the fitness of a plant. When an

individual of an extremely efficient pollinator species visits a flower, it transfers large

quantities of pollen to conspecific flowers while the plant expends minimal calories

in producing pollen and nectar. Other pollinators, known as "ugly pollinators," are

inefficient and transfer small quantities of pollen to conspecific plants while the

plant expends numerous calories (Lau and Galloway [2004]). The small quantity of

pollen transferred may be the result of large quantities of pollen gathered but only

a small quantity transferred to conspecific plants or the result of a small quantity

of pollen gathered. "Ugly pollinators" can, in some situations, exert a negative

fitness on the plant by transferring little to no pollen to conspecific plants while

the plant expends a large number of calories (Lau and Galloway [2004]). Another

group of visitors (these are not considered pollinators, but are still included in

many plant-pollinator systems), known as nectar thieves, act as parasites and take

nectar without transferring any pollen (Padysakova et al. [2013]) and exert a strong

negative pressure on plants.

Pollen transfer between conspecific individuals allows the plant to outcross and

reproduce (Waser and Ollerton [2006]). Because the efficiency of a pollinator is

measured in the number of pollen grains transferred to conspecifics as compared to

the number of calories a plant expends in maintaining a floral trait, the efficiency

of a pollinator can be summarized as its one time contribution to the reproductive

fitness of the plant (Larsson [2005]). The variation of a pollinator’s one time fitness

contribution is directly related to its efficiency.

The number of pollinators available for pollination (referred to as abundance)

mediates the one time fitness contribution by describing the availability of indi-

viduals of a pollinator species for the pollination of the plants. The abundance
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of a pollinator species thereby describes the seasonal fitness contribution to the

plant from the species of pollinator (Ollerton [1996]). Consider the situation where

the abundance of an extremely efficient pollinator is low and the abundance of a

moderately efficient pollinator is high. Both species could provide the same overall

fitness contribution to the plant even though individuals of one pollinator species

are highly efficient and individuals of the other species are moderately efficient.

The abundance of pollinators is not always stable and may vary over the flowering

life of a plant (Ollerton [1996]). Thus, it is important to understand the effects of

pollinator abundance as this too affects the reproductive fitness of the plant.

The variation in the one time fitness contribution between different species of

pollinators may result in evolutionary pressures that favour certain floral traits over

others. The categorization of these favourable floral traits results in the development

of pollination syndromes (Johnson and Steiner [2000], Ollerton [1996], Waser et al.

[1996]). Pollination syndromes are arrays of floral traits that attract certain species

of pollinators (Willmer [2011]). For example, white or cream coloured flowers which

are large and relatively open are indicative of bat pollination while flowers with a

honey scent and nectaries buried in thin tubes are indicative of butterfly pollination

(Waser [2006]). The floral traits of a pollination syndrome can permit and entice

certain species of pollinators to pollinate the flower while also attempting to exclude

certain pollinators from pollinating the flower. Such differences in plant preference

for pollinator species results in a dichotomous classification of such floral traits into

specialist and generalist plant pollination syndromes.

Plants displaying a specialist pollination syndrome are those species of an-

giosperms that utilize a few highly efficient pollinators. In contrast, plants display-

ing a generalist pollination syndrome use many moderately efficient pollinators.

The existence of the generalist and specialist pollination syndromes have been a

widely debated topic in plant ecology. The cause of this debate arises from the
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difficulty in studying and accurately defining a generalist and specialist pollination

syndrome (Sahli and Conner [2006], Johnson and Steiner [2000], Ollerton [1996],

Waser et al. [1996]). Consequently, there have been many studies that have at-

tempted to understand the characteristics of pollinators and plants that correlate to

a specialist or generalist pollination syndrome that is displayed by a plant. Similarly,

there have been studies that have attempted to examine whether one pollination

syndrome is always favoured or if there is a set of characteristics of plants and their

pollinators that can predict the favoured pollination syndrome (Johnson and Steiner

[2000]).

The direction of evolution, which can be attributed to variations in pollinator

efficiency, was originally believed to culminate in angiosperms that were specialized

towards their most efficient pollinator (Mitchell et al. [2009], Stebbins [1970], Gomez

et al. [2007]). Plants displaying a generalist pollination syndrome were thought to

be in a transitory stage in which the plants were slowly becoming more specialized.

This theory was based on the idea that the most efficient pollinator contributed

the most to the reproductive fitness of the plant. Thus, any mutation to the plant

that increased this pollinator’s efficiency would allow the plant to have a higher

reproductive fitness (Stebbins [1970]). Recently, this argument has come under

increased criticism because many angiosperm species are not specialized towards

their most efficient pollinator. It is now believed that evolution does not always

lead to specialization (Sahli and Conner [2006], Johnson and Steiner [2000]). In

fact, most generalist plants are optimally suited to their suite of pollinators and are

pressured to remain generalists (Johnson and Steiner [2000]). Consequently, many

plant species that have been shown to be generalists are not in an intermediate

phase slowly moving towards specialization as was originally believed.

Numerous studies have examined multiple aspects of angiosperm and pollinator

characteristics that lead to or correlate to specialization or generalization (Johnson
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and Steiner [2000], Bond [1994], Waser et al. [1996], Gomez et al. [2007], Mitchell et al.

[2009]). Many of these studies have focused their efforts on understanding how the

life history of both angiosperms and their pollinators can result in the evolution

of a specialist or generalist pollination syndrome. Two important traits that have

reoccurred in multiple studies are the longevity of the angiosperm and the between-

season variation in pollinator community makeup and abundance (Johnson and

Steiner [2000], Stebbins [1970], Waser et al. [1996], Bond [1994]). Variations in both

qualities have been hypothesized to alter the evolutionary pressures towards a

given pollination syndrome.

Angiosperms that have long life spans are more likely to be specialists while

angiosperms with short life spans are more likely to be generalists (Waser et al. [1996],

Bond [1994]). Flowering plants with long lives are able to withstand flowering

seasons where they do not reproduce, due to the scarcity or absence of their most

efficient pollinator, because they will most likely survive to flower during seasons

when their most efficient pollinator species is abundant. Similarly, it is not necessary

for long lived plants to reproduce every season since they live for many seasons

and can compensate for a low fitness during one season. Thus, they can afford

to wait to reproduce during seasons when their pollinators are abundant (Waser

et al. [1996]). In contrast, those flowering plants with short lives, especially annuals,

cannot withstand flowering seasons where a specific pollinator is absent or rare.

These short lived species cannot afford to wait to reproduce since they only live for

one or a few seasons. Consequently, generalization can help ensure that at least a

few pollinators can be used during any flowering season (Bond [1994]).

The abundance of a flowering plant’s most efficient pollinator species has also

been correlated to the favoured pollination syndrome (Ollerton [1996]). Consider

the case when the abundance, between seasons, of an angiosperm’s most efficient

pollinator is random. In this situation, the abundance of the most efficient pollinator
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species, during any given flowering season, could be low or high. Consequently,

a plant specializing towards this pollinator species will not always be guaranteed

to reproduce as its pollinator could be absent or rare (Waser et al. [1996]). A plant

that is a generalist will be able to take advantage of an increase in this pollinator’s

abundance, but is not reliant on it being present to outcross. In contrast, consider

the case when the abundance of an angiosperm’s most efficient pollinator species is

relatively constant between seasons. In this situation, a plant that is specializing

towards this particular pollinator species will be able to take great advantage of

this constant source of pollination since its floral morphology greatly attracts and

increases the efficiency of this particular pollinator species (Waser et al. [1996]). In

contrast, a generalist plant will only be able to take little advantage of this constant

source of pollination since it is not displaying an array of floral traits that attracts

and increases the efficiency of this pollinator species.

The longevity of a plant and the abundance of each pollinator species describe

factors that portray plant characteristics and pollinator characteristics respectively.

While each quality has been described individually, both factors influence a plant-

pollinator system simultaneously. Thus, the interaction among these factors could

result in correlations to generalist and specialist pollination syndromes that may not

arise from a combination of the correlations of each individual factor. Consequently,

to accurately understand and examine the outcomes of the evolutionary pressures

and determine which pollination syndrome is favoured, the pollination behaviors

of pollinators and their interactions with plants must be accurately simulated.

This study takes two distinct modelling approaches to explore the fundamental

role pollinators play in the evolution of pollination syndromes. The first approach

is a model developed in Java and the second is a system of differential equations

that attempts to simplify the complexities of the first model. The Java model

utilizes agent based modeling and stochastic cellular automata to capture the main
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elements of the fundamental interactions between angiosperms and their pollinators.

It utilizes agent based modelling to simulate the movement and interactions of

pollinators as they visit a population of flowering plants. The method of stochastic

cellular automata is used to simulate the change in the frequency of generalists and

specialists plants within a population. While this model accurately captures many

aspects of pollinator-plant interactions, it is exceedingly complex and no explicit

solution can be found.

To reduce the complexity of the Java model, a second model was developed. This

model uses a system of differential equations to simulate the change in frequency of

specialist and generalist plants within a population. It is developed around the idea

that each syndrome, generalist and specialist, attracts a certain fraction of the total

abundance of each pollinator species. This model examines the frequency of each

syndrome as well as the contribution of each pollinator to the reproductive fitness of

each of the pollination syndromes of the plants. These aspects work in conjunction

with one another to accurately reflect the outcomes of the evolutionary pressures.

The model determines how the frequency of each pollination syndrome will change

over time given a set of values (constant or functions) for plant attractiveness

towards each species of pollinator, the abundance of each pollinator species, and

the initial population of each plant pollination syndrome.

Although these models are different in their underlying mathematical concepts,

both attempt to measure the fundamental interaction between an angiosperm and its

pollinators. In this way, the models are designed to terse apart the set of conditions

which favour one syndrome over another. The models are run with a given set

of initial conditions so that the effects of changes in pollinator populations and

changes in plant longevity can be assessed. In this way, the models can simulate

how changes in the pollination behavior of pollinators and their interactions with

angiosperms alter which syndrome is favoured.
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To further examine the hypotheses regarding pollinator abundance two simu-

lations of the Java model and of the system of differential equations model were

conducted in which pollinator abundance was varied. In the first simulation, the

abundance of each pollinator species was random for any given flowering season.

In comparison, the other simulation was characterized by pollinator species that

had a constant abundance across all flowering seasons of the model. In previous

studies it has been shown that if a plant’s most efficient pollinator species has an

abundance that is random during any given flowering season, then generalization

is more likely to be displayed by the plant (Waser et al. [1996]). In contrast, if the

most efficient pollinator species has an abundance that is relatively constant across

seasons the plants are more likely to display a specialist pollination syndrome

(Waser et al. [1996]). Consequently, it is hypothesized that the results of the model

will mimic the predictions of these previous studies.

Similar to the examination of pollinator abundance, two simulations of the

Java model were conducted to better examine the hypotheses surrounding plant

longevity. During one simulation of the Java model, plants were characterized by

a long life span. The results of this simulation were then compared to the other

simulation in which plants were characterized by an extremely short life span.

It is hypothesized that plants with a short life span are more likely to display a

generalist pollination syndrome while plants with a long life span are more likely

to be specialists (Waser et al. [1996], Bond [1994]).

While both of the analyses described so far have examined the effect of variations

in one parameter, it is also relevant to examine how the model changes given

variations in both of these parameters. To accomplish this, four simulations were

conducted combining the two variations of pollinator abundance and the two

variations of plant longevity. In the first simulation, plants were characterized by a

short life span and the abundance of each species of pollinator was random for any
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given flowering season. For the second simulation, plants had a short life span but

the abundance of each pollinator species was constant across all seasons. In both

the third and fourth simulations, plants were characterized by a long life span with

the abundance of each pollinator species being random and constant respectively.

Although few modelling studies have been fully devoted to understanding

how the interactions among plant longevity and variation in pollinator abundance

affect the evolutionary pressures exerted on the plant, it may be possible to add

the effects of each individual parameter to predict the outcome of the model.

Consequently, I hypothesize that, during the first simulation, plants will be more

likely to become generalists since there is a correlation between both short lived

plants and random pollinator abundance to plants displaying a generalist pollination

syndrome (Ollerton [1996], Waser et al. [1996]). In the second simulation, I would

expect more plants to display specialization because, although the plants survive

across few flowering seasons, their most efficient pollinator is always present

to transfer pollen between plants. For the third simulation, I hypothesize that

generalization and specialization will be displayed in relatively equal measures

because long lived plants correlates to plants displaying a specialist pollination

syndrome while random pollinator abundance correlates to plants displaying a

generalist pollination syndrome. In the fourth simulation, I hypothesize that more

plants will display a specialist pollination syndrome because long lived plants

and constant pollinator abundance both correlate to plants displaying a specialist

pollination syndrome (Ollerton [1996], Waser et al. [1996]).

Although pollinator abundances can be random and/or constant, the abundance

of a pollinator species may also be cyclic. To examine the effects of cyclic pollinator

abundance on the models, five cycles for pollinator abundance in the Java model

were created. In each simulation all of the pollinator species within the model

followed the same cyclic pattern. I hypothesize that if the plants live longer than
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half of the period of any abundance cycle, then the plants will be more likely to

become specialists. If the plants live across more than half of the period, then most

of the plants will survive to reproduce during a season when the abundance of

each pollinator species is at its maximum. During this maximum abundance, the

specialist plants can take advantage of this pollinator and thus greatly increase their

reproductive success. However, it is not clear whether this large one time increase

in reproductive success will be enough to offset the decrease in reproductive fitness

during seasons in which pollinator abundance is not at its maximum.

I also hypothesize that if the plant does not survive across half of the period of the

cycle of pollinator abundance then more plants will be generalists. This hypothesis

was proposed because, in most cases, the plant will not survive to flower during a

season in which the pollinator species is highly abundant. Consequently, specialist

plants will not be guaranteed to receive the great increase in its reproductive success

during the season when the pollinator is most abundant because most plants will

not live to flower during the season of high pollinator abundance. Thus, there is

little to offset the decrease in reproductive success gained during seasons in which

pollinator abundance is not at its maximum.

To further determine if different cycles for each species of pollinator resulted in

a different frequency of generalists, the system of differential equations model used

multiple sinusoidal functions with differing amplitude and/or periods. Because

this model did not account for plant longevity, it is difficult to predict whether

specialization or generalization will be favoured. Nevertheless, although a strong

prediction cannot be made as to the outcome of the models, it will still provide data

which can be compared to the Java model to determine if the complexity of the Java

model could be simplified with a system of differential equations.

Not wanting to omit variations in pollinator efficiency from this study, a simula-

tion was conducted in which the efficiency of pollinators was varied. The simulation
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was conducted to examine the predictive power of the most efficient pollinator

principal. Consequently, the efficiency of individuals of one pollinator species

was increased while the efficiency of the individuals of all other pollinator species

was decreased. Following the reasoning of the most efficient pollinator principal

(Stebbins [1970]), it is hypothesized that the frequency of plants specializing towards

this highly efficient pollinator will be much higher compared to simulations in

which the efficiency of each pollinator is equal.

To further examine the hypothesis of the most efficient pollinator principal,

an additional simulation of the Java model was conducted. In this simulation,

the efficiency of individuals of one species of pollinator was increased as well as

the abundance of this pollinator species. Consequently, both the abundance and

the efficiency were skewed in favour of one species of pollinator. Hence, it is

hypothesized that the frequency of plants specializing towards this highly efficient

and highly abundant pollinator will be much higher compared to simulations in

which the efficiency and abundance of each pollinator was equal.



CHAPTER 2

Methods

Consider a square patch of flowering plants in the middle of a field, where all of the

flowers are the same species. Outside of this square patch of flowers are species of pollinators

that may visit and pollinate the flowers. At the beginning of each day, these pollinators

will enter the flower patch and will randomly select a flower to land on. Once landed the

pollinators proceed to remove nectar and gather pollen from the flowers. After a short

amount of time, a random pollinator moves to an adjacent flower. When the pollinator lands,

it repeats the same process of removing nectar and gathering pollen. During this process,

pollen gathered by the pollinator during its visit to the previous flower is deposited onto

the pistil of the flower it is currently occupying. After some time has passed and many

moves have occurred, all of the pollinators leave the flower patch. However, new pollinators

arrive and quickly replace those that left the patch before them. Once the day has waned, the

pollinators leave once again and the plants secrete more nectar and produce more pollen in

preparation for tomorrow’s pollinators.

The flowers remain open and receive pollinators for several days until the flowering

season ends and the flowers wilt. When the flowering season ends, a few of the plants die

from natural causes. The remaining plants, during the non-flowering season, produce seeds

from the pollen that was transferred between plants by the pollinators. These plants then set

their seeds in the spots that were left empty by the dead plants. These new plants may be

different from their parents and may specialize towards a species of pollinator or generalize

towards all species of pollinators. No matter the pollination syndrome of the plants, these

13
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newly recruited plants grow to maturity rather quickly. As soon as the next flowering

season begins, they are fully mature and ready to be pollinated. The pollinators return to the

flower patch and the cycle begins once more.

2.1 Introduction to the JavaModel

To simulate the movement of pollinators and the effect they have on the frequency of

plants displaying a generalist or specialist pollination syndrome, this model utilizes

stochastic cellular automata and agent based modelling. The model is constructed

on a square lattice where each cell represents an individual plant with a single

flower. Information regarding the flower, the effects each pollinator has on the

flower, the phenotype of the flower, and the flower’s attractiveness to each species

of pollinator is contained in multiple lattices. Cells with the same row and column

location in each lattice correspond to the same flower. This square lattice creates an

arena for pollination to occur and will henceforth be referred to as the flower patch.

Within the model, plants are characterized by the quantity of pollen and nectar

that is removed per visit by each species of pollinator. This characterization is

termed a phenotype as the underlying concept is that different floral morphologies,

resulting from the physical manifestation of the genes of the plant, result in different

quantities of nectar and pollen removed per visit for each species of pollinator.

Similarly, pollinators are characterized by the quantity of pollen and nectar removed

from each plant during a single visit. A species of pollinator is characterized by its

abundance which describes how many individuals of this species of pollinator is in

the model. A species of pollinator does not need to be one species but can represent

taxonomic groups such as bees, butterflies, birds, etc.
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2.2 Overview of the JavaModel

The Java model uses a quadruple nested cycle in which movement periods are

contained in days, which are contained in seasons, which are contained within the

model (Figure 2.1). At the beginning of each model, all of the plants within the

flower patch are identical to one another. These plants display the phenotype of the

original population, which is determined by the user prior to the execution of the

model.

Figure 2.1: The hierarchical configuration of the Java model. The model is composed of seasons
which are composed of days, which are composed of movement periods, which are
composed of moves.

The deepest cycle within the model is the movement period. At the beginning of

each movement period, pollinators are randomly placed in the flower patch. Once

placed, the pollinators move among the flowers and then leave the flower patch.

A movement period is described by the number of aggregate moves pollinators

can make. For example, a movement period of 20 describes a movement period in

which 20 pollinator movements occur (this is not the same as each pollinator moving

20 times). When a pollinator moves, it transfers pollen grains from the flower it

was on to the next visited flower. This transfer of pollen grains provides a ”fitness”

increase to both plants. Fitness in the model is referred to as the total number of

pollen grains transferred or received. Both plants accrue a fitness increase because,

upon delivery of the pollen to the next flower, pollen grains and eggs meet and

form seeds that contain the genetic information from both plants. Pollinators also
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remove nectar from each flower, without immediate replenishment, which is seen

as a cost of pollination.

A day cycle contains multiple movement periods and is described by the number

of movement periods contained within each day. At the end of a day, the amount of

pollen and/or nectar is refreshed for each flower. The user determines if both pollen

and nectar is refreshed or if only one is refreshed. This element of the model reflects

the ability of plants to replenish their pollen and nectar throughout a flowering

season. Although some plants may replenish pollen and/or nectar constantly during

a day, this model amasses this continuous replenishment into a single replenishment

occurrence.

Seasons contain multiple day cycles and are described by the number of days in a

season. At the end of each season, plants die or survive. Each of the surviving plants

has the ability to recruit a new plant which will replace the lost plants. However, the

probability of any plant recruiting a new plant is dependent on their fitness accrued

through the transfer or acquisition of pollen grains. Only one plant is chosen as the

parent plant even though the model requires pollen to be transferred or received to

have a probability of recruiting a new plant.

The newly recruited plants can display the same phenotype (recall that phenotype

is used to refer to the amount of nectar and pollen removed by each species of

pollinator for a given plant) or a different phenotype as its parent. Different

phenotypes arise from mutations which result in different floral morphologies for

the newly recruited plant. The mutations within the newly recruited plants may

also result in the plant developing a generalist or specialist pollination syndrome.

A specialist or generalist pollination syndrome is the result of mutations which

reflect the key aspects of each syndrome. A plant displaying a specialist syndrome

will have more pollen and nectar removed per visit by the species of pollinator it

is specializing towards compared to the species it is not specializing towards. In
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contrast, a plant displaying a generalist pollination syndrome will have relatively

equal amounts of pollen and nectar removed no matter the pollinator species that

visits the flower.

After each newly recruited plant has been placed in the flower patch, the quantity

of plants displaying the phenotype of the original population, a generalist pollination

syndrome, and any of the specialist pollination syndromes within the flower patch

is recorded (Figure 2.2). Within the model, each pollination syndrome is denoted by

a specific number. The value -1 represents plants displaying a generalist pollination

syndrome. Plants displaying the phenotype of the original population are given

a 0. For a simulation with three polinator species, plants displaying a specialist

pollination syndrome are given a 1, 2, or 3, corresponding to the species they are

specializing towards. In this way, it is possible to perfectly record the changes in

the quantity of each pollination syndrome over the course of the model.

Figure 2.2: An example output of a simulation which contains a 7 by 7 flower patch and 3
pollinators. Notice the changes in plants displaying each pollination syndrome.

The quantity of each pollination syndrome can be used to determine the frequency

of each syndrome during any given season. This information is then used to create
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a running total and running average for the last several seasons in the model.

The number of seasons to be included in the running total and running average

is determined by the user. The frequency of each pollination syndrome during

each season can also be displayed so that a connected scatter plot displaying the

frequency changes of each pollination syndrome (Figure 2.3) can be created.

Figure 2.3: A connected scatter plot displaying the change in frequency of each pollination
syndrome. This example uses a 7 by 7 flower patch and contains 3 pollinator species.

This model was designed as a framework to simulate the evolution of plant

pollination syndromes in a variety of different communities of flowering plants and

species of pollinators. Consequently, many parameters are set by the user prior to

the execution of the model. This allows for the customization of many factors that

characterize both the pollinators and plants.

2.2.1 Initial Set Up of the JavaModel

Before the model can be executed, the user is required to input specific information.

The information required from the user will determine the size of the matrix, the

abundance of each pollinator species (which is the number of individuals of each

species of pollinator), the initial quantity of pollen and nectar removed per visit

for each species of pollinator, the rate of seasonal deaths in the plants, the rate of
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mutation in newly recruited plants, whether nectar and/or pollen is replenished in

the plants at the end of day, the number of moves in a movement period, the number

of movement periods in a day, the number of days in a season, the number of

seasons in a simulation, and the number of simulations desired. Once all necessary

information has been input, the simulation will begin.

2.2.2 Movement Periods

At the start of a movement period, pollinators are placed on the flower patch.

Placement occurs in order of the pollinator species number. Thus, pollinator

species 1 is placed onto the flower patch first. Placement occurs at random, where

each plant has the same probability of receiving a pollinator. Once all of the

individual pollinators of pollinator species 1 have been placed on the flower patch,

the individuals of the next pollinator species are added. This process repeats until

all individual pollinators are placed onto the flower patch. Individuals were placed

at random because the model assumed that the pollinators visiting the flower patch

were new visitors or that the individuals did not remember the most rewarding

flower. Consequently, each individual pollinator chooses a flower at random.

Once the pollinators have been placed, a single pollinator is selected at random

from all of the pollinators present. This pollinator will then move to an adjacent

plant, defined as all of the plants immediately surrounding the plant the pollinator

is currently on. Since this model uses a square matrix that does not wrap in any

direction, there are three distinct cases determining the number of adjacent plants

(Figure 2.4). Flowers in the corner of the flower patch have three adjacent flowers,

flowers on the edges have five adjacent flowers, and flowers in the "middle" (not an

edge or corner flower) have eight adjacent flowers. Thus, the number of "moves"

available to the pollinator varies depending on the location of the flower it is

currently on. Another limit to the movement of a pollinator is the presence of
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Figure 2.4: The location of the flower a pollinator is on can affect the number of available "moves".
A pollinator in the corner (1) will only have three possible moves. A pollinator on the
edge (2) will have five possible moves. A pollinator which is not on the edge or corner
(3) will have eight possible moves.

a pollinator. Pollinators have rarely been shown to displace a pollinator that is

already present on a flower and so a pollinator cannot move to another flower that

already has a pollinator present. If all surrounding cells have a pollinator on them,

the selected pollinator loses its movement option and another pollinator is chosen

to move. This was done to ensure that pollinators could only travel a specified

distance.

The plant the pollinator moves to is dependent on the amount of nectar the

pollinator will receive from each flower as well as the pollination syndrome of

the flower. The amount of nectar removed by the pollinator provides the initial

probabilities that the pollinator will move to that flower. The pollination syndromes

then multiply this probability which either increases, decreases, or maintains the

initial probability. If the plant is specializing towards the selected pollinator, the

plants probability of receiving the pollinator is doubled. If the plant is a generalist

or displays the phenotype of the original population there is no change to its

probability. If however, the plant is specializing, but not towards this pollinator

species, its probability of receiving the pollinator is halved. As with all probabilities,

the highest probability does not guarantee that the pollinator will move to that

flower, but gives the plant the best chance to receive the pollinator.
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The variation in the multiplication values is a reflection of the floral morphology

displayed by the plants in accordance with their pollination syndrome. A plant that

is specializing towards a given pollinator will most likely have a floral morphology

that entices this specific pollinator to visit it more often. In contrast, a specialist

plant will probably have a flower morphology that will not entice those species of

pollinators which the flower is not specializing towards. A generalist pollination

syndrome does not commonly attract specific pollinators. Instead generalist plants

mainly display floral morphologies which attracts many species of pollinators.

Once a destination for the pollinator has been chosen, the pollinator proceeds to

move from the flower it is currently on (the source flower) to the chosen flower (the

receiver flower). When the pollinator arrives at the next flower, it removes a certain

amount of nectar and pollen from the receiver flower. This decreases the remaining

pollen and nectar in the receiver flower. The amount removed is dependent on the

species of pollinator and the phenotype of the plant. Recall that the phenotype

of the plant describes how much pollen and nectar is removed per visit by each

species of pollinator. If there is no nectar in the flower, then the pollinator will only

remove half of the amount of pollen it would normally remove. This is indicative of

a shorter foraging time due to the absence of a nectar reward.

The movement of the pollinator also transfers pollen from the source flower to

the receiver flower. This increases the fitness of the source flower because the pollen

has been transferred to a conspecific. Similarly, the receiver flower receives a fitness

increase because it receives pollen from a conspecific. The fitness increase to both

flowers is directly related to the amount of pollen removed by the pollinator. This

completes a movement.

After a specified number of aggregate moves, each pollinator is removed from

the flower patch. As each pollinator leaves, they decrease the amount of pollen and

nectar at their respective flowers. Again, the amount decreased is dependent on the
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species of pollinator and the phenotype of the plant. However, there is no fitness

increase because the pollinators are leaving the system and, once left, it cannot be

guaranteed that these pollinator will transfer pollen to another conspecific. This

aspect was included to account for the fact that pollinators will not forage for an

infinite amount of time. Consequently, pollinators will leave the flower patch taking

nectar and pollen without transferring the pollen to another plant.

2.2.3 Days

Days are composed of a specified number of movement periods. After a specified

number of movement periods have occurred, the amount of pollen and nectar, in

plants that have been visited by a pollinator, has been reduced. This cycle refreshes

the amount of pollen and/or nectar to original levels in each plant. The inclusion of

a replenishment of pollen and nectar is an attempt to reflect the ability of plants

to produce more nectar and pollen. Although plants may continuously produce

nectar and or pollen, this model accumulates this continuous production into one

replenishment at the end of each day.

Note: Days do not necessarily represent 24 hours. Instead, they represent the

frequency of pollen and or nectar replenishment in the plants.

2.2.4 Seasons

After a specific number of days have transpired, a season ends. At the end of a

season, a specified number of plants are selected at random to die. These plants

are removed from the flower patch and all relevant information regarding the dead

plants are removed. These dead plants are replaced through recruitment, where

each surviving plant has a probability of recruiting a new plant. However, each

plant may only recruit one new plant. The number of recruited plants is equal to the
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number of deaths, thus maintaining the overall population. The probability of any

specific plant recruiting a new plant is based on its fitness accrued by receiving and

transferring pollen grains. While the plant with the highest fitness is not guaranteed

to recruit a new plant, it is most likely to recruit a new plant.

Prior to the placement of the newly recruited plants, the phenotype of each

newly recruited plant is determined. Although in nature, genes are the inherited

element, this model omits genes and instead focuses on the physical manifestation

of these genes. The newly recruited plants can either inherit the same phenotype as

their parent plant or can mutate. The rate of mutation is set by the user, prior to the

execution of the model. If the newly recruited plant does not display a mutation

then it inherits the same phenotype as its parent plant. While in nature it takes

two parent plants to produce an outcrossed plant, the model only considers one

plant to be the parent in order to reduce the complexity of inheritance. Recall that

phenotypes describe the quantity of pollen and nectar removed per visit by each

species of pollinator for a given flower. Thus, if the newly recruited plant has the

same phenotype as its parent, then no matter the pollinator that visits the newly

recruited plant, the same quantity of nectar and pollen are removed as would be

removed had the pollinator visited the parent plant. If the newly recruited plant

displays a mutation then this will cause a change in the phenotype of the plant.

The phenotypic inheritance of a newly recruited plant is dependent on the

phenotype and pollination syndrome of the parent plant. There are three cases of

phenotypic inheritance for the newly recruited plants; plants whose parent displays

the phenotype of the original population, plants whose parent displays a generalist

pollination syndrome, and plants whose parent displays a specialist pollination

syndrome. No matter the parental phenotype and pollination syndrome, a mutation

will result in a change in the pollination syndrome displayed by the newly recruited

plant or a strengthening of the pollination syndrome displayed by the parent.
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If the parent of the newly recruited plant displays the phenotype of the original

population and the newly recruited plant displays a mutation, then a pollination

syndrome (generalist or specialist) is determined for the plant. It is true, that

in nature, a phenotype is not ”determined”, however, the model works under

the assumption that a mutation will manifest itself in a floral morphology that is

characteristic of a certain pollination syndrome. A mutation will cause any of the

possible pollination syndromes with equal probability. The number of pollination

syndromes allowed within the model is equal to one more than the number of

pollinators present. This is because there is a specialist pollination syndrome that is

specializing towards each species of pollinator as well as a generalist pollination

syndrome. If, for example, there are three syndromes, generalist, specialist towards

pollinator species 1, and specialist towards pollinator species 2, then there is a

33.333% probability of the newly recruited plant displaying any one of the three

syndromes (Figure 2.5). If the newly recruited plant does not display a mutation

then it will display the same phenotype, and thus have the same pollen and nectar

removal rate for each species of pollinator as the original population.

Figure 2.5: How mutations in the original population can cause the emergence of new pollination
syndrome. This example is shown with a 50% mutation rate and three pollination
syndromes. Each syndrome has the same probability of emerging.

If the parent of a newly recruited plant displays a generalist or specialist

pollination syndrome then the newly recruited plant will strengthen the pollination
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syndrome of its parent or will maintain the same phenotype as its parent (Figure

2.6). If the recruited plant does not display a mutation then it will display the

same phenotype as its parent plant. If the plant displays a mutation, then this

mutation will manifest itself through the strengthening of the pollination syndrome

of the plant. The mutation is presumed to alter the flower morphology of the plant

such that it alters the quantities of pollen and nectar removed for each species of

pollinator in a way that reflects the pollination syndrome being displayed.

Figure 2.6: The effects of mutations in newly recruited plants whose parents do not display the
phenotype of the original population. A mutation will cause a furthering of the
pollination syndrome while an absence of mutations will cause the recruited plant to
maintain the same phenotype as the parent.

No matter the parental phenotype, the mutations in a newly recruited plant

whose parent displayed a generalist pollination syndrome always follow the same

guidelines. The mutations will bring the nectar and removal rates of each species of

pollinator to the mean nectar and pollen removal rate of all species of pollinators for

that plant. If the pollen removal for an individual species of pollinator is lower than

the mean pollen removal, there is a 50% chance that the amount of pollen removed

per visit will increase (in increments of one) and a 50% chance that it will remain
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the same. If the nectar removal for an individual species of pollinator is lower than

the mean nectar removal, it follows the same set of rules. If the pollen or nectar

removal is above the mean pollen or nectar removal, then there is a 50% chance that

the amount of pollen or nectar removed per visit is reduced (in increments of one)

and a 50% chance of remaining the same. If the pollen or nectar removal is the same

as the mean, the removal rates do not change (Figure 2.7).

Figure 2.7: The possible results of mutations in a newly recruited plant whose parent displayed a
generalist pollination syndrome. In this example, the average pollen and/or nectar
removal rate for the parent plant is 4. The newly recruited plant will display a different
phenotype from its parent as determined by the rate of mutation and the parental
phenotype. In this example, the mutation rate is 50%.

The mutations in a newly recruited plant, whose parent displays a specialist

pollination syndrome, will follow the same guidelines regardless of the species

of pollinator being specialized towards. The mutations of a specialist pollination

syndrome, rather than bringing the amount of pollen and nectar removed per visit

for each pollinator species towards the average, increase the amount of pollen and

nectar removed for one species of pollinator. The specialist pollination syndrome is

said to be specializing towards the species which has its pollen and nectar removal

rate per visit increased by the mutations. However, as there can be multiple species

of pollinators, mutations will decrease the quantity of pollen and nectar removed
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per visit for each of the species not being specialized towards. This is a result of

specialization towards one species of pollinator.

For the species being specialized towards, there is a 75% chance that the amount

of pollen removed per visit will increase (in increments of one) and a 25% chance

that the amount of pollen removed per visit will remain the same (Figure 2.8).

The amount of pollen removed per visit increases because this is indicative of a

floral morphology which increases the amount of pollen gathered by the pollinator.

Conversely, there is a 25% chance that the amount of nectar removed per visit will

increase (in increments of one) and a 75% chance that the quantity will remain

the same (Figure 2.9). This slower increase in nectar removal per visit reflects the

tradeoff between the plant increasing its attraction to the pollinator and increasing

the calories required to provide more nectar.

Figure 2.8: The possible mutations to the quantity of pollen removed per visit for a newly recruited
plant displaying a mutation and whose parent displays a specialization pollination
syndrome. The parent of this plant is specializing towards pollinator species 1.

For the other species of pollinators that the plant is not specializing towards,

there is a 25% chance that the quantity of pollen and nectar removed per visit will

decrease (in increments of one) and a 75% that the quantity of pollen and nectar

removed per visit will remain the same (Figures 2.8 and 2.9). The amount of pollen

and nectar removed per visit can only be depressed to one. If the quantity of nectar

and pollen removed per visit is already at one, any mutations that cause a decrease

in the quantity of nectar and pollen removed per visit will not change the quantity
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removed per visit. The mutations for the nectar and pollen removal of the species

of pollinator that the plant is not specializing towards represents the decrease in

plant attractiveness and decrease in pollinator ”fit” in the flower due to the floral

morphology displayed by the plant.

Figure 2.9: The possible mutations of pollinator nectar removal for a newly recruited plant
displaying a mutation and whose parent displays a specialization pollination syndrome.
The parent of this plant is specializing towards pollinator species 1.

Once the pollination syndromes and the phenotypes of the plants have been

determined for the newly recruited plants, these plants are randomly placed in

the empty cells left by the dead plants. After the placement of the newly recruited

plants, the nectar and pollen are refreshed to initial levels for each plant. The fitness

of each plant is reduced to zero as there is no fitness carryover between seasons.

This action completes a season and the process repeats with a new season beginning.

2.2.5 Assumptions

In any model, a set of assumptions must be made in order to simplify the immense

complexity of nature. The following list describes important assumptions that have

been made in the Java model.
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1. Pollinators move among flowers

2. Pollinators remove nectar and pollen from flowers

3. Pollinators transfer pollen to the next flower they visit

4. Plants receive a fitness increase after a pollinator has transferred their pollen

5. Plants receive a fitness increase after receiving pollen

6. The probability of a plant receiving a pollinator is dependent on the plants
pollination syndrome and the nectar removal rate of the pollinator

7. Pollinators forage for a finite amount of time

8. The amount of pollen and nectar in each flower may be replenished

9. Plants die at the end of each season

10. Plants may recruit one new plant

11. The probability of a plant recruiting a new plant is based on its fitness

12. Two plants are required to produce an outcrossed plant, however only one
plant is considered to be the parent

13. Recruited plants may display a mutation or maintain the same phenotype as
its parent

14. A mutation can cause a newly recruited plant to display a new phenotype and
can cause the plant to display a new pollination syndrome

15. There are a finite number of pollination syndromes: generalists or specialist
towards a single pollinator species

16. Generalist plants maintain a floral morphology that averages the pollen and
nectar removed per visit for all species of pollinators

17. Specialist plants display a floral morphology that increases the pollen and
nectar removed per visit for the species of pollinator that is being specialized
towards

18. The floral morphology of a specialist plant decreases the pollen and nectar
removed per visit for each pollinator species that is not being specialized
towards

19. Pollination syndromes are unidirectional; for example, a newly recruited plant
whose parent displays a generalist pollination syndrome cannot display a
specialist pollination
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2.3 Analysis of the JavaModel

Multiple simulations of the Java model were conducted to examine the changes

in the outcome of the model as a result of parameter variations that reflect certain

natural conditions. Although many parameters were varied across the different

simulations, other parameters remained stable. These stable parameters describe

the aspects of a natural plant-pollinator system that are unlikely to change over

the time frame of the model. The parameters that remained constant throughout

each analysis are shown in Table 2.1. Other parameters, while varying across some

simulations, nevertheless, remained constant across multiple simulations (Table 2.2).

When any of the parameters in Table 2.2 were varied for a simulation, the section

will indicate which parameters were varied and the new value of each parameter.

Seasons within a model 500
Days within a season 4
Movement periods within a day 3
Moves in a movement period 25
Size of the flower patch 7 by 7 (49 plants)
Mutation rate 50% of newly recruited plants
Pollen per flower at the start of a day 50 pollen grains
Nectar per flower at the start of a day 75 units of nectar

Table 2.1: These are the parameters of the Java model that remained constant during all simulations
of the Java model.

For the analysis of each simulation, the outcome of the model was obtained

by recording the frequency of the generalist and specialist pollination syndromes

in relation to each other at the end of each season. The population of plants

displaying the phenotype of the original population was not included in this

frequency measurement. The frequency of each syndrome within the last 20 seasons

of the model was then used to create a running average of the frequencies for each

syndrome. The model was run 50 times for each simulation and thus 50 running
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Number of deaths per season 6 plants
Abundance of pollinator species 1 10
Initial pollen removal per visit of pollinator species 1 3
Initial nectar removal per visit of pollinator species 1 4
Abundance of pollinator species 2 10
Initial pollen removal per visit of pollinator species 2 3
Initial nectar removal per visit of pollinator species 2 4

Table 2.2: These are the values of the parameters of the Java model that remained constant during
some simulations of the Java model. If any of these parameters were varied, this will be
indicated in the relevant section.

averages were obtained. The mean and standard deviation of these 50 running

averages produced a final average for the frequency of each syndrome. This final

average of the frequency of each syndrome was recorded as the output of the model.

Rather than use the frequency of each syndrome within the last season of the

model, this technique allowed the output to be moderately resistant to the stochastic

processes inherent in the model. Also, during multiple practice executions of the

model, it was noticed that the between-model variation could be quite large. As

such, executing the model 50 times and averaging the running average allowed for

an output that could resist the large fluctuations in the outcome of the model.

2.3.1 Variations of Pollinator Abundance in the JavaModel

For this analysis, two simulations were conducted. During the first simulation, the

pollinator abundance during any given season was random. The abundance for

each pollinator species was randomly selected at the beginning of each season and

remained constant throughout that season. The random number could be any integer

between and including 1 and 14 with equal probability. The second simulation

maintained a constant pollinator abundance across seasons. The abundance for

each pollinator species was set at 10 and did not vary during any season. For both

simulations, all other parameters maintained the values shown in Tables 2.1 and 2.2.
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The outcomes of these simulations were recorded and a two-tailed t-test was

conducted. The one tailed t-test compared the frequency of generalist plants between

the two simulations. The frequency of generalist plants was compared because

the frequency of specialist plants, without considering which pollinator species

they were specializing towards, could be found by subtracting the frequency of the

plants displaying the generalist pollination syndrome from one. Thus, comparing

the frequency of generalists also informs us of the changes in the frequency of

specialists, without considering which species they were specializing towards.

2.3.2 Variations of Plant Longevity in the JavaModel

Similar to the above analysis of pollinator abundance, this analysis was conducted

using two simulations. During the first simulation, the number of plant deaths

at the end of a season was set to two. Consequently, the plants had an average

life span of approximately 25 (49
2 = 24.5) seasons which created a simulation in

which plants had a long life span. For the second simulation, the number of plant

deaths per season was set to 16. Thus, the plants had an average life span of about

three ( 49
16 = 3.0625) seasons which created a simulation in which plants had a short

life span. The outcomes of these simulations were compared with a one-tailed

t-test using the average frequency of the plants displaying a generalist pollination

syndrome.

2.3.3 Variations in Pollinator Abundance and Plant Longevity

in the JavaModel

This analysis combines variations of pollinator abundance with variations in plant

longevity resulting in four simulations. During the first simulation, the abundance

of pollinators was random during any given season. Pollination abundance could
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take any number between and including 1 and 14 with equal probability and was

chosen independently for each pollinator species. The random number range did

not include numbers after 14 because if, by chance, both pollinator species had

an abundance of greater than 14, then there would be more than 28 pollinators in

the model. Consequently, a model with more than 28 pollinators will have less

than 21 empty flowers which could hinder the movement of pollinators to the

point of inaccuracy. During the second simulation, pollinator abundances were

kept constant with an abundance of 10 for each species of pollinator. Both of these

simulations had plants that were characterized by a short life span and hence the

number of plant deaths per seasons was maintained at 16. These simulations were

compared using a one-tailed t-test that compared the average frequency of plants

displaying a generalist pollination syndrome.

The third and fourth simulations followed the same pollinator abundance design

as above, but contained plants which were long lived. Consequently, the number of

plant deaths per seasons was set to two which is characteristic of long lived plants.

The outcomes of these two simulations were compared using a two-tailed t-test

comparing the average frequency of the plants displaying a generalist pollination

syndrome.

2.3.4 Skewed Pollinator Efficiency and/or Abundance

Two analyses were conducted to examine the most efficient pollinator principal. The

first analysis compares the outcome of simulations in which the efficiency of one

pollinator species was increased, while the efficiency of the other pollinator species

was decreased. The efficiency of pollinator species 1 was increased by setting the

initial pollen removal to seven and initial nectar removal to four. The efficiency

of pollinator species 2 was the decreased by setting the initial pollen removal to

two and the initial nectar removal to three. All other parameters remained as
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described in Tables 2.1 and 2.2. The frequency of specialist plants specializing

towards pollinator species 1 of this simulation was compared to the frequency of

specialist plants specializing towards pollinator species 1 of a simulation in which

all parameters were maintained at the values described in Tables 2.1 and 2.2 using a

two-tailed t-test.

The second analysis examines the outcome of simulations in which both the

efficiency and abundance of one pollinator species was increased, while the efficiency

and abundance of the other pollinator species was decreased. The efficiency of

both pollinator species was set to the values described in the paragraph above.

However, the abundance of pollinator species 1 was set to 16 while the abundance of

pollinator species 2 was set to four. All other parameters remained as described in

Tables 2.1 and 2.2. The frequency of specialist plants specializing towards pollinator

species 1 of this simulation was compared to the frequency of specialist plants

specializing towards pollinator species 1 of a simulation in which all parameters

were maintained at the values described in Tables 2.1 and 2.2 using a two-tailed

t-test.

2.3.5 Cyclic Pollinator Abundance in the JavaModel

Whereas the simulations prior to this section examined either random or constant

pollinator abundance, this simulation was conducted to examine the outcomes of

the model when pollinator abundance followed a cyclic pattern. The abundance

of pollinators, although varying between seasons, follows the same pattern for the

duration of the model. Consequently, it is possible to predict the abundance for each

pollinator species during any given season even though it varies across seasons.

There were five cycles created for this analysis and each is described in Table

2.3 and shown in Figure 2.10. All other parameters were maintained at the values

shown in Tables 2.1 and 2.2. Since the number of plant deaths per season was set to
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six, the average longevity of the plants within each model is approximately eight

( 49
6 = 8.166) seasons. With this lifespan, only during Cycle 1 and Cycle 3 do the

plants generally survive through a season of peak pollinator abundance. During all

other cycles, there is no guarantee that the plants will survive across a season with

peak pollinator abundance. This concept is demonstrated in Figure 2.10 by the red

line.

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5
3 3 2 3 3
5 3 7 5 3
8 4 13 7 5

11 5 7 9 5
13 6 2 7 8
13 7 5 8
11 9 7 11
8 12 9 11
5 14 12 13
3 15 14 13

14 14 13
12 12 11
9 9 11
7 7 8
6 5 8
5 7 5
4 9 5
3 7 3
3 5 3

3

Table 2.3: These are the five cycles of pollinator abundance used to analyze how cyclic pollinator
abundance alters the outcome of the model. The abundance of both pollinator species
was described using these cycles. Each cycle has a different period length and the
abundance of both pollinator species for one full period of each cycle is shown above.

The effects of cyclic pollinator abundance on the outcome of the model were

examined using the average frequency of generalist plants. These averages were

compared using a single factor ANOVA to measure the difference among the

simulations with the five different pollinator abundance cycles.
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(a) Pollinator Abundance Cycle 1 (b) Pollinator Abundance Cycle 2

(c) Pollinator Abundance Cycle 3 (d) Pollinator Abundance Cycle 4

(e) Pollinator Abundance Cycle 5

Figure 2.10: These graphs depict the abundance of both pollinator species across 20 seasons. The
red line in each graph is the average lifespan of the plants within the model.

2.3.6 Sensitivity Analysis of the JavaModel

A one at a time sensitivity analysis is conducted by first running an initial model with

a random set of initial conditions for each of the seven parameters in Table 2.2. Each

of the parameters selected for variation have a different range of values allowed by

the model’s design. As part of this one at a time process, each parameter is increased

by a certain value during each successive simulation. Hence, it is important to

ensure that the increase for each parameter does not force the parameter to exceed

its allowed value. Consequently, when selecting the initial value for each parameter,

the range of the random number was equal to the range of values allowed minus

the change in value for each parameter (Table 2.4).
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After the initial parameters are randomly selected, a Java model is executed

with the given initial values for each parameter. The mean of the running average

of the frequency of the plants displaying a generalist pollination syndrome in the

last 20 seasons of 50 simulations was used as the output for this analysis. The

frequency of the plants displaying a generalist pollination syndrome is used as the

output because this analysis was examining the sensitivity of the model and did not

need to output the exact frequency of plants specializing towards a given pollinator.

Instead, it was to examine the frequency of plants that were displaying a generalist

or specialist pollination syndrome. As such, because there is only one generalist

pollination syndrome in the model (there can be multiple specialist pollination

syndromes depending on the number of pollinator species in the model), one can

obtain the frequency of specialist plants, without regards for which species is being

specialized towards, by subtracting the frequency of plant displaying a generalist

pollination syndrome from 1. Using a running average of the last 20 seasons, as

well as finding the mean of this running average over 50 simulations, allowed the

output to withstand the large amount of stochasticity inherent in the Java model

Once the output for the initial simulation is received, the simulation is executed

again with the same initial conditions, but with the first parameter changed by a

given amount. The output of this simulation, referred to as simulation 1, is obtained

and the amount of change in the first parameter is recorded. The output from

the initial model is subtracted from the output of simulation 1 and the resulting

difference is divided by the amount of change in the first parameter.

Rather than repeat this same process for each variable, which would result in

2 · p model simulations (where p is the number of parameters to be varied), this

system uses the output of simulation 1, where only the first parameter was changed,

as the initial simulation for simulation 2 where the second parameter is changed.

Thus, in the second simulation, both the first and second parameters are changed
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but the difference is measured between simulation 2 and simulation 1. This process

repeats itself and the outcome of the model where parameter one and two are varied

becomes the initial run for the model run where parameter three is varied. This

process continues for each parameter that is being varied and ends when all of the

parameters have been varied once. This type of one at a time sensitivity analysis

results in a significant decrease in the number of simulations where the number of

required simulations is p + 1 instead of 2 · p. Hence, for the seven parameters used

in this one at a time sensitivity analysis, only eight simulations are required rather

than 14.

After all of the parameters have been varied once, one complete run of the

one at a time sensitivity analysis is completed. This provides one datum point for

each of the seven parameters. Consequently, multiple runs of the one at a time

sensitivity analysis are conducted to receive as many data points for each parameter

as desired. The one at a time sensitivity analysis is conducted a total of 25 times for

this analysis. Once all the runs are completed, the mean and standard deviation of

each parameter is calculated. The mean represents the importance of the parameter

to the model (meaning the model is highly sensitive to changes in this parameter).

The standard deviation describes the effects of the parameter on the model. If

the standard deviation is high then it illustrates that the given parameter strongly

interacts among other parameters or that the effects of the parameters are nonlinear.

A small standard deviation indicates that the effects of the parameter are linear or

that there is little to no interaction among other parameters.

2.3.7 Step-By-Step Description of the One at a Time Sensitivity

Analysis of the JavaModel

This example illustrates how the analysis was conducted for the Java model, but

does so in a general description. An example with numbers, rather than variables,
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is presented in the following section, section 2.3.8. In this example, there are seven

parameters being varied. The initial values for each parameter are arrayed in a

vector referred to as ~x0. The vector, ~x0 = (x1, x2, x3, x4, x5, x6, x7), where xn refers to

the initial value of the nth parameter.

The function M(~xn) is referred to as the model function which takes the values of

the parameters in ~xn and produces an output of the model On. Thus, On represents

the model output given a set of parameters.

The initial output is received by

M(~x0) = M((x1, x2, x3, x4, x5, x6, x7)) = O0.

Simulation 1 uses vector ~x1 where ~x1 = (x1 + ∆1, x2, x3, x4, x5, x6, x7). The value ∆1

is the change in the value of parameter 1. In this case, the value of ∆1 = 2 when x1

refers to the population of pollinator species. The second output, O1, is obtain by

M(~x1) = M((x1 + ∆1, x2, x3, x4, x5, x6, x7)) = O1.

Now that the values of O0 and O1 are obtained, the change in the outcomes can

be measured. To do this, simply divide the difference of the two outputs by ∆1.

Thus, obtaining a measure of change, C1, for parameter x1 by

O1 −O0

∆1
=

M((x1 + ∆1, x2, x3, x4, x5, x6, x7)) −M((x1, x2, x3, x4, x5, x6, x7))
∆1

= C1.

The resulting quotient is then recorded and this represents one data point for

the sensitivity of the Java model to changes in parameter x1.

As mentioned earlier, rather than repeat this same process for each parameter,

wherein the model would have to be executed twice per parameter, we instead use

the output of simulation 1, O1, as the initial output for simulation 2. Consequently,
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simulation 2 uses the vector ~x2 where ~x2 = (x1 + ∆1, x2 + ∆2, x3, x4, x5, x6, x7). Notice

that this vector has both ∆1 and ∆2. This is because the initial simulation uses

~x1 = (x1 + ∆1, x2, x3, x4, x5, x6, x7) to produce the initial output for simulation 2. In

order to obtain a point of data for the sensitivity of the Java model to changes in

parameter x2, we simply repeat the same process as above, but substitute O2 for O1,

O1 for O0, and ∆2 for ∆1 as the divisor. Thus we obtain,

O2 −O1

∆2
=

M((x1 + ∆1, x2 + ∆2, x3, x4, x5, x6, x7)) −M((x1 + ∆1, x2, x3, x4, x5, x6, x7))
∆2

= C2.

For each of the remaining parameters, this same process is repeated until all

parameters have been varied once. Thus, in this example, the process continues

until obtaining

O7 −O6

∆7
= C7.

After all of the parameters have been varied once, the first iteration of the one at

a time sensitivity analysis is complete.

2.3.8 An Example of a One at a Time Sensitivity Analysis Run of

the JavaModel

Below is an example of one full run (varying the seven parameters of the Java model

that have been selected for analysis) of the one at a time sensitivity analysis; it

illustrates exactly how the analysis was conducted for the Java model. Table 2.4

describes the variables selected for change, their assigned variable names, the range

of values allowed for each parameter, the change in each parameter during any
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given sensitivity analysis run, and the range of random numbers used to select the

initial values.

Parameter to be Varied Variable
Name

Range of
Allowed
Values

Change in
Value

Random
Number
Range

Population of Pollinator
Species 1

x1 1 to 12 2 1 to 10

Nectar Removal for Pollina-
tor Species 1

x2 1 to 5 1 1 to 4

Pollen Removal for Pollina-
tor Species 1

x3 1 to 5 1 1 to 4

Population of Pollinator
Species 2

x4 1 to 12 2 1 to 10

Nectar Removal for Pollina-
tor Species 2

x5 1 to 5 1 1 to 4

Pollen Removal for Pollina-
tor Species 2

x6 1 to 5 1 1 to 4

Plant Deaths Per Season x7 1 to 16 2 1 to 14

Table 2.4: Displayed are the seven variables selected for sensitivity analysis, their variable name, the
allowed range of values as determined by the model, the change in value as set by the
researcher, and the random number range for each parameter.

Prior to the initial simulation of a one at a time sensitivity analysis, the initial

values of the seven parameters in Table 2.4 are randomly selected. The initial values

for each of the seven parameters are

~x0 = (5, 3, 3, 4, 4, 4, 2).

From here, the same process, as outlined in section 2.3.7, is followed and each

∆n is selected from the change in values column of Table 2.4.

M(~x0) = M((5, 3, 3, 4, 4, 4, 2)) = 0.39925
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M(~x1) = M((5 + 2, 3, 3, 4, 4, 4, 2)) = M((7, 3, 3, 4, 4, 4, 2)) = 0.3395 = O1

O1 −O0

1
=

0.39925 − 0.3395
2

= −0.029875 = C1

M(~x2) = M((7, 3 + 1, 3, 4, 4, 4, 2)) = M((7, 4, 3, 4, 4, 4, 2)) = 0.4062 = O2

O2 −O1

1
= 0.4062 − 0.3395 = 0.0667 = C2

M(~x3) = M((7, 4, 3 + 1, 4, 4, 4, 2)) = M((7, 4, 4, 4, 4, 4, 2)) = 0.3804 = O3

O3 −O2

1
= 0.3804 − 0.4062 = −0.0258 = C3

M(~x4) = M((7, 4, 4, 4 + 2, 4, 4, 2)) = M((7, 4, 4, 6, 4, 4, 2)) = 0.3541 = O4

O4 −O3

2
=

0.3541 − 0.3804
2

= −0.0262 = C4

M(~x5) = M((7, 4, 4, 6, 4 + 1, 4, 2)) = M((7, 4, 4, 6, 5, 4, 2)) = 0.3625 = O5
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O5 −O4

1
= 0.3625 − 0.3541 = 0.0084 = C5

M(~x6) = M((7, 4, 4, 6, 5, 4 + 1, 2)) = M((7, 4, 4, 6, 5, 5, 2)) = 0.2763 = O6

O6 −O5

1
= 0.2763 − 0.3625 = −0.0431 = C6

M(~x7) = M((7, 4, 4, 6, 5, 5, 2 + 2)) = M((7, 4, 4, 6, 5, 5, 4)) = 0.3217 = O7

O7 −O6

2
=

0.3217 − 0.2763
2

= 0.0227 = C7

After each parameter has been varied once, one run of the one at a time sensitivity

analysis is complete. Consequently, one point of data, which measures the sensitivity

of the model to changes in a given parameter, is obtained. The data points are Cn

where n is the nth parameter of the model. This process was repeated an additional

24 times. Once 25 data points for each parameter are obtained, the mean and

standard deviation are found.

2.4 System of Differential EquationsModel

To simulate the change in frequency of specialists and generalists within a population

of plants, this model utilizes a system of differential equations. The models are

developed using a differential equation for the population of plants displaying

a generalist or specialist pollination syndrome(s) and includes two species of
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pollinators. Each equation takes into account the frequency of the pollination

syndrome within the total population of plants, the abundance of each pollinator

species, and each polliantion syndrome’s attractiveness towards each pollinator

species. Only two pollinator species were included in the models to simplify the

number of equations and number of parameters. It is possible to increase the

number of pollinators, but this will also increase the number of parameters and/or

the number of equations in each model.

The equations of the model were designed in such a way that our assumptions

of the nature of plant-pollinator interactions were upheld. First an equation whose

growth was dependent on frequency of the syndrome it described was needed.

If, for instance, a plant displaying a certain pollination syndrome was rare within

a population we would not expect the frequency of this syndrome to increase

in a drastic manner. Rather, we would expect the frequency to slowly increase

and gain speed as time progressed. Also, the growth or decline in the frequency

of a pollination syndrome is dependent on the abundance of pollinators within

the system. If there are no pollinators it would be expected that there would

be no change of the frequency of any pollination syndrome. Finally, the rate of

attraction of each plant pollination syndrome should alter the growth rate of the

frequency of the pollination syndrome. In accounting for the differences in the

attraction of each syndrome to a pollinator species, the equations can define a certain

generalist or specialist pollination syndrome. A generalist pollination syndrome

would have relatively equal attractiveness to each of the pollinator species. In

contrast, a specialist pollination syndrome would be much more attractive to the

species of pollinator that it is specializing towards while having a low attractiveness

towards those species of pollinators it is not specializing towards. Each of these

three concepts was incorporated into this model and are reflected in the design of

the equations.
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Two models were constructed to have both a simple and complex model. The

first model constructed uses two differential equations to describe a generalist

pollination syndrome and a specialist pollination syndrome. This model is referred

to as the two equation model and is described in section 2.4.1. The other model that

was developed uses three differential equations to describe a generalist pollination,

a specialist pollination syndrome specializing towards pollinator species 1, and

a specialist pollination syndrome specializing towards pollinator species 2. This

model is referred to as the three equation model and is described in section 2.4.2.

2.4.1 The Two EquationModel

The first model developed uses two equations to describe the relationship between

plants displaying a specialist or generalist pollination syndrome, pollinator abun-

dance, and the attractiveness of each pollination syndrome towards a species of

pollinators. The two equations represent the rate of change of a generalist and a spe-

cialist population of plants. The specialist population is, without loss of generality,

specializing towards pollinator species 1. This system of differential equation looks

at the interplay between a generalist and specialist pollination syndrome without

regards to which species of pollinator the plants displaying a specialist pollination

syndrome are specializing towards. The system is described by the following two

equations.

dx
dt

=
x

x + y
· (αx · pα + βx · pβ) (2.1)

dy
dt

=
y

x + y
· (αy · pα + βy · pβ) (2.2)

Each equation represents the change in the population of plants displaying a

specialist or generalist pollination syndrome. Equation 2.1 represents the change

in the population of plants that are displaying a specialist pollination syndrome
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and Equation 2.2 represents the change in the population of plants displaying a

generalist pollination syndrome. The first part of each equation, ( x or y
x+y ), represents

the percentage of the total population that the plants displaying a specialist or

generalist pollination syndrome represent at a given time. The second part of the

equation, (αx or y · pα + βx or y · pβ), represents the fitness gain from the pollinators as

dependent on the pollinator abundances and the attractiveness of each syndrome.

Each equation contains four constants. These constants represent the percentage

of total visits to plants displaying a given pollination syndrome by each pollinator

species and the abundance of pollinator species 1 and 2. The parameters αx or y

describe the percentage of total visits to each pollination syndrome made by

pollinator species 1. Similarly, βx or y represents the percentage of total visits to

the pollination syndromes made by pollinator species 2. As these two constants

represent percentages of a total, both numbers must sum to 1. The parameters pα

and pβ characterize the abundance of pollinator species 1 and pollinator species 2

respectively. Any of these parameters can be described by a constant or a function.

2.4.1.1 Constant ParameterModel

The variables in the system of differential equations described in section 2.4.1 were

given constant values to understand the effects of a static environment on the

outcome of the model. The value of αx was set to 0.9 and the value for βx was set

to 0.1. This was done to reflect the increased attractiveness of plants displaying

a specialist pollination syndrome towards pollinator species 1. The values of αy

and βy were set to 0.5 in order to represent a generalist plant’s relatively equal

attractiveness to both species of pollinators. The pollinator abundances were varied

to examine the effects that differing levels of pollinator population have on the

outcome of the model.

Three trials were conducted to examine the effects of variations in pollinator
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abundances. The first trial examined the outcome when pollinator species 1 was

rare and pollinator species 2 was abundant. In this simulation, the abundance

of pollinator species 1 was set to five and the abundance of pollinator species 2

was set to 35. The second simulation examined the reverse of the first. Thus, the

abundance of pollinator species 1 was set to 35 and the abundance of pollinator

species 2 was set to five. The last pollinator abundance simulation was conducted

with both pollinator species being equal in abundance and thus both abundances

were set to 20. During each of the described pollinator abundance variations, the

initial population of plants displaying a specialist syndrome and plants displaying

a generalist pollination syndrome was set to 25. This was done to ensure that all

variations in the outcome could be attributed to variation in pollinator abundances.

2.4.1.2 Cyclic ParameterModel

During this analysis, the variables describing the abundance of each pollinator

species were substituted with sine functions to understand the effects of a variable

environment on the outcome of the model. The amplitude and period of the sine

functions were varied in numerous ways to examine how the outcome of the model

would be affected given a specific amplitude and period. The initial population for

each pollinator syndrome remained constant to ensure that any variation to the

outcome of the model could be attributed to the cyclic functions. Similarly, the

values of αx, βx, αy, and βy were set to 0.9, 0.1, 0.5, and 0.5, respectively, for the same

reasons as described in the previous section.

Table 2.5 depicts the cyclic functions used to describe the abundance of each

pollinator species that have the same amplitudes but different periods. Table 2.6

depicts the cyclic functions used to describe the abundance of each pollinator species

that have the same periods but different amplitudes. Finally, 2.7 depicts the cyclic

functions used to describe the abundance of the pollinator species that have a
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different amplitude and different periods. Combinations of cycles were not repeated

in multiple analyses. Similarly, after the results of the first analysis, cycles that had

the same amplitude and period were not repeated.

Abundance of Pollinator
Species 1

Abundance of Pollinator
Species 2

pα = 10 · sin(t) + 10 pβ = 10 · sin(t/5) + 10
pα = 10 · sin(t/5) + 10 pβ = 10 · sin(t) + 10
pα = 10 · sin(t/5) + 10 pβ = 10 · sin(t/5) + 10

Table 2.5: The cyclic functions used to describe the abundance of each pollinator species. The cyclic
functions have the same amplitudes but different periods.

Abundance of Pollinator
Species 1

Abundance of Pollinator
Species 2

pα = 5 · sin(t/5) + 10 pβ = 10 · sin(t/5) + 10
pα = 10 · sin(t/5) + 10 pβ = 5 · sin(t/5) + 10

Table 2.6: The cyclic functions used to describe the abundance of each pollinator species. The cyclic
functions have different amplitudes but the same periods.

Abundance of Pollinator
Species 1

Abundance of Pollinator
Species 2

pα = 5 · sin(t) + 5 pβ = 10 · sin(t/5) + 10
pα = 5 · sin(t) + 5 pβ = 10 · sin(t) + 10
pα = 5 · sin(t) + 5 pβ = 5 · sin(t/5) + 5
pα = 5 · sin(t/5) + 5 pβ = 10 · sin(t/5) + 10
pα = 5 · sin(t/5) + 5 pβ = 10 · sin(t) + 10
pα = 5 · sin(t/5) + 5 pβ = 5 · sin(t) + 5
pα = 10 · sin(t) + 10 pβ = 5 · sin(t/5) + 5
pα = 10 · sin(t) + 10 pβ = 5 · sin(t) + 5
pα = 10 · sin(t/5) + 10 pβ = 5 · sin(t/5) + 5
pα = 10 · sin(t/5) + 10 pβ = 5 · sin(t) + 5

Table 2.7: The cyclic functions used to describe the abundance of each pollinator species. The cyclic
functions have different amplitudes and different periods.
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2.4.2 The Three EquationModel

This model uses three equations to describe the relationship between plants display-

ing a certain pollination syndrome, pollinator abundances, and the attractiveness of

each pollination syndrome towards a species of pollinator. The equations describe

the rate of change of a population of generalist plants and two populations of

specialist plants. The first plant population displaying a specialist pollination syn-

drome is specializing towards pollinator species 1 while the second plant population

displaying a specialist pollination syndrome is specializing towards pollinator

species 2. Unlike the two equation model, this model examines the outcome

of a plant-pollinator system where there are two possible specialist pollination

syndromes. This system is described by the following equations.

dx
dt

=
x

x + y + z
· (αx · pα + βx · pβ) (2.3)

dy
dt

=
y

x + y + z
· (αy · pα + βy · pβ) (2.4)

dz
dt

=
z

x + y + z
· (αz · pα + βz · pβ) (2.5)

Each equation represents the change in the population of each possible pollination

syndrome. Equation 2.3 and Equation 2.4 represent the change in the population of

plants displaying a specialist pollination syndrome and Equation 2.5 represents the

change in the population of plants displaying a generalist pollination syndrome.

The first part of each equation, ( x, y, or z
x+y ), represents the frequency of each pollination

syndrome within the total population of plants. The second part of the equation,

(αx, y, or z · pα + βx, y, or z · pβ), represents the fitness gain from each pollinator species as

dependent on the pollinator abundances and attractiveness of each syndrome.

Similar to the two equation model, each equation in this model contains four

constants. These constants represent the percentage of total visits to the pollination
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syndrome by a given pollinator species and the abundances of pollinator species.

αx, y, or z describes the percentage of total visits to the pollination syndrome made by

pollinator species 1. Similarly, βx, y, or z represents the percentage of total visits to the

pollination syndrome made by pollinator species 2. As these constants represent

percentages, both numbers must sum to 1. The parameters pα and pβ characterize

the abundance of pollinator species 1 and pollinator species 2 respectively. These

parameters can be described by a constant or a function.



CHAPTER 3

Results of the JavaModel

As mentioned in section 2.3, multiple simulations of the Java model with

variations in the values of the parameters were conducted to examine the influence

of each parameter on the outcome of the model. The outcome of the model,

regardless of the pollination syndrome selected to compare, was obtained by a

running average of the frequency of the pollination syndrome during the last 20

seasons of each model. For each simulation, 50 models were executed and the

resulting 50 running averages were used as the data for a statistical test. These 50

running averages were also used to obtain the means and mean standard errors

used to produce the figures in this section.

The sensitivity analysis of the model indicated that the model was most sensitive

to changes in the abundance of pollinator species 2 and the initial pollen removal

of pollinator species 1. In contrast, the model was least sensitive to changes in

the number of plant deaths per season (Figure 3.1). If the abundance of pollinator

species 2 was increased by 1, this would result, on average, in a 1.4% decrease in

the frequency of generalist plants. An increase of 1 for the initial pollen removal

of pollinator species 1 results in an average increase of 1.57% for the frequency of

generalist plants. Finally, an increase of the number of plant deaths per season

decreased, on average, the frequency of generalist plants by 0.24% (Figure 3.2).

51
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Figure 3.1: The average percent change to the frequency of generalist plants resulting from an
increase in the parameters by one. These averages were obtained from the one at a time
sensitivity analysis described in section 2.3.6.

Figure 3.2: The absolute value of averages found in Figure 3.1. This illustrates which parameters the
model is most sensitive to and which parameters the model is most resistant to.

There was no significant difference in the frequency of generalists between simu-

lations in which pollinator abundance was constant across seasons and simulations

in which pollinator abundance was random during any given season (2 sample

two-tailed t-test, t = -1.23; d.f. = 98; p = 0.22). These results are illustrated in Figure

3.3.

The frequency of generalist plants during simulations with long lived plants

was significantly higher (2 sample one-tailed t-test, t = 4.15; d.f. = 98; p = 3.51 ×
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Figure 3.3: The mean frequency of generalist plants in simulations in which pollinator abundance
was random during any given season and simulations in which pollinator abundance
was constant across seasons. The bars represent mean standard error.

10−5) than simulations containing short-lived plants. Figure 3.4 illustrates the large

difference in the frequency of generalist plants.

Figure 3.4: The mean frequency of generalist plants in simulations with short lived plants and
simulations with longed lived plants. The bars represent mean standard error.

There was a significant increase in the frequency of generalist plants in simula-

tions with a constant pollinator abundance across seasons and short lived plants

compared to simulations with random pollinator abundance with short lived plants

(2 sample one-tailed t-test, t = 2.96; d.f. = 98; p = 0.002). These results are illustrated

in Figure 3.5.

The frequency of generalist plants between simulations in which pollinator

abundance was constant with long lived plants and simulations with random
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Figure 3.5: The mean frequency of generalist plants in simulations in which pollinator abundance is
random during any season with short lived plants and simulations in which pollinator
abundance is constant across seasons with short lived plants. The bars represent mean
standard error.

pollinator abundance and long lived plants was not significantly different (2 sample

two-tailed t-test, t = 1.13; d.f. = 98; p = 0.26). These results are illustrated in Figure

3.6.

Figure 3.6: The mean frequency of generalist plants in simulations in which pollinator abundance is
random during any season with long lived plants and simulations in which pollinator
abundance is constant across seasons with long lived plants. The bars represent mean
standard error.

During the first simulation of this analysis of skewed pollinator efficiency,

pollinator species 1 was characterized in such a way that it was the most efficient

pollinator while pollinator species 2 was characterized as having the lowest efficiency.

The graph of the output of both simulations illustrates that the frequency of plants



55

displaying a specialist pollination syndrome specializing towards pollinator species

1 is relatively equal (Figure 3.7). The statistical analysis also indicates that there was

no significant difference in the frequency of plants specializing towards pollinator

species 1 between simulations with the efficiency of pollinator species 1 increased

compared to simulations in which the efficiency of both pollinator species was the

same (2 sample two-tailed t-test, t = 1.66; d.f. = 98; p = 0.08).

Figure 3.7: The mean frequency of plants displaying a specialist pollination syndrome specializing
towards pollinator species 1. The averages were obtained from simulations in which the
efficiency of pollinator species 1 was increased and the efficiency of pollinator species 2
was decreased and simulations in which the efficiency of both pollinators was the same.
The bars represent mean standard error.

During the simulation with an increase in the efficiency and abundance of

pollinator species 1, the simulations were constructed in such a way that pollinator

species 1 was the absolute "best" pollinator in the system while pollinator species

2 was the absolute "worst". However, there was no significant difference in the

frequency of plants specializing towards pollinator species 1 between the simulations

with an increase in the efficiency and abundance of the pollinator species 1 and a

decrease in the efficiency and abundance of pollinator species 2 and the simulations

with both pollinator species having the same efficiency and abundance (2 sample

two-tailed t-test, t = 0.47; d.f. = 98; p = 0.64). The relatively equal frequency of

generalist plants between the simulations is illustrated in Figure 3.8.
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Figure 3.8: The mean frequency of plants displaying a specialist pollination syndrome specializing
towards pollinator species 1. The averages were obtained from simulations in which the
efficiency and abundance of pollinator species 1 was increased while decreased for
pollinator species 2 and simulations in which the efficiency and abundance of both
pollinators was the same. The bars represent mean standard error.

There was no significant difference in the frequency of generalists between the

simulations with cyclic pollinator abundance (F (4, 245) = 1.54, p = 0.19). Figure 3.9

illustrates that the frequency of generalist plants stayed relatively constant across

each cycle. Only during Cycle 1 was the average lifespan of the plants longer than

the period of the cycle. In Cycle 3 the average lifespan of the plants was longer

than half of the period of the cycle. In Cycles 2, 4, and 5, the average lifespan of the

plants was shorter than even half of the length of the period.

Figure 3.9: The mean frequency of generalist plants during simulations with cyclic pollinator
abundance. The bars represent mean standard error. Cycles are defined in section 2.3.5.



CHAPTER 4

Analysis of the Differential EquationModels

Both of the system of differential equation models described in sections 2.4.1

and 2.4.2 are analyzed to understand how the outcome of the models would change

given a set of initial conditions. The two equation model,

dx
dt

=
x

x + y
· (αx · pα + βx · pβ)

dy
dt

=
y

x + y
· (αy · pα + βy · pβ),

is analyzed in two ways. The first analysis is conducted by finding the derivatives

describing the change in the frequency of each pollination syndrome. These

equations are then used to examine the conditions under which one would expect

to see growth or decline in the frequency of each pollination syndrome. The second

analysis looks at the effects of different pollinator abundances on the outcome of

the model. The three equation model,

dx
dt

=
x

x + y + z
· (αx · pα + βx · pβ)

dy
dt

=
y

x + y + z
· (αy · pα + βy · pβ)

dz
dt

=
z

x + y + z
· (αz · pα + βz · pβ),

57
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is only analyzed using the same frequency differential equation method as was

used for the two equation model. The analysis examining the effects of pollinator

abundance is not conducted on the three equation model because of the taxing

computational requirements.

4.1 Differential Equation Analysis of the Two Equa-

tionModel

Both equations in the two equation model are used to find differential equa-

tions which describe the rate of change of the frequency of each pollination

syndrome. This is accomplished using the quotient rule and chain rule. Be-

low is the step-by-step process for finding each differential equation. First, the

differential equation of the frequency of the specialist pollination syndrome is

found and then the differential equation of the frequency of the generalist polli-

nation syndrome is found. The final equation for each syndrome is numbered.

Set M = (αx · pα + βx · pβ) and set N = (αy · pα + βy · pβ).

Then, the equations become
dx
dt

=
x

x + y
·M and

dy
dt

=
y

x + y
·N.
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d
dt

(
x

x + y

)
=

x
x + y

·M · (x + y) − x ·
(

x
x + y

·M +
y

x + y
·N

)
(x + y)2

=

x2
·M + xy ·M

x + y
−

(
x2
·M + xy ·N

x + y

)
(x + y)2

=
x2
·M + xy ·M − x2

·M − xy ·N
(x + y)3

=
xy ·M − xy ·N

(x + y)3

d
dt

(
x

x + y

)
=

xy · (M −N)
(x + y)3 =

xy · ((αx · pα + βx · pβ) − (αy · pα + βy · pβ))
(x + y)3 (4.1)

d
dt

(
y

x + y

)
=

y
x + y

·N · (x + y) − y ·
(

x
x + y

·M +
y

x + y
·N

)
(x + y)2

=

y2
·N + xy ·N

x + y
−

(
xy ·M + y2

·N
x + y

)
(x + y)2

=
y2
·N + xy ·N − xy ·M − y2

·N
(x + y)3

=
xy ·N − xy ·M

(x + y)3

d
dt

(
y

x + y

)
=

xy · (N −M)
(x + y)3 =

xy · ((αy · pα + βy · pβ) − (αx · pα + βx · pβ))
(x + y)3 (4.2)
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With each of the differential equations describing the rate of change in the

frequency of each syndrome found, the outcomes of the model under different

initial populations for each pollination syndrome could be examined. This analysis

results in four cases that examine the conditions under which one would see an

increase or decrease in the frequency of each pollination syndrome: both the initial

populations of the specialist syndrome (variable x) and the generalist syndrome

(variable y) are zero, one initial population is zero and the other is greater than zero,

and both initial populations are greater than zero.

Case 1: The parameters x = 0 and y = 0 are the initial conditions. This is a trivial

case and both equation (4.1) and equation (4.2) equal zero, denoting that there

is no change in the frequency of each pollination syndrome. Although this

case is trivial, this result is important as it indicates that the frequency of

each syndrome cannot arise from the absence of the syndrome. If either of

the equations had shown an increase or decrease, this result would not be

consistent with our assumptions of the nature of plant-pollinator systems and

the model would be too inaccurate for use.

Case 2: The parameters x > 0 and y = 0 are the initial conditions. Again, this

is a trivial case as both frequency differential equations equal zero; there is

no change to the frequency of each pollination syndrome. This case also

represents an important result for the model. It shows that the specialist

pollination syndrome remains at 100 percent and the generalist pollination

syndrome remains at zero percent. This indicates that a syndrome cannot

arise from an absence of that syndrome and that the initial syndrome will

persist in the environment.

Case 3: The parameters x = 0 and y > 0 are the initial conditions. This case results
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in the same, but inverted, outcome as Case 2. Thus, the results indicate that

the specialist syndrome remains at zero percent and the generalist syndrome

remains at 100 percent. This result is important for the accuracy of the model

because it demonstrates that, once again, a syndrome cannot arise from an

absence of that syndrome and that the initial syndrome will persist in the

environment.

Case 4: The parameters x > 0 and y > 0 are the initial conditions. This case results

in three different outcomes depending on the values of M = (αx · pα + βx · pβ)

and N = (αy · pα + βy · pβ).

d
dt

(
x

x + y

)
=


> 0 if M > N

0 if M = N

< 0 if M < N

d
dt

(
y

x + y

)
=


> 0 if N > M

0 if N = M

< 0 if N < M

This result is significant because it indicates that an increase or decrease in

the frequency of a pollination syndrome is dependent on the interactions

of the pollinator species. It also indicates that the growth or decline of a

pollination syndrome can only occur due to the presence of pollinators. This

is an important assumption of the model and is a necessary component which

increases the accuracy of the model.

Each of the four cases represents how the frequency of a specialist and generalist

pollination syndrome will change over time. Although Cases 1, 2, and 3 are
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trivial, they nonetheless indicate that the model is functioning as desired. Case 4 is

important as it details exactly when the frequency of a pollination syndrome will

increase, remain stable, or decrease, given a set of conditions describing pollinator

abundances and attractiveness of each syndrome.

4.2 Numerical Based Analysis of the Two Equation

Model

Using the analysis of Case 4 in the above section, this analysis explores the outcome

of the model when pollinator abundances are stable, cyclic with different amplitudes,

cyclic with different periods, and cyclic with different amplitudes and different

periods. To find which pollination syndrome is favoured in the model, we will find

the values of M and N, where M = (αx · pα + βx · pβ) and N = (αy · pα + βy · pβ), and

apply the conditions from Case 4 to examine which syndrome is favoured.

Throughout each of the variations in pollinator abundance, the values of αx,

αy, βx, and βy remain constant. The initial population of each syndrome also

remains constant, although it does vary between certain simulations. The pollinator

abundances are constant during some iterations and cyclic during others. When

pollinator abundances are constant, the values of M and N are found by simply

substituting the constant values into M and N for each of the parameters describing

pollinator abundance. When using cyclic functions to describe pollinator abun-

dances, the average value of the function across a given time period is substituted

into the corresponding parameter for pollinator abundance. In this way, one number

will be substituted for the abundance of each pollinator species in M and N.

For each of the following analyses of the two equation model, αx = 0.9, βx = 0.1,

αy = 0.5, βy = 0.5, and the initial populations of each syndrome were set to 25.
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Constant Pollinator Abundance

Table 4.2 displays the values of the abundance for each species of pollinator, the

values of M and N, and indicates the favoured syndrome. When the abundance

of pollinator species 1 is greater than the abundance of pollinator species 2, the

frequency of the specialist plants increases until reaching one (Figure 4.1). In

contrast, the frequency of the generalist plants decreases until reaching zero. When

the abundance of pollinator species 2 is greater than the abundance of pollinator

species 1, the frequency of the generalist plants increases until reaching one. In

contrast, the frequency of the specialist plants decreases until reaching zero. If

the abundance for both pollinator species is equal, then there is no change to the

frequency of either pollination syndrome.

Figure 4.1: The changing frequencies of
plants displaying each
pollination syndrome when
the abundance of pollinator
species 1 is 35 and the
abundance of pollinator
species 2 is five.

Abundance
of Polli-
nator
Species 1

Abundance
of Polli-
nator
Species 2

Outcome of
the Model

35 5 M > N, spe-
cialization is
favoured

5 35 M < N, gen-
eralization is
favoured

20 20 M = N, no
change

Figure 4.2: The outcome of the two equation
model when pollinator abundance is
constant.

Cyclic Pollinator Abundance with Different Periods

In this analysis, the functions used to describe the abundance of each pollinator

species have the same amplitudes but different periods. For each of the three

simulations, there is no change in the frequency of each of the pollination syndromes.
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Table 4.1 displays the cyclic functions used to describe the abundance of each species

of pollinator and the relationship between M and N.

Abundance
of Pollinator
Species 1

Abundance
of Pollinator
Species 2

Average
Value of pα

Average
Value of pβ

Outcome of the
Model

10 ·sin(t)+10 10 · sin(t/5) +
10

10 10 M = N, no
change

10 · sin(t/5) +
10

10 ·sin(t)+10 10 10 M = N, no
change

10 · sin(t/5) +
10

10 · sin(t/5) +
10

10 10 M = N, no
change

Table 4.1: The outcome of the two equation model when pollinator abundance is cyclic with the
same amplitudes but different periods. Average values for pα and pβ are found across a
period of 10π.

Cyclic Pollinator Abundance with Different Amplitudes

In this analysis, the cyclic functions used to describe the abundance of each

pollinator species had the same periods but different amplitudes. For each of the

three iterations of the model, there was no change in the frequency of each of the

pollination syndromes. Table 4.2 displays the cyclic functions used to describe the

abundance of each species of pollinator as well as the relationship between M and

N.

Abundance
of Pollinator
Species 1

Abundance
of Pollinator
Species 2

Average
Value of pα

Average
Value of pβ

Outcome of the
Model

5 · sin(t/5) +
10

10 · sin(t/5) +
10

10 10 M = N, no
change

10 · sin(t/5) +
10

5 · sin(t/5) +
10

10 10 M = N, no
change

Table 4.2: The outcome of the two equation model when pollinator abundance is cyclic with the
same period but different amplitude. Average values for pα and pβ are found across a
period of 10π.
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Cyclic Pollinator Abundance with Different Periods and Different Amplitude

In this analysis, the periodic functions used to describe the abundance of each

pollinator species had different periods and different amplitudes. For each of the

simulations, generalization is favoured when the midpoint of the cycle describing

the abundance of pollinator species 2 is greater than the midpoint of the cycle

describing the abundance of pollinator species 1. In contrast, specialization is

favoured when the midpoint of the cycle describing the abundance of pollinator

species 1 is greater than the midpoint of the cycle describing the abundance of

pollinator species 2. Table 4.3 displays the cyclic functions used to describe pollinator

abundance as well as the relationship between M and N. Figure 4.3 shows the

change in the frequency of each pollination syndrome in three cases from Table 4.3.

Abundance of Pol-
linator Species 1

Abundance of Pol-
linator Species 2

Average
Value of pα

Average
Value of pβ

Outcome of the
Model

pα = 5 · sin(t) + 5 pβ = 10 · sin(t/5) +
10

5 10 M < N, generaliza-
tion is favoured

pα = 5 · sin(t) + 5 pβ = 10 · sin(t) + 10 5 10 M < N, generaliza-
tion is favoured

pα = 5 · sin(t) + 5 pβ = 5 · sin(t/5) + 5 5 5 M = N, no change
pα = 5 · sin(t/5) + 5 pβ = 10 · sin(t/5) +

10
5 10 M < N, generaliza-

tion is favoured
pα = 5 · sin(t/5) + 5 pβ = 10 · sin(t) + 10 5 10 M < N, generaliza-

tion is favoured
pα = 5 · sin(t/5) + 5 pβ = 5 · sin(t) + 5 5 5 M = N, no change
pα = 10 · sin(t) + 10 pβ = 5 · sin(t/5) + 5 10 5 M > N, specializa-

tion is favoured
pα = 10 · sin(t) + 10 pβ = 5 · sin(t) + 5 10 5 M > N, specializa-

tion is favoured
pα = 10 · sin(t/5) +
10

pβ = 5 · sin(t/5) + 5 10 5 M > N, specializa-
tion is favoured

pα = 10 · sin(t/5) +
10

pβ = 5 · sin(t) + 5 10 5 M > N, specializa-
tion is favoured

Table 4.3: The outcome of the two equation model when pollinator abundance is cyclic with
different periods and different amplitudes. Average values for pα and pβ are found across
a period of 10π.
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(a) The frequency differen-
tial equations when pα =
5 · sin(t) + 5 and pβ = 10 ·
sin(t/5) + 10.

(b) The frequency differen-
tial equations when pα =
5 · sin(t) + 5 and pβ = 5 ·
sin(t/5) + 5.

(c) The frequency differen-
tial equations whenpα =
10 · sin(t) + 10 and pβ =
5 · sin(t/5) + 5.

Figure 4.3: The change in the frequency of each syndrome found using the frequency differential
equations found from the two equation model with cyclic pollinator abundance.

4.3 Differential Equation Analysis of the Three Equa-

tionModel

Similar to the differential equation analysis described in section 4.1, each differential

equation of the three equation model was used to find a differential equation that

describes the rate of change in the frequency of each pollination syndrome in this

system. These differential equations describing the frequency were found using the

quotient rule and chain rule. Below is the step-by-step solution for each equation

with the pollination syndrome specializing towards species 1 solved first, the

pollination syndrome specializing towards pollinator species 2 solved second, and

the generalist pollination syndrome solved last. The differential equation describing

the rate of change in the frequency of each pollination syndrome is numbered.

Set M = (αx · pα + βx · pβ), set N = (αy · pα + βy · pβ), and set O = (αz · pα + βz · pβ).

The equations of this model then become
dx
dt

=
x

x + y + z
·M,

dy
dt

=
y

x + y + z
·N,

and
dz
dt

=
z

x + y + z
·O.
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d
dt

(
x

x + y + z

)
=

x
x+y+z ·M · (x + y + z) − x

(
x

x+y+z ·M +
y

x+y+z ·N + z
x+y+z ·O

)
(x + y + z)2

=

x2
·M+xy·M+xz·M

x+y+z −

(
x2
·M

x+y+z +
xy·N

x+y+z + xz·O
x+y+z

)
(x + y + z)2

=
x2
·M + xy ·M + xz ·M − x2

·M − xy ·N − xz ·O
(x + y + z)3

=
xy ·M + xz ·M − xy ·N − xz ·O

(x + y + z)3

=
xy ·M − xy ·N + xz ·M − xz ·O

(x + y + z)3

d
dt

(
x

x + y + z

)
=

xy · (M −N) + xz · (M −O)
(x + y + z)3 (4.3)

d
dt

(
y

x + y + z

)
=

y
x+y+z ·N · (x + y + z) − y

(
x

x+y+z ·M +
y

x+y+z ·N + z
x+y+z ·O

)
(x + y + z)2

=

xy·N+y2
·N+yz·N

x+y+z −

(
xy·M

x+y+z +
y2
·N

x+y+z +
yz·O

x+y+z

)
(x + y + z)2

=
xy ·N + y2

·N + yz ·N − xy ·M − y2
·N − yz ·O

(x + y + z)3

=
xy ·N + yz ·N − xy ·M − yz ·O

(x + y + z)3

=
xy ·N − xy ·M + yz ·N − yz ·O

(x + y + z)3

d
dt

(
y

x + y + z

)
=

xy · (N −M) + yz · (N −O)
(x + y + z)3 (4.4)
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d
dt

(
z

x + y + z

)
=

z
x+y+z ·O · (x + y + z) − z

(
x

x+y+z ·M +
y

x+y+z ·N + z
x+y+z ·O

)
(x + y + z)2

=

xz·O+yz·O+z2
·O

x+y+z −

(
xz·M

x+y+z +
yz·N

x+y+z + z2
·O

x+y+z

)
(x + y + z)2

=
xz ·O + yz ·O + z2

·O − xz ·M − yz ·Nz2
·O

(x + y + z)3

=
xz ·O + yz ·O − xz ·M − yz ·N

(x + y + z)3

=
xz ·O − xz ·M + yz ·O − yz ·N

(x + y + z)3

d
dt

(
z

x + y + z

)
=

xz · (O −M) + yz · (O −N)
(x + y + z)3 (4.5)

With each of the differential equations describing the rate of change of the

frequency of each pollination syndromes, the outcomes of the model, when the

presence or absence of each of the pollination syndromes are varied, can be examined.

In doing this, eights cases arise that describe how the outcome of the model will

change given the presence or absence of a pollination syndrome. These eight cases

are addressed below and each is analyzed to determine the conditions under which

one would see an increase or decrease in the frequency of each pollination syndrome.

Case 1: The parameters x = 0, y = 0 and z = 0 are the initial conditions. This is a

trivial case in which all three pollination syndromes have a population of zero

and the resulting differential equations equal zero. This indicates that there is

no change in the frequency of the pollination syndrome and that no syndrome

emerges in the model. Although trivial, this case illustrates what is expected

of the model.
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Case 2, Case 3, Case 4: In each of these cases, the initial population of one polli-

nation syndrome was greater than zero while the initial population of both

of the remaining pollination syndromes was equal to zero. In each case, the

differential equations are equal to zero, which indicates that there is no change

in the frequency of the pollination syndromes. Consequently, whichever

pollination syndrome has an initial population greater than zero will remain

at 100 percent frequency throughout the model.

Case 5, Case 6, Case 7: In each of these cases, the initial population of two pollina-

tion syndromes was greater than zero while the one remaining pollination

syndrome had an initial population of zero. In each case, the values of M, N,

or O dictate whether there is an increase or decrease in the frequency of the

pollination syndrome similar to how M and N determine which syndrome

is favoured in Case 4 in section 4.2. The pollination syndromes which have

an initial population above zero dictates whether M and N, N and O, or M

and O are used. No matter which two pollination syndromes have an initial

population above zero, the differential equation for the rate of change of the

frequency of the syndromes follows the same pattern as described in Case 4 of

section 4.1; simply substitute M, N, or O when necessary.

Case 8: The parameters x > 0, y > 0 and z > 0 are the initial conditions. In this final

case, the value of the differential equations which describe the rate of change

of the frequency of each pollination syndrome are dependent on the values

of M, N, and O as well as the population of each of the plants displaying a

given pollination syndromes, x, y, and z at that time. The cases describing the

changes in the values of the differential equations are displayed below.
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d
dt

(
x

x + y + z

)
=


> 0 if M · (y + z) > y ·N − z ·O

0 if M · (y + z) = y ·N − z ·O

< 0 if M · (y + z) < y ·N − z ·O

d
dt

(
y

x + y + z

)
=


> 0 if N · (x + z) > x ·M − z ·O

0 if N · (x + z) = x ·M − z ·O

< 0 if N · (x + z) < x ·M − z ·O

d
dt

(
z

x + y + z

)
=


> 0 if O · (x + y) > x ·M − y ·N

0 if O · (x + y) = x ·M − y ·N

< 0 if O · (x + y) < x ·M − y ·N

The six conditions of Case 8, illustrated above, indicate that there is a great

deal of interaction among the pollination syndromes and their pollinators.

Unlike the other cases, the population of plants displaying a given pollination

syndrome is important in determining whether or not there is growth or

decline in the frequency of a given pollination syndrome.

The eight cases described above, indicate that these frequency differential

equations are more dynamic than those of the two equation model. In Case 8,

the change in the frequency of each syndrome is dependent on the abundance of

each pollinator species as well as the population of each pollination syndrome

at that time. Similarly, the frequency differential equations indicate that the

influence of the population of each syndrome and the abundance of each pollinator

species is not a summation of each factors affects. Consequently, the frequency

differential equations are controlled by the interaction between the populations of

each pollination syndrome and the abundance of each pollinator species.
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Discussion

There are many characteristics of plant and pollinators that have been shown to

correlate to the generalist or specialist pollination syndrome displayed by a plant. In

multiple studies it has been shown there is a correlation between the abundance of a

plants most efficient pollinator species or group and the syndrome the plant displays

(Bond [1994], Waser et al. [1996]). In another study, it was similarly indicated that

the longevity of a plant is correlated to the pollination syndrome displayed by the

plant (Ollerton [1996]). With these correlations in mind, it was hypothesized that

the Java model would be most sensitive to changes in the parameters that describe

pollinator abundance and plant longevity. Hence the parameters of abundance of

pollinator species 1, abundance of pollinator species 2, and the number of plant

deaths per season, which describes plant longevity, were predicted to influence the

Java model in a much larger way than any other parameters.

While pollinator efficiency is a key component of pollination (Larsson [2005],

Padysakova et al. [2013]), the efficiency of a pollinator species is moderated by

the abundance of the pollinator species (Ollerton [1996]). Consequently, although

pollinator efficiency is important, because the efficiency of a pollinator species

can be decreased or increased based on the abundance of that species, it was not

hypothesized to have as strong of an influence as pollinator abundance. Similarly,

the lifespan of the plant mediates the plants ability to receive pollinators. Again, the

71
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efficiency of a pollinator species can be increased or decreased based on the lifespan

of the plant, which may alter the ability of pollinators to visit the flower.

The results of the sensitivity analysis indicate that, in rejection of the proposed

hypothesis, the Java model is most sensitive to changes in the abundance of pollinator

species 2 and the initial pollen removal of pollinator species 1. The Java model is

least sensitive to changes in plant longevity. The frequency of generalist plants, the

measure used for the outcome of the model, increased the most when the initial

pollen removal of pollinator species 1 was increased. The frequency of generalist

plants decreased the most as a result of an increase in the abundance of pollinator

species 2. In contrast, the frequency of generalists was only very slightly depressed

by an increase in the number of plant deaths per seasons. These results suggest

that, individually, the efficiency of a pollinator species (measured, in the model, as

the ratio of the quantity of pollen removed to the quantity of nectar removed per

visit) and the abundance of a pollinator species are the most important factors in

determining which pollination syndrome is favoured.

Even though the results of the sensitivity analysis do not support the proposed

hypothesis, they are indicative of hypotheses from other studies. It has been

predicted that the evolution of a specialist pollination syndrome in flowering plants

arises under conditions when pollinators exert selective pressures on the plant and

when pollinators vary in their efficiency (Gomez and Zamora [2006]). A pollinator

species exerts selective pressures on the plants through its efficiency as well as its

abundance. Consequently, it can be hypothesized that pollinator abundance and

pollinator efficiency are two of the most important factors in determining which

pollination syndrome is evolutionarily favoured (Gomez and Zamora [2006]). Thus,

when using this framework, it is not surprising that the results of the sensitivity

analysis indicate that the Java model is most sensitive to changes in the parameters

describing pollinator abundance and pollinator efficiency.
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Although the Java model is sensitive to changes in pollinator abundance and

pollinator efficiency, as has been hypothesized in previous studies, the direction of

the change to frequency of generalist plants, as a result of changes in the parameters,

is surprising. As mentioned previously, an increase in the abundance of pollinator

species 2 decreased the frequency of generalist plants. However, the same increase

in the abundance of pollinator species 1 increased the frequency of generalist plants.

This discrepancy in the changes to the frequency of generalist plants, as a result

of changes in pollinator species abundance, could be attributed to the mechanism of

initial pollinator placement during movement periods. During the initial placement,

all of the individuals of pollinator species 1 are placed before the individuals of

species 2 are placed. Thus, a plant is slightly more likely to receive an individual

of pollinator species 1 than pollinator species 2. Although this probability is very

small, this placement occurs 3000 times during a single simulation of the model

described in Table 2.1. This repeated occurence of the same mechanism could

compound the slight increase in probability. Consequently, pollinator species 1

could be slightly favoured by the plants which could explain why an increase in

the abundance of pollinator species 1 increased the frequency of generalist plants.

Recall, that generalist plants should have an equal probability of receiving each

pollinator species. However, this favouritism towards pollinator species 1 could

increase a generalist plant’s probability of receiving an individual from pollinator

species 1. This in turn could make any changes in the characteristics of pollinator

species 1 have a different and/or more drastic influence on generalist plants.

The argument that a slight favouritism, within a model, towards a species of

pollinator alters this species influence on the model is further strengthened by the

results of the system of differential equations models. In the two equation model,

if the abundance of pollinator species 2 was increased, the frequency of generalist

plants either decreased much slower or increased. If the abundance of pollinator
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species 1 was increased then the frequency of generalist plants decreased very

quickly. Thus, an increase in one species of pollinator had the opposite effect on

the outcome of the two equation model as did an increase in the other species of

pollinator even though both pollinator species are identical in efficiency.

In the three equation model, an increase in pollinator abundance almost always

resulted in a decrease in the frequency of generalist plants. This model, unlike the

two equation model, does not favour any one pollinator species over another. While

one can alter the parameters characterizing the attractiveness of each pollination

syndrome to each pollinator species, this does not change how the three equation

model treats each pollinator. Consequently, when comparing the two differential

equations models, the sensitivity of each model to changes in a given parameter is

quite varied and may in part be the result of favoritism towards pollinator species 2

in the two equation model.

Similar to the different direction of the effects of pollinator abundance, the effects

of an increase in initial pollen removal for each species of pollinator also results

in different directions of change to the frequency of generalist plants in the Java

model. Whereas an increase in initial pollen removal of pollinator species 1 resulted

in an increase in the frequency of generalist plants, an increase in initial pollen

removal of pollinator species 2 resulted in a decrease in the frequency of generalist

plants. Again, this difference could be attributed to the slight favouritism towards

pollinator species 1. Because generalist plants were slightly more likely to receive

an individual of pollinator species 1, an increase in the initial pollen removal of

pollinator species 1 will have a stronger effect than an increase in the initial pollen

removal of pollinator species 2. This may allow more pollen to be removed by

pollinator species 1 as a whole, which could increase the fitness of generalist plants

more than would be increased by pollinator species 2.

Unfortunately, this argument of the different influences of pollinator efficiency
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cannot be supported nor rejected by the results of the differential equations models.

Neither differential equation model accounted for pollinator efficiency but instead

focused on the effects of abundance. Consequently, to further examine the effects

of an increase in pollinator abundance and initial pollen removal on the outcome

of the Java model, I suggest that the number of pollinator species within the Java

model be increased. By increasing the number of pollinator species, one would

be able to examine whether the effects of favourtism was skewing the effects of an

increase in abundance or initial pollen removal. If an increase in the abundance

and/or initial pollen removal of any other pollinator species resulted in a decrease

in the frequency of plants displaying a generalist pollination syndrome it would

be a strong indicator that favoritism towards pollinator species 1 was skewing this

species effects on the model. If the opposite occurred, and an increase in abundance

or initial pollen removal of any other pollinator species resulted in an increase in

the frequency of of generalist plants, it would demonstrate that favoritism may not

be the cause of the discrepancy in the sensitivity of the Java model and more work

would be needed to explore possible explanations.

Whereas the Java model was most sensitive to changes in the abundance and

efficiency of a pollinator species, it was least sensitive to changes in the number

of plant deaths per season. This is not to say that the outcome of the model was

not completely resistant to changes in plant longevity. Instead, an increase in the

number of plant deaths per season caused a very slight change in the frequency

of generalist plants within the model. The frequency of generalist plants was only

changed by approximately 0.24 percent when the number of plant deaths per season

was increased by one.

It was originally hypothesized that an increase in longevity would favour

specialization simply because the longer a plant lives the more flowering seasons

they experience, which provides more chances that the pollinator species being
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specialized towards will be present during a season (Bond [1994], Waser et al. [1996]).

However, the results of the sensitivity analysis and the data from variations in plant

longevity (Figure 3.4) indicate that an increase in plant longevity decreased the

frequency of generalist plants. Longevity in the Java model is determined by the

number of plants that die at the end of each season. Consequently, a simulation

in which plants have a short lifespan is characterized by a high number of plant

deaths per season and vice versa. This characteristic of plant longevity causes more

opportunities for reproduction in models with short lived plants. Specialist plants

have, on average, a higher fitness when pollinator abundance is constant across

seasons, as it was during these simulations. Consequently, this increased fitness

allows specialist plants to have a higher reproductive success rate than the generalist

plants. Since, there are more opportunities for plants to recruit new plants during

seasons in simulations in which plant longevity is low, the specialist plants may take

greater advantage of these opportunities than generalist plants. This could allow

specialization to be favoured when plant longevity is low. In contrast, when plant

longevity is high, there are very few opportunities to recruit new plants during

each season and the slight increase in fitness of specialist plants might not be as

compounded.

The results of the simulations in which both pollinator abundance (random or

constant) and plant longevity (short and long) indicates that the combination of

variations in the parameters alters the individual effects of each parameter. The

simulations with short lived plants and random pollinator abundance showed a

marked increase in the frequency of generalist plants compared to the frequency

of generalist plants in simulations with short lived plants and constant pollinator

abundance. A possible explanation for this difference is that in the simulations

with random pollinator abundance, the benefits of specializing are outweighed

by the costs of not always having pollinators present. During any given season,
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the abundance of a pollinator species may be low or high with equal probability.

Consequently, specialist plants, which invest a majority of their fitness gain in one

species of pollinator, may not gain as much fitness from the species it is specializing

towards if its abundance is low (Ollerton [1996]). This represents a problem for

plants that only live across a few seasons as there is less of a chance that any plant

will live during a season in which the species being specialized towards is highly

abundant. If the abundance of the species of pollinator being specialized towards is

high during a season, then the specialist plants reap the benefits of specialization,

but this benefit is negated by the fact that a majority of plants will die and not be

able to recruit new plants. Consequently, specialization may not be as favourable

under these conditions as generalization, because generalist plants do not invest

their fitness gain in one species of pollinator.

This problem of greatly needing pollination in short lived plants is not as much

of a problem for long lived plants because they survive across many seasons. This

is supported by the fact that, there was no significant difference in the frequency of

generalist plants between simulations with long lived plants and random pollinator

abundance and simulations with long lived plants and constant pollinator abun-

dance. A plant which lives across many seasons has a higher probability of living

during a season in which the abundance of a pollinator species is high (Ollerton

[1996]). Consequently, the frequency of specialist plants can withstand seasons in

which little to no fitness is gained because they will, in all probability, survive across

a season in which pollinator abundance is high which can drastically increase their

fitness. Even during seasons in which the fitness of specialist plants is low, which

gives them a lower probability of recruiting a new plant, there are few opportunities

to reproduce and hence the frequency will not be decreased by much.

The results of the simulations in which both pollinator abundance and plant

longevity was varied illustrates how the interaction among factors can result in



78 5. Discussion

outcomes that may not arise from a simple combination of the individual effects of

each parameter. From the results of simulations with varied pollinator abundance,

there was no significant difference in the frequency of generalists between the

two simulations. In contrast, there was a significant increase in the frequency of

generalists in simulations with long lived plants compared to simulations with short

lived plants. Consequently, if variations in pollinator abundance were combined

with short lived plants, it is reasonable to predict that the results would show that

there was no difference between the two simulations. However, the actual results

indicate that there was a significant increase in the frequency of generalist plants in

models with random pollinator abundance and short lived plants.

For further illustration of the unexpected results from the interaction among

parameters describing pollinator abundance and plant longevity one need only

look at the results of the simulations in which pollinator abundance was varied

with long lived plants. There was no significant difference in the frequencies of

generalist plants between the two simulations. Although this result supports the

proposed hypothesis, it nevertheless illustrates that a combination of multiple varied

parameters can result in outcomes that do not arise from the simple combination of

the individual effects of each parameter.

The frequency differential equations obtained from the equations of the three

equation model also indicate that pollinator abundance may not interact with

other factors in an additive manner. From the frequency differential equations,

the abundance of each pollinator species interacts with the population of plants

displaying a given pollination syndrome in both a multiplicative and additive

manner. This indicates that the effects of each pollinator abundance varies drastically

depending on the values of pollinator abundance and population of plants displaying

a given pollination syndrome. Consequently, the predictions of the favoured

syndrome, when assuming a simple addition of the influences of each individual
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factors, will not be accurate. However, this equation provides a much stronger

predictive power and illustrates that the interaction among pollinator abundance

and the population of plants displaying a given pollination syndrome can result in

outcomes that were not originally hypothesized to occur.

Variations in the parameters describing pollinator efficiency and abundance,

when combined, similarly produce results that deviate from the expected results of

a combination of both parameters. It was hypothesized that, in the simulations with

efficiency and/or abundance skewed in favour of pollinator species 1, there would be

an increase in the frequency of plants specializing towards pollinator species 1. This

follows from the most efficient pollinator principal which hypothesizes that plants

will specialize towards their most efficient pollinator (Stebbins [1970]). However,

in the simulation in which the efficiency of pollinator species 1 was increased,

there was no significant difference in the frequency of plants specializing towards

pollinator species 1. Similarly, there was no significant difference in the model

in which the abundance and the efficiency of pollinator species 1 was drastically

increased. Thus, both the proposed hypothesis and the most efficient pollinator

principal are not supported by the results.

The most efficient pollinator principal has come under increasing criticism

because it belies the other factors that characterize a plant-pollinator interaction

(Aigner [2001], Padysakova et al. [2013], Johnson and Steiner [2000]). Consequently,

it is not surprising that the results of the simulations in which the efficiency and

abundance of pollinator species 1 was skewed did not support the proposed

hypothesis. Although the hypothesis of the most efficient pollinator principal is

not supported, the results support the hypothesis that the interaction among the

factors of a plant-pollinator interaction are the essential elements underlying the

favourability of one pollination syndrome over another. Similarly, the results also

support the hypothesis that the interaction among different parameters will result
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in changes to the outcome of the model that do not arise from the summation of the

effects of each individual parameter.

The results of each of the simulations discussed so far have been cases of

extremes in the parameters. To strengthen the hypotheses that the interactions

among parameters are the essential elements of a plant-pollinator interaction and

that results of most of the interactions between parameters do not arise from the

summation of each factor’s individual affects, it is important to consider models

in which the parameters are not at an extreme, but are at a value somewhere in

between. Similarly, it is important to examine the results of models in which the

interaction among parameters is constantly changing throughout the model. The

simulations in which pollinator abundance was cyclic represent models that exhibit

both of these qualities. During the simulations, the abundance of each pollinator

was constantly changing throughout the model and was neither extremely low nor

extremely high. In addition, the interactions between pollinator abundance, plant

longevity, and pollinator efficiency constantly changed through each season of the

model.

It was hypothesized that only when the average lifespan of the plant was longer

than half of a full cycle would specialization be favoured. Consequently, it was

predicted that there would be a significant difference between the frequency of

generalist plants in Cycles 2, 4, and 5 as compared to Cycles 1 and 3. Contrary to

this prediction, there was no significant difference in the frequency of generalist

plants among any of the cyclic pollinator abundance simulations. If there had been a

significant difference, it would support the concept that the parameters of pollinator

abundance, plant longevity, and pollinator efficiency interact in a cumulative manner

despite continuous changes in one parameter. However, this was not the case and

so it is hypothesized that the interaction among these parameters is not cumulative

and varies depending on the value of, at least, the abundance of a pollinator species.
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The result of the simulations of cyclic pollinator abundance indicates that the

value of the parameters affect the interaction between the parameters. It can

be hypothesized that changes in values over time may result in different scales

of the interaction or altogether different interactions between the parameters.

Consequently, it is not only important to recognize the values during one moment

in time, it is also important to recognize how these parameters vary so that the

changes in the interactions can be understood and predicted.

From the cumulative results of this study, it can be hypothesized that the

interactions between the factors that exert evolutionary pressures on a flowering

plant are, in most circumstances, the most important elements in understanding the

evolution of a specialist or generalist pollination syndrome in flowering plants. As

demonstrated by multiple findings of this study, the interactions among parameters

influence the outcome of the model in ways that may not be predicted from

the summation of the individual effects of each parameter. In most simulations,

understanding how, individually, each factor influences a plant-pollinator interaction

did not provide an accurate prediction of the favoured pollination syndrome during

simulation in which two parameters were varied. However, when applying the

hypothesis that the interactions are most important, the results were more easily

predicted and an examination into the results yielded more understanding of why

the results occured.

It is not surprising, that many of the initial hypotheses were not supported

in the simulations of the Java model, as most were based on the theory that the

effects of multiple parameters could be understood by summing their individual

effects. It was predicted that if, for example, an individual increase in pollinator

abundance and an individual increase in plant deaths yielded a higher frequency

of generalist plants then together, their effects should be compounded and the

results should indicate that there is a much higher frequency of generalist plants.
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However, the addition of the effects of each individual parameter did not yield

accurate predictions when variations of the parameters were combined.

Numerous studies (Ollerton [1996], Aigner [2001], Waser et al. [1996], and

Padysakova et al. [2013]) have similarly proposed that the effects of multiple factors

cannot be found by simply summing their individual effects. In particular it has

been shown that the interaction among pollinator species can increase or decrease

the efficiency of a pollinator depending on how it interacts with other pollinators

(Aigner [2001]). Thus, the overall efficiency of a pollinator species can be altered

by the abundance of other pollinator species but not in an additive way. Similarly,

the spread of plants and the specialization of a pollinator can interact in ways that

results in an alteration to the evolutionarily favoured syndrome as predicted by

summing each factor’s affects (Feinsinger [1983]). While individually each factor

may exert selective pressures on the plant favouring one syndrome over another,

the effects of the interaction between multiple factors can change which syndrome

would be favoured under a simple addition of the effects of each individual factor.

The Java model and the system of differential equation models attempted to

accurately capture these interactions in order to understand how the interactions

alter which syndrome is evolutionarily favoured. Both models accomplish this

by first accurately accounting for the effects and behaviours of factors governing

pollinator abundance, pollinator efficiency, and plant longevity. The models then

allow these parameters to interact in a perceived natural condition. Although the

models include multiple factors involved in pollination, there are certain aspects

of pollination, pollinator behaviour, and plant behaviour that were simplified or

omitted to reduce the complexity. In future studies it would be crucial to expand

the complexity of both models so that more factors of a plant-pollinator system

could be included. Although including additional factors would drastically increase

the complexity, it would allow the model to account for more interactions among
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additional factors as well as increase the accuracy of the simulated effects of the

interactions already contained within the model.

One interaction that was simplified within the Java model, which could be

included in future models, is the interaction between different pollinator species. It

has been theoretically shown that the interaction among pollinators can sometimes

result in a decrease or increase in pollinator efficiency (Aigner [2001]). However,

the Java model assumes that if a pollinator is already present at a flower, then the

flower is not receptive to another pollinator. Consequently, no new pollinators can

visit that flower until the present pollinator departs. This mechanism of pollinator

movement removes most of the interactions between pollinators. The approach

attempted to simulate interaction among pollinators, but it does not fully capture

the interaction among pollinators as proposed by Aigner [2001]. Consequently, in

any future models it would be beneficial to include a more accurate description of

the interaction among pollinators which would increase the accuracy of the model.

The transfer of pollen grains between flowers is another aspect of a plant-

pollinator system that was simplified in the Java model. Within the model, the total

amount of pollen taken from a flower by a pollinator was transferred to the next

visited flower and contributed to the fitness increase in both plants. However, in

many situations not all of the pollen is transferred nor does all of the pollen reach

the pistils of the receiving flower (Padysakova et al. [2013]). Similarly, because there

was only one species of flowering plants in the model, there was no risk of having

pollen transferred to another species of flower or of a flower receiving pollen from

another species of flower. To increase the realism of the model, one could alter the

description of the transfer of pollen between flowers in such a way that the amount

of pollen transferred was probabilistic but still dependent on the amount gathered.

Also, including multiple species of flowering plants would allow a greater dynamic

between the plants and their pollinators.
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Whereas the Java model represents a complex simulation of a pollination system,

the differential equation models represent a very simplified simulation. While the

simplifications of the differential equation models allows for frequency differential

equations to be found, the models omit numerous aspects of a pollination system

that may compromise the accuracy of the models. Consequently, in future studies

it would be crucial to slightly increase the complexity of the differential equation

models but still ensure that a frequency differential equations could be found. One

way to increase the accuracy of the models would be to include a population limit

on the total number of plants allowed in the models. As it stands, the models

allow for unlimited growth in the populations of plant displaying a generalist or

specialist pollination syndrome. While accurate for a succession of plants into a

new environment, it does not accurately reflect most pollination systems.

To strengthen the accuracy of the system of differential equation models, it is

important for future models to include a death rate. Including a death rate for the

plants would allow the models to fluctuate about the set population limit. The death

rate would also produce more interactions among plant pollination syndromes and

their pollinators. Similarly, the system of differential equations models could be

used as a comparison for the more complex Java model.

Increasing the complexity of both models would allow a better examination of

the effects of interactions among different parameters. In addition to this increased

complexity, it would be informative to analyze the results from simulations in which

more than two parameters are changed at a time. Similarly, adding stochasticity

or controlled variations (as in the simulations with cyclic pollinator abundance)

to parameters during the simulations would allow for a deeper examination

of interaction among parameters. With additional complexity in the system of

differential equations, comparing the results of these models to the outcomes of the

Java model would provide a method for assessing the accuracy of both models. It
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would be useful to compare the results of both models to know if the less complex

system of differential equation model could predict the same outcomes as the

complex Java model. If both predicted the same outcome, then it may indicate that

an element of a plant-pollinator interaction can be potentially simplified in the Java

model.

Although all of the models omitted certain aspects of a pollination system, they

nevertheless captured numerous facets of plant-pollinator interactions. From the

results of many of the simulations, it is proposed that the effects of the interactions

among the factors that influence the evolutionary pressures on a flowering plant

are extremely important for understanding the evolution of pollination syndromes.

Similarly, the effects of multiple parameters cannot, in most cases, be understood by

summing the individual effects of each parameter. While the models suggests it is

important to examine the interaction among plant longevity, pollinator efficiency,

and pollinator abundance, it also suggests that understanding the interaction among

additional factors of a plant-pollinator system is paramount to understanding which

syndrome is evolutionarily favoured. A greater understanding of the interactions

among the factors in a plant-pollinator system could increase the accuracy of our

predictions of the evolution of a generalist or specialist pollination syndromes in

flowering plants.
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