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Abstract

An option is a contract which gives the holder of the option the right,

but not the obligation, to buy or sell a given security at a given price, which is

called the strike price. For example, suppose Yahoo stock is currently trading

at $10 per share. A person could buy an option that gives him or her the

ability to purchase shares of Yahoo stock for $12 in one year. If the price of

Yahoo stock is greater than $12 in one year, the holder of the option will make

money. However, he or she will not use the option if the stock price is less than

12 because it will not be profitable. This situation illustrates that there is a

financial advantage to owning options. Thus, options are not handed out for

free. This Independent Study introduces a model called the binomial asset

pricing model that can be used to price options.

Also, it explores certain mathematical properties necessary to the pricing

process, such as sigma-algebras, measurability, conditional expectation, and

martingales. The final chapter compares a real-world option price with the

price given by the binomial model as well as applying the model in a

completely different context—determining whether or not selected players

from the 2003 NBA draft were worth their rookie salaries.
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Chapter 1

Introduction

1.1 Important Definitions

A security is a financial instrument that represents an ownership or

creditor position in a publicly traded corporation. Two examples of securities

are stocks (owner) and bonds (creditor). An option is a contract which gives

the holder of the option the right, but not the obligation, to buy or sell a given

security at a given price, which is called the strike price. The strike price will

be denoted by K in future chapters. There are two main types of options: call

options and put options. An option in which the holder is given the right to

buy a given security at the strike price is a call option. A put option gives the

holder of the option the right to sell a given security at the strike price. At this

point, some people may wonder what the advantage is to purchasing an

option rather than simply buying shares of stock directly. One reason is that

the option can significantly increase the holder’s profit, depending on the type

of option and the behavior of the stock price. This can be illustrated with an

1
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example, which is similar to an example in Williams. [11].

Consider a European call option in which the holder of the option has

the right to buy a certain number of shares for a given price on a given date.

The stipulation of European options is that they can only be exercised (used)

on the date specified in the contract. On September 26, 2013, a European call

option on Buffalo Wild Wings (BWLD) stock has a price of $20. The option

expires on October 19, 2013, and the strike price is $90.00. The price of one

share of stock in BWLD on September 26 is $110. Imagine Peyton bought the

option on 100 shares of BWLD, which would cost $2000. On October 19,

Peyton would have the right to purchase 100 shares of BWLD for $9000 (the

strike price of $90 per share).

Now, the stock price can either increase or decrease; we will assume in

this example that it can go up or down by 40%. First, suppose the stock price

of BWLD increases to $154. Peyton will exercise the option, so his net profit

per share will be $154 − $90 − $20 = $44. This is calculated by taking the stock

price on October 19 and subtracting the strike price and the price of the option

per share. Therefore, Peyton’s net profit would be $4400, which is a

4400
20 = 220% profit on the initial investment in the option. To see the advantage,

if Peyton would have invested the $2000 directly into BWLD stock instead of

purchasing the option, he could have bought 18 whole shares. Thus, his profit

would have been $44 × $18 = $792 on an investment of $110 × $18 = $1980.

This is only a 792
1980 × 100 = 40% profit, which is significantly less than the profit

made by purchasing the option.

Second, suppose the stock price of BWLD decreases to $66 per share.

Peyton will not exercise the option, so he would take a $2000 loss (the price he
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paid for the option). This time, if Peyton would have used the $2000 to

purchase 18 whole shares of BWLD, his loss would have been

$44 × $18 = $792. In other words, this is a 40% loss on his original investment.

This example illustrates that call options can be very risky because both

the payoff as well as the loss can be substantially higher, depending on the

stock price. Clearly, there must be some other uses of options other than

simply trying to make a profit. One important use of options is called hedging.

Hedging is a risk management strategy used in limiting or offsetting the

probability of a loss from fluctuations in the prices of commodities, currencies,

or securities. Essentially, it allows risk to be transfered or reduced without the

purchase of insurance. For example, a put option allows its holder to sell a

stock at a particular price. This reduces the risk of the stock price dropping

very rapidly. There are more complicated hedging strategies, but this provides

a basic understanding.

Two other important ideas in mathematical finance are short and long

positions in a security. At face value, these may sound like they refer to the

amount of time that a stock is held, but this is not the case at all. In essence,

these terms define whether or not an investor borrowed money in order to buy

shares of stock (long position) or sold shares of stock that he or she did not

own (short position). A short position in a stock may require further

explanation. Suppose Ricky short sells 100 shares of stock. The 100 shares of

stock are sold just as if Ricky had possessed them himself, and he receives the

proceeds from the sale. The shares of stock can come from a broker’s own

inventory of stock in various companies or from one of the other shareholders

of the company. The catch is that by short selling, Ricky has made a promise to
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deliver those shares back to the lender at some point in time. In other words,

Ricky is “betting” that the stock price will decrease, so he can replace the 100

shares of stock at the lower price and make a profit. However, if the stock

price increases, he still has to eventually replace the 100 shares, even if he loses

money in the process.

1.2 History

As Section 1.1 illustrated, there is a certain financial advantage associated

with options because the holder of the option has the right but not the obligation

to engage in a future action. This means that when it would be beneficial, he

or she will engage, but the holder will choose not to exercise the option under

disadvantageous circumstances. With this in mind, it seems as though the

holder should have to pay to own this type of advantage, and, indeed, this is

true. However, the underlying question throughout the history of finance is:

how much should a given option cost? This section explores the history of the

answer to that question. It gathers its information from Boyle [2] and Korn [8].

We begin in 1900 with the contributions made by a French

mathematician, Louis Bachelier. The first ideas about pricing options involved

the ability to effectively model the future movements of stock prices. As is the

case with any intro probability course, there are two ways to view time:

discrete and continuous. Likewise, stock prices can be modeled in either

context. Bachelier was the first to attack discrete time modeling by using a

random walk. Informally, a random walk is a path that consists of a sequence

of random steps. For example, Bachelier modeled stock prices by using coin
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tosses at each discrete time interval. The movement of the stock price (up or

down) is determined by whether heads or tails was flipped. Generalizing to

continuous time involves increasing the frequency of the time intervals, or,

intuitively, constantly flipping the coin. Bachelier also laid the foundation for

this generalization when he showed that as the frequency of the time intervals

increases, the random walk starts to behave like Brownian motion. Brownian

motion is the continuous time analog to a random walk, but we will not

explore it here. Unfortunately, Bachelier’s contributions to option pricing were

not recognized during his lifetime as no one paid much attention to his thesis

until the 1950’s.

Up until the 1950’s, it had been assumed that asset-price movements

followed a normal distribution. However, one drawback to this assumption is

that the normal distribution allows for negative values. Even though stocks

can become worthless, stock prices cannot be negative. Paul Samuelson, an

American economist, was interested in option pricing, and he was further

intrigued when he came across Bachelier’s unknown book, “rotting in the

library at the University of Paris” [2]. Samuelson made two main

contributions to the field. First, he assumed that stock returns follow a

lognormal distribution, which solved the problem of negative stock prices

because the lognormal distribution does not allow negative numbers. Second,

he derived a formula for the price of an option, which involved several

variables including the expected return on the stock and the expected return

on the option. However, he could not figure out a way to solve for or estimate

these variables. If he had, he would have solved the option pricing problem.

As time and research progressed, it was learned that Samuelson did not
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have the entire formula correct. He accurately identified the expected return

on the stock as an important variable, but the expected return on the option

was replaced with a discount rate (also unknown). In 1967, Ed Thorp realized

that he could set both the expected return on the stock as well as the discount

rate equal to the riskless interest rate (explained in Chapter 3). In fact, the

resulting formula is still used today and is known as the Black-Scholes

Formula. However, Thorp was unable to mathematically prove that his

formula was correct. Instead, he used his new formula to trade approximately

$100, 000 in the options market, and, in the end, broke even. He decided that

the formula had proven itself in action.

This leaves us questioning why this famous formula is not called the

Thorp Formula? The reason is because the final touches to the option pricing

problem were made by Fischer Black and Myron Scholes. Black began

working on the problem in 1965 and had made steady progress, eventually

deriving a differential equation, and its solution would be the option price. He

took some time off, as the frustration surrounding the equation began to build.

Then, Black and Scholes joined forces in a final attempt to solve the equation.

Finally, in 1969, they solved it, and unlike Thorp, were able to prove that this

was indeed the solution. After nearly 70 years, the problem originally worked

on by Bachelier had been solved. Interestingly, Fischer Black, who helped

derive the most significant formula in finance history, had never taken a

formal economics or finance course in his life.

The work of Black and Scholes was eventually published in 1973, and it

was then that Thorp first saw the resemblance. When asked why he did not go

public with his formula 6 years earlier, he said he was planning on setting up a
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hedge fund and using the formula as a competitive advantage. Today, most (if

not all) of the credit is attributed to Black and Scholes, but how does Thorp feel

about that? He wrote: “Black-Scholes was a watershed-it was only after seeing

their proof that I was certain that this was the formula-and they justifiably get

all the credit. They did two things that are required: They proved the formula

(I didn’t) and they published it (I didn’t)” [2].

The Black-Scholes formula was a shocking but complex development in

the world of finance. It involves very complicated mathematical ideas that are

very difficult to grasp. The next development in option pricing came when a

professor, John Cox, wanted to teach his students about option pricing. He

believed that the math involved in the Black-Scholes Formula was too

complicated. So, in 1979, Cox, Stephen Ross, and Mark Rubenstein converted

the continuous time concepts to discrete time, eliminating the calculus from

the formula. They assumed that, in discrete time, the stock price movements

follow a binomial distribution. As many intro probability courses point out, as

the number of trials of a binomial distribution increases, it can be

approximated by a normal distribution. This fact links the discrete time

binomial model to the continuous time Black-Scholes model.

1.3 Outline of the Independent Study

The remainder of this Independent Study (I.S.) will read in the following

way. Chapter two will outline some important probability concepts that must

be understood before introducing the pricing model. The main concepts

include sigma-algebras, measurability, and conditional expectation given a
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sigma-algebra. Chapter three develops the binomial asset pricing model, also

called the Cox-Ross-Rubinstein model. First, it introduces the notation and

assumptions associated with the model. Then, it provides a formal example

about why there is only one “efficient” price for any given option,

demonstrating why any other price will not work. Finally, Chapter 3 identifies

two distinct probability measures and explains their significances. Chapter 4

gives a detailed explanation of an important property contained in the

binomial model—martingales. There are certain properties associated with

martingales that are essential in the field of financial mathematics, and this

chapter explores them. Lastly, Chapter 5 develops two real-world applications

of the binomial model. First, it compares the theoretical price (given by the

binomial model) to the actual real-world price of two options—Netflix and

Johnson and Johnson. Second, it uses the binomial model as a tool to decide

whether or not the top ten picks in the 2003 NBA draft were worth their rookie

salaries. This I.S. will conclude at the end of Chapter 5 with a discussion of the

pros and cons of the binomial asset pricing model.



Chapter 2

Probability

2.1 Sigma-Algebras

Before we begin our study of mathematical finance, we must understand

a few important probability concepts, which can be further explored in [1].

The first is the idea of a σ-algebra (sigma-algebra). Recall from probability that

we begin with a sample space, denoted by Ω (Omega), which is the set of all

possible outcomes of a random experiment.

Definition A collection F of subsets of Ω is called a σ-algebra if the following

four properties hold:

(1) ∅ ∈ F

(2) Ω ∈ F

(3) For any event A, A ∈ F =⇒ Ac
∈ F

(4) A1,A2, ... ∈ F =⇒
∞⋃

i=1
Ai ∈ F and

∞⋂
i=1

Ai ∈ F .

9
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In words, this definition is often stated as: σ-algebras are closed under

compliments, countable unions, and countable intersections. However, one point to

be made is that the second part of (4) need not be included in the definition

because it follows from complements, countable unions, and DeMorgan’s Law.

In introductory probability, the most common σ-algebra is the power set

of the sample space because it contains all combinations of the events (all

combinations of the subsets of Ω). Therefore, the power set of the sample

space is necessarily always a σ-algebra. However, it is not the case that a

collection of subsets of the sample space must be the power set in order to be a

σ-algebra. An example will make this clearer.

Example 1. Let Ω = {a, b, c}. What is the power set of Ω? Next, consider the event

B = {a}. What is the smallest σ-algebra containing B?

The largest σ-algebra of Ω is its power set:

F = {{a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}, ∅}. It is clear that this is a σ-algebra.

The power set of Ω contains B, but it also contains many unnecessary events

when attempting to name the smallest σ-algebra containing B. The smallest

σ-algebra containing B is: FB = {{a}, {b, c}, {a, b, c}, ∅}; this is called the σ-algebra

generated by B. In order to generate FB, we start with B. Then, the complement

of B (Bc = {b, c}) must also be contained in FB. Next, we must union those two

events, which produces Ω = {a, b, c}, and complement the resulting set, which

is ∅. Now, FB satisfies all parts of the definition, so it is a σ-algebra that is

smaller than the power set of Ω.

At this point, one might question how this is applicable to financial

mathematics. We utilize σ-algebras often in the later chapters, but we will
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attempt to get an intuitive understanding here. The binomial model,

introduced in Chapter 3, uses sequences of coin tosses to depict periods of

time, just like the work of Bachelier. In other words, a coin is flipped at the

beginning of each new time period, and, depending on the result of the toss,

the value of a stock either increases or decreases. Therefore, it is useful to

predict the value of a stock in the next period using the information that we

have gathered through the current period. Suppose it is currently period 1,

and we are attempting to predict the price of a given stock in period 2 using

the information we have collected through period 1. In order to

mathematically illustrate that we “know” all the information through time 1,

we use a σ-algebra: F = {∅,Ω, {HH,HT}, {TH,TT}}. In this case, our sample

space Ω is all of the possible outcomes of two successive coin tosses. For

example, if we know which events in F happened, we would know whether

or not the event {HH,HT} happened. In other words, we would know whether

or not the first toss was heads. Likewise, knowing whether or not the event

{TH,TT} happened tells us if the first toss was tails. However, neither of these

events give us any information on the second coin toss, so this σ-algebra only

gives us information through the first coin toss (first time period).

2.2 Measurability

The next important probability concept is the idea of measurability.

Recall the definition of a random variable from introductory probability. A

random variable is a function X from the sample space to the real numbers.

This is illustrated in Figure 2.1.
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Figure 2.1: A random variable is a function from the sample space to the real
numbers [5].

However, one piece of the definition of a random variable that is often left out

is the fact that a random variable must also be measurable.

Definition A random variable X is measurable with respect to a σ-algebra F

if for all real numbers a, {ω : X(ω ≥ a} ∈ F . In this case, we would say X is

F -measurable.

This definition can be difficult to understand. To start, let us consider an

example.

Example 2. Suppose the sample space is the real numbers from zero to one:

Ω = [0, 1]. Also, suppose we have the simplest possible σ-algebra: F = {∅,Ω}, and the

probability measure P is the euclidian measure of length. Finally, assume that X is a

random variable such that X(ω) = ω.

Clearly, the length of the interval [0,1] is 1, so this probability measure meets

the requirement that P(Ω) = 1. Now, we choose a = 1
2 (this could be any real

number). In order for X to be F -measurable, it must be the case that any event

(subset of Ω) that X maps to a real number greater than 1
2 is an element of F .
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In this example, subintervals are events because Ω is a closed interval. Since X

is the identity function, the interval
[

1
2 , 1

]
gets mapped to real numbers greater

than or equal to 1
2 . However, this event is not an element of F because F only

has two elements. In mathematical notation:

X−1
([1

2
,∞

))
=

{
ω ∈ Ω : X(ω) ≥

1
2

}
=

[1
2
, 1

]
< F .

Therefore, X is not F -measurable.

Example 3. Now, we will slightly alter Example 2 by changing the random variable.

Let X be a random variable such that X(ω) = c ∈ R.

In this example, we must consider two cases. First, assume that a ≤ c.

Since, every real number in the interval [0,1] gets mapped to c, it is the case

that all of Ω satisfies the quality of being mapped to a real number greater

than or equal to a. In mathematical notation:

X−1 ([a,∞)) = {ω ∈ Ω : X(ω) ≥ a} = [0, 1] = Ω ∈ F ,

where X−1 refers to the inverse image. Second, assume that a > c. Since every

real number in the interval [0,1] gets mapped to c, there are no subsets of Ω

that satisfy the quality of being greater than or equal to a. In other words, ∅

satisfies the condition. In mathematical notation:

X−1 ([a,∞)) = {ω ∈ Ω : X(ω) ≥ a} = ∅ ∈ F .

Since the definition of measurable holds for all values of a, X is F -measurable.

In fact, since F is the trivial σ-algebra, the only F -measurable functions are
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constants.

Next, let us consider an example using the coin toss space that we have

used previously.

Example 4. In this example, let X be a random variable that gives the number of tails

in the first two coin tosses. Also, let the sample space Ω be all possible results of three

coin tosses. Finally, let

F1 = {∅, {HHH,HHT,HTH,THH,HTT,THT,TTH,TTT}, {HHH,HHT,HTH,HTT},

{THH,THT,TTH,TTT}}

and we want F2 to be the σ-algebra generated by the following sets:

∅, {HHH,HHT,HTH,THH,HTT,THT,TTH,TTT}, {HHT,HHH},

{HTH,HTT}, {THH,THT}, {TTH,TTT}.

In this example, F1 is the σ-algebra that gives the information known through

one coin flip and F2 reveals the information after two tosses of the coin. In

other words, if we know which events in F2 have occurred, we know the

results of the first two coin tosses. Intuitively, we know that X is not

F1-measurable because F1 only tells us the result of the first coin flip, and X is

the number of tails after two coin tosses. How can we see this by using the

definition of measurable? Let us give a name to the set used in the definition:

Aa = {ω ∈ Ω : X(ω) ≥ a}. If a = 1.5, then A1.5 = {ω ∈ Ω : X(ω) ≥ 1.5}. In words,

A1.5 is the set of all events that the random variable maps to a real number

greater than or equal to 1.5. These events include the sequences of coin tosses



CHAPTER 2. PROBABILITY 15

that resulted in at least two tails. However, none of the subsets of F1 give this

information. In other words, knowing that one of the events in F1 occurred

does not tell whether or not A1.5 occurred. In mathematical notation:

X−1 ([1.5,∞)) = {TTT,TTH} < F1.

Thus, X is not F1-measurable.

On the other hand, suppose we know which events in F2 happened. This

would tell us whether or not A1.5 happened, so X is F2-measurable. For

example, suppose that we know that the event {HTH,HTT} occurred. Since X

gives the number of tails in two coin tosses, the result of the third coin toss is

irrelevant. In this event, the first two coin tosses are the same, namely HT, so

we know X = 1. Intuitively, the notion of measurability in the discrete setting

can be stated as follows: For each event in a σ-algebra, suppose we know whether or

not that event occurred. Then, if a random variable is measurable with respect to that

σ-algebra, we can calculate the value of that random variable.

2.3 Conditional Expectation

The final and most important probability concept that we will discuss is

conditional expectation. Conditional probability is a topic covered in

introductory probability, which allows us to calculate the probability that an

event ocurrs given the fact that another event ocurred. In other words,

conditional probability is a number that behaves exactly like any other

probability. Expected value (expectation of a random variable) is also a core
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topic of introductory probability, which states the value that we would

“expect” a random variable to take on if an infinite number of trials of the

random experiment were performed. In other words, the expectation of a

random variable is also a number. Conditional expectation, on the other hand,

is a random variable that combines both of these ideas. Conditional

expectation states the value we would “expect” a random variable to take on

given some other information. However, it depends on the results of a random

experiment. Before we can give the definition of conditional expectation, we

first must introduce the idea of restricted expectation.

Definition Suppose that X is a random variable and B is an event. The

expectation of X restricted to B is defined as:

E[X; B] =
∑
ω∈B

X(ω)P({ω}).

However, another way that this definition is commonly stated is:

E[X; B] = E[X1B], (2.1)

where 1B is the indicator function. The indicator function of a subset B of Ω

1B : Ω→ {0, 1}

is defined as:

1B(ω) =


1 if ω ∈ B

0 if ω < B.
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In this context, this function indicates whether or not an element of the sample

space is an element of a given subset of the sample space. All elements of Ω

that are also elements of B take on the value 1, while all elements of Ω that are

not elements of B take on the value 0. For example, suppose Ω = {a, b, c, d, e}

and B = {a, d}. Then, 1B(a) = 1, 1B(b) = 0, 1B(c) = 0, and so on. This paper will

use (2.1) in future calculations involving restricted expectation.

Now, we are ready to give the definition of conditional expectation.

Definition Suppose there exist finitely (or countably) many sets B1,B2, . . ., all

having positive probability, such that they are pairwise disjoint, Ω is equal to

their union, and F is the σ-algebra generated by all the Bi’s. Then, the

conditional expectation of a random variable X given F is:

E[X|F ](ω) =
∑

i

E[X; Bi]
P(Bi)

1Bi(ω).

Now, we will look at an example that again involves a coin toss space,

assuming that the coin is fair.

Example 5. Suppose Ω = {HH,HT,TH,TT}, and let

F1 = {∅,Ω, {HH,HT}, {TH,TT}}. Also, let S be a random variable such that:

S(ω) =


16 if ω = HH

4 if ω = HT or TH

1 if ω = TT.

What is the conditional expectation of S given F1, assuming that the coin is fair?
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In this example, F1 is the σ-algebra that gives all of the information up

through one toss of the coin. What should the answer look like? The

conditional expectation of S given F1 is a random variable that depends on the

results of the coin tosses, so we will have one answer if the first toss was heads

and a different answer if the first toss was tails. This is because events in F1

indicate the result of the first toss. Now, in order to begin the calculations, we

first must determine Bi. In this example, the two sets whose union is Ω but

also are pairwise disjoint are {HH,HT} and {TH,TT}, so these will be B1 and B2,

respectively. Also, since the coin is fair and there are only two events, the

probability of each of them is P(Bi) = 1
2 . The summation in the definition of

conditional expectation can now be written as:

E[S|F1](ω) =

2∑
i=1

E[S; Bi]
P(Bi)

1Bi(ω)

=
E[S; B1]

1
2

1B1(ω) +
E[S; B2]

1
2

1B2(ω). (2.2)

The next thing to remember is the definition of restricted expectation,

(2.1), which says that E[S; B] = E[S1B]. This means we must analyze the

random variables S1B1 and S1B2 . These random variables are easily computed

because of the simplicity of the indicator function. The calculation yields

S1B1(ω) =


16 if ω = HH

4 if ω = HT

0 if ω = TH or TT,

S1B2(ω) =


0 if ω = HH or HT

4 if ω = TH

1 if ω = TT.
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Taking the expectation of these two random variables is also straightforward,

remembering that we are flipping a fair coin. Thus,

E[S1B1] = 16 ·
1
4

+ 4 ·
1
4

+ 0 ·
1
2

= 5,

E[S1B2] = 0 ·
1
2

+ 4 ·
1
4

+ 1 ·
1
4

=
5
4
.

We can now substitute this answer into the earlier calculation of the

conditional expectation, picking up where we left off from (2.2):

E[S|F1](ω) =
E[S1B1]

1
2

1B1(ω) +
E[S1B2]

1
2

1B2(ω)

= 101B1(ω) +
5
2
1B2(ω).

Another way to write the asnwer that may help in the intuitive

understading of conditional expectation is to write it as a piecewise function,

shown below:

E[S|F1](ω) =


10 if ω ∈ B1

5
2 if ω ∈ B2.

By writing the solution as a piecewise function, it may be easier to realize that

the conditional expectation is a random variable that depends on the value of

ω. If ω ∈ B1 (which means the first toss was heads), the conditional expectation

of S given F1 is 10, whereas if ω ∈ B2 (the first toss was tails), instead, the
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conditional expectation of S given F1 is 5
2 . This is exactly how we described

the answer at the beginning of this example: we got one answer when the first

coin toss was heads and a different answer when the first toss was tails. To

reiterate, the reason for this is because the σ-algebra F1 on which we are conditioning

corresponds to knowing the result of the first toss, so the conditional expectation

depends on the result of the first toss.

The final things to cover in this section are a few important properties of

conditional expectation, which we present in Theorem 1, but first, we must

learn two more definitions.

Definition Two σ-algebras, F and G, are independent if and only if for all

A ∈ F and all B ∈ G, P(A ∩ B) = P(A) · P(B).

Definition Let X be a random variable, and let σX be the smallest σ-algebra for

which X is measurable. X is independent of a σ-algebra F if and only if σX

and F are independent.

Theorem 1. Let X and Y be random variables. Then, the following properties hold:

(i) Linearity of conditional expectations: For all constants c1 and c2, we have

E[c1X + c2Y|F ] = c1E[X|F ] + c2E[Y|F ].

(ii) Taking out what is known: If X is F -measurable, then

E[XY|F ] = XE[Y|F ].
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(iii) Iterated conditioning: If G ⊂ F , then

E[E[X|G]|F ] = E[X|G].

(iv) Independence: If X is independent of F , then

E[X|F ] = E[X].

We will not take the time to prove this theorem, but we will try to gain

an intuitive understanding. First, we consider an ordinary conditional

expecation, say E[X|F ]. We can think of this expectation as the best prediction

of X given some information conveyed by F . Thinking of it in this way allows

us to get a handle on Theorem 1. Part (i) is a common property that extends

from the linearity of expectations. Intuitively, it says that the predicted value

of X + Y is the sum of the predicted values. Property (ii) states that if X is

F -measurable and we are given F , then we know the value of X. In other

words, since X is F -measurable, our best predictor of X is itself. Another

important fact contained in property (ii) is that for conditional expectations

with respect to a F , any F -measurable random variables act like constants

because they can be taken inside or outside the conditional expectation. The

iterated conditioning property states that the average of the predicted value of

X is the average value of X. In this property, we are essentially estimating an

estimate. Since G is a subset of F , F gives us more information than G. In this

property, we are first predicting X using some information in G. Then, we are

estimating that prediction based on the information in F . According to (iii),
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that prediction is the same as simply predicting X using the information in G.

Finally, property (iv) is the independence portion of the theorem. If X is

independent of F , then knowing F does not give us any additional

information about X. Thus, the best prediction of X using the information in F

is simply the expected value of X without using any information. These

properties will be used repeatedly in Chapter 4.



Chapter 3

The Binomial Model

3.1 Introducing the Model

The main purpose of the binomial asset pricing model is to identify the

no-arbitrage price of an option. Arbitrage is formally defined as a trading

strategy that begins with no money, has zero probability of losing money, but

has a positive probability of making money. Essentially, an arbitrage means

that there is no risk. In an arbitrage, there can be two outcomes: a person

could make money with a certain probability or a person could break even

with another probability. However, in an arbitrage, the person can implement

the trading strategy without worrying about losing money.

This chapter begins by considering the one-period binomial model,

which is regarded as the simplest. However, before we can begin the analysis

of the mathematics, we must first discuss the variables, notation, and

assumptions involved in the model. We use Shreve [10] to build the model in

this chapter. The one-period model begins at time zero and ends at time one. At

23
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time zero, we are given the initial price of a stock, which is denoted S0. At time

one, the stock price can either increase to S1(H) or decrease to S1(T). The

subscript in the notation for the stock prices stands for the period. In the

one-period model, there will only be two distinct subscripts (time 0 or time 1),

but in the multi-period model, there can theoretically be an unlimited number

of distinct subscripts because more and more time periods can be considered.

As mentioned earlier, a coin flip decides whether or not the price of the stock

increases, but it is not necessarily a fair coin. For example, the stock may be

more likely to increase than to decrease in value. Therefore, the probability of

flipping a head (and the stock price increasing as a result) will be higher than

the probability of flipping a tail. The only assumption made about the coin is

that the probability of flipping a head, p, and the probability of flipping a tail,

q = 1− p, are both strictly positive. As can be expected, H and T in the notation

for the time one stock price symbolize the outcome of heads and tails,

respectively.

Naturally, the next question is: by how much does the initial stock price

increase or decrease? This question is answered by two more model

parameters: the up factor, u, and the down factor, d. The one important

assumption about these parameters is that u > d, which is clear from the

names up factor and down factor.

Now, we will consider an example of how the model works, so far.

Suppose that S0 = 4, u = 2, and d = 1
2 . This means that the stock price will

increase to 8 with probability p (head is flipped), and will decrease to 2 with

probability 1 − p (tail is flipped). This situation is depicted in Figure 3.1.

The interest rate in the model is r. Interest rates drive the idea that a
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Figure 3.1: The one-period binomial model [3].

dollar today is worth more than a dollar in the future because it is possible to

invest that dollar, earn interest, and, thus, have more than a dollar in the

future. This is known as the time value of money or an investor’s time

preference. In the model, a dollar invested in the money market at time zero

will yield (1 + r) dollars at time one. Further, in the multi-period model, that

dollar will earn (1 + r)n dollars at period n. In order to understand this

concept, suppose r = 0.10 (10% interest). Then, we know that at time one, the

dollar invested at time zero will earn an additional 10 cents, resulting in $1.10

at time one. This can be written as $1.00 × (1 + 0.10)1. Continuing, at time two,

we will earn another 10% interest. However, in the model, we are dealing with

compound interest, meaning that we earn interest on the interest we have

earned in previous periods. Thus, at time two, we earn 10% interest on the

money we currently have, $1.10, which yields $1.21. This can also be

computed using the formula given earlier in this paragraph:

(1 + .10)2 = $1.21.
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Similarly, borrowing a dollar from the money market at time zero will yield a

debt of (1 + r)n dollars at time n. The underlying assumption here is that the

interest rate for investing is the same as the interest rate for borrowing.

Further, we also assume that r > 0.

The interest rate relates to the other two parameters in the model through

the following inequality:

0 < d < 1 + r < u. (3.1)

This inequality, Equation (3.1), is known as the no-arbitrage condition, which

implies that if it does not hold, then there will be an arbitrage. Let us examine

this more closely by considering each piece of the inequality. The first is

obvious, d > 0, because we assumed earlier that the stock prices are positive.

Therefore, we cannot multiply the initial stock price by a negative factor. Next,

d < 1 + r must hold because of a trading strategy that would result in no risk.

Consider the situation where d > 1 + r, that is, the inequality does not hold.

Then, a person could borrow money from the money market, and use that

money to buy shares of stock (the number of shares bought at time zero will be

denoted by ∆0). If the stock price increases, it is clear that the person will make

money because u > 1 (consequence of r > 0). If the stock price decreases by a

factor of d, he or she will still be able to pay off the money borrowed as well as

the interest, while still making a profit. The reason for this is because the

return on the interest rate is less than the amount the stock price decreased.

This creates an arbitrage.

Finally, suppose the last inequality does not hold, meaning that 1 + r > u.
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This situation will allow the person to sell shares short and invest the resulting

income in the money market, where it will earn interest. If the stock price

decreases, he or she will have no problem replacing the shares because they

are worth less now at time one than when they were purchased at time zero.

On the other hand, if the stock price increases, the stock is worth more than

when it was purchased. However, since the return on the interest rate is

greater than the amount that the stock price increased, he or she can replace

the shares of stock and still pocket the remaining money as a profit. Again,

there is an arbitrage because it was possible to make money without the

possibility of losing money. We have now argued that if there is to be no

arbitrage in the model, then the inequalities in Equation (3.1) must hold.

However, this is a biconditional statement because it is also true that if the

inequality holds, then there is no arbitrage. Before we can prove this form of

the claim, we must introduce the wealth equation.

In this model, wealth has two components: the cash position and the

position in the stock, both in dollars. The reason for this is we are only worried

about pricing the option, so the only two things that will matter are

investments in the stock and money market. First, the position in the stock is

straightforward, given by ∆0S1. In words, the stock position at time one is

found by multiplying the number of shares bought at time zero by the stock

price at time one. The cash position is a little more complex. The assumption

made in order to arrive at the formula for the cash position is that we invest

the money that is left over after we purchase ∆0 shares of stock at time 0. Thus,

interest is earned on the remaining portion of the wealth from time zero. The

formula for the cash position at time one is: (1 + r)(X0 − ∆0S0), where X0 is the
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initial wealth at time zero. In words, we subtract the amount of money that we

spent in order to purchase ∆0 shares of stock at time zero (which cost S0 per

share) from our initial wealth X0. This yields the amount that can be invested

in the money market, thus, yielding more cash in the next period. The two

components are then combined, resulting in the wealth equation:

X1 = ∆0S1 + (1 + r)(X0 −∆0S0). However, the wealth equation is generalized for

an n-period model by:

Xn+1 = ∆nSn+1 + (1 + r)(Xn − ∆nSn). (3.2)

Now, we are able to return to the claim: if 0 < d < 1 + r < u, then there is

no arbitrage in the model. However, remember that there is a stronger claim

represented, which we state in the next theorem.

Theorem 2. Let d represent the down factor, r represent the interest rate, and u

represent the up factor. Then, there is no arbitrage in the binomial model if and only if

0 < d < 1 + r < u.

Earlier in this section, we proved that if there is no arbitrage in the model, then

Equation (3.1) must hold. Now, we want to show that if Equation (3.1) holds,

then there is no arbitrage. Essentially, we want to show that if X0 = 0 and X1 is

given by the wealth equation, then we cannot have X1 > 0 with positive

probability unless X1 < 0 with positive probability, also. In words, if we start

with no initial wealth at time zero, then we cannot have the possibility to make

money (positive wealth) at time one unless there is a possibility that we lose

money (negative wealth). It should be noted that this must be the case

regardless of the number of shares of stock purchased. We will tackle this
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proof by manipulating the wealth equation.

Proof. Assume 0 < d < 1 + r < u, X0 = 0, and that X1 > 0 with positive

probability. Then, it must be the case that either X1(H) > 0 or X1(T) > 0.

Without loss of generality, assume X1(H) > 0. According to Equation (3.2),

X1(H) = ∆0S1(H) + (1 + r)(X0 − ∆0S0) > 0. By substituting S1(H) = uS0 and

X0 = 0, we get: ∆0uS0 + (1 + r)(−∆0S0) > 0. Factoring out ∆0S0 yields:

∆0S0(u − (1 + r)) > 0. Since an assumption of the model is that stock prices are

always positive, S0 > 0. Also, since 0 < d < 1 + r < u, (u − (1 + r)) > 0. Thus,

∆0 > 0 in order for the inequality ∆0S0(u − (1 + r)) > 0 to be true.

Now, we analyze X1(T) in a similar fashion, knowing that ∆0 > 0. Again,

we begin by using Equation (3.2) to define X1(T), continue by substituting

S1(T) = dS0, and end by factoring. The steps are shown below:

X1(T) = ∆0S1(T) + (1 + r)(X0 − ∆0S0)

= ∆0dS0 + (1 + r)(−∆0S0)

= ∆0S0(d − (1 + r)).

Again, S0 > 0, but since 0 < d < 1 + r < u, (d − (1 + r)) < 0. Thus, since ∆0 > 0

from the above argument, ∆0S0(d − (1 + r)) < 0. In other words, X1(T) < 0.

Therefore, we cannot have X1 > 0 with positive probability unless X1 < 0 with

positive probability, also. Thus, there is no arbitrage. �

Finally, we will summarize a few more important assumptions in the
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following list:

1. The interest rate for investing is the same as the interest rate for

borrowing.

2. We have unlimited short selling of stock.

3. There are no transactions costs (including bid-ask spreads) associated

with the purchase of shares or investments made in the money market.

4. Our buying and selling is on a small enough scale that it does not affect

the market.

5. At any time, the stock can only take on two possible values in the next

period.

3.2 Example: Pricing an Option

Now, we have enough tools to understand how to price an option in the

one-period binomial model. Consider a situation where one share of stock in

company X is priced at $4, and the interest rate in the money market is 25%

(very unrealistic but effective for the example). After one period, experts

predict that the stock price could either increase to $8 or decrease to $2. Also,

the strike price of a European call option is $6. Our goal is to combine activity

in the stock and money market to allow our portfolio value to be exactly equal

to the value of the option at time one. For example, at time one, if the stock

price increased to $8, the call option will allow us to purchase one share of

stock in Company X for the lower price of $6. Thus, the value of the option in
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this scenario is $2 ($8 − $6). On the other hand, if the stock price decreases to

$2, the call option is worthless ($0) because we could simply purchase one

share of stock at the current price of $2 rather than the $6 price that the option

allows. Therefore, by investing money in the money market and buying a

certain number of shares of stock, we want our wealth (portfolio value) to

equal $2 if the stock price increases and $0 if the stock price decreases.

Specifically, this process is called replicating the option.

The first thing to do in this example is to convert the words into the

parameters of the binomial model. In the previous paragraph, we were given

the following information:

• S0 = $4,

• r = 1
4 ,

• S1(H) = $8,

• S1(T) = $2,

• K = 6.

Recall the wealth equation for the one-period model, Equation (3.2):

X1 = ∆0S1 + (1 + r)(X0 −∆0S0). We want to substitute the known values into the

wealth equation and solve for the unknown variables. It is important to

remember that wealth is a random variable with two elements in its support.

The value of the wealth random variable is determined by the coin flip, so this

wealth equation is actually two-fold (X1(H) and X1(T)). These two equations

are presented below with the substitutions already made:
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X1(H) = ∆0S1(H) + (1 + r)(X0 − ∆0S0) = 2

= 8∆0 +
5
4

X0 − 5∆0 = 2

= 3∆0 +
5
4

X0 = 2,

X1(T) = ∆0S1(T) + (1 + r)(X0 − ∆0S0) = 0

= 2∆0 +
5
4

X0 − 5∆0 = 0

= −3∆0 +
5
4

X0 = 0.

Now, we have two equations and two unknowns, so we are able to solve the

system of equations:

X1(H) = 3∆0 +
5
4

X0 = 2,

X1(T) = −3∆0 +
5
4

X0 = 0,

∆0 =
1
3
,X0 =

4
5

= 0.80.

The solution to the system of equations is 1
3 shares of stock in Company X and

initial wealth of $0.80. These quantities replicate the option because no matter

what happens to the stock, at time one, our portfolio value will equal the value

of the option. Therefore, the no-arbitrage price of the option is $0.80. At this

point, it may be a bit unclear as to why this is the no-arbitrage price, so in

order to fully understand this fact, we will consider the two situations where
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the price of the option is more than and less than the calculated fair price.

First, suppose the price of the option is $1.00 (higher than the

no-arbitrage price). The seller of the option, Sammy, would receive $1.00 for

the option from the buyer, Brian, and invest $0.20 in the money market, which

will be worth $0.25 at time one. At time zero, Sammy has $0.80, which is, not

coincidentally, the initial wealth that we calculated in the system of equations

earlier. Sammy now wants to purchase 1
3 shares of stock in Company X, which

will cost $1.33 (4 × 1
3 ), so he must borrow $0.53 from the money market. At

time one, Sammy will owe $0.67. If the stock price increases, his 1
3 shares of

stock will be worth $2.67 (8 × 1
3 ). Selling his stake in Company X enables him

to pay off his $0.67 debt and still have $2.00. Since the stock price increased,

Brian will want to exercise the option, which gives him the right to purchase

one share of stock for $6.00 instead of $8.00. However, Sammy is able to honor

this deal because he still has $2.00 after repaying his debt, so after receiving

Brian’s payment of $6.00, Sammy is able to purchase one share of stock for

$8.00 to give to Brian and still break even. If the stock price decreases, his 1
3

shares of stock will be worth $0.67 (2 × 1
3 ), allowing him to pay off his debt in

the money market. Since the stock price decreased, Brian will not exercise the

option, so Sammy has no further obligation. However, Sammy still has an

additional $0.25 from his original money market investment. Therefore, he

was able to start with no wealth and end with $0.25 no matter what happens

to the stock. This is an arbitrage opportunity, which exists because the price of

the option is higher than the no-arbitrage price.

Second, suppose the price of the option is $0.50 (lower than the

no-arbitrage price). Brian should sell short 1
3 shares of stock in Company X to



34 CHAPTER 3. THE BINOMIAL MODEL

generate $1.33 of income. This allows him to buy the option for $0.50, and still

have $0.83 left over. Next, Brian should invest $0.53 in money market account

A and invest the remaining $0.30 in money market account B. It should be

noted that both money market accounts earn the same interest rate. The only

reason two accounts are used is for “book-keeping” purposes. If the stock

price increases to $8.00, Brian can exercise the option, allowing him to

purchase one share of stock in Company X for $6.00 instead of $8.00. Then, he

can use 1
3 of those shares to replace the 1

3 shares he sold short at time zero. At

this point, he has −$6.00 because he exercised the option, but has not made

any money. However, he still has 2
3 shares of stock remaining, so he can sell

those at the current stock price of $8.00 to receive $5.33. Brian now has −$0.67,

but the money market investment of $0.53 in money market account A at time

zero has grown to $0.67, so he is back to even. If the stock price decreases to

$2.00, the option is worthless, but Brian still needs $0.67 to replace the 1
3 shares

of stock that he bought at time zero. Luckily, his investment in money market

account A allows him to do this, so, again, Brian breaks even. However, in

both scenarios, his investment of $0.30 in money market account B has grown

to $0.37. Therefore, Brian was able to start with no wealth and end with $0.37

regardless of what happens to the value of the stock. This is an arbitrage

opportunity, which exists because the price of the option is lower than the

no-arbitrage price.
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3.3 Risk-Neutral vs. Actual Probabilities

The main thing that most investors consider when debating how to build

a trading strategy is risk. If a stock is particularly “risky,” investors are less

likely to purchase shares in that company. There are several different ways to

determine the risk associated with a particular stock. However, a very basic

method involves analyzing the stock’s average rate of growth with respect to a

risk-free investment. For example, is it always a good investing decision to

purchase shares of a stock if the stock price is expected to increase? The

answer is no. It is possible that the stock price may increase, but the investor

would have made more money if he or she had invested in the money market,

instead, earning the interest rate. This would be the case if the rate of interest

is higher than the growth rate of the stock price. In other words, we want to

compare the stock price at time zero with the discounted stock price at time

one. This means that we want to compare the stock price at time zero with the

expected stock price at time one in time zero money. This idea relates back to

the idea of an investor’s time preference, described earlier.

In mathematical notation:

S0 <
1

1 + r
E[S1] =

1
1 + r

[pS1(H) + qS1(T)],

where p and q represent the actual probabilities that the stock price will

increase or decrease, respectively. What does this inequality say? Essentially, it

says that the average rate of growth of the stock should be strictly greater than

the average rate of growth of a money market investment, which is necessary

because otherwise an investor would never want to assume the risk of
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purchasing the stock. If, on the other hand, the inequality was flipped, we

would be better off investing in the money market because its average rate of

growth would be higher than that of the stock price. However, in this model,

in order to price an option, we want investors to be neutral about risk. The

reason for this is because our goal is to replicate the option. By using the

risk-neutral probabilities, no matter how a man invests in the stock and money

markets, he will receive the same average rate of return (the interest rate, r).

Therefore, this allows the equality to hold in the inequality from above:

S0 =
1

1 + r
[p̃S1(H) + q̃S1(T)], (3.3)

where p̃ and q̃ are the risk-neutral probabilities that make this equation true.

Since p̃ and q̃ are probabilities, they sum to one, which means q̃ = 1 − p̃. Thus,

we can solve for p̃ directly.

S0 =
1

1 + r
[p̃S1(H) + q̃S1(T)]

=
1

1 + r
[p̃uS0 + q̃dS0]

=
S0

1 + r
[p̃u + q̃d]

=
S0

1 + r
[p̃u + (1 − p̃)d]

=
S0

1 + r
[p̃(u − d) + d].

Therefore, p̃ = 1+r−d
u−d , and q̃ = 1 − p̃ = u−1−r

u−d .

Now, let us back track to the example presented in section 3.2 about

pricing the option. We reached a point where we needed to solve a system of
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two equations with two unknowns, which is a fairly simple calculation. Recall

that the system says that our portfolio value at time one must equal the value

of the option at time one, regardless of the result of the coin toss. Notice that

we are again using the discounted prices because we want to compare prices

in the present time period (time zero). Thus, the system of equations can be

written as:

X0 + ∆0

( 1
1 + r

S1(H) − S0

)
=

1
1 + r

V1(H),

X0 + ∆0

( 1
1 + r

S1(T) − S0

)
=

1
1 + r

V1(T).

However, another way to solve this system of equations is to multiply the first

by p̃ and the second by q̃ = 1 − p̃ and then add them. This yields:

X0 + ∆0

( 1
1 + r

[p̃S1(H) + q̃S1(T)] − S0

)
=

1
1 + r

[p̃V1(H) + q̃V1(T)].

As noted earlier, p̃ and q̃ were defined so that S0 = 1
1+r [p̃S1(H) + q̃S1(T)]. This

means that the term multiplying ∆0 is zero. Thus, we now have a much

simpler formula for X0:

X0 =
1

1 + r
[p̃V1(H) + q̃V1(T)].

We can also solve for ∆0 by subtracting the two original equations:

X0 + ∆0

( 1
1 + r

S1(H) − S0

)
=

1
1 + r

V1(H),

−[X0 + ∆0

( 1
1 + r

S1(T) − S0

)
=

1
1 + r

V1(T)].
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The only terms that differ in these two equations are those that depend on the

coin toss, which means that this subtraction allows all other terms to drop out,

yielding:

∆0 =
V1(H) − V1(T)
S1(H) − S1(T)

.

Now, we can substitute the numbers from the example in section 3.2 to

illustrate that we arrive at the same answer. First, p̃ = 1+r−d
u−d = 1

2 , so q̃ = 1
2 , also.

X0 =
1

1 + r
[p̃V1(H) + q̃V1(T)]

=
4
5

[1
2
× 2 +

1
2
× 0

]
=

4
5

= $0.80,

∆0 =
V1(H) − V1(T)
S1(H) − S1(T)

=
2 − 0
8 − 2

=
1
3
.

Finally, we can introduce the risk-neutral pricing formula for the

one-period binomial model:

V0 =
1

1 + r
[p̃V1(H) + q̃V1(T)],

which is found simply by replacing X0 with V0 in the earlier formula because

we want our portfolio to equal the value of the option in each period of time.

This formula can be generalized to n-periods by
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Vn =
1

1 + r
[p̃Vn+1(H) + q̃Vn+1(T)]. (3.4)

Essentially, this formula states that the price of the option in period n equals

the discounted expected value of the value of the option in the next period

under the risk-neutral probability measure, and as was shown earlier, any

other price (higher or lower) leads to an arbitrage opportunity. This may be

concerning to some readers because it seems as though the actual probabilities

should be taken into account when pricing the option. However, this is not the

case. The reason we use the risk-neutral probabilities is because we want the

hedge to give us a portfolio that agrees with the value of the option, regardless

of the result of the coin toss. In other words, given any possible stock price

path, we want the hedge to work. In order to understand this, we must recall

that we found the correct hedge amounts by solving a system of two equations

with two unknowns, but there were no probabilities in the system. We

introduced the risk-neutral probabilities into the system to allow some of the

terms to cancel, but the actual probabilities would not allow such

cancellations. Since this is an important fact about the model, we will

summarize the preceeding discussion. Since we want our hedge to work

regardless of whether the stock price goes up or down, the actual probabilities of the up

and down move are irrelevant. Rather, the size of the move is more important. In the

binomial model, the price of the option depends on the set of possible stock price paths,

but not on the probabilities that each path ocurrs.
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Chapter 4

Martingales

So far, we have studied some important probability concepts as well as

introducing the binomial model. In this chapter, we will combine the previous

two chapters to explore an important concept related to the binomial model—a

martingale. Before giving the definition of a martingale, we first must

understand the idea of an adapted stochastic process. An adapted stochastic

process in discrete time is simply a sequence of random variables X0,X1,X2, ...,

with each Xn depending only on the first n coin tosses (and X0 constant). For

example, this sequence is said to be adapted to the information at time n. More

generally, a sequence of random variables Xn is adapted if Xn is Fn-measurable

for all values of n. This chapter uses information from Bass [1] and Shreve [10].

4.1 The Martingale Property

Definition Suppose we have a sequence of σ-algebras F1 ⊂ F2 ⊂ F3 · ··. A

martingale is a sequence of random variables M0,M1, ...,MN such that:

41
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(1) Mn is adapted to Fn.

(2) E[M2
n] < ∞ for all values of n.

(3) Mn = E[Mn+1|Fn] for n = 0, 1, ....,N − 1.

In words, a martingale has no tendency to rise or fall. Given the first n coin

tosses (information up to time n is given by Fn), the expected value of the

martingale at time n + 1 is its value at time n. This is known as the

“one-step-ahead” martingale property. However, there are other versions of the

martingale property. Consider the following statement for n ≤ N − 2. By

conditioning on the first n + 1 coin tosses, the martingale property states:

Mn+1 = E[Mn+2|Fn+1]. (4.1)

Then, we can further condition both sides by the first n coin tosses because we

can always condition on more information. However, the right side of the

equation can then be simplified further by the iterated conditioning property

discussed earlier in Chapter 2. Now, equation (4.1) reads:

E[Mn+1|Fn] = E[E[Mn+2|Fn+1]|Fn] = E[Mn+2|Fn].

By analyzing the left-hand side of the equation, we can see that the martingale

property states that this equals Mn directly. Thus, we are left with the

“two-step ahead” version of the martingale property:

Mn = E[Mn+2|Fn].
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By continuing this conditioning and iterating process, we would arrive at the

“multi-step ahead” version of the martingale property, which states:

Mn = E[Mm|Fn].

whenever 0 ≤ n ≤ m ≤ N. This says that the expectation of a martingale in any

future period m given the information up to the current period n is the value of

the martingale in the current period n. Now, we can take the expectation of

both sides of the equation and use the iterated conditioning property to get:

E[Mn] = E[E[Mm|Fn]] = E[Mm].

This reinforces the fact that the expectation of a martingale is constant over

time (has no tendency to rise or fall).

The most natural application of martingales is in the context of

gambling, but there are also numerous other stochastic applications, including

the binomial asset-pricing model. We will use gambling to further understand

the martingale property. Let Mn be a gambler’s total wealth after gambling in

a fair game n times, and we will condition on the gambler’s wealth after each

gamble. In other words, Fn gives all of the information about his past gambles

up to time n. A fair game means that the odds of winning and losing are equal.

Thus, regardless of the outcomes of past gambles, the expected change in his

wealth is zero because his wealth will increase or decrease by the same

amount with the same probability. Therefore, the best prediction of his wealth

after his next gamble (n + 1 gambles) is his current wealth (at time n), just as

the martingale property states. The “multi-step-ahead” version states that at
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any point in time, the gambler’s expected wealth is the same as his initial

wealth because, on average, in a fair game, he will neither win nor lose money.

Now, we will look at an application to the binomial asset-pricing model.

Recall equation (3.3) from chapter 3:

S0 =
1

1 + r
[p̃S1(H) + q̃S1(T)],

which can be generalized to take the form:

Sn =
1

1 + r
[p̃Sn+1(H) + q̃Sn+1(T)].

Another way to write this is to recognize that Sn is equal to the discounted

expected value of Sn+1 with respect to the risk-neutral probability measure:

Sn =
1

1 + r
E[Sn+1|Fn].

Next, if we divide both sides of the equation by (1 + r)n, we get:

Mn =
Sn

(1 + r)n =
1

(1 + r)n+1 Ẽ[Sn+1|Fn].

This equation identifies the discounted stock price as a martingale. In other

words, it says that the best prediction of the discounted stock price at time

n + 1 with respect to the risk-neutral probabilitiies is the discounted stock price

at time n. This is another reason that the risk-neutral probabilties are chosen

because using the actual probabilties will not preserve this equality.

In order to see that this is indeed true, we will go through a numerical

example and follow it with the proof that the discounted stock price is a
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martingale. Recall from section 3.3 that p̃ = q̃ = 1
2 and 1

1+r = 4
5 . Thus, we want to

check that the martingale equation
(

4
5

)n
Sn =

(
4
5

)n+1
Ẽ[Sn+1|Fn] holds regardless

of the value of n. We will verify this for a couple values of n. First, suppose

n = 2 and we know which events in F2 have occurred, namely {HHH,HHT}. In

other words, we know the first two coin tosses both resulted in heads. Then,

(4
5

)2

S2 =
(4
5

)3

Ẽ[S3|F2](16
25

)
16 =

64
125

(
32 ×

1
2

+ 8 ×
1
2

)
10.24 = 10.24X.

Next, suppose n = 3 and we know which events in F3 have occurred, namely

{HHTH,HHTT}. In other words, we know that the first three coin tosses were

HHT. Then,

(4
5

)3

S3 =
(4
5

)4

Ẽ[S4|F3]( 64
125

)
8 =

256
625

(
16 ×

1
2

+ 4 ×
1
2

)
4.10 = 4.10X.

So far, we have shown that the martingale equation holds for n = 2 and n = 3.

However, since we cannot analytically show that it holds for all values of n, we

must provide a mathemtical proof.

Theorem 3. Consider the general binomial model with 0 < d < 1 + r < u. Let the
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risk-neutral probabilities be given by p̃ = 1+r−d
u−d , q̃ = u−1−r

u−d . Then, under the

risk-neutral probability measure, the discounted stock price is a martingale.

Proof. The goal of this proof is to show that the martingale equation

Ẽ
[

Sn+1
(1+r)n+1 |Fn

]
= Sn

(1+r)n holds regardless of the value of n. First, let n be an

arbitrary natural number. Then,

Ẽ
[

Sn+1

(1 + r)n+1 |Fn

]
= Ẽ

[
Sn+1

(1 + r)n+1 ·
Sn

Sn
|Fn

]
,

which is found by multiplying the conditional expectation by the fraction Sn
Sn

.

Then, we rearrange the terms to arrive at

Ẽ
[

Sn+1

(1 + r)n+1 |Fn

]
= Ẽ

[
Sn

(1 + r)n(1 + r)
×

Sn+1

Sn
|Fn

]
. (4.2)

Next, we “take out what is known.” In (4.2), we are conditioning on the coin

tosses up to time n, so at this time, we would already know the value of the

stock at time n (Sn), and the value of 1
(1+r)n as well as the value of the constant

1
1+r . This allows us to remove them from the conditional expectation to

produce

Ẽ
[

Sn+1

(1 + r)n+1 |Fn

]
=

Sn

(1 + r)n ×
1

1 + r
Ẽ
[Sn+1

Sn

]
.

By examining this equation, we should notice that the random variable Sn+1
Sn

only depends on toss number n + 1. The reason for this is that Sn+1 either

equals uSn with probability p̃ or dSn with probability q̃. Since we already know

the value of Sn, we only need to know the outcome of the next coin toss so that

we know whether the stock went up or down. Another way to see this is that
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the quantity Sn+1
Sn

will either equal uSn
Sn

or dSn
Sn

, which allows us to cancel the stock

price at time n. Thus, taking the expectation will yield

Ẽ
[

Sn+1

(1 + r)n+1 |Fn

]
=

Sn

(1 + r)n ×
p̃u + q̃d

1 + r
.

Finally, since p̃u + q̃d = 1 + r, this term equals one, leaving us with

Ẽ
[

Sn+1

(1 + r)n+1 |Fn

]
=

Sn

(1 + r)n .

Therefore, under the risk-neutral probability measure, the discounted stock

price is a martingale. �

Earlier, it was mentioned that the discounted stock price is not

necessarily a martingale under the actual probability measure. Conceptually,

we can see why this is true. We know that martingales have no tendency to rise

or fall. However, in reality, stock prices have a tendency to rise and often rise

faster than investments in the money market in order to compensate investors

for the risk associated with the stock market. For example, suppose the actual

proabilities are p = 2
3 and q = 1

3 , n = 2, and we know which events in F2 have

occurred, namely, {HHH,HHT}. Now, we examine the martingale property of

the discounted stock price, which says:
(

1
1+r

)n+1
E[Sn+1|Fn] =

(
1

1+r

)n
Sn. First, we

will look at the right-hand side of the equation:

( 1
1 + r

)n

Sn =
(4
5

)2

S2 =
(16
25

)
× 16 = $10.24.

Next, we will look at the left-hand side of the equation:
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( 1
1 + r

)n+1

E[Sn+1|Fn] =
(4
5

)3

E [S3|F2]

=
( 64
125

) [
32 ×

2
3

+ 8 ×
1
3

]
=

( 64
125

)
× 24 = $12.29.

Thus,
(

1
1+r

)n+1
E[Sn+1|Fn] ≥

(
1

1+r

)n
Sn, so under the actual probability measure,

the discounted stock price is not a martingale.

In fact, there is a special name for sequences of random variables where

the equality does not hold, but rather one of the inequalities applies, instead.

Under the actual probability measure, the discounted stock price has a

tendency to increase over time. Mathematically, if for all values of n,

Mn ≤ E [Mn+1|Fn] ,

we say the process is a submartingale. On the other hand, if the process has a

tendency to decrease over time, that is if for all values of n,

Mn ≥ E [Mn+1|Fn] ,

we say the process is a supermartingale.

4.2 Discrete-Time Stochastic Integral

The final concept we will discuss in this chapter is a discrete-time

stochastic integral, which is sometimes called a martingale transform.
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Suppose M0,M1, ...MN is a martingale, and let ∆0,∆1, ...∆N−1 be adapted to Fn

with E[(∆n)2] < ∞ for all values of n. We define the discrete-time stochastic

integral to be I0 = 0 and:

In =

n−1∑
j=0

∆ j(M j+1 −M j),n = 1, ...,N. (4.3)

An interesting fact is that I0, I1, ..., IN is still a martingale, which we will prove

in the next theorem. At first glance, it may be difficult to see the application of

this to the finance theory that has been discussed. However, each In can be

thought of as our monetary position in the stock at time n, where M j is the

discounted stock price and ∆ j is the amount of shares we own, each at time j.

Notice that in the definition of the discrete stochastic integral we required that

the Mn sequence be a martingale. Recall that this is indeed satisfied by the

discounted stock price (as proven earlier in Theorem 3), so even through this

intepretation, In is a discrete stochastic integral. We will continue to use Fn as

the σ-algebra representing all of the information up to time n.

Theorem 4. The discrete time stochastic integral defined by (4.3) is a martingale.

Proof. The goal of this proof is to show that E[In+1|Fn] = In by using the

definition of martingale. Assume M0,M1, ...,MN is a martingale, and let

∆0,∆1, ...∆N−1 be an adapted proces with E[(∆n)2] < ∞ for all values of n. First,

we check that the first two properties hold, meaning that In must be adapted to

Fn and E[F2
n] < ∞. Since Mn is a martingale, it is adapted to Fn. Further, ∆n is

also adapted to Fn by assumption. Thus, In is a sum of products of Fn

measurable terms, so In is also adapted. We can easily check that E[I2
n] < ∞ by
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using the Cauchy-Schwarz Inequality, which can be found in Durrett [6]. One

result of this inequality is stated in the theorem below.

Theorem 5. If X and Y are random variables with E[X2] < ∞ and E[Y2] < ∞, then

|E[XY]|2 ≤ (E[X2])(E[Y2]).

Using this inequality, since Mn and ∆n are both square integrable for all values

of n, then In is also square integrable for all values of n. In other words,

E[I2
n] < ∞, so the first two parts of the definition of martingale are satisfied.

Finally, to check part (3), let n be an arbitrary natural number. Then, for

0 ≤ n ≤ N − 1,

In+1 =

n∑
j=0

∆ j(M j+1 −M j) = In + ∆n(Mn+1 −Mn). (4.4)

In this step, we are simplyfing the equation for In+1. Since each random

variable in the sequence is a summation of the previous random variables, the

next random variable in the sequence, In+1 is found by simply adding the very

next term in the sum to the previous In. The next term in the sum is given by

∆n(Mn+1 −Mn). This gives us (4.4). Next, we take the conditional expectaion of

both sides and apply the distributive property, producing

E[In+1|Fn] = E[In + ∆n(Mn+1 −Mn)|Fn]

= E[In + ∆nMn+1 − ∆nMn|Fn].
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Now, we are able to use linearity of expectations to separate the terms of the

conditional expectation, yielding

E[In+1|Fn] = E[In|Fn] + E[∆nMn+1|Fn] − E[∆nMn|Fn].

In order to arrive at the next step, (4.5), we must realize that if we are given the

first n coin tosses, we already know the result of In,∆n, and Mn. In other

words, we know our position in the stock at time n because we know how

many shares we purchased as well as the price we paid for each share. Thus,

E[In+1|Fn] = In + ∆nE[Mn+1|Fn] − ∆nMn. (4.5)

Lastly, we use the definition of martingale. Since M0,M1, ...,MN is a

martingale, E[Mn+1|Fn] = Mn, which yields

E[In+1|Fn] = In + ∆nMn − ∆nMn

= In.

The final step arises naturally, and the proof is complete. Therefore, by

definition of martingale, I0, I1, ..., IN is a martingale. �

One final interesting fact is the relation of this discrete-time stochastic

integral to the concept of Riemann sums, which are discussed in intro calculus

classes. Riemann sums are used as a preview to integrals, and the same can be

said for stochastic integrals. The idea of the Riemann integral is to multiply

the length of an interval by the function value at a point inside the interval.
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Traditionally, the point can be chosen to be any point inside the subinterval,

such as the left or right-hand end points or the midpoints of the intervals, and

in intro calculus, all three can be used to approximate the integral.

However, the idea changes in stochastic calculus because it is most

common to use the left-hand end point of the interval. The reason for this is

because stochastic calculus is time-oriented, so when making the switch to

random variables, it is necessary for them be adapted in order for the

application to make sense. For example, in the discrete stochastic integral

defined by (4.3), each ∆ j is a random variable representing the number of

shares we own at time j. In reference to the Riemann integral, each ∆ j

represents the point chosen inside an interval at which we evaluate the

function. Mathematically, it is adapted because we only have information up

to time j. In other words, ∆ j is F j-measurable. Thus, this is the left-hand end

point of the interval M j+1 −M j. This type of stochastic integral, which is also a

martingale, is called an Ito integral.

On the other hand, we can also consider the stochasic integral defined by

Ĩn =

n−1∑
j=0

∆ j+1(M j+1 −M j),n = 1, ...,N.

Continuing with the Riemann integral comparison, Ĩn corresponds to the

right-hand end point being chosen, ∆ j+1. However, the drawback to this

definition is that the stochastic integral would no longer be a martingale. The

intuitive reason that the left-hand end point should be used is that Ĩn implies a

sort of “psychic knowledge,” that is, using future unknown information in the

trading strategy. In this case, we would have future knowledge of how many
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shares of the stock we should purchase in the next time period by using ∆ j+1 in

the calculation. This is prohibted by the binomial model because we do not

want to consider situations where investors have supernatural abilities.
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Chapter 5

Applications

5.1 Theoretical Price vs. Real-World Price

The most natural application of the binomial model is the pricing of

options in a real-world setting. More specifically, this paper compares the

theoretical price to the actual price of two companies: Netflix and Johnson and

Johnson. These two companies were chosen because of their respective

stabilities. Netflix is generally regarded as a potentially risky investment,

whereas Johnson and Johnson is a relatively stable choice. This section

explores how well the binomial model performs in the pricing of options for

these two companies. The process of pricing an option can be described by the

following steps:

1. Analyze the price history of the company in order to calculate the up and

down factors.

2. Create the binomial price tree, beginning with the current price and

55
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using the up and down factors to compute future prices.

3. Calculate the value of the option for each of the possible ending prices in

the price tree.

4. Use Equation (3.4) to determine the value of the option at each prior

period, eventually ending with the time zero value (price) of the option.

First, we will analyze pricing a Netflix call option that will expire in

January of 2015 with a strike price of $80.00. Remember that this gives us the

right but not the obligation to purchase one share of Netflix stock for $80 in

January 2015, regardless of its actual price. We assume that our current period

is January of 2014. We are only concerned with the month (not the day)

because we are choosing months as the time periods. This option will expire

after 12 periods, so the multi-period binomial model should be used. Step 1 of

the process is to calculate the up and down factors. Intuitively, the magnitude

of this movement should depend on the size of the time interval as well as the

volatility of the stock price. Cox-Ross-Rubinstein [4] determined an effective

way to capture this information is to use the following formulas:

u = eσ
√

t, (5.1)

d = e−σ
√

t =
1
u
, (5.2)

where t is the size of the time period and σ represents the volatility of the stock

price. Volatility is a variable showing the extent to which the return of the

underlying asset will fluctuate between now and the option’s expiration. In
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other words, it is a measure of the amount of uncertainty (risk) associated with

the size of changes in the stock price. This poses another question: how

should we calculate the volatility of the stock price? The following steps were

utilized in the calculation of volatility:

1. List the historical monthly stock prices.

2. Calculate the percentage change from each period (month) to the next.

3. Compute the standard deviation of the percentage price changes.

4. Multiply the value from step 3 by the square root of the number of

periods per year (in this case,
√

12).

In the end, this process provides an annual percentage volatility for the given

company’s stock. The value found can then be substituted for σ in Equations

(5.1) and (5.2). Since Netflix was chosen as a riskier stock, we expect it to have

a higher volatility. The volatility for Netflix was 0.7859, so the up and down

factors were 1.255 and 0.7970, respectively.

Now that we have calculated the up and down factors, the next step is to

create the price tree. The current price of Netflix stock (January 2014) is

S0 = $366.81. In order to simplify the number of computations in the creation

of the price tree, we should notice that an upward movement followed by a

downward movement is the same as the stock going down then up. Thus, in

order to calculate the stock price at time n, we use the formula:

Sn = (S0)(u)L(d)n−L,
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Figure 5.1: This is the price tree for Netflix beginning in January 2014 and
ending in January 2015.

where L is the number of upward movements. The number of upward

movements could also be seen as a binomial random variable with probability

of success p̃ and 12 trials: L ∼ Binomial(12, p̃). The price tree for Netflix is

shown in Figure 5.1.

Recall that the next step in the process is to calculate the value of the

option for each of the possible ending prices in the price tree. In other words,

how much money would we make by exercising the option if the stock price

was a given amount. For example, notice the top right node in Figure 5.1,

which corresponds to the stock price increasing every time period for one year.

According to the model, if this occurred, the stock price would be $5599.71.

With this in mind, what is the value of the option with an $80 strike price?

Without the option, we would have to pay the full $5599.71 if we wanted one
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share of Netflix stock. Instead, we have the right to buy that same share for

$80.00. Thus, the value of the option is 5599.71 − 80.00 = $5519.71. In step 3,

we continue this calculation for every end node (every possible stock price in

January 2015).

However, let us try this computation on the bottom right node in Figure

5.1, which corresponds to the stock price decreasing every time period for one

year. According to the model, if this occurred, Netflix stock would trade for a

mere $24.10, a substantial decrease from the current price of $366.81. In this

case, the stock price is less than the strike price of $80, so the option is

worthless, giving it a value of $0.00. Thus, we would not exercise the option.

In summary, the value of the option at the exercise date (January 2015 or

period 12) can be computed using the following formula:

V12 = (S12 − K)+,

where K is the strike price. The notation (· · ·)+ simply means we take the

maximum of the quantity inside the parentheses and zero, allowing us to

include the situations when we do not exercise the option. In other words, this

notation is another way to write:

V12 = max {S12 − K, 0} .

However, remember that V12 and S12 are random variables that depend on the

outcome of all 12 coin tosses. Typically, there are 212 possible outcomes of 12

coin flips. However, as we mentioned earlier, since the order of the coin tosses

does not matter (HT = TH), the number of outcomes drops dramatically to 13.
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The 13 possible values of the Netflix call option at time 12 are given in Figure

5.1.

Table 5.1: Time 12 Option Values
# of Up’s Time 12 Option Values

12 5519.71
11 3476.15
10 2178.37
9 1354.20
8 830.80
7 498.41
6 287.33
5 153.27
4 68.14
3 14.08
2 0.00
1 0.00
0 0.00

The fourth and final step of the process involves going backward in

time, starting with the value of the option on the exercise date and ending

with the time zero price of the option. To do this, we use Equation (3.4), which

requires a few more parameters that we have not yet computed: the

risk-neutral probabilities p̃ and q̃, and the risk-free interest rate r. The standard

choice for the risk-free interest rate is the interest rate on U.S. Treasury Bills,

giving us a choice of the 3-month, 6-month, or one year rate. Since the call

option we are analyzing expires in one year, the one-year rate is used, which,

in January 2014, was only 0.13%. In Section 3.3, we used Equation (3.3) to

solve for formulas for p̃ and q̃. These are repeated below, making the necessary

substitutions for Netflix stock,
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p̃ =
1 + r − d

u − d
(5.3)

=
1 + .0013 − .7970

1.255 − .7970
= .4461,

q̃ = 1 − p̃ = .5539. (5.4)

Now, we are ready to use Equation (3.3) to back-track. The equation is

shown again below, followed by an example of how we go backward in time

to compute the value of the option at time 11. Recall that Equation (3.3) is

Vn =
1

1 + r
[p̃Vn+1(H) + q̃Vn+1(T)].

For this example, we will assume the stock price has increased all 11 time

periods, meaning that, at time 12, we will end at one of the top 2 values in

Figure 5.1. Using the equation allows us to make the following computations:

V11 =
1

1 + r
[p̃V12(H) + q̃V12(T)]

=
1

1.0013
[(.4461)(5519.71) + (.5539)(3476.15)]

= $4393.43.

The above example assumed we had 11 upward movements. Next, we would

assume 10 upward movements and perform the same calculation. This

process would continue to complete all 12 possible time 11 values. Then, we

would move back to time 10, 9, 8,..., until we reach time 0. After completing
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this process, the model determined that the theoretical price in January 2014 of

a Netflix call option with a strike price of $80.00 expiring in January 2015 is

$298.30. The real-world price of this option is $286.84. Thus, the percent error

of the model was approximately 4%.

The second option we will analyze is a call option for Johnson and

Johnson expiring in January of 2015 with a strike price of $80.00. This stock

was chosen because it is considered to be a relatively stable stock. However,

when using the same process as before, its volatility is 0.5677, giving up and

down factors of 1.089 and 0.9186, respectively. Even though this is a lower

volatility than that of Netflix, indicating a more stable stock in comparison, it

is still fairly high. One reason for this may be because volatility is typically

calculated in terms of daily historical prices. In our model, recall that we chose

months as the time period to be used, so volatility was also calculated in terms

of monthly historical prices. This may have skewed the volatility of Johnson

and Johnson because we are only using the opening price at the beginning of

each month.

In order to price the Johnson and Johnson call option, we assume that

our current period is February 2014, so we use a current price of $86.78. Using

the same process as was used to price the Netflix call option, our model’s

theoretical price for the Johnson and Johnson call option is $13.98. However,

the real-world price of this option is $9.10. Thus, the percent error of the

model was approximately 53%, a very high percent error in comparison to our

model’s price of the Netflix call option. Why might this have happened? Our

first guess may be that the volatility used in our model is higher than the

volatility used in the real-world price calculation. However, since the option is
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more expensive according to our model, that says that the buyer of the option

is more likely to make money by purchasing the option (causing higher

demand for that option and a rise in the price). In order for the buyer of the

option to make money, the stock price of Johnson and Johnson must be higher

than $80.00 in January 2015, allowing him or her to exercise the option (buying

shares of Johnson and Johnson for the lower price). Since the volatility of our

model seems to be higher than the real-world volatility, this may account for

some of the error. However, there may be other factors at work in the

real-world model.

The key fact might be that Johnson and Johnson is a dividend paying

stock, which is not factored into our model. When a dividend is declared, it

gets discounted in the stock price, decreasing the price of the stock. As we

mentioned before, the buyer of the option will be less likely to exercise the

option at lower prices (because eventually it will drop below the strike price of

$80.00). According to this logic, incorporating dividends into the model would

cause a cheaper option price because the stock price will be lower. This may

explain the high percent error of our model in comparison to the real-world

model — the real-world model includes dividends in the calculation of the

option.

One final possibility for the higher percent error arises from analyzing

exactly how percent error is calculated, specifically, the denominators. The

denominator for the percent error in this context is the real-world price of the

option. The Netflix option price is much higher than the Johnson and Johnson

option price ($286.84 > $9.10). In other words, by using a strike price of $80 for

both companies, the Netflix option is much more valuable because the current
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stock price of Netflix is so much higher than the strike price. This is another

factor that may inflate the percent error of Johnson and Johnson when

compared to Netflix.

5.2 Which NBA Players were Worth Their Rookie

Salaries

The 2003 NBA draft was considered to be one of the most hyped-up

drafts in the history of the NBA. Many analysts believed that there were

numerous players in the draft class that could change the face of the NBA,

which was slowly running out of stars since the retirement of Michael Jordan.

On draft day, four of the top five picks were used to draft LeBron James,

Carmelo Anthony, Chris Bosh, and Dwayne Wade. These four players have

combined for more than 30 All-Star appearances and nearly 70,000 points.

James, Bosh, and Wade have now all joined the Miami Heat and have won two

consecutive NBA titles (and this is only the top 5 picks). There is little question

that the hype surrounding the 2003 NBA draft has been validated. However,

how soon could we have known that these players were worth the hype? This

section attempts to use the binomial asset pricing model to answer the

question: which NBA players from the 2003 NBA draft were worth their

rookie salaries? This idea was inspired by a similar study performed on

cricketers in Saikia, Bhattacharjee, and Bhattacharjee [9].

In order to use the binomial model to answer this question, we need to

establish meaning to each of its parameters. In a way, we will be thinking of a
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player’s performance as the stock price. After each season (each time period),

we will assume he either improves or worsens, just as the stock price can

either increase or decrease. The NBA structures all first round salaries the

same way. The player receives a set salary (decreases steadily throughout the

draft) depending on the pick he is drafted. Also, in 2003, all first round picks

were signed to three-year contracts. Thus, our model will contain three time

periods.

In the binomial model, we use a risk-free interest rate and a risk-neutral

probability measure, which we will again incorporate into this application.

One way to use the risk-free interest rate in any situation is to compute the

value of an investment in the next period. We will make a similar calculation

here, assuming that a person’s wealth can either go up or down by that

interest rate (depending on lending or borrowing). Since we are analyzing

salaries from the 2003 NBA draft, it is appropriate to use the one year interest

rate on U.S. Treasury Bills in 2003, which was 1.07% at the time the draft took

place. Thus, a $1 at time zero (the time of the draft) could be compounded to

Mu = $1 × (1 + .0107) = 1.0107

at time one, or reduced to

Md =
$1

1 + .0107
= 0.9894.

This enables us to calculate a risk-neutral probability measure using a formula

found in [9] . Using the factors Mu and Md, we arrive at the equation
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r = Mu × p̃ + (1 − p̃) × (−Md) (5.5)

= 1.0107p̃ + (−0.9894)(1 − p̃),

p̃ =
r + 0.9894

1.0107 + 0.9894

=
1.0001
2.0001

≈ 0.500,

q̃ ≈ 0.499.

The next step is to decide how we will measure a player’s performance.

Win Shares (WS) is an advanced statistic that is commonly used to measure

performance. Intuitively, it is a metric that estimates the number of wins a

player produces for his team. This can be calculated on its own, or by finding

a player’s Offensive Win Shares and Defensive Win Shares, and adding those

together. The idea was first developed for baseball by Bill James, but was

eventually converted to basketball. However, the formula for calculating Win

Shares is quite complicated and will not be listed here. One thing to note

about Win Shares is that this statistic can be negative. Negative Win Shares

simply means that the player actually hurt the teams chances of winning. This

happened to one player in the top ten picks, Darko Milicic. Darko totaled

−0.20 Win Shares in each of his first two seasons. Table 5.2 gives the total win

shares for the top ten 2003 draft picks in their first three years. The data was

taken from Forman [7].

The official performance measure we use for a given player is found by
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Table 5.2: Total Win Shares
Pick Player Total WS WS/Season

1 LeBron James 35.7 11.90
2 Darko Milicic 0.8 0.27
3 Carmelo Anthony 20.4 6.80
4 Chris Bosh 22.8 7.60
5 Dwayne Wade 30.0 10.0
6 Chris Kaman 8.2 2.73
7 Kirk Hinrich 18.9 6.30
8 T.J. Ford 7.5 2.50
9 Michael Sweetney 7.3 2.43

10 Jarvis Hayes 2.9 0.97

pt =
WSt −min{WSi}

max{WSi} −min{WSi}
,

where t represents the season (time period) and WSi represents a sequence of

numbers correponding to the Win Shares of each player in the NBA during

season t. Thus, pt will be normalized between 0 and 1, with the player having

the highest number of Win Shares receiving a performance score of 1, and the

player having the least Win Shares receiving a performance score of 0. Each

season, we compute new performance scores for each player in the study. The

players in this study will consist of the top ten picks of the 2003 NBA draft.

Next, we must decide on the up and down factors. When using the

model to compute the price of options, it made sense to include certain

variables like volatility in the computation of the up and down factors.

However, the same variables no longer apply in the context of NBA salaries.

The up and down factors determine the magnitude that the stock price will

increase or decrease. In this study of player salaries, it makes sense to utilize
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the player’s performance from the current season to calculate how much the

player can improve or worsen. Thus, we use the following factors:

ut = 1 + pt,

dt = pt.

The choice of these factors is supported by the following argument. A

“better” player will work to continue to improve more than an average player

because he has already seen some of the benefits of being an elite player. Also,

if a player with a higher performance score does worsen throughout the

offseason, his value should not decrease quickly because he was playing at a

better than average level. These factors are able to capture the essence of this

argument because better players will have higher performance measures. One

thing to note is that unlike the up and down factors used in Section 5.1, these

factors change after each season in order to account for a rapid improvement

or declination of a player’s performance. Another difference between the two

applications is the stock application is a predictive model, whereas this

application uses the binomial model as an evaluative tool.

The only model input remaining is the initial value of the player (initial

stock price). Since we are attempting to answer the question of whether or not

a particular player was worth his rookie salary, we use the rookie salary as the

initial player value. Then, the steps of the option pricing process follow

accordingly, eventually using the risk-neutral probabilities calculated earlier to

back-track to a theoretical original valuation. The results of the first ten 2003
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draft picks are summarized in Table 5.3.

Table 5.3: Player Valuation Summary
Pick Player Rookie Salary Model Valuation

1 LeBron James 12.96 19.96
2 Darko Milicic 11.59 1.97
3 Carmelo Anthony 10.51 7.58
4 Chris Bosh 9.34 7.88
5 Dwayne Wade 8.50 10.08
6 Chris Kaman 7.72 2.30
7 Kirk Hinrich 7.09 4.76
8 T.J. Ford 6.46 1.90
9 Michael Sweetney 5.94 1.76

10 Jarvis Hayes 5.64 1.14

The results shown in Table 5.3 should be read in a relative sense. In other

words, even though LeBron’s model valuation is 19.96, this does not

necessarily mean that he should have received $19.96 million. Instead, it

shows that he out-performed the other nine draft picks in their first three

seasons. On the other hand, Darko’s plunge from 11.59 to 1.97 signifies that he

was not worth a number two pick. One final point is that it is difficult to gain

much insight into the value of Jarvis Hayes because he was drafted tenth and

remained tenth. We would be able to learn more if we extended the study to

include more picks such as the entire first round. The new order of players as

well as their change in draft position is given by Table 5.4.
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Table 5.4: New Draft Order
Model Pick Real Pick Player Difference

1 1 LeBron James -
2 5 Dwayne Wade +3
3 4 Chris Bosh +1
4 3 Carmelo Anthony -1
5 7 Kirk Hinrich +2
6 6 Chris Kaman -
7 2 Darko Milicic -5
8 8 T.J. Ford -
9 9 Michael Sweetney -

10 10 Jarvis Hayes -

5.3 Discussion

Throughout this I.S., we have explored the binomial asset pricing model,

and we end with a short discussion section. We have seen that the binomial

model is able to estimate the price of an option in discrete time, and the

Black-Scholes model is able to give the price of an option in continuous time.

Are these models equal or are there certain pros and cons of using one in

comparison with the other?

The first and obvious advantage to using the binomial model is that

there is no calculus (or any advanced math) associated with the pricing

process. On the other hand, at the very minimum, the Black-Scholes model

requires Brownian motion, which can be a difficult concept on its own. The

second pro of the binomial model is that it can account for dividends with a

few modifications. For example, informally, consider a situation where a stock

pays a dividend as a percentage of its price on a given date. The binomial

model can account for this in the price tree by multiplying the stock price at
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that date by the percent of the price that the stockholder will not receive. It is

possible that this type of calculation could reduce the percent error of Johnson

and Johnson in Section 5.2. This would be an area that this I.S. could be

extended in the future. In addition to accounting for dividends, the binomial

model can also be used to price American options. An American option

differs from a European option because rather than only having the ability to

exercise the option on a specific date (European option), an American option

allows its holder to exercise at any date prior to the expiriation date. Another

possible extension of this I.S. would be to analyze the differences between

European and American options.

There are also a few cons to using the binomial model. Most

importantly, it does not give exact answers. As mentioned time and time

again, the binomial model is a discrete time model, and time in real life runs

continuously. Essentially, the binomial model estimates the option price of the

Black-Scholes model, and the estimation depends on the size of the time

intervals. Smaller intervals give better estimations because the time intervals

in continuous time can be thought of as of size 0. In other words, as the size of

the time intervals approaches 0, the option price given by the binomial model

approaches the Black-Scholes price. A second con of the binomial model is the

fact that it is not realistic to calculate by hand. As the size of the time intervals

decreases, more and more computations are needed in order to back-track

from the final period to the starting period.

Now, we discuss a limitation of the application of Section 5.2. Equation

(5.5) was used to calculate the risk-neutral probability measure used to

back-track to a player’s valuation. However, in the binomial model, the
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risk-neutral probabilities were given by Equations (5.3) and (5.4), which

depend on the up and down factors. The equation used to calculate the

risk-neutral probabilities for the player valuation application does not use the

up and down factors. Instead, it uses a combination of the risk-free interest

rate and the potential values of $1. It is not clear why this equation is

appropriate, so an attempt was made to use Equation (5.3) to calculate p̃ in

Section 5.2. However, the equation reduced to

p̃ = 1 + r − p (5.6)

because the down factor in the valuation model is the performance measure p.

Thus, players with a very high performance measure have a very low

probability of improving the next season. For example, a player with a

performance measure of 0.90 has a 1 + r − 0.90 probability of improving the

next season, and since r will always be small relative to a high p (because it is

an interest rate), p̃ will also end up being small.

The results of using Equation (5.6) in the valuation model did not make

sense, intuitively, and were discarded. A reason that this may not be an

optimal way to calculate the risk-neutral probability measure in a player

valuation context may have to do with the derivation of Equation (5.6). It

comes from Equation (5.3), which originated from Equation (3.3):

Vn =
1

1 + r
[p̃Vn+1(H) + q̃Vn+1(T)].

Recall that in the context of stocks, this equation states that the average rate of

growth in the money market should equal the average rate of growth in the
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stock market. However, if we convert this to the player valuation context, it

says that the average rate of growth of the money market should equal the

average rate of growth of the player. Intuitively, this does not make sense

because teams do not have the option to invest in the money market instead of

paying a player’s salary. For future research, there may be a better way to

calculate a risk-neutral probability measure that better evaluates player

salaries.

This I.S. introduced the binomial asset pricing model and explored a few

of its mathematical properties. Also, it demonstrated that it can be used for

more creative applications than simply pricing options. However, there are

plenty of concepts that we did not explore. The world of financial

mathematics is ever-changing and improving, so let this serve as proof that the

creativity of mathematics is unlimited.
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