
The College of Wooster Libraries
Open Works

Senior Independent Study Theses

2013

The Machete Number
David Freund
The College of Wooster, dfreund5@gmail.com

Follow this and additional works at: https://openworks.wooster.edu/independentstudy

Part of the Applied Mathematics Commons

This Senior Independent Study Thesis Exemplar is brought to you by Open Works, a service of The College of Wooster Libraries. It has been accepted
for inclusion in Senior Independent Study Theses by an authorized administrator of Open Works. For more information, please contact
openworks@wooster.edu.

© Copyright 2013 David Freund

Recommended Citation
Freund, David, "The Machete Number" (2013). Senior Independent Study Theses. Paper 961.
https://openworks.wooster.edu/independentstudy/961

https://openworks.wooster.edu?utm_source=openworks.wooster.edu%2Findependentstudy%2F961&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openworks.wooster.edu/independentstudy?utm_source=openworks.wooster.edu%2Findependentstudy%2F961&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openworks.wooster.edu/independentstudy?utm_source=openworks.wooster.edu%2Findependentstudy%2F961&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=openworks.wooster.edu%2Findependentstudy%2F961&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openworks.wooster.edu/independentstudy/961?utm_source=openworks.wooster.edu%2Findependentstudy%2F961&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openworks.wooster.edu/independentstudy/961
mailto:openworks@wooster.edu

The Machete Number

Independent Study Thesis

Presented in Partial Fulfillment of the Requirements for
the Degree Bachelor of Arts in the

Department of Mathematics at The College of Wooster

by
David Freund

The College of Wooster
2013

Advised by:

John Ramsay (Mathematics)

c© 2013 by David Freund

Abstract

Knot theory is a branch of topology that deals with the structure and properties of

links. Employing a variety of tools, including surfaces, graph theory, and polynomials,

we develop and explore classical link invariants. From this foundation, we define

two novel link invariants, braid height and machete number, and investigate their

properties and connection to classical invariants.

v

Acknowledgments

I am amazed by the amount of support I received trying to get this project off the

ground. There are many people that I need to thank for their support, although their

support may not directly relate to this project.

The first person who deserves recognition is Dr. Carl Stitz. He is undoubtably my

first mathematical father. While I was at Lakeland Community College, and even now,

he has been an amazing friend and professor. It is impossible to list all that he has

done for me, but I know that he has pushed me to challenge myself mathematically

and that he has encouraged my fascination with and love of mathematics. Even

though I declared myself a math major when I took my first class with him, I became

a real math major because of him.

My family also deserves recognition. It may be a simple phrase, but they have

done a great deal for me and have always supported me. For this and so much more,

I cannot thank them enough. Although they may not understand me when I start

“speaking in math,” they try to learn bits and pieces and they encourage me to go

further.

I want to thank my advisor, Dr. John Ramsay, for all of his help and support with

this project. Whenever our knot theory research group would struggle with new ideas,

we would go back to trying to define a link invariant that could somehow involve

machetes. Although I ultimately came up with the mathematical definition of the

machete number, Dr. Ramsay is responsible for the joke that started the idea. More

than anyone else, he made this project possible.

vii

I also want to thank the College of Wooster Mathematics Department for giving me

a home for the past four years. Each and every professor in the department has made

an impact on my life and encouraged me mathematically. I have thoroughly enjoyed

getting to know my professors and they have made me feel welcome at Wooster.

viii

Contents

Abstract v

Acknowledgments vii

Contents ix

List of Figures xi

CHAPTER PAGE

1 Introduction 1

2 Introductory Knot Theory 5

2.1 Link Projections . 9

2.2 Link Equivalence . 13

2.3 Link Invariants . 18

2.3.1 Crossing Number . 19

2.3.2 Linking Number . 21

2.4 Types of Links . 27

2.4.1 Amphicheiral Links . 27

2.4.2 Composite Knots . 28

3 Surfaces 31

3.1 Links on Surfaces . 34

3.2 Surfaces with Boundary . 35

3.3 Oriented Surfaces . 36

3.4 Genus and the Classification of Surfaces 37

3.5 Euler Characteristic . 39

3.6 Seifert Surfaces . 42

3.7 Link Genus . 46

4 Graph Theory and Seifert Matrices 49

4.1 Graph Theory . 49

4.1.1 Seifert Graphs . 54

4.2 Homology of Graphs . 55

4.3 Seifert Matrices . 61

4.3.1 S-equivalence of Seifert Matrices 67

4.3.2 Determinant and Signature of a Link 69

ix

5 Knot Polynomials 73
5.1 Alexander Polynomial . 73

5.1.1 Computation by Seifert Matrix 74
5.1.2 Properties of the Alexander Polynomial 75
5.1.3 Computation by Conway Polynomial 79

5.2 HOMFLY-PT Polynomial . 85

6 Braids 89
6.1 Braid Representations . 89

6.1.1 Closed Braid Representation 91
6.1.2 Braid Words . 99

6.2 Braid Equivalence . 101
6.2.1 Braid Moves . 101
6.2.2 Markov Equivalence . 103

6.3 Braid Index . 106

7 Braid Height and the Machete Number 109
7.1 Braid Height . 109
7.2 The Machete Number . 119
7.3 Bounding the Machete Number . 123
7.4 Conclusions and Future Work . 129

References 133

x

List of Figures

Figure Page

2.1 Example of an intuitive knot (left) and a mathematical knot (right). . 5
2.2 A 0-dimensional knot (left) and a 2-dimensional knot (right). 6
2.3 Three different polygonal curves. 7
2.4 Two different ways of interweaving two unknots. 8
2.5 Changing a point of self-intersection (left) into a crossing (right). . . . 10
2.6 An oriented knot. 10
2.7 K1,i. 11
2.8 K2,i. 11
2.9 Unknot, trefoil knot, figure-eight knot, and Hopf link (left to right)[1]. 12
2.10 Unlink (trivial link) of n components [1]. 12
2.11 The general form of the n-component Hopf link. 12
2.12 Three examples of homotopic curves. 13
2.13 Bachelor’s unknotting. 14
2.14 Three projections of the unknot. 16
2.15 The three Reidemeister moves. 16
2.16 Different results from a Reidemeister I move. 16
2.17 Equivalence of two trefoil knot projections. 17
2.18 A link of crossing number 2. 20
2.19 Positive crossing (left) and negative crossing (right). 22
2.20 Hopf Link with linking number -1. 24
2.21 Link with linking number 3. 24
2.22 A 3-component link with total linking number 1. 24
2.23 Reidemeister II does not affect linking number. 25
2.24 Oriented Whitehead link. 27
2.25 The composition of K1 and K2. 29
2.26 Composition of two trefoil knots whose orientations match. 30
2.27 Composition of two trefoil knots whose orientations do not match. . . 30
2.28 Decomposition of a composite knot. 30

3.1 S1 (left) and S2 (right). 32
3.2 Intersection of a ball with S2. 33
3.3 Torus. 33
3.4 Isotopic representations of S2. 34

xi

3.5 Strand pulled around the sphere. 35
3.6 Surfaces with boundary. 36
3.7 Band (left) and Möbius band (right). 37
3.8 Double torus with non-separating loops. 38
3.9 Intersecting non-separating loops on the torus. 39
3.10 Triangulations of the sphere and the top half of the torus. 39
3.11 Non-triangulations of a surface. 40
3.12 Simpler torus triangulation. 41
3.13 Smoothing of a crossing. 42
3.14 Twisted bands corresponding to different crossings. 43
3.15 Impossible Seifert circle orientations. 44
3.16 Seifert surface of a trefoil knot. 45
3.17 Seifert surface of a 3-component Hopf link. 45
3.18 Triangulation of a band and a Seifert circle which has 3 attached bands. 47

4.1 Example graphs. 50
4.2 A tree with 6 vertices. 52
4.3 A graph and a spanning tree. 52
4.4 A directed graph. 54
4.5 Seifert graphs of Seifert surfaces from Example 3.5. 55
4.6 Two cycles in T ∪ ei. 59
4.7 Right-hand orientation of a section of a thickened Seifert surface. . . . 62
4.8 Twisted bands in a thickened Seifert surface. 62
4.9 Homology basis elements and copies in thickened Seifert surface. . . . 63
4.10 Loop interactions and resulting crossings in thickened Seifert surface. 63
4.11 Seifert surface and Seifert graph of the trefoil knot projection for Ex-

ample 4.5. 64
4.12 Trefoil knot Seifert surface with homology basis curves for Example 4.5. 65
4.13 Interaction of α1 and α∗1 in the thickened surface (Figure 4.12). 65
4.14 Intersection of α1 and α2 in the Seifert surface from Figure 4.12. . . . 66
4.15 Links using mixed basis elements from Figure 4.12. 66
4.16 Adding or removing a tube. 69

5.1 Two surfaces joined by a band. 76
5.2 Result of attaching twisted bands between disjoint Seifert surfaces. . . 78
5.3 Presentation of βi in F̃ . 78
5.4 Link formed by βi and β∗i . 79
5.5 Neighborhood of skein diagrams. 80
5.6 Trefoil knot projection and corresponding skein diagrams. 81
5.7 Hopf link projection and corresponding skein diagrams. 81
5.8 Disconnected L0 (left) and L− (right) for proof of Theorem 5.4. . . . 83
5.9 Interaction of β and β∗ in Seifert surfaces of D+ and D−. 84
5.10 Skein diagrams for Example 5.3. 86

6.1 Example of a braid. 90

xii

6.2 Oriented diagram of Figure 6.1. 91
6.3 Closure of Figure 6.1. 92
6.4 Compatible Seifert circles. 93
6.5 Incompatible Seifert circles. 94
6.6 Vogel’s reducing move. 94
6.7 General form of the closure of a braid B, before and after smoothing

every crossing. 95
6.8 Changes in Seifert circles following a reducing move. 96
6.9 Bounded disks before and after a reducing move. 97
6.10 Isotopic braids on S2. 98
6.11 The 3-component Hopf link and its Seifert surface before and after a

reducing move. 99
6.12 A braid representation of the 3-component Hopf link. 99
6.13 General form of braid generators. 100
6.14 Braid moves 1, 2 and 3. 102
6.15 Example of braid conjugation. 104
6.16 Example of braid stabilization. 105
6.17 Result of a stabilization operation. 105

7.1 Braid generators which can be presented on the same horizontal line. 110
7.2 B3, the composition of B1 and B2. 113
7.3 Composition of B1 and B2 with σn in an existing braid level. 114
7.4 Composition of a 4-component Hopf link with another Hopf link. . . . 116
7.5 A braid representation of the 3-component Hopf link. 117
7.6 Deomposition of a braid height 3 link. 118
7.7 Effect of smoothing on strands of different components. 129

xiii

CHAPTER 1

Introduction

Knot theory is a subfield of topology that investigates mathematical knots and

their properties. It is suspected that C.F. Gauss was the first individual to realize the

possibility of studying knots mathematically [6]. His 1833 research in electrodynamics

led to an analytic formulation of the linking number, a topic we will discuss later [6].

However, J.B. Listing, one of Gauss’ students, was the one responsible for furthering

the development of the theory [5].

A significant portion of the early interest in knot theory was generated by chemists

rather than mathematicians. In the 1880s, it was believed that there was a substance

which prevaded all of space called ether [1]. Lord Kelvin, also known as William

Thomson, hypothesized that atoms were distinct knots contained in the ether [1].

Hence different knots would correspond to different atoms [1]. However, an 1887

experiment by Michelson and Morley demonstrated Lord Kelvin was quite wrong [1].

By the time that Lord Kelvin’s claim was shown to be false, mathematicians had

already become more invested in the theory of knots. A group of British mathemati-

cians attempted to classify the different types of knots [6]. Since their work began

before the advent of topology and algebraic topology, most of their results relied on

combinatorial methods [6]. In the end, they were able to classify knots up to what

they called “tenfold knottiness” [6].

For much of the 1900s, it was primarily mathematicians who were interested in

1

2 1. Introduction

knot theory. During the early 1900s, the American mathemtician J.W. Alexander

was the first to show that there was a significant connection between knot theory

and the study of 3-dimensional topology [5]. In the late 1920s and 1930s, German

mathematicians found some connections between knot theory and algebraic geometry

[5].

During the 1980s, knot theory attracted the attention of scientists from various

fields [1, 5]. Physicists latched onto a discovery of V.F.R. Jones which placed knot

theory solidly in the realm of mathematical physics: a relationship between knot theory

and solvable models of statistical mechanics [5]. Meanwhile, biochemists observed

knotting within strands of DNA and synthetic chemists realized the possibility of

understanding properties of molecules through knotting [1].

This brings us to the modern study of knots, which continues to investigate the

various properties of knots. Our particular focus is on a novel knot property, which

we will call the machete number. However, in order to fully appreciate its definition

and potential importance, we must catch up on nearly two centuries worth of research.

Chapter 2 includes basic knot-theoretic concepts as well as some of the properties

that are of interest to mathematicians. Chapter 3 focuses on surfaces which, although

a slight divergence from knot theory, lays the foundation for knot properties discussed

in Chapters 4 and 5. Chapter 6 introduces braids, which provides another way of

examining knots. Finally, in Chapter 7, we formally introduce and discuss the machete

number.

Given that knot theory has been built from a topological foundation, our exploration

of knot theory will employ topological ideas. To avoid burdening our introduction to

knot theory with a long list of definitions, we assume a familiarity with a wide variety

of notions that are typically introduced during a first course in topology: topological

space, interior, boundary, basis, continuous function, homeomorphism, topological

invariant, Hausdorff space, connected space, and compactness. When working in

3

a Euclidean space, we also assume that the topology of the space is the standard

topology. As a consequence, all relevant topological notions will be with respect to

the standard topology.

Before we can begin a discussion of knot theory, we must establish the notation

that will be used without explanation:

N : the set of natural numbers

Z : the set of integers

R : the set of real numbers

Rn : n-dimensional Euclidean space

X × Y : the Cartesian product of X and Y

Z[x, y] : the space of polynomials in variables x and y with coefficients from Z

AT : the transpose of the matrix A

det(A) : the determinant of the matrix A

∂A : the boundary of the set A

In some cases, we will encounter repeat notation which will refer to a property of

a link instead of, for example, a matrix. While this may seem confusing, it will be

clear which concept is being invoked by the context.

CHAPTER 2

Introductory Knot Theory

To this point, we have not formally defined a knot but our entire discussion of

knot theory rests on understanding their properties. An intuitive definition of a knot

might be an interwoven piece of string. Afterall, we tie our shoes with a single shoe

string. Indeed, most other knots that we use have a similar structure, although the

interweaving differs significantly. Unfortunately for our intuition, this is not the type

of knot we are investigating. However, we can form a mathematical knot by taking

this interwoven string and gluing the ends together as in Figure 2.1 [1]. Another

example involves gluing the ends of an untwisted string together. In this case we

produce the simplest knot, which is known as the unknot or the trivial knot [1]. Unlike

the intuitive knots, these “closed” knots cannot be unraveled by simply reversing the

knotting process [2]. The only other informal requirement we will impose is that the

“string” have a thickness of a single point [1].

Figure 2.1: Example of an intuitive knot (left) and a mathematical knot (right).

5

6 2. Introductory Knot Theory

The formal definition of a knot is significantly more broad than what we discussed

above. First of all, the knot we mentioned above exists in three dimensions. It is

not only possible to create knots in higher (and lower) dimensions, but there are

researchers who study these knots [1]. Moreover, we have assumed that we are working

in Euclidean space, which is not necessary for knot theory to be studied [6].

Secondly, we can cut a knot at any point, completely unravel it, and then glue

the ends back together to form a circle. Hence, any knot we created is homeomorphic

to the circle and so knots are 1-dimensional. A complete definition would allow for

n-dimensional knots, although our intuition would rebel at considering either of the

knots in Figure 2.2 to truly be knots [6].

Figure 2.2: A 0-dimensional knot (left) and a 2-dimensional knot (right).

For our purposes, we will limit ourselves to a strict definition of a knot. First, we

need to change how we look at knots.

Definition 2.1 [4] A polygonal curve P ⊂ R3 generated by an ordered n-tuple of

distinct points, (p1, p2, . . . , pn), is the union of line segments connecting pi and pi+1,

denoted [pi, pi+1], for i < n. Hence P =
⋃n−1

i=1 [pi, pi+1].

P is a closed polygonal curve if pn = p1. P is a simple polygonal curve

if, for all i < n, [pi, pi+1] intersects at most two other line segments of P and the

intersection points are either pi or pi+1.

In essence, simple polygonal curves are the collection of lines in space where, away

from the endpoints, lines are disjoint. Meanwhile, closed polygonal curves eventually

return to the starting point. Let us consider some simple examples.

7

Example 2.1 In Figure 2.3, we have three different types of polygonal curves. The

first two curves are not simple because there are two lines which intersect in the middle

of a line segment. The first and last curves are not closed because there are endpoints

of line segments that are only connected to one line segment. However, the middle

curve is closed and the right-most curve is simple.

Figure 2.3: Three different polygonal curves.

Using polygonal curves, we can formulate one definition of a knot. Using this

definition, effectively reduce knots to being a complicated 3-dimensional game of

connect the dots.

Definition 2.2 [2, 4] A (tame) knot, K ⊂ R3, is a simple closed polygonal curve.

For the remainder of the thesis, we will assume that all knots are tame knots. In

practice, we will only be considering smooth representations of knots, but we will

require that there is always “some space” between different segments of the knot.

Formally this concept is known as local flatness, but that is a different approach

to discussing knots [2, 3]. Local flatness avoids the issue of so-called “wild” knots.

Although we will not be proving that this is equivalent to having a simple closed

polygonal curve, we could approximate any smooth curve by a set of tiny straight

lines [2]. Conversely, we can easily smooth out any set of lines into a curve [2].

While it may appear overly specific to consider such a limited category of knots,

these knots are the basis of classical knot theory [6]. Not only are they easy to visualize,

but there is a substantial body of theory that they have generated. We will also be

discussing a close relative of the knot, which is called a link.

8 2. Introductory Knot Theory

Definition 2.3 [2] A link, L ⊂ R3, can be expressed as the disjoint union L =

K1∪K2∪· · ·∪Kn where each Ki is a knot. Each Ki is considered to be a component

of L and µ(L) = n is the multiplicity of L.

Simply put, a link is a collection of knots that have been twisted together in some

fashion. The multiplicity of the link tells us how many knots are in this collection.

However, while our definition of a link tells us the knots involved in a link, it does not

tell us about the interactions between the various components [2]. For instance, as

in Figure 2.4, we could interweave a given set of components in different ways and

generate quite different links.

Figure 2.4: Two different ways of interweaving two unknots.

An important distinction to note is that every knot is a link with one component,

but not every link is a knot. There are some knot theoretic results which rely on

the structure of a knot while others generalize to links. Given that we have already

limited our discussion to 1-dimensional knots in R3, we will be proving results for links

whenever possible. This may complicate some of our proofs, but having a general

result is worthwhile.

Before we move on to other significant concepts in knot theory, we should introduce

a specific type of link – the oriented link. Rather than attempting to formally define

orientation, it is enough to provide an analogy. Suppose there is an ant on a knot and

it walks around the knot in one direction. The direction the ant is traveling is the

orientation of the knot and we would call it an oriented knot. Since our knots are

actually one-point thick, ants cannot walk on mathematical knots, but we can still

impose a direction on them. To generalize, an oriented link is a link where each

component is an oriented knot.

2.1. Link Projections 9

It may seem unnecessary to distinguish between oriented and unoriented links,

especially since it has nothing to do with the knottedness of the link. However,

orientation will play a key role for some of our later concepts, such as linking number

and the formation of Seifert surfaces. Thus we will distinguish between links where

the only differences are the orientations placed on the components of the links.

2.1 Link Projections

Although we can easily visualize links, they exist in 3-space and so attempting to

graphically represent them can be difficult. At the very least, it requires a modicum

of artistic ability and, for those who want to quickly represent a link, this presents a

challenge. However, with a bit of projective geometry, we can fix this issue.

Let us imagine that we have a link floating in 3-space. If we were to take a

sufficiently large camera some distance away from the link and snap a photo, we

could obtain a 2-dimensional representation of the link [1]. Unfortunately, wherever

it appears that the string overlaps itself, there will be self-intersection points in this

image, despite the string not touching in 3-space.

Assume that only two projected segments of string intersect in some arbitrarily

small open disk around each point of self-intersection. Moreover, assume that this is

the only intersection point of the strands within this disk. We call such intersection

points crossings [1]. We can alter the photograph so that, at every crossing, it is

immediately apparent which string is closer to the camera and which is further away

by altering the disk as shown in Figure 2.5. We call the closer strand the overcrossing

strand and the further strand the undercrossing strand.

Once every crossing has been appropriately distinguished, we call the result of a

projection of a link onto the plane a knot or link projection (equivalently, knot or

10 2. Introductory Knot Theory

Figure 2.5: Changing a point of self-intersection (left) into a crossing (right).

link diagram) [1]. As we will see, this notion is fundamental to our understanding of

knot theory.

If our link had an orientation, then the link projection will inherit the orientation

from the link. We know that each component of the link was oriented, so we can

visualize the imposition of an orientation on the diagram by taking a video of ants

walking on each component of the link in 3-space. For our convenience, as in Figure

2.6, we will denote the orienation of a component in the link diagram by adding small

arrows to it.

Figure 2.6: An oriented knot.

Despite the way that link projections have been introduced, it may not be immedi-

ately apparent that every link has a link projection. It is conceivable that there are

complicated links such that, independent of how we photograph the link, the image

will contain intersection points that involve more than two pieces of string. In the next

section, we will show that this cannot happen and so every link can be represented in

the plane. Even though we cannot prove this statement now, we will work with the

implications to obtain a better understanding of links.

As noted earlier, we have chosen to examine tame knots. If we only required a

closed simple smooth curve embedded in R3, we would be allowing erratic behavior in

2.1. Link Projections 11

our knots and links. For a demonstration of this undesirable behavior, let us consider

the projection of the “knots” in the following example.

Example 2.2 Let us consider the two knots in Figures 2.7 and 2.8. Both of these

knots were formed iteratively by gluing i copies of strings in the prescribed pattern

together. However, for the knot in Figure 2.8, the size of the bounding rectangle

decreases by a constant factor [2]. For any i ∈ N, it turns out that both K1,i and K2,i

are the same knot [2].

As i→∞, K1,i does not change while K2,i becomes complicated. One way to think

about the difference is that the smaller rectangles in K2,∞ allow for the formation of

a limit point. However, in K1,∞, no such limit point forms and so K1,∞ is the same

knot as any other K1,i.

Figure 2.7: K1,i.

Figure 2.8: K2,i.

To close out this discussion of link projections, let us consider the link diagrams

given in Figures 2.9, 2.10, and 2.11. We will be referring back to these links frequently

12 2. Introductory Knot Theory

throughout the remainder of the thesis. The link in Figure 2.10 is the so-called trivial

link – it can be projected so that there are no crossings. In general, we are interested

in knots with some amount of complexity, commonly referred to as non-trivial links.

Finally, note that the n-component Hopf link is basically a chain of circles. We

can form it by attaching n unknots such that successive circles are looped around

the bottom of the previous circle. The n-component Hopf link is a surprisingly good

example of a non-trivial link, as we will see at various points throughout our discussion

of knot theory.

Figure 2.9: Unknot, trefoil knot, figure-eight knot, and Hopf link (left to right)[1].

Figure 2.10: Unlink (trivial link) of n components [1].

Figure 2.11: The general form of the n-component Hopf link.

2.2. Link Equivalence 13

2.2 Link Equivalence

In order to understand what it means for two links to be the same, we want to define

maps between the two links. To preserve the knottedness of the links, we will need a

specialized type of function.

Definition 2.4 [2] A homotopy of a space X ⊂ Y is a continuous map h : X ×

[0, 1]→ Y such that h(X, 0) = X and, for all t ∈ [0, 1], the restriction ht : X → Y is

continuous where ht(x) = h(x, t).

The homotopy h is called an isotopy if, for all t ∈ [0, 1], ht is injective.

From the definition, it is not clear what a homotopy looks like. Intuitively, they

allow us to continuously deform spaces, treating the space as stretchable rubber. Thus

homotopies allow us to stretch, compress, or move the space around.

Example 2.3 In Figure 2.12, we have three different types of homotopies. While it

may be confusing at first glance, let us think of the thicker curves as h0 and h1. Then,

as t changes, we follow the arrows of the thinner lines to obtain the image of a given

point. In this way, we can deform a curve into another curve (as in the left-most

image), shrink and curve a square into a circle, and squish a looped curve into a simple

curve.

Figure 2.12: Three examples of homotopic curves.

An isotopy is a more restrictive form of a homotopy. For instance, the right-

most homotopy in Figure 2.12 is not an isotopy because we have mapped multiple

14 2. Introductory Knot Theory

points to the same point of the final curve to eliminate the loop. However, the other

homotopies in Figure 2.12 are actually isotopies because every point has a unique

image. Unfortunately, an isotopy is not strong enough to preserve knottedness of links.

Example 2.4 [2] Let us suppose that we are given the looped piece of string in the

left-most image of Figure 2.13. Our isotopy will effectively take the ends of this

string and continuously pull the string tighter and tighter. We know that this is an

isotopy because every point has an obvious image as the knot becomes tighter – the

compressed version of itself. However, our string is a single point thick so we can

continue tightening until there is no distance between the different parts of the knot,

removing the knot entirely, and leaving us with an unknotted piece of string.

Figure 2.13: Bachelor’s unknotting.

It may seem confusing that Figure 2.13 is an isotopy while the third example in

Figure 2.12 is only a homotopy. However, notice that we are working in two different

spaces: Bachelor’s unknotting is a map of a simple loop in R3 whereas the map of the

curve in Figure 2.12 takes place in R2 with a non-simple curve.

The reason that Example 2.4 does not preserve knottedness is that an isotopy only

imposes restrictions on the link and not the space the link sits in. To fix this, we

require a stricter type of isotopy.

Definition 2.5 [2, 3] Two links, L1 and L2, are ambient isotopic if there is is an

isotopy, called an ambient isotopy, h : R3× [0, 1]→ R3 such that h(L1, 0) = L1 and

h(L1, 1) = L2.

2.2. Link Equivalence 15

Ambient isotopies ensure that the space the link is sitting in cannot vanish; while

we can shrink the ambient space considerably, we cannot eliminate it. This leads to

the following definition.

Definition 2.6 [2] Two links, L and L′, are equivalent if L and L′ can be related by

an ambient isotopy.

Let us now return to the issue of link projections. Recall that, in the process of

projecting a link, we were unsure of whether every link had a link diagram. Specifically,

we had not dealt with the possibility that there would always be some point of self-

intersection that involved at least three strands of the link. Using ambient isotopies,

let us deal with this issue.

Suppose that we have an intersection point of a projected link which involves more

than two pieces of string. Applying an ambient isotopy which deforms the strings

involved in this self-intersection slightly, we changes the projection so that the strings

will remain within a small disk around the intersection point. However, since our

links are polygonal, there are a finite number of segments involved. Thus this isotopy

can be performed such that no more than two strings intersect at a single point.

This process may make other crossings apparent, but we have avoided changing the

essential knottedness of the link [2, 3]. Thus, as we claimed, we can always project a

link onto the plane such that the projection is a link diagram.

Unfortunately, it turns out that there are many link projections for a given link

[1, 2, 5]. Even worse, these projections can appear dramatically different from each

other and we may not recognize the link, as in Figure 2.14.

There are some ambient isotopies that are of particular interest to us. Discovered by

Kurt Reidemeister in 1926, these ambient isotopies have come to be called Reidemeister

moves [1].

Definition 2.7 [1] The Reidemeister moves are ambient isotopies which impose

local changes on the link diagram of a link as shown in Figure 2.15.

16 2. Introductory Knot Theory

Figure 2.14: Three projections of the unknot.

III

II

I

Figure 2.15: The three Reidemeister moves.

To appropriately examine the Reidemeister moves, we will be extrapolating the

ambient isotopy from the effect it has on the link projection. A Reidemeister I move

takes a single continuous segment of string in the projection and either twists or

untwists the segment. In 3-space, this corresponds to twisting or untwisting the

appropriate segment of the link. Note that we have not specified which way the strand

has been twisted, and so the twists in Figure 2.16 are both the result of a Reidemeister

I move on a link.

Figure 2.16: Different results from a Reidemeister I move.

2.2. Link Equivalence 17

A Reidemeister II move either takes a strand and pulls it on top of a neighboring

strand or reverses this operation. In 3-space, this move corresponds to stretching or

compressing the appropriate strand so that it seems to be in front of the other strand.

If the strands are contained in the same plane in 3-space, then, to avoid intersecting

the other strand, the move will also pull the strand closer to the camera.

The last type of move is the Reidemeister III which takes a strand overcrossing

(undercrossing) both of the other involved strands and pulls it over (under) a crossing

involving those strands. In 3-space, this corresponds to pushing down on the strand,

leaving the other strands unaffected and ensuring that the result is still a link projection.

Note that Figure 2.15 only shows a strand which is overcrossing the other strands,

although our description makes it clear that there is a similar move for one strand

undercrossing the other two.

As we can see in Figure 2.17, the three Reidemeister moves allow us to show the

equivalence of at least some projections of the same link. In 1926, Reidemeister proved

a result that is likely responsible for advancing knot theory research more than almost

any other result [1].

II II III II

I III II

Figure 2.17: Equivalence of two trefoil knot projections.

Theorem 2.1 (Reidemeister’s Theorem)[1] Any two projections of a link are related

18 2. Introductory Knot Theory

by a finite sequence of the three Reidemeister moves in conjunction with ambient

isotopies that do not affect crossings within the projection.

Reidemeister’s Theorem is what allows us to work with the link diagrams rather

than the links themselves. Basically, we only need to remember three different ambient

isotopies and they will allow us to relate any two projections of a link. As a consequence,

whenever we mention a link, we could be referring to either the link in 3-space or the

link projection in the plane. If it is necessary, we will emphasize which of these we are

using, but it will generally be clear from the context.

2.3 Link Invariants

Using Reidemeister’s Theorem, we can concretely describe the properties of links that

we alluded to earlier.

Definition 2.8 [1, 2] A link invariant is a property of a link that does not depend

on the projection of the link. Equivalently, it is a property of a link projection that

does not change under any of the Reidemeister moves.

Link invariants are ultimately what allow us to prove that there is more than

one type of link. If we can show that a property does not change under any of the

three Reidemeister moves, then it must be a link invariant. So if we find two links

which differ on this property, it follows that the two links must be different. However,

the converse is not necessarily true; if two links have the same property, it does not

necessarily follow that they are the same link. To date, no one has discovered an

invariant that accurately distinguishes between all links and it is likely that no such

universal property exists [1].

We now introduce two classical link invariants so that we can familiarize ourselves

with different ways of thinking about links. Throughout the remainder of the thesis,

we will be adding to our collection of link properties. Whereas each of the later

2.3. Link Invariants 19

invariants requires additional tools, the following invariants are elementary and give

us a chance to use our present knowledge.

2.3.1 Crossing Number

The first invariant we discuss is called the crossing number. We know that every link

projection has some number of crossings. As it turns out, link projections necessarily

have a finite number of crossings. While we can show this quite easily, it is an

important observation about how we can handle links and a number of knot theory

texts have seemingly assumed it.

Proposition 2.1 Every link projection has a finite number of crossings.

Proof. Let L be a link. Then, by Definition 2.3, every component of L consists of a

finite number of line segments. Since L has a finite number of components, L is formed

by a finite number of line segments M . Since line segments do not cross themselves,

each line segment can be involved in at most M − 1 crossings. If we sum the number

of crossings in which each line segment is used, then every crossing will be counted

twice; once for each of the two involved line segments. Hence L can have at most

M(M−1)
2

crossings.

If we take the set of projections of an arbitrary link and extract the number of

crossings of the link in each projection, then we obtain a non-empty subset of non-

negative integers. Among these, we can easily pick the minimal number of crossings –

this is the crossing number of L.

Definition 2.9 [1, 2] The crossing number of a link L, denoted c(L), is the minimal

number of crossings in any projection of L.

We know that the Reidemeister III move does not change the number of crossings

in the projection of a link. Unfortunately for us, we could always apply a Reidemeister

20 2. Introductory Knot Theory

I or II and change the number of crossings in any projection we are examining. While

one might believe that this invalidates the crossing number as a link invariant, notice

that the crossing number is independent of the projection of the link. Hence, while

one projection may not realize the crossing number of the link, this minimal number

considers all possible projections. Thus the crossing number is truly a link invariant.

For examples of crossing minimal link projections, we can turn back to the diagrams

in Figure 2.9. Each one is presented so that it realizes its crossing number. However,

the link in Figure 2.18 has a projection with fewer crossings – it is simply a Hopf link

and an unknot.

Figure 2.18: A link of crossing number 2.

The crossing number of a link is one of the most basic invariants in knot theory.

When we start thinking about knottedness, counting crossings is a good place to start.

So the crossing number is a wonderful way of categorizing distinct links and, indeed,

it is one of the ways that links have been cataloged [1, 2].

One of the difficulties associated with the crossing number is that, even though it

may appear that a link projection is as simple as it can get, there may be a series

of Reidemeister moves which reduces the number of crossings even further. As such,

finding a projection with a given number of crossings only places an upper bound on

a link’s crossing number. To prove a lower bound, and thus potentially establish the

crossing number for the link, requires the use of other techniques.

While there are other interesting lower bounds, we will prove the most basic bound

on the crossing number. Despite being simple, it ends up being surprisingly useful

and will be referred to later.

2.3. Link Invariants 21

Proposition 2.2 [1] For a non-trivial knot K, c(K) ≥ 3. That is, any knot with two

or fewer crossings is trivial.

Proof. Let K be a knot. If there is a projection of K with 1 crossing, then we can

remove it with a Reidemeister I move and so K is trivial. So suppose that there is a

projection of a knot K with 2 crossings.

Orient K and pick one of the crossings, say c1. Follow the overcrossing strand in

the prescribed direction around the knot until it encounters a crossing. Either this

crossing is c1 or it is the second crossing, c2.

In the first case, since c1 was the first crossing the overstand encountered, we must

have formed a loop. Hence we can remove the crossing with a Reidemeister I move.

Then there is a projection of K with one crossing and, by our earlier argument, this

knot is trivial.

Now suppose that the overcrossing strand encountered c2 instead. Let us instead

follow the overcrossing strand in the opposite direction. We claim it cannot encounter

c2 first. If it did, then either we would have formed a complete knot or we found a

third crossing. Since we have only two crossings, we formed a complete knot and so

there are still unused strands. Thus K would be a link, but K was a knot. Hence, in

this direction, the overcrossing strand encounters c1 and we have reduced the problem

to the previous case.

Thus all non-trivial knots satisfy c(K) ≥ 3.

Using the same proof, we can extend a similar result to links.

Corollary 2.1 Any non-trivial link L will have c(L) ≥ 2.

2.3.2 Linking Number

The second link invariant we discuss, the linking number, is substantially easier to

compute. Similar to how the crossing number is a good measure of the knottedness of a

22 2. Introductory Knot Theory

link, the linking number is a way of measuring how intricately the various components

of a link are linked [1]. First, we need to discuss the notion of assigning a sign to

crossings.

Definition 2.10 [1, 5] Let L be an oriented link diagram and let c be a crossing of L.

Then the sign of c is sign(c) = ±1, depending on the configuration of c (Figure 2.19).

If sign(c) = 1 then c is a positive crossing. Otherwise c is a negative crossing.

+1 -1

Figure 2.19: Positive crossing (left) and negative crossing (right).

The difficult part of assigning a sign to a crossing is remembering the different

configurations. We can rotate a diagram so that it is clear how the strands are leaving

a given crossing, but it is a waste of time to continually refer back to Figure 2.19.

Instead, we can remember the configurations by a simple method [1].

Consider the overcrossing strand and mentally rotate it so that the orientation

matches the undercrossing strand. We can think of the crossing being positive or

negative depending on the rotation. If the rotation required a counterclockwise twist,

then the crossing is positive. Otherwise the rotation involved a clockwise twist and so

it is a negative crossing. Underlying this method is the assumption that we choose

the rotation with the minimal rotation angle, but it is usually clear which rotation is

correct.

Now we are ready to define the linking number. To simplify the definition as

other knot theorists have done, we will break the concept of the linking number into

two definitions. The first will deal with two components of a link while the second

definition will permit links with arbitrarily-large multiplicity.

2.3. Link Invariants 23

Definition 2.11 [2, 5] Let L =
n⋃

i=1

Ki be an oriented link. For i 6= j, let c ∈ Ki ∩Kj

denote a crossing c involving a strand from both Ki and Kj. Then the linking

number of Ki and Kj, denoted by lk(Ki, Kj), is

lk(Ki, Kj) =
1

2

∑
c∈Ki∩Kj

sign(c).

As alluded to already, the linking number takes two components of a link and

counts the twists between those components [1]. Consequently, the linking number

is useless when discussing knots, as they only have one component by definition.

The generalization of the linking number simply compares every possible pair of

components in a link.

Definition 2.12 [2, 5] Let L =
n⋃

i=1

Ki be an oriented link. Then the total linking

number of L, denoted lk(L), is

lk(L) =
∑
i<j

lk(Ki, Kj).

In the case that we are looking at a 2-component link, then the total linking

number and the linking number are the same. To solidify our understanding of the

linking number, total or otherwise, we should go through a couple of examples.

Example 2.5 Consider the links in Figures 2.20 and 2.21. The Hopf link has two

components and two negative crossings, so the linking number is simply 1
2
(−2) = −1.

The second figure also has two components, but it has six positive crossings and so it

has linking number 1
2
(6) = 3. Note that we have ignored the crossings which involve

only a single component.

Our third example, depicted in Figure 2.22, is slightly more complicated because it

has three components. Since lk(K1, K2) = −1, lk(K1, K3) = 1, and lk(K2, K3) = 1,

the total linking number of the link is 1.

24 2. Introductory Knot Theory

-1

-1

Figure 2.20: Hopf Link with linking number -1.

+1 +1

+1 +1

+1 +1

Figure 2.21: Link with linking number 3.

-1

-1

+1 +1

+1 +1

K1 K2

 K3

Figure 2.22: A 3-component link with total linking number 1.

2.3. Link Invariants 25

Notice that the linking number depends on prescribed orientations. If we reverse

the orientation of a single component, Ki, all the inter-component crossings will flip

sign, and so the linking number of Ki and any other component will flip signs as well

[1]. So when we start discussing the linking number of a link, we must remember that

it is dependent on the chosen orientations for the link components.

Now that we have a basic understanding of the linking number, we should prove

that it is a link invariant.

Proposition 2.3 [1, 2] Let L be an oriented link. For any two distinct components of

L, K and K ′, lk(K,K ′) is a link invariant. Moreover, lk(L) is a link invariant.

Proof. Let K and K ′ be distinct components of an oriented link L. If we can show

that lk(K,K ′) is a link invariant then we know that, since lk(L) is simply the sum

over all possible pairs of componenets, lk(L) is a link invariant. So let us consider the

impact of each of the Reidemeister moves on the computation of lk(K,K ′).

Since a Reidemeister I move involves a crossing of a link component with itself, we

know that it will not affect the linking number as we only count crossings involving

both K and K ′. If a Reidemeister II move involves strands from the same component

of the link, it will not affect the linking number for the same reason. So let us suppose

that the two strands are from different link components.

A Reidemeister II move will either add or remove two crossings. These crossings

will have opposite signs as shown in Figure 2.23. This figure covers all possible cases

because, as discussed above, reversing the orientation of a strand would change the

signs of both crossings. Hence there will be no net change in lk(K,K ′).

II -1

+1

Figure 2.23: Reidemeister II does not affect linking number.

26 2. Introductory Knot Theory

Reidemeister III moves do nothing to the types of crossings within a link but rather

shift them around. Thus the number of crossings of a given sign remains unchanged

and thus lk(K,K ′) is unaffected by Reidemeister III moves. Hence lk(K,K ′) is

invariant under the Reidemeister moves and so it is a link invariant. Consequently, as

reasoned above, lk(L) is also a link invariant.

Despite what we have shown above, it is not clear how much information the

linking number gives. For instance, if there are a differing number of positive and

negative signs, it is not clear that the components are necessarily bound together. It

could be that the link is a so-called split link.

Definition 2.13 [5] A link L is splittable and is called a split link if µ(L) ≥ 2

and there is some projection of L such that there is a disk D containing at least one

component of L but ∂D ∩ L = ∅. Such a projection is a split projection of L.

If L is not a split link, it is a non-splittable link.

In the case of 2-component links, it is fairly easy to determine that a link is

non-splittable.

Proposition 2.4 [1, 2] Let L be a link with µ(L) = 2. If L is splittable then lk(L) = 0.

Proof. Suppose that lk(L) 6= 0. Then, in every projection of L, there is some crossing

between the different components of L. As µ(L) = 2, this implies that L is a

non-splittable link.

Unfortunately, even for 2-component links, the total linking number being 0 is not

sufficient to determine whether the link is splittable or not.

Example 2.6 [1] The projection of the Whitehead link in Figure 2.24 has total linking

number 0. Using our current techniques, we cannot prove that the Whitehead link is

non-splittable, but we can use other techniques to show it later.

2.4. Types of Links 27

-1 +1

-1 +1

Figure 2.24: Oriented Whitehead link.

2.4 Types of Links

While we have been talking about links in general, there are a variety of classes of

links – links created through a similar process or possessing a certain quality. It is not

uncommon for knot-theoretic results to be developed for specific classes of links since

the similarity adds structure to the link. For our purposes, we need to discuss the

notions of amphicheirality and knot composition.

2.4.1 Amphicheiral Links

By now, we have likely introduced a sufficient amount of material that it would be

nice if we did not complicate matters more than absolutely necessary. Yet this is

precisely what we are about to do.

Definition 2.14 [1] The mirror image of a link L, denoted L∗, replaces every

crossing in a link diagram with the opposite crossing.

Suppose we have a link diagram and take its mirror image. The result is the “same”

link in some sense. So it seems that the mirror image is the result of projecting the

link from a different position in 3-space. This is not the case. For instance, flipping

the trefoil knot in Figure 2.9 gives us the exact same knot.

Let us use an oriented link instead. If we tried to simply project the link onto the

plane from the opposite side, the orientations of the components would change. Hence

we did not obtain the mirror image of the link because only the crossings should have

28 2. Introductory Knot Theory

changed and clearly they do not always switch either. However, it is conceivable that

we could use ambient isotopies to solve this problem.

Definition 2.15 [1] A link L is amphicheiral if it is ambient isotopic to L∗. Other-

wise, L is cheiral.

Based on our discussions to this point, it is clear that determining amphicheirality

is not an easy business. It seems that the most succinct way of doing so involves the

use of knot polynomials, which we will not be introducing until Chapter 5. As such,

we instead assert that certains links are amphicheiral while others are cheiral.

Example 2.7 Although we have been talking about “the” trefoil knot, it is a sad state

of affairs that we must now shatter that illusion: there are two distinct trefoils. In

Figure 2.17, we used the so-called “left-hand trefoil” while the “right-hand trefoil” is

depicted in Figure 2.9 [1]. Thus the trefoil knot is cheiral. The only comfort we can

take is that these two trefoil knots are clearly mirror images of one another. To be

fair to these two knots, unlike many writers who focus on the right-hand trefoil, we

will ensure that both are represented.

Example 2.8 The figure-eight knot is amphicheiral [1].

While it may be apparent that we have covered amphicheirality rather superficially,

the essential component of our discussion was that a link and its mirror image are not

necessary the same thing. As such, we must be careful about whether we are using a

link or its mirror image. In particular, some link invariants distinguish between the

two and so give different results.

2.4.2 Composite Knots

Borrowing from the notion of adding numbers, we want a way that we can “add”

knots. Notice that we are specifically dealing with knots in this case. While we could

2.4. Types of Links 29

 b
a c

 d

K1 K2 b

 d

K1 K2

Figure 2.25: The composition of K1 and K2.

develop a notion of “adding” links, it would work on the level of a single component.

Since this is basically the same situation, we will keep matters relatively simple as we

introduce a new operation.

The essential idea behind knot composition is that we take two knots, remove an

arc from each knot, and subsequently attach new arcs between the endpoints of the

removed arcs. However, while doing so, we must be careful to make sure that we

are not complicating either knot in the process. Hence, the new arcs must be close

together and not add extra crossings.

Definition 2.16 [1, 2] Let K1 and K2 be knots. A composition or connected

sum of K1 and K2, denoted K1#K2, is obtained as follows: take a rectangular

disk D whose boundary is the arcs a, b, c, d and attach it to K1 and K2 such that

K1 ∩ a = a, K2 ∩ c = c, and (D\(a ∪ c)) ∩ (K1 ∪K2) = ∅ as in Figure 2.25. Then

K1#K2 = (K1\a) ∪ (K2\c) ∪ b ∪ d.

K1 and K2 are called factor knots and K1#K2 is a composite knot.

One important note about knot composition is that it is not necessarily unique

[1]. If the knots are unoriented, then it does not matter how we compose the knots

because we can imagine shrinking one knot down and having it follow the other knot

to any other arc [1]. However, if the knots are oriented, then they can be composed

such that their orientations match or, possibly, so that they do not match as in Figures

2.26 and 2.27.

It may be apparent that there is an inverse to the composition operation. While

30 2. Introductory Knot Theory

Figure 2.26: Composition of two trefoil knots whose orientations match.

Figure 2.27: Composition of two trefoil knots whose orientations do not match.

it is not always easy to see, composite knots can always be decomposed into their

respective factor knots [1, 2]. In the plane, this involves finding a projection such that

one factor can be contained in a disk whose boundary intersects the composite knot

at precisely two points. Cutting along the disk boundary, we can reform the factor

knots by attaching arcs as in Figure 2.28.

For our purposes, this is a sufficient discussion of knot composition. While there

are interesting results and conjectures surrounding composite knots, we only require a

basic understanding of the operation and its inverse.

Figure 2.28: Decomposition of a composite knot.

CHAPTER 3

Surfaces

At first glance, the present chapter may seem unrelated to knot theory. While

we will briefly explore the possibility of links being projected onto spaces other than

R2, this will not give us any definitively useful tools for differentiating between links.

Yet discussing surfaces brings us closer to one of the original interests in knot theory:

using links, usually knots, to categorize a special class of topological spaces called

manifolds. We will not be investing in this application of knot theory, as we are more

interested in the knots themselves, but there is certain information about knots that

can be understood from surfaces.

In order to properly define a link invariant that uses surfaces, we first require

an introduction to surfaces both with and without boundary. Then we will build

various properties of surfaces, including genus and Euler characteristic. Finally,

we will conclude with a useful connection between links and surfaces that we will

employ in Chapters 4 and 5. Unlike some of our previous topics, we will apply the

topology-famous “hand-waving” proof technique frequently so that we can focus on

knot-theoretic results.

If we are going to make an attempt to understand surfaces, we should invest some

time into a proper definition.

Definition 3.1 [2] An n-manifold is a topological space (X, T) such that

1. X is Hausdorff;

31

32 3. Surfaces

2. T has a countable basis;

3. For all x ∈ X, there is a neighborhood of x homeomorphic to Rn.

A manifold is closed if X is compact and ∂X = ∅.

In essence, an n-manifold is locally similar to n-dimensional Euclidean space.

As such, Rn is a simple example of an n-manifold. Another commonly described

n-manifold is the n-sphere, Sn = {x ∈ Rn+1 | |x| = 1} [2, 6]. We are actually quite

familiar with the n-sphere when n = 1 and n = 2, as we can see in Figure 3.1.

Figure 3.1: S1 (left) and S2 (right).

It is reasonable to question why the n-sphere is considered a manifold. If we think

of the n-sphere sitting in Rn+1, Sn would inherit the Hausdorff property because Sn

would be a subspace of Rn+1. Similarly, Sn would also necessarily have a countable

basis because we could take a countable basis for Rn+1 and intersect each element

with Sn.

The final requirement in Definition 3.1 also holds for Sn. Although we can handle

this situation in general, we will work through the process in the specific case of n = 2.

Let us visualize what happens if we take an open ball of radius ε ∈ (0, 1) centered at

a point on S2 and intersect it with S2. Since the ball will touch less than half of S2,

the intersection will appear as an open disk on S2 (see Figure 3.2). Since an open

disk is homeomorphic to R2, this disk in S2 will be as well. Thus Sn is a manifold.

Despite this brief and somewhat crude introduction to manifolds, we will “get on

with it” and continue with a definition of surfaces.

Definition 3.2 [2] A surface with no boundary is a closed 2-manifold.

33

Figure 3.2: Intersection of a ball with S2.

The compactness requirement imposes a sort of “finiteness” condition on the

topological space [1]. For instance, one can only travel in one direction on S1 or S2

for a limited amount of time, assuming a constant rate, before returning to the point

of origin and so Sn is compact. Moreover, no point of Rn+1\Sn is in the boundary of

Sn because there is always a small ball that misses Sn. Hence ∂Sn = ∅ and so Sn is a

surface without boundary. Meanwhile R2 is not compact and so it is not a surface by

our definition.

Another standard surface example is the torus, shown in Figure 3.3. A popular

way to think of it is as the frosting on a glazed doughnut [1]. While it has been

referred to as a doughnut itself, this is misleading because an actual doughnut has

definitive thickness (although this is also true of certain frostings).

Figure 3.3: Torus.

Similar to having different projections of links, equivalent surfaces are related by

isotopies [1]. In this case, this visually represents stretching or collapsing portions of

the surface while it sits in space. For instance, the three surfaces in Figure 3.4 are

equivalent.

34 3. Surfaces

Figure 3.4: Isotopic representations of S2.

3.1 Links on Surfaces

As a short digression, it is useful to discuss how surfaces are immediately applicable to

knot theory. In our definition of link projections, we assumed that we were projecting

onto the plane. However, it is sufficient to project links onto spaces which are similar

to the plane. For instance, since an open disk and the plane are homeomorphic, we

could project a link onto the interior of the disk. While this is reasonable, it does not

give us any additional information about the link nor does it simplify any problems.

Let us instead consider S2. By projecting onto the sphere instead of the plane,

the local image of the links are almost the same. The one distinction that needs to

be made is that we can ambient isotope a strand around the back of S2, as shown in

Figure 3.5. Although there is a sequence of Reidemeister moves which can perform an

equivalent change in the plane, it is significantly simpler to justify the equivalence

on S2. To convince ourselves of this fact, we can take an open disk neighborhood

of the link on S2 and project it to the plane, maintaining the link diagram in the

process. If we do this both before and after isotoping the strand, then we have two link

projections of the same link. Hence, by Theorem 2.1, such a sequence of Reidemeister

moves must exist in the plane.

We will be returning to the idea of placing links on S2 in Chapter 6, when it will

allow us a conceptually simple proof of a very significant result about links.

3.2. Surfaces with Boundary 35

Figure 3.5: Strand pulled around the sphere.

3.2 Surfaces with Boundary

Up-to-now, we have only been looking at examples of surfaces with no boundary. To

fully describe surfaces with boundary, we would have to wander deeper into manifold

theory. Luckily for us, it is equivalent to start with a surface without boundary and to

turn it into a surface with boundary [4]. Naturally, this is built on proven results about

surfaces which we are blatantly passing over, but it speeds up the process significantly.

Definition 3.3 [1] Let D be an open disk contained in a surface S. In S\D, ∂D ⊂ ∂S

and ∂D is called a boundary component of S\D.

So if we take a surface with no boundary and remove some open disk from it, we

are left with a non-compact space, and so it is not precisely a surface anymore. Yet it

close to being a surface; we would only have to replace the lost disk. The boundary

component then becomes a marker of where the disk used to be. Repeating this

process a finite number of times, we obtain a surface with boundary.

Definition 3.4 [1, 2] A surface with boundary S is homeomorphic to a closed

2-manifold S̃ with some number of disks removed. The number of boundary components

of S is denoted by |∂S| and S̃ is called the capped-off surface of S.

It is not always easy to tell whether a space is a surface with boundary. For

instance, the spaces in Figure 3.6 are surfaces with boundary. In fact, they are isotopic.

36 3. Surfaces

However, it is significantly easier to tell from the image on the right that they are a

surface with a single boundary component.

Figure 3.6: Surfaces with boundary.

Obtaining S̃ from a surface with boundary S is relatively easy. After identifying

the boundary components of S, we only need to replace the disks they bound [1]. It

may seem as though we are going in circles, but this is what allows us to conclude that

we can always obtain a capped-off surface if we are given a surface with boundary.

3.3 Oriented Surfaces

Similar to when we introduced links, we want to establish a notion of oriented surfaces.

However the equivalent notion is not as obvious as it was for links. Unfortunately,

there is more to it than simply following the surface in one direction to assign an

orientation – sometimes such a thing is not possible! For the sake of simplicity, we

will skip to a mathematically-imprecise but equivalent and easily applied method of

determining whether a surface can be oriented.

Definition 3.5 [1] A surface is orientable if, for every open disk contained in the

suface, there is an assignment of color – black or white – to each side of the disk such

that every point of the interior is colored and overlapping disks assign the same colors

to interior points. If such an assignment is impossible, the surface is nonorientable.

Despite all the rigor seemingly involved with our definition, it is imprecise because

of the notion of different “sides” of a disk. Certainly, given a physical disk, it would be

clear what is meant by sides, but mathematical disks do not have a thickness. Yet we

3.4. Genus and the Classification of Surfaces 37

can still imagine painting mathematical disks in a similar fashion and we will pretend

that it holds up mathematically.

To restate our definition in an even more informal manner: an orientable surface

is one which has two sides. Most of the surfaces we will use are orientable, but we

should be able to distinguish between the two types to better understand the object

we are using.

Example 3.1 While the torus and sphere have two sides, and thus are orientable, it

is harder to visually depict this orientability. In contrast, consider the surfaces with

boundary shown in Figure 3.7. It is clear that we can orient the band. However, we

cannot orient the second surface, which is a band with a twist in it known as a Möbius

band. The Möbius band is a classical example of a non-orientable surface.

Figure 3.7: Band (left) and Möbius band (right).

3.4 Genus and the Classification of Surfaces

Despite our apparent claims that there are different surfaces, especially having given

distinct names to particular spaces, we have yet to conclusively demonstrate this fact.

To do this, we want to develop a topological invariant of surfaces. First, we require

another definition.

Definition 3.6 [2] A non-separating loop of a surface without boundary S is a

simple closed curve l such that S\l is connected.

For an example of non-separating loops, let us consider the surface in Figure 3.8.

While there are two different loops presented, we can remove one or both of them and

the resulting surface remains connected. A non-example is shown in Figure 3.6 where,

38 3. Surfaces

instead of removing the entire disk (which is not a simple closed loop), we would

only remove the boundary of the disk. In this case, the interior of the disk would be

disconnected from the rest of the torus and so it would be a separating loop instead.

Figure 3.8: Double torus with non-separating loops.

Non-separating loops come into play with an important notion of surfaces known

as genus.

Definition 3.7 [2] The genus of a connected surface without boundary S, denoted

g(S), is the maximum number of disjoint non-separating loops in S such that their

removal does not disconnect S. If S has boundary then g(S) = g(S̃).

The notion of surface genus gets at the idea of counting “holes” in the surface. A

non-separating loop is necessarily wrapped over one of these holes and, upon removal,

reduces the number of holes in the resulting surface by one. We will take it for granted

that genus is a topological invariant and instead focus on some examples.

Example 3.2 Although it takes some proof to show, it seems clear that removing any

simple closed loop from S2 will disconnect the surface. Hence g(S2) = 0. In constrast,

we can remove at least two loops from the double torus in Figure 3.8 so its genus is at

least 2.

While we can remove two loops from the torus as well, as in Figure 3.9, these loops

are not disjoint. Instead, it turns out that the genus of the torus is 1.

As should be clear from our examples above, calculating the genus of a surface can

be difficult because we cannot easily determine when we have optimized the number

of non-separating loops. However, using genus and tracking boundary components,

we can fully describe surfaces.

3.5. Euler Characteristic 39

Figure 3.9: Intersecting non-separating loops on the torus.

Theorem 3.1 (Classification of Surfaces): [2] Two connected surfaces are

homeomorphic if and only if they have the same number of boundary components and

the same genus.

3.5 Euler Characteristic

Euler characteristic is another surface invariant which, unlike genus, is relatively simple

to compute. More significantly, it is easily relatable to genus and so determining

genus is simply a task of computing Euler characteristic. Given that this relationship

exists, it becomes a wonder that we bothered introducing genus at all. However, this

approach gives genus its appropriate motivation rather than being a consequence of

Euler characteristic.

Before we can define the Euler characteristic of a surface, we need to introduce

surface triangulation. Simply put, a triangulation is a division of a surface into a finite

number of triangles, including their boundaries, such that adjoining triangles meet at

a vertex or share an edge [1]. Note that each triangle has an interior homeomorphic

to a disk, which we will synonymously refer to as a face. Example triangulations are

shown in Figure 3.10, while non-triangulations are shown in Figure 3.11.

Figure 3.10: Triangulations of the sphere and the top half of the torus.

40 3. Surfaces

Figure 3.11: Non-triangulations of a surface.

Supposing that we can triangulate a surface, then the Euler characteristic is nicely

defined.

Definition 3.8 [1, 2, 4] Let S be a triangulated surface with V vertices, E edges, and

F faces. Then the Euler characteristic of S is

χ(S) = V − E + F.

Example 3.3 Let us compute the Euler characteristic of the surfaces in Figure

3.10. This triangulation of the sphere uses 8 faces, 6 vertices, and 12 edges. So

χ(S2) = 6− 12 + 8 = 2.

It is clear that we can mirror the triangulation of the top half of the torus onto the

bottom of the torus. By our choice of vertices, doing so will add no additional vertices.

So there are 7 vertices. The number of faces for the whole torus will double, giving

us a total of 14 faces. Carefully counting the edges, double counting the 7 edges that

are not shared by the top and bottom halves, we can see there are 21 edges. Thus the

torus has Euler characteristic 7− 21 + 14 = 0.

To affirm the usefulness of Euler characteristic as a measure, we require the

following statements:

Theorem 3.2 [1] Every surface can be triangulated.

Theorem 3.3 [1, 2, 4] Euler characteristic is independent of the triangulation of a

given surface and so it is a topological invariant.

As it stands, there is only one complicated aspect of the Euler characteristic

computation: keeping track of all the different triangles. To alleviate this concern,

3.5. Euler Characteristic 41

it turns out that triangulation is equivalent to dividing a surface into polygons [1].

So we can divide a surface into vertices, edges, and faces such that the faces have a

polygonal boundary and are homeomorphic to a disk. Then we can compute Euler

characteristic using this “triangulation.” For instance, in this way, Figure 3.12 is a

triangulation of the torus. Note that it is clear that there are 4 vertices, 4 faces, and

8 edges in this triangulation – a much simpler calculation to show that the torus has

Euler characteristic 0.

Figure 3.12: Simpler torus triangulation.

Finally, we can relate the genus of a surface to its Euler characteristic.

Theorem 3.4 [1, 4] For an orientable connected surface S,

2g(S) = 2− χ(S)− |∂S|.

Note that Theorem 3.4 only applies to orientable surfaces. While a similar result is

known for nonorientable surfaces, our interest is primarily directed toward orientable

surfaces. Using this powerful tool, we can easily demonstrate that we were correct in

our earlier assessments of genus.

Example 3.4 We know that the torus has Euler characteristic 0. So, by Theorem

3.4, it has genus 1 as we suggested in Example 3.2. Moreover, since χ(S2) = 2, we

also confirm that g(S2) = 0 by Theorem 3.4.

42 3. Surfaces

3.6 Seifert Surfaces

At last we are able to turn our attention back to links, although the build-up was

essential. The foundational concept behind a few invariants we will be introducing is

that links can serve as the boundaries of surfaces which we call Seifert surfaces.

Definition 3.9 [1] Let L be a link. Then a Seifert surface of L is a connected

orientable surface with boundary L.

At this point, we should show that every link has at least one Seifert surface.

Otherwise, no link invariant based off of Seifert surfaces would be possible and so

this concept would have little use. Luckily, this fact was proven by Pontrjagin and

Frankl in 1930 [5]. However, in 1934, Herbert Seifert developed an algorithm, known

modernly as Seifert’s algorithm, that accomplishes the same goal in a simpler fashion

[1]. So we will use his method instead.

Theorem 3.5 [1, 2] Given a link L, there is an orientable surface whose boundary is

L.

Proof. Consider a link diagram of L in the xy-plane of R3. If L is unoriented, orient

each component of the link. For each crossing in the diagram, we will remove crossings

by smoothing them as shown in Figure 3.13.

Figure 3.13: Smoothing of a crossing.

This operation preserves the prescribed orientation from the original link diagram.

The result will be a set of disjoint oriented circles in the plane, which we call Seifert

circles. Since these circles may be nested within other Seifert circles, we want to shift

the circles so that they are no longer nested. This can be accomplished by moving the

3.6. Seifert Surfaces 43

circles up in the z-direction until they are separate from each other. For each Seifert

circle, take a bounded disk and let the Seifert circle be its boundary. Now we have a

surface with boundary in R3.

Viewing the surface by looking down the z-axis, we still have the same diagram

that we had in the xy-plane after removing crossings. Let us color each disk such

that the side facing us is gray if the disk has a counterclockwise orientation and white

otherwise. Then we color the bottoms of the disks by using the opposite color. Thus

our surface is orientable.

Let us consider the locations where we removed crossings. Between the two involved

Seifert circles, attach a twisted band. The twisting of this band will depend on the

original crossing, as shown in Figure 3.14.

Figure 3.14: Twisted bands corresponding to different crossings.

We will now show that the addition of these bands will not affect the orientability

of our surface. Consider any two Seifert circles which formerly shared a crossing.

Either they were originally nested in the plane or they were not.

If the Seifert circles were nested in the plane, then they must have the same

orientation. Otherwise there would be an inconsistency in orientation as shown in the

top of Figure 3.15. So, by our earlier coloring, they have the same color on the upper

face. Since these circles are nested, the twisted band will have to bend to connect the

disks. Accounting for the half-twist in the band and this bend, the colors on the two

44 3. Surfaces

disks will match appropriately (an upcoming example will use such bands to connect

disks, Figure 3.17).

Similarly, if the Seifert circles were not nested, then they have opposite orientations

so as to avoid the orientation conflict demonstrated in the bottom of Figure 3.15. By

our earlier coloring, this implies that the upper faces of the disks will have opposite

colors. Then attaching the twisted band will not affect orientation because the color

on the top of one side of the band will flip over to the other color on the other side,

matching the upper face color of the other disk.

+ =

+ =

Figure 3.15: Impossible Seifert circle orientations.

Thus we have shown that attaching bands will not affect the orientability of the

surface and so it will remain orientable. The fact that the boundary of the surface is

the original link follows immediately because the twisting of the bands matches the

type of crossing found on the link. Thus the surface is an orientable surface whose

boundary is the link.

For a concrete application of Seifert’s algorithm, let us consider a couple examples.

Example 3.5 Let us apply Seifert’s algorithm to the projection of the trefoil knot in

Figure 3.16 and the 3-component Hopf link in Figure 3.17. The final images in each

figure correspond to a Seifert surface for the particular link.

It is important to note that, for a general link L, Seifert’s algorithm does not always

produce a Seifert surface because the resulting surface is not necessarily connected.

3.6. Seifert Surfaces 45

Figure 3.16: Seifert surface of a trefoil knot.

Figure 3.17: Seifert surface of a 3-component Hopf link.

In particular, if L is a split link, then there is some projection of L such that some

component of L is separated from the rest of L by a disk. Applying Seifert’s algorithm

to this projection, we obtain disconnected surfaces and so the resulting surface for L

is disconnected. One remedy for this problem is the following:

Corollary 3.1 [2] Let L be a non-split projection of a link. Then Seifert’s algorithm

produces a Seifert surface of L.

Using Seifert surfaces, we may define our first new link invariant.

46 3. Surfaces

3.7 Link Genus

We have previously discussed the concept of the genus of a surface. By Theorem

3.5, we know that every link has at least one Seifert surface and so the following is a

well-defined link invariant:

Definition 3.10 [2] The genus of an oriented link L, denoted by g(L), is the minimal

genus of any Seifert surface of L. In the case of an unoriented link, the genus is the

minimal genus of a Seifert surface over all possible orientations of that link.

As with many link invariants that we have seen, it can be difficult to determine

whether a given Seifert surface for a link L realizes g(L). In fact, it turns out that

Seifert’s algorithm is not always optimal. In other words, there are links such that,

given any projection, Seifert’s algorithm will produce a surface of genus greater than

the genus of the link [2]. However, given a Seifert surface, it is not difficult to compute

its genus by appealing to the Euler characteristic of the surface as we saw in Theorem

3.4. Using a surface generated through Seifert’s algorithm, we are able to prove a

simple method of computing the Euler characteristic of a Seifert surface.

Theorem 3.6 Let F be the Seifert surface obtained, via Seifert’s algorithm, from

a link projection L with s(L) Seifert circles and k(L) crossings. Then the Euler

characteristic of F is given by

χ(F) = s(L)− k(L).

Proof. [2] Let us divide the Seifert circles and bands into triangles. To streamline this

process, let us divide each band into two pieces and each Seifert circle, on which n

bands are attached, into 2n triangles with a vertex in the center as is shown in Figure

3.18.

Since they replace crossings, we know that each band is twisted and subsequently

3.7. Link Genus 47

Figure 3.18: Triangulation of a band and a Seifert circle which has 3 attached bands.

attached to two distinct Seifert circles. As each band has two faces, they contribute

2k(L) faces to the surface. We have a total of 4k(L) faces within the Seifert circles

since, based on our triangulation, a crossing creates two faces in each Seifert circle to

which it is connected. So there are a total of F = 4k(L) + 2k(L) = 6k(L) faces.

To count vertices, let us assume that no two bands share a vertex. This is possible

because of how we triangulated the Seifert circles. Then it is sufficient to count the

number of vertices used in the bands and add the number of Seifert circles. This is

because each Seifert circle will only use the vertices from the bands, plus the central

vertex. Since each band has 4 vertices, we have 4k(L) vertices plus an additional s(L)

vertices from the Seifert circle center vertices. So we have a total of V = 4k(L) + s(L)

vertices.

Lastly, we need to count edges. Each band contributes 5 edges for a total of 5k(L)

edges. Now let us consider the remaining edges in the Seifert circles. There are 6k(L)

such edges because the uncounted edges form triangles, as no two bands share a vertex,

and there are 2k(L) triangles. Thus there are a total of E = 11k(L) edges.

Hence χ(F) = V − E + F = (4k(L) + s(L))− 11k(L) + 6k(L) = s(L)− k(L) as

desired.

Corollary 3.2 The genus of a Seifert surface F constructed from L, a non-split

projection of a link, satisfies

2g(F) = (1− s(L) + k(L)) + (1− µ(L))

48 3. Surfaces

where s(L) is the number of Seifert circles of L and k(L) is the number of crossings

in L.

Proof. By Theorem 3.4 and Theorem 3.6,

2g(F) = 2− χ(F)− |∂F |)

= (1− χ(F)) + (1− µ(L))

= (1− s(L) + k(L)) + (1− µ(L)).

Thus 2g(F) = (1− s(L) + k(L)) + (1− µ(L)) as desired.

CHAPTER 4

Graph Theory and Seifert Matrices

In the following chapter, we use Seifert surfaces to generate a matrix, appropriately

called the Seifert matrix. To obtain the Seifert matrix, we will need to familiarize

ourselves with graphs and the homology of graphs. While this may seem to be taking

us further away from studying links in any capacity, this matrix will be used to

generate two new link invariants: signature and determinant. Later on, it will give us

a way of developing a powerful third invariant called the Alexander polynomial.

4.1 Graph Theory

The first step on our path to a veritable wealth of link invariants is understanding the

basics of graph theory. Our brief introduction will give us the necessary tools to build

a graph from a Seifert surface, which is appropriately called a Seifert graph. While we

could define a Seifert graph almost immediately, we will build theory surrounding a

general graph first.

Definition 4.1 [2] A graph G is composed of a set of vertices V (G) and a set of

edges E(G). Every edge e ∈ E(G) may be represented as an unordered pair of vertices,

e = {vi, vj} for some vi, vj ∈ V (G).

It is convention to refer to the vertices involved in an edge as endpoints. Note

that our definition of graphs allows for the possibility that two vertices may act as

49

50 4. Graph Theory and Seifert Matrices

endpoints for multiple edges. From a set-theoretic perspective, this poses a problem.

However, in visual representations of a graph, we tend to denote vertices by points

and edges by lines between appropriate vertices. Thus, from a visual perspective, it is

clear when two vertices share multiple edges.

Example 4.1 Let us consider the three examples of graphs shown in Figure 4.1.

Each of these graphs contains 4 vertices, labelled 1, 2, 3, or 4. So for each graph,

V (Gi) = {1, 2, 3, 4}. However, they have different edge sets. For example, E(G3) =

{{1, 2} , {1, 3}} and E(G2) = {{1, 2} , {1, 2} , {2, 3} , {2, 4}}. G1 is a special type of

graph, called a complete graph, because it contains one copy of every possible edge

between the 4 vertices.

1

2

3

4
1 2

4

3

1 2 3
4

G1 G2 G3

Figure 4.1: Example graphs.

In the case of G2, note that we have a multiple edge. While listing edges in E(G2)

by the vertices they connect makes sense, we must remember that our edge sets are

allowed to contain repeat elements.

While the other two graphs involve every vertex in at least one edge, vertex 4 in

G3 does not share an edge with any other vertex in the graph. This shows that, even

when a vertex is present in the graph, it is not necessary for it to be the endpoint of

any edge.

We will return to these examples later, but there are other basic graph theoretic

concepts to introduce.

Definition 4.2 [2] A subgraph G′ of a graph G, denoted G′ ⊆ G, is a graph with

V (G′) ⊆ V (G) and E(G′) ⊆ E(G).

4.1. Graph Theory 51

The notion of a subgraph is a fairly intuitive extension of our definition of a graph.

In this case, we start with a graph G and take only some of its vertices and then some

of the edges between those vertices. One trivial example of a subgraph is the graph

itself, but there are many non-trivial examples as well. For instance, using the graphs

from Example 4.1, we can say that G3 ⊆ G1 since every edge of G3 is contained in

G1. However, G2 6⊆ G1 because E(G1) has only a single copy of the edge {1, 2}. In

general, as noted above, this poses a problem using the standard notion of a subset.

So, for our purposes, we will assume that the multiplicity of an edge is also considered

when comparing sets for graphs.

Definition 4.3 [2] Let G be a graph. Then a path in G is a sequence of vertices and

edges v1e1v2e2 . . . en−1vn such that vi ∈ V (G) and ei = {vi, vi+1} ∈ E(G).

A cycle is a path such that the initial and final vertices are the same. A simple

path uses a given vertex at most once.

The visualization of a path is fairly intuitive. Starting at a given vertex, the path

follows edges to adjacent vertices and eventually stops. If this stopping location is the

same as the initial vertex, then we call the path a cycle. Note that there is nothing in

the definition of a path that prohibits revisiting a vertex or using an edge multiple

times. However, in simple paths, no vertex (and so no edge) can be repeated.

The next concept to introduce involves the formal definition of a connected graph.

Definition 4.4 [2] A graph G is connected if, for any two vertices in V (G), there is

a path between them. If G is not connected, then G is disconnected.

At this point, we can make sense of a special type of graph and a particular

subgraph which will be essential in our later discussions.

Definition 4.5 [2] A graph T is called a tree if it is connected and it contains no

cycles.

52 4. Graph Theory and Seifert Matrices

Definition 4.6 [2] Let G be a connected graph. Then T ⊆ G is called a spanning

tree of G if V (T) = V (G) and T is a tree.

We can think of trees as being minimally-connected graphs. There are sufficient

edges in a tree so that the graph is connected, but not so many that we can form a

cycle. Let us solidify these notions with a couple of examples.

Example 4.2 The graphs T1 and T2 in Figures 4.2 and 4.3 are trees. Moreover, T2

is a spanning tree of G. Indeed, T1 is also a spanning tree of G, although this fact is

less readily apparent. Thus, in general, spanning trees are not a unique subgraph of a

connected graph.

1

2

3
4 5

6
T1

Figure 4.2: A tree with 6 vertices.

1 5

 3 6

2 4
1 5

 3 6

2 4

G T2

Figure 4.3: A graph and a spanning tree.

While there are many more properties of trees, the following propositions are the

most essential to our discussion of Seifert graphs.

Proposition 4.1 [2] A tree on n vertices has n− 1 edges.

Proof. Let T be a tree on n vertices. So T is connected and T contains no cycles. Thus

every vertex is involved in at least one edge. Suppose we delete an edge, e1 = {v1, v2},

and call the resulting graph T1. We claim that T1 is disconnected.

4.1. Graph Theory 53

To the contrary, suppose that T1 is connected. Then, in particular, there is a path

from v1 to v2, P . However, in T , this would mean that Pe1v1 is a cycle. Thus T1 is

disconnected and consists of 2 connected components.

Using the same process, deleting an edge of T1 will create one more component in

the graph. Deleting edges one-by-one, we start with a single component in T and, at

the end of this deletion process, we will have n components because T has n vertices.

Since each edge deletion adds one component to the graph, we could only have deleted

n− 1 edges.

Proposition 4.2 Let T be a tree on n ≥ 2 vertices. Then there are at least two

vertices such that each vertex is an endpoint of exactly one edge.

Proof. Let T be a tree and let P = x1e1x2e2 . . . en−1xn be the longest simple path in

T . We claim that the endpoints of P , x1 and xn, are the desired vertices. Suppose,

without loss of generality, that x1 is the endpoint of another edge, e = {x1, y}. Either

y shares an edge with a second vertex in P or it does not.

If y shares an edge with a second vertex in P , say xj with j 6= 1, then we know

that yex1e1 · · · ej−1xj {xj, y} y is a cycle in T . However, T is a tree and so this is

impossible.

If y does not share an edge with a second vertex in P , then yeP is a path in T

which uses no vertex more than once. Moreover, it is a longer path than P . However,

P was maximal and so this is impossible.

Thus x1 must be the endpoint of a single edge in T . An analogous argument

applies to xn.

One reason for introducing these results is to determine the “fullness” of a graph.

Definition 4.7 [2] The rank of a connected graph G is given by

rank(G) = |E(G)| − |V (G)|+ 1.

54 4. Graph Theory and Seifert Matrices

To give meaning to the rank of a graph, we know that a connected graph G has

|E(G)| edges. By Proposition 4.1, a spanning tree of G has |V (G)| − 1 edges. Then

rank(G) is the difference of number of edges in G and the number of edges used in

a spanning tree of G. Basically, as alluded to earlier, rank tells us how well G is

connected.

The final concept that we should introduce before moving onto Seifert graphs and

the homology of graphs is the notion of a directed graph.

Definition 4.8 [2] A directed graph D is a graph in which the set of edges contains

ordered pairs of vertices. Hence each e ∈ E(D) corresponds to (vi, vj), an edge pointing

from vertex vi to vertex vj.

Example 4.3 The graph in Figure 4.4 is an example of a directed graph. In comparison

with the representation of a standard graph, we can see that edges of directed graph

are nominally assigned an orientation.

D

Figure 4.4: A directed graph.

4.1.1 Seifert Graphs

With these basics in mind, we can define the Seifert graph and use it to produce some

results regarding the Seifert surface, and thus the link, from which it originated.

Definition 4.9 [2] Fix a Seifert surface F generated by Seifert’s algorithm. A graph

G is called a Seifert graph if a vertex is uniquely associated to each Seifert circle

and, for vi, vj ∈ V (G), {vi, vj} ∈ E(G) if and only if the corresponding Seifert circles

are connected by a twisted band in F .

4.2. Homology of Graphs 55

Applying Seifert’s algorithm to a link projection, we quickly obtain a Seifert graph

by replacing each Seifert circle with a vertex and each smoothed crossing with an

edge.

Example 4.4 Let us consider the Seifert surfaces from Example 3.5. The trefoil knot

Seifert surface has two Seifert circles, so there will be two vertices in its Seifert graph.

Between these two Seifert circles, there are three bands and so the Seifert graph will

contain three edges between the two vertices, as shown in the top of Figure 4.5.

The Seifert surface of the 3-component Hopf link appears more complicated, but

we can follow the same process. Each of the three Seifert circles become vertices and

each of the bands becomes an edge between the appropriate vertices, as shown in the

bottom of Figure 4.5.

1 21 2

1 2 3 1 2 3

Figure 4.5: Seifert graphs of Seifert surfaces from Example 3.5.

As a result, we can think of drawing the Seifert graph of a Seifert surface on the

surface itself. More significantly, as we will see, it is useful to use the cycles of a Seifert

graph in its corresponding surface.

4.2 Homology of Graphs

Having built up a diverse collection of graph-theoretic terms and ideas, we are now

ready for the homology group of a graph. In particular, the homology group of a

56 4. Graph Theory and Seifert Matrices

Seifert graph. While the importance of this group is not immediately apparent on its

own, it connects back to our discussion of surfaces.

Theorem 4.1 [2] The homology groups of a Seifert surface and its Seifert graph are

isomorphic.

The essence of this theorem is that anything we learn about the homology of

Seifert graphs provides us with information about the Seifert surface from which it is

generated. We will invoke the use of this theorem without proof, although a sketch of

the proof can be found in [2].

With Theorem 4.1 in mind, let us start our discussion of graph homology. We

begin with the notions of 0-chains and 1-chains.

Definition 4.10 [2] Let D be a connected directed graph with V (D) = {v1, v2, . . . , vk}

and E(D) = {e1, e2, . . . , en}. Then a 0-chain c is a linear combination of the vertices

of D,

c =
k∑

i=1

λivi where vi ∈ V (D) and λi ∈ Z.

Similarly, a 1-chain z is a linear combination of the edges of D,

z =
n∑

i=1

µiei where ei ∈ E(D) and µi ∈ Z.

Although it is not necessary for a general 1-chain to visually represent a quality of

a graph, note that every path and cycle within a graph has a corresponding 1-chain

[2]. We can imagine the coefficient µi being the number of times we use edge ei, with

−ei representing following the edge in the opposite direction of its orientation [2].

Let us define a binary operation on 1-chains, +, such that for 1-chains z1 =
n∑

i=1

λiei

and z2 =
n∑

i=1

µiei,

z1 + z2 =
n∑

i=1

(λi + µi)ei.

4.2. Homology of Graphs 57

The set of 1-chains, denoted C1(D), along with the operation + form an abelian group

[2]. Using an analogous operation, the set of 0-chains also form an abelian group,

C0(D) [2].

The next step in our process is to define a group homomorphism between 1-chains

and 0-chains.

Definition 4.11 [2] Let D be a directed graph and e = (vi, vj) ∈ E(D). The boundary

operator of D is the linear group homomorphism ∂ : C1(D)→ C0(D) where ∂(e) =

vj − vi.

Since ∂ is a linear function, ∂

(
n∑

k=1

λkek

)
=

n∑
k=1

λk∂(ek). Now we are interested

in the kernel of this function.

Definition 4.12 [2] Let D be a connected directed graph and ∂ the boundary operator

of D. Then z ∈ ker(∂) is called a 1-cycle. The subgroup of 1-cycles is denoted by

H1(D).

We will further distinguish between trivial and non-trivial 1-cycles. A trivial

1-cycle is simply z = 0, the cycle that involves no edges, while non-trivial 1-cycles are

all other cycles in H1(D). We will not be going into great detail regarding homology

groups, but it turns out that this group is precisely the first homology group of a graph.

However, it would be helpful to have a better handle on the structure of H1(D).

Definition 4.13 [2] Let D be a connected, directed graph. Then a basis of H1(D) is

a set of non-trivial 1-cycles such that each 1-cycle in H1(D) can be expressed uniquely

as a linear combination of basis elements.

So if we can find a basis for H1(D), we know what every 1-cycle in the graph will

look like. To this end, we will show that there is an algorithm to find a basis for this

subgroup. First, we should show that a tree has no 1-cycles. Note that, since trees

are connected by definition, this is a legitimate consideration.

58 4. Graph Theory and Seifert Matrices

Theorem 4.2 [2] Let T be a directed tree. Then every 1-cycle in T is trivial.

Proof. Let us suppose that z is a non-trivial 1-cycle in a directed tree T . We will

show that this is impossible by inducting on |E(T)| = n.

Suppose that n = 1. Then z = µ1e1. Since z is a 1-cycle, ∂(z) = 0. However,

∂(z) = ∂(µ1e1) = µ1∂(e1) = µ1(v2 − v1) = µ1v2 − µ1v1.

Thus 0 = λ1v2 − λ1v1 and so λ1 = 0.

Now suppose that n > 1. Since some vertex in a tree has to be the endpoint of

exactly one edge by Proposition 4.2, let us say, without loss of generality, that v1 is

such a vertex. Let en be the unique edge. Since v1 has only this edge connecting it to

the rest of T , en is the only term involving it. Then ∂(z) = 0 and

∂(z) = ∂

(
n∑

i=1

λiei

)
=

n∑
i=1

λi∂(ei) =
n−1∑
i=1

λi∂(ei)+λn∂(en) = ∂

(
n−1∑
i=1

λiei

)
+λn∂(en).

For some vj ∈ V (T) where j 6= 1, we know that λn∂(en) = ±λn(vj − v1), depending

on the orientation of en. Since the contribution of v1 must be zero, λn = 0. Thus z is

a cycle on the subtree T ′ where V (T ′) = V (T)\ {v1} and E(T ′) = E(T)\ {en}. Since

T ′ is a tree with n − 1 edges, we may apply the induction hypothesis to show that

z = 0.

Hence, by the principle of mathematical induction, we know that any 1-cycle on a

tree must be trivial.

With this result in hand, we can prove that the following algorithm works.

Theorem 4.3 [2] Let D be a connected directed graph and T be a spanning tree of D.

Label the edges of D e1, e2, . . . , en so that the first r edges are not in T (i.e., ei /∈ E(T)

for i = 1, 2, . . . , r). Then

4.2. Homology of Graphs 59

1. For i = 1, 2, . . . , r, the graph T ∪ ei contains a unique simple cycle. Let zi be the

corresponding 1-cycle.

2. {z1, z2, . . . , zr} is a basis for H1(D).

Proof. First we will show that T ∪ ei contains a unique simple cycle for each ei /∈ T .

As T is a tree, adding any edge will create a cycle. In particular, adding ei = (v, v′) to

the graph creates a cycle. Now suppose that T ∪ ei contains at least two simple cycles,

c1 and c2. Since both cycles use ei, both c1 and c2 must pass through the endpoints of

ei. Moreover, since c1 and c2 are simple, they use ei exactly once.

Let c1 = P1eiv and c2 = veiP2, where P1 is a path starting at v and ending at

v′ and P2 is a path starting at v′ and ending at v (see Figure 4.6). Then P1P2 is a

cycle in T that does not use ei. However T is a tree and cannot have any cycles by

Theorem 4.2. Hence there must be a unique simple cycle in T ∪ ei. Let us call the

corresponding 1-cycle zi.

ei

P1

 v’

 v
 P2

Figure 4.6: Two cycles in T ∪ ei.

If D is a tree, then a spanning tree of D is trivially D itself. So r = 0. By Theorem

4.2, H1(D) is trivial. Thus there is an empty basis for H1(D), so the result is vacuously

true.

Now assume that D is not a tree, implying r > 0. Let z ∈ H1(D). To show that

{z1, z2, . . . , zr} is a basis for H1(D), we must show that z can be written uniquely as

a linear combination of {z1, z2, . . . , zr}.

60 4. Graph Theory and Seifert Matrices

Since z ∈ H1(D), it is a 1-cycle and thus a 1-chain. Hence z =
n∑

i=1

λiei. We claim

that we can write z =
r∑

i=1

λiei.

Consider c = z −
r∑

i=1

λiei. Since the sum of two cycles is a cycle, c is a cycle in

which every edge is in E(T) by our construction. Hence by Theorem 4.2, c must

be trivial and so λi = 0 for i = r + 1, r + 2, . . . , n. Hence z =
r∑

i=1

λiei as desired.

Moreover, the coefficients are unique because zi is the unique cycle that contains ei.

Therefore {z1, z2, . . . , zr} is a basis for H1(D).

Theorem 4.3 is the most significant result we have involving graph homology.

Restating it, we can use the edges not required for a spanning tree of the graph to

form a basis for the first homology group of the graph. In other words, for a connected

directed graph D, we know that a basis for H1(D) has rank(D) elements.

Notice that our entire discussion has rested on directed graphs. However, when

we discussed Seifert graphs, we made no mention of how to direct edges. To bring

these two concepts together, we can arbitrarily assign an orientation to an edge of

the Seifert graph. Visually, the basis cycles will appear the same and so it makes no

difference for our purposes. Thus we will assume that our Seifert graphs are directed

graphs, even if we do not assign specific orientations.

Applying Theorem 4.1, finding a basis for the homology group of a Seifert surface

simply requires a basis for the first homology group of its Seifert graph. In the surface,

the 1-cycles from the graph become loops in the surface [2]. The next two results will

demonstrate that this basis will contain a predictable number of cycles.

Theorem 4.4 [2] Let G be a Seifert graph of a Seifert surface F constructed from a

link projection L with s(L) Seifert circles and k(L) crossings. Then

rank(G) = 1− s(L) + k(L) = 2g(F) + µ(L)− 1.

4.3. Seifert Matrices 61

Proof. By Definition 4.7, rank(G) = |E(G)| − |V (G)|+ 1. Since a Seifert graph has

s(L) vertices and k(L) edges, rank(G) = k(L)− s(L) + 1. By Corollary 3.2, we know

that

2g(F) = 1− s(L) + k(L) + 1− µ(L) = rank(G) + 1− µ(L).

Thus rank(G) = 2g(F) + µ(L)− 1.

Based on our discussion following Theorem 4.3, the following corollary is immediate.

Corollary 4.1 [2] A basis for the first homology group of F , a Seifert surface of a

link L, will have 2g(F) + µ(L)− 1 loops.

4.3 Seifert Matrices

Now we are ready to construct our primary tool for generating new link invariants

– Seifert matrices. The algorithm used to create the Seifert matrix of a given link

projection is rather extensive and involved, but we will show that it is well worth the

investment.

Let us fix F , a Seifert surface of a link L created from a projection D, which has

Seifert graph G. The idea underlying our approach is that we will be thickening F ,

creating “duplicates” of the surface’s homology basis elements, and then creating

a matrix using the linking numbers between the basis elements and the various

duplicates.

Based on our discussion in the previous section (see Theorem 4.3), we can create

a homology basis for F by way of a spanning tree of G. Furthermore, by Corollary

4.1, we know that there are m = 2g(F) + µ(L)− 1 elements in this basis. Assign an

orientation to each loop, αi. Let us thicken F by considering F × [0, 1]. In this process,

we need to ensure that both F and [0, 1] have orientations that obey the right-hand

62 4. Graph Theory and Seifert Matrices

rule as shown in Figure 4.7 [2]. Using our earlier choice of colors (see Theorem 3.5),

we color the “top” of the thickened surface, F × {1}, gray and the “bottom” white.

F#{1}

F#{0}

Figure 4.7: Right-hand orientation of a section of a thickened Seifert surface.

One of the trickier aspects of this thickening is considering what happens around

a crossing in D. In F , we know that the crossing becomes a band with a half-twist,

but it becomes more complicated when considering F × [0, 1], as shown in Figure 4.8.

F#{1}

F#{0}
F#{1}

F#{0}

F

Figure 4.8: Twisted bands in a thickened Seifert surface.

In this new context, we may think of F as F × {0}. Although homology basis

elements of F should properly be referred to as αi × {0}, we will continue to use

the original notation for convenience. Now we create a copy of each homology basis

element, α∗i = αi × {1}, maintaining the original orientation of αi. Visually, α∗i lies

just above αi. With this in mind, let us revisit the picture of the thickened bands,

adding in homology basis elements (Figure 4.9).

4.3. Seifert Matrices 63

F#{1}

F#{0}
F#{1}

F#{0}

F

a

a*

a

a*
a

a

a*

 a

a*

a

Figure 4.9: Homology basis elements and copies in thickened Seifert surface.

It can take some time to properly visualize how various loops interact within these

crossings. Let us take a step back and look at how general basis loops interact in

the thickened surface. Consider two basis loops, α and β, where one of the loops lies

on F × {1}. Then we can characterize the interactions of these two loops, as links,

according to the twist in the surface, as in Figure 4.10 [5].

a b

b a

a

b

a b

b a

a

b

Figure 4.10: Loop interactions and resulting crossings in thickened Seifert surface.

To understand this characterization, let us walk through the first diagram in Figure

4.10. We have the two loops, α and β, coming into the twisted band. As we approach

the twist, α will be twisted over β. So α will cross over β. A similar process makes

sense of the second diagram in Figure 4.10. In forming the link, we should always be

mindful of which strand should be considered α and which should be β.

This simplification holds even when we specifically consider α and β = α∗. Al-

though, at the outset, the two loops should be positioned with one directly above the

64 4. Graph Theory and Seifert Matrices

other, we should deform one within the surface so that we can see both clearly with

no overlap. Additionally, Figure 4.9 is suggestive about how α and α∗ interact.

With these interactions between basis loops in mind, we compute the linking

number between the homology basis elements and the lifted loops, lk(αi, α
∗
j). Finally

we define the Seifert matrix of F .

Definition 4.14 Let F be a Seifert surface of a link L constructed from a projection

D and let m = 2g(F) + µ(L)− 1. Then a Seifert matrix of L is the m×m matrix

M =
(
lk(αi, α

∗
j)
)
i,j=1,2,...,m

where αi is a homology basis element and α∗j is the duplicate

of αj in the thickened surface F × [0, 1].

In order to improve our understanding of this construction, let us consider a

detailed example.

Example 4.5 Let us use the projection of the trefoil knot from Example 3.5. In

Example 4.4, we found the Seifert surface and Seifert graph of this projection. For

convenience, we have summarized this information in Figure 4.11.

e1

e2

e3

Figure 4.11: Seifert surface and Seifert graph of the trefoil knot projection for Example 4.5.

Since a spanning tree of the Seifert graph has a single edge, but the graph itself has

three edges, we know there will be two cycles in the homology basis of the graph. Let

us choose the cycles α1 = e1e2 and α2 = e2e3 as our homology basis. For convenience,

looking down on the basis elements, let us orient them both clockwise. Mapping these

cycles to the Seifert surface, we obtain the presentation in Figure 4.12.

Now let us consider the interactions of our cycles in the thickened version of our

surface. Instead of attempting to depict this visually, we will consider the linking

4.3. Seifert Matrices 65

a1
a2

Figure 4.12: Trefoil knot Seifert surface with homology basis curves for Example 4.5.

of the cycles individually. First note that the Seifert circle on the right is oriented

counterclockwise, while the one on the left is oriented clockwise. To maintain the

correct orientation, our thickened surface will extend above our projection for the right

circle and below the projection for the left circle.

Let us compute lk(α1, α
∗
1). As we must follow the curve α1 clockwise, let us start

on the right Seifert circle. To understand the link formed by α1 and α∗1, we may use a

pen to represent how the components twist through a band, where the head of the pen

represents α∗1 and the bottom of the pen is α1.

At the beginning of the curve, since the Seifert circle is oriented counterclockwise,

our pen begins with the head pointing up. As we move along the curve and approach

our first twist, the bottom of the pen starts moving toward us, signifying that α1 is

crossing over α∗1. Continuing into the second Seifert circle, the bottom of our pen

is facing up. Approaching the second twist in the surface, the head of the pen starts

moving away from us and so α∗1 is crossing over α1. From there, we return to our

starting point. Thus the link formed is the Hopf link (Figure 4.13).

a1
* a1

Figure 4.13: Interaction of α1 and α∗
1 in the thickened surface (Figure 4.12).

Since each crossing is positive, lk(α1, α
∗
1) = 1. This same process shows that

lk(α2, α
∗
2) = 1.

66 4. Graph Theory and Seifert Matrices

Now we want to find lk(α1, α
∗
2). While these curves share only one twisted band,

we also need to consider the locations where the curves α1 and α2 intersect. As shown

in Figure 4.14, there is only one such location in this projection.

a1
a2

Figure 4.14: Intersection of α1 and α2 in the Seifert surface from Figure 4.12.

Let us start from the perspective of α1 on the right Seifert circle. Continuing

along the curve, we will pass under α∗2. Now the only other consideration to make is

the interaction of α1 and α∗2 at the point of intersection. Since the Seifert circle in

question is oriented clockwise, we know that α∗2 will lie below α1. Hence α1 will cross

over α∗2. Thus the link formed will again be a Hopf link (see Figure 4.15). Since we

have two negative crossings in this Hopf link, we know that lk(α1, α
∗
2) = −1.

a1

a2
*

a1
*

a2

Figure 4.15: Links using mixed basis elements from Figure 4.12.

Lastly, we need to compute lk(α2, α
∗
1). Based on our previous calculation, we already

know that α2 will cross over α∗1 at the shared twist in the surface. At the intersection

point between α1 and α2, α
∗
1 will lie below α2 because the Seifert circle is oriented

clockwise. Thus α2 crosses over α∗1 and the resulting link will be the trivial link of two

components (see Figure 4.15). Hence lk(α2, α
∗
1) = 0.

4.3. Seifert Matrices 67

Finally, the Seifert matrix we have constructed is

M =

lk(α1, α
∗
1) lk(α1, α

∗
2)

lk(α2, α
∗
1) lk(α2, α

∗
2)

 =

1 −1

0 1

 .
As should be clear from the process we used to create the Seifert matrix, it is not

a link invariant. By changing the projection of the link, changing orientations on the

homology basis, or even selecting a different basis, we will change the Seifert matrix.

This is unfortunate, but it is not the end of the story.

4.3.1 S-equivalence of Seifert Matrices

Despite the fact that Seifert matrices are not link invariants themselves, we can relate

any two Seifert surfaces of a link [2, 5]. Unfortunately, the method of showing this

relationship is not as simple as applying Reidemeister moves. Instead, we require two

new operations.

Definition 4.15 [2, 5] Let M be a Seifert matrix for some link. Then

Λ1 : M 7→ PMP T where P is an invertible integer matrix with det(P) = ±1;

Λ2 : M 7→M ′ =



∗ 0

M
...

...

∗ 0

0 · · · 0 0 1

0 · · · 0 0 0


or



0 0

M
...

...

0 0

∗ · · · ∗ 0 0

0 · · · 0 1 0


where ∗ denotes an unknown integer.

While these operations may seem arbitrary and unconnected to the link we are

interested in, it turns out that these represent very natural connections between the

68 4. Graph Theory and Seifert Matrices

surfaces. Λ1 is the transformation that arises from a change of basis [2]. In essence,

Λ1 is the operation that accounts for changing the orientation of basis elements on the

surface as well as handling a change in the order of basis elements in the matrix [5].

Thus, when applied to a given matrix M , Λ1 has one of the two following effects:

1. Interchanges row i and row j and then interchanges column i and column j.

2. Adds k times row i to row j and then adds k times column i to column j.

Meanwhile, Λ2 and its inverse represent a change in genus of the Seifert surface,

either adding or removing a tube from the surface [2, 5]. The addition of the tube

creates an additional two basis elements that have to be considered in the Seifert

matrix [2]. The resulting matrix from applying Λ2 depends on how the tube is attached

to the surface. We obtain the first matrix if the outside of the tube is a part of the

positive side of the surface (the gray-colored side, according to our algorithm in

Theorem 3.5) and the second matrix otherwise [2].

Using these new operations, we can define the notion of S-equivalence.

Definition 4.16 [2, 5] Two Seifert matrices M1 and M2 are said to be S-equivalent,

denoted M1 ∼S M2, if one can be obtained from the other by a finite sequence of

operations Λ1, Λ2, and Λ−12 .

Any property of a link, derived from a Seifert matrix, is a link invariant if it is

invariant under S-equivalence [2]. We will not go into the formal details surrounding

this idea, but we will state the required facts to prove it.

Theorem 4.5 [2] Let L be a link. If F1 and F2 are surfaces such that each surface

has boundary L, then there is a finite sequence of tubing and compressing operations

such that F1 can be turned into F2.

For full disclosure, we should note that tubing and compressing operations corre-

spond to adding or removing a tube respectively [2]. An example of this is shown in

Figure 4.16.

4.3. Seifert Matrices 69

Figure 4.16: Adding or removing a tube.

Theorem 4.6 [2] If two surfaces are related by a series of tubing and compressing

operations, then their Seifert matrices are S-equivalent.

Using these recent results, we conclude our discussion of S-equivalence with a

significant and practical application of the notion: it tells us when a property of a

Seifert matrix is a link invariant.

Corollary 4.2 Let L be a link and γL(M) a property of L derived from a Seifert

matrix of L, M . If γL(M) is invariant under S-equivalent Seifert matrices, then it is

a link invariant.

Proof. Suppose that γL is invariant under S-equivalent Seifert matrices. Let F1 and

F2 be Seifert surfaces of L. Then we know that they are related under tubing

and compressing operations by Theorem 4.5. By Theorem 4.6, the corresponding

Seifert matrices, M1 and M2, are S-equivalent. Then γL(M1) = γL(M2). Thus γL is

independent of the Seifert surface of L and so it is a link invariant.

Restated, Corollary 4.2 says that there is a single condition to prove that a property

of a Seifert matrix is a link invariant: it must be invariant under both Λ1 and Λ2

operations.

4.3.2 Determinant and Signature of a Link

Finally we can introduce two link invariants, the determinant and the signature of a

link.

70 4. Graph Theory and Seifert Matrices

Definition 4.17 [2, 5] Let M be a Seifert matrix of a link L. The determinant of

L is det(L) = | det(M +MT)|.

While the definition of the determinant of a matrix is rather self-explanatory, we

must recall the notion of the signature of a matrix for the second invariant.

Definition 4.18 [2] Let M be similar to a diagonal matrix D which has p positive

terms and n negative terms. The signature of M is p− n.

Definition 4.19 [2, 5] Let M be a Seifert matrix of a link L. The signature of L,

denoted by σ(L), is the signature of M +MT .

Let us consider a brief example of these invariants to illustrate the computations

involved.

Example 4.6 Recall the Seifert matrix of the trefoil knot from Example 4.5, M =1 −1

0 1

. Then M +MT =

 2 −1

−1 2

. So the determinant of the trefoil knot is

det(M +MT) = 3.

The characteristic polynomial of M+MT is (λ−3)(λ−1). Thus M+MT is similar

to the diagonal matrix D =

3 0

0 1

. Since the signature of D is 2, the signature of

the trefoil knot is also 2.

The fact that the signature exists for any Seifert matrix is a result of M+MT being,

necessarily, a symmetric matrix. Applying the Spectral Theorem, any symmetric

matrix is diagonalizable [2]. Even so, it is not clear that these “invariants” are well-

defined at this point. After all, it seems not only plausible, but likely, that these

values depend entirely on the Seifert matrix rather than the link. So we must show

that they are truly link invariants.

4.3. Seifert Matrices 71

Theorem 4.7 [2, 5] Let M be the Seifert matrix of a Seifert surface of a link L. Then

det(L) and σ(L) are link invariants (i.e., they depend only on L and not on M).

Proof. In order to show that det(L) and σ(L) are link invariants, we will appeal to

Corollary 4.2. We will first show that det(L) is an invariant and then show that σ(L)

is a link invariant.

We know that Λ1(M) = P TMP for some invertible integer matrix P with det(P) =

det(P T) = ±1. Thus

det(Λ1(M) + Λ1(M)T) = det(P TMP + (P TMP)T)

= det(P TMP + P TMTP)

= det(P T (M +MT)P)

= det(P T) det(M +MT) det(P) = det(M +MT).

So det(L) is invariant under the Λ1 operation.

Now we will show that det(L) is invariant under Λ2. We know that

Λ2(M) + Λ2(M)T =



∗ 0

M +MT ...
...

∗ 0

∗ · · · ∗ 0 1

0 · · · 0 1 0


and we can expand the determinant of this matrix using the lower-right 2× 2 matrix,

B =

0 1

1 0

, to obtain − det(M +MT). Since

| det(Λ2(M) + Λ2(M)T)| = | − det(M +MT)| = | det(M +MT)|,

72 4. Graph Theory and Seifert Matrices

we have shown the invariance of det(L) under the Λ2 operation.

Let us now consider the effect of a Λ1 operation on the signature of M +MT . We

may apply a result from linear algebra which states that the signature of a symmetric

matrix is preserved by similarity [2]. As Λ1 is a specific similarity operation, the

signature of M +MT is preserved accordingly.

To show that σ(L) is invariant under the Λ2 operation, let us note that Λ2(M) +

Λ2(M)T is a symmetric matrix. So, by the Spectral Theorem, we know that it is

diagonalizable. Thus there is a sequence of Λ1 operations that will change each

unknown integer ∗ to 0. Thus it is enough to compute the signature of B.

Since -1 and 1 are eigenvalues of B, there is an orthogonal matrix Q such that

QBQT =

−1 0

0 1

. As this matrix has signature 0, B must have signature 0.

Therefore σ(Λ2(M) + Λ2(M)T) = σ(M +MT) as desired.

Thus we have shown that both det(L) and σ(L) are invariant under S-equivalent

Seifert matrices. Therefore, by Corollary 4.2, they are link invariants.

Although there is a great deal of theory supporting the use of a link’s determinant

and signature, they are not our final goal for the Seifert matrix. However, the

machinery we used to show their invariance will now allow us to develop a polynomial

using the Seifert matrix.

CHAPTER 5

Knot Polynomials

In the following chapter, we introduce one of the most successful types of link

invariants – knot polynomials. We will develop three ways of taking a link diagram

and computing a polynomial from it. We start by introducing one of the first

knot polynomials, the Alexander polynomial, and then move on to the more recent

HOMFLY-PT polynomial.

5.1 Alexander Polynomial

There are two ways of computing the Alexander polynomial of a link, a link invariant

discovered in 1928 [1]. The traditional approach uses Seifert matrices, which is the

reason behind developing that body of theory in the previous chapter. The second

method was developed by John Conway in 1969 and uses two rules to compute the

polynomial directly from the link diagram [1]. Although the definitions will seem

different, we will show that these methods produce equivalent polynomials. While the

original method is more mathematically complex, the derivation makes it clear how

the polynomial is related to the link.

73

74 5. Knot Polynomials

5.1.1 Computation by Seifert Matrix

As suggested, our first approach to computing the Alexander polynomial of a link

requires the use of a Seifert matrix of the link.

Definition 5.1 [2] Let L be a link and M any Seifert matrix for L. Then the

Alexander polynomial of L, denoted by either ∆(L) or ∆L(x), is det(xM −

x−1MT) ∈ Z[x, x−1].

This definition of the Alexander polynomial is perhaps less used than another

which can be obtained by making the change of variables x = t1/2, with x−1 = t−1/2

[2]. However, our definition above uses whole powers of the variable and this seems

somewhat more friendly [2]. As with the determinant and signature of a link, it is not

immediately clear that this definition is independent of our choice of M and so we

should prove it.

Theorem 5.1 [2] Let L be a link. Then ∆(L) is a link invariant.

Proof. Let M be a Seifert matrix of L. By Corollary 4.2, it is sufficient to show that

any Seifert matrix S-equivalent to M gives the same determinant.

Since Λ1(M) = PMP T for some invertible, integer matrix P with det(P) = ±1,

we know that

det(xΛ1(M)− x−1Λ1(M)T) = det(xPMP T − x−1(PMP T)T)

= det(xPMP T − x−1PMTP T)

= det(P (xM − x−1MT)P T)

= det(P) det(xM − x−1MT) det(P T)

= det(xM − x−1MT).

Thus det(xM − x−1MT) is preserved under Λ1.

5.1. Alexander Polynomial 75

To show that this determinant is preserved under Λ2, let us first note that xΛ2(M)−

x−1Λ2(M)T has the matrix xM − x−1MT in the upper-left corner of the matrix

and either B =

 0 x

−x−1 0

 or BT in the bottom-right corner. Since det(B) =

det(BT) = 1, expanding the determinant of xΛ2(M) − x−1Λ2(M)T by B (or BT)

yields det(xM − x−1MT) and we have shown invariance under the Λ2 operation.

Hence det(xM − x−1MT) is preserved under S-equivalence of M and thus it is

independent of our choice of M . Therefore ∆(L) is an invariant of L.

It would be useful at this point to compute the Alexander polynomial of our knot

from Example 4.5 to see how this computation plays out.

Example 5.1 We know from Example 4.5 that the Seifert matrix of our projection of

the trefoil knot K (Figure 3.16) is M =

1 −1

0 1

. Then

∆(K) = det(xM − x−1MT) = det


x− x−1 −x

x−1 x− x−1




= (x− x−1)2 − x−1(−x)

= x2 − 2xx−1 + x−2 + 1

= x2 − 1 + x−2.

So ∆(K) = x2 − 1 + x−2.

5.1.2 Properties of the Alexander Polynomial

One of the more useful properties of the Alexander polynomial is that it behaves

nicely under composition operations.

Theorem 5.2 [5] Let L1 and L2 be links. Then ∆(L1#L2) = ∆(L1)∆(L2).

76 5. Knot Polynomials

Proof. For i = 1, 2, let Fi be a Seifert surface of Li and Mi the corresponding Seifert

matrix. Then a surface for L1#L2 is created by joining F1 and F2 by a band as

shown in Figure 5.1. To confirm that this new surface is indeed a Seifert surface for

L1#L2, we should show that it is connected, orientable, and that its boundary is

L1#L2. These first two properties follow immediately from F1 and F2 being connected

orientable surfaces and the band itself being orientable. By the definition of L1#L2,

we are essentially joining two Seifert circles, and so the new surface has boundary

L1#L2.

F1 F2 F1 F2

Figure 5.1: Two surfaces joined by a band.

Now a Seifert matrix for this surface can be generated by using the basis elements

of F1 and F2. The Seifert graphs of the surfaces will be joined at a single vertex, so

we will not need any additional cycles to form a basis. Moreover, the basis elements

of F1 will not link with any basis elements of F2 because they are disjoint in space. In

the Seifert matrix of this surface, M , this corresponds to having 0 entries whenever

we consider basis elements from different surfaces. Additionally, joining the two

surfaces will not impact the interactions of the basis elements of a single surface. Thus

M =

M1 0

0 M2

 is a Seifert matrix for L1#L2.

5.1. Alexander Polynomial 77

Therefore,

∆L1#L2(x) = det(xM − x−1MT)

= det


xM1 − x−1MT

1 0

0 xM2 − x−1MT
2




= det(xM1 − x−1MT
1) det(xM2 − x−1MT

2)

= ∆L1(x)∆L2(x).

Hence ∆L1#L2(x) = ∆L1(x)∆L2(x) as desired.

One of the less fortunate properties of the Alexander polynomial is that it does not

detect split links. Recall that Seifert’s algorithm does not produce a Seifert surface

for a split projection of a split link. However, split links still have Seifert matrices and

the following lemma gives us one such form for that matrix.

Lemma 5.1 [5] Let L be a split link projection where L = L1 t L2 t · · · t Ln such

that Li is a non-split link. Choose a Seifert surface Fi for Li, let Mi be the Seifert

matrix of Fi, and denote the (n− 1)× (n− 1) zero matrix by On−1. Then there is a

Seifert matrix for L that is S-equivalent to

M =



M1

M2 0

. . .

0 Mn

On−1


.

Proof. First let us create a connected surface, F̃ , from all the Fi’s. For i = 1, 2, . . . , n−

1, connect Fi and Fi+1 by two bands with opposite twists as shown in Figure 5.2. This

is equivalent to applying a Reidemeister II move to link Li and Li+1 together, if the

78 5. Knot Polynomials

relevant strands have opposite orientation (which can be assumed because we could

change the projection otherwise).

Li Li+1
Fi Fi+1

Figure 5.2: Result of attaching twisted bands between disjoint Seifert surfaces.

Take a basis for the first homology group of Fi, Bi = {αi,1, αi,2, . . . , αi,ki}, where

i = 1, 2, . . . , n. Then the union of these bases is almost a basis for H1(F̃). We only

need to add the newly created cycles between Fi and Fi+1, which we will call βi for

i = 1, 2, . . . , n− 1 and we will assume are oriented clockwise as we look at the surface.

These new 1-cycles are shown in Figure 5.3.

Fi Fi+1

bi

Figure 5.3: Presentation of βi in F̃ .

Now the Seifert matrix of F̃ is M̃ where the first k1 rows and columns involve

the linking number of the elements of B1 elements, the second k2 rows and columns

involve the elements of B2, and so on, while the final (n− 1) rows and columns involve

the βis.

Let us now consider the entries of M̃ . We already know that lk(αi,j, α
∗
k,l) = 0, so

long as i 6= k, because they correspond to different surfaces. So M̃ ′, the submatrix of

M̃ obtained by removing the last (n− 1) rows and columns, is simply a matrix with

Mi’s on the diagonal and 0 entries otherwise.

Finally let us consider lk(βi, α
∗
j,k), lk(α∗j,k), and lk(βi, βj). The first two linking

numbers are easily computed to be 0 because αj,k and βi do not share any twisted

5.1. Alexander Polynomial 79

bands and so they cannot be linked together. Similarly, for i 6= j, lk(βi, β
∗
j) = 0

because the cycles are disjoint. Lastly, lk(βi, β
∗
i) = 0 as shown in Figure 5.4.

bi
* bi

Figure 5.4: Link formed by βi and β∗
i .

Thus M̃ = M . Since F̃ was created by a link projection equivalent to L, F̃ is a

Seifert surface of L and so L has a Seifert matrix of the form M .

Theorem 5.3 [2, 5] If L is a split link then ∆(L) = 0.

Proof. If L is a split link then we know by Lemma 5.1 that there is a Seifert matrix of L,

which we will call M , with a zero matrix in the bottom-right corner. When computing

the Alexander polynomial, this zero matrix will be preserved and so expanding by it

to compute the determinant will give us ∆L(x) = det(xM − x−1MT) = 0.

To demonstrate the usefulness of this theorem, let us recall that the Whitehead

link (Figure 2.24) has linking number 0. We claimed without proof that this link is

also non-splittable, thus showing that not all linking number 0 links were splittable.

However, if we go through the computation of the Alexander polynomial for the

Whitehead link, we obtain x3− 3x+ 3x−1−x−3. Since this is not the zero polynomial,

we can apply Theorem 5.3 to conclude that the Whitehead link is non-splittable.

5.1.3 Computation by Conway Polynomial

The second approach to finding the Alexander polynomial employs a recursive method.

Although the result will be the same as the Alexander polynomial, we should give

credit to John Conway and appropriately call this derivation the Conway polynomial.

80 5. Knot Polynomials

Definition 5.2 [1, 2, 5] Let L be an oriented link. Also let L+, L−, and L0 be oriented

links with projections D+, D−, D0 respectively such that

1. One of L+, L−, and L0 corresponds to L;

2. D+, D−, D0 are identical outside of the neighborhood a single crossing. Within

this neighborhood, the projections differ as in Figure 5.5.

Then we call D+, D−, and D0 skein diagrams of L. Any relation of these three

diagrams is called a skein relation.

D+ D-- D0

Figure 5.5: Neighborhood of skein diagrams.

Using these skein diagrams, which we will be seeing examples of soon, we can

compute the Conway polynomial.

Definition 5.3 [1, 2, 5] Let L be an oriented link. The Conway polynomial,

denoted ∇L(z), is determined using the following two axioms:

1. If L is the trivial knot then ∇L(z) = 1.

2. Let D+, D−, D0 be skein diagrams of L. Then the following skein relation holds:

∇L+(z)−∇L−(z) = z∇L0(z).

The proof that the Conway polynomial of a link is well-defined and unique is

beyond what we will be covering in this section and so we will take it as a given [5].

Note that this means that the distinction between the skein diagrams D+, D−, D0 and

5.1. Alexander Polynomial 81

the actual links L+, L−, L0 is rather minimal. The Conway polynomial of a certain

diagram is going to result in the polynomial for the link it represents and so we can

equivalently discuss ∇L(z) or ∇D(z) where D is a projection of L. The interesting

twist to using this approach to knot polynomial computation is that you end up with

a tree of progressively simpler links. We do not want to go into too much detail, but

we should at least consider an example of this method.

Example 5.2 Let us consider a projection of the trefoil knot, D, as shown in Figure

5.6 and select a crossing of it. Since we chose a positive crossing in Figure 5.6, we

must consider D to be the D+ diagram. So the D− and D0 diagrams are as shown in

Figure 5.6.

D=D+ D-- D0

Figure 5.6: Trefoil knot projection and corresponding skein diagrams.

We can see that D− is trivial by the application of a Reidemeister II move followed

by a Reidemeister I move. So ∇(D−) = 1. However, D0 is a Hopf link and so we

must repeat this process of selecting a crossing and considering skein diagrams. To

avoid confusing notation, we will now consider D0 to be D′+, as shown in Figure 5.7.

D0=D+ D-- D0
, , ,

Figure 5.7: Hopf link projection and corresponding skein diagrams.

In this case, D′0 is the unknot so ∇(D′0) = 1. Since D′− is the unlink of two

components, it will have Conway polynomial 0. This fact can be derived from only

82 5. Knot Polynomials

appealing to the skein relation for the Conway polynomial, but we will not go through

that process and instead appeal to the equivalence of the Conway polynomial and the

Alexander polynomial and use Theorem 5.3. Then, according to the skein relation,

∇D0(z) = ∇D′+
(z) = z∇D′0

(z) +∇D′−
(z) = z.

Thus the Conway polynomial of the trefoil knot is

∇D(z) = ∇D+(z) = z∇D0(z) +∇D−(z) = z2 + 1.

Finally, let us show that the Conway polynomial is the Alexander polynomial in

disguise. To do this, we first show that a similar skein relation holds for the Alexander

polynomial.

Theorem 5.4 [2] Let D+, D− and D0 be skein diagrams of a link L. Then

∆(L+)−∆(L−) = (x−1 − x)∆(L0).

Proof. Let F+, F−, and F0 be the Seifert surfaces constructed from D+, D−, and D0

respectively and let M0 be the Seifert matrix of F0. We will consider a number of

cases that depend on the connectedness of the various projections.

If D+ is disconnected then D− and D0 must also be disconnected. Certainly D0 will

be disconnected because smoothing a crossing cannot connect disconnected components.

Similarly, D− only changes the crossing and so the disconnected component will not be

affected. Hence L+, L−, and L0 are all split links and so their Alexander polynomials

are 0 by Theorem 5.3. The skein relation holds trivially in this situation. An analogous

argument follows if we begin by assuming that D− is disconnected.

If D0 is disconnected but D+ and D− are connected (if one is, the other must be)

then L0 is a split link. As we can see in Figure 5.8, the links for L+ and L− are going

5.1. Alexander Polynomial 83

to be very similar. In fact, if we twist the right portion of L− by one full rotation, we

obtain L+. Hence L+ and L− are isotopic. So ∆L+(x)−∆L−(x) = ∆L+(x)−∆L+(x) =

0 = (x− x−1)∆L0(x) as desired.

Figure 5.8: Disconnected L0 (left) and L− (right) for proof of Theorem 5.4.

Lastly, suppose that all of the projections are connected. Let {α1, α2, . . . , αn} be

a basis for the first homology group of F0. Each of these 1-cycles are also present in

F+ and F−. We can complete a basis for F+ by adding a loop β which passes once

through the twisted band that came from the distinguished neighborhood and then

travels through the rest of the surface. Assuming that the linking numbers involving β

and β∗ are counted in the last row and column, the Seifert matrix for F+ has the form

M+ =



a1

M0
...

an

b1 · · · bn c


for aj, bj ∈ Z.

Using the same loop β in F− gives a Seifert matrix M− that is identical to M+

except in the final entry where, in F−, lk(β, β∗) = c+ 1. This is because, as shown in

Figure 5.9, the crossing of β and β∗ in D+ will contribute -1 to the computation of

the linking number while, in D−, it contributes +1. So, in moving from D+ to D−,

we change the sum by 2 and thus add 1 to lk(β, β∗). As a point of interest, note that

this does not depend on the orientation of β as it does not affect whether the crossing

is positive or negative.

Lastly let us compute the difference of the Alexander polynomials generated by

84 5. Knot Polynomials

b b

b* b b* b
F+ F--

Figure 5.9: Interaction of β and β∗ in Seifert surfaces of D+ and D−.

expanding by the last column of the matrices. Note that the only terms which differ

between ∆L+(x) and ∆L−(x) are those with coefficient either c or c+ 1 and so

∆L+(x)−∆L−(x) = det(xM+ − x−1MT
+)− det(xM− − x−1MT

−)

= c(x− x−1) det(xM0 − x−1MT
0)

− (c+ 1)(x− x−1) det(xM0 − x−1MT
0)

= −(x− x−1)∆L0(x) = (x−1 − x)∆L0(x).

Thus we have shown that the skein relation holds in all cases.

Using Theorem 5.4, the equivalence of the Alexander polynomial and the Conway

polynomial requires a simple substitution.

Corollary 5.1 The Conway polynomial gives the same result as the Alexander poly-

nomial.

Proof. Let L be a link and define z = x−1 − x. Then ∇L(z) = ∇L(x−1 − x). Then,

according to the skein relation used to compute the Conway polynomial and Theorem

5.4, ∇L(x−1 − x) = ∆L(x).

Let us take the Conway polynomial of the trefoil knot from Example 5.2, ∇D(z) =

z2 + 1. Making the substitution in Corollary 5.1, we get ∆D(x) = ∇D(x − x−1) =

(x− x−1)2 + 1 = x2 − 1 + x−2. This matches our result from Example 5.1, verifying

the result.

5.2. HOMFLY-PT Polynomial 85

5.2 HOMFLY-PT Polynomial

The other knot polynomial we consider is called the HOMFLY-PT polynomial. Fol-

lowing mathematical tradition, this polynomial has been named after the researchers

who discovered it. However, since Hoste, Ocneanu, Millett, Freyd, Lickorish, Yetter,

Przytycki, and Traczyk were responsible, and it would be clumsy to refer to this

polynomial as the “Hoste-Ocneanu-Millett-Freyd-Lickorish-Yetter-Przytycki-Traczyk

polynomial,” we get to call it the HOMFLY-PT polynomial instead [3, 4].

Similar to the Conway polynomial, the HOMFLY-PT polynomial is computed recur-

sively using a skein relation. In fact, the HOMFLY-PT polynomial is a generalization

of the Conway polynomial, as we will see later [1].

Definition 5.4 [1, 2, 4] The HOMFLY-PT polynomial of an oriented link L,

denoted PL(l,m) or P (L), is computed by applying the following axioms:

1. If L is the trivial knot then PL(l,m) = 1.

2. Suppose that D+, D−, D0 are skein diagrams of L. Then the following skein

relation holds:

lP (L+) + l−1P (L−) = −mP (L0).

Once again, we will pass on the opportunity to prove that the HOMFLY-PT

polynomial is a link invariant and take the result for granted [1, 2]. Despite the

apparent similarity to the Conway polynomial, we should still go through a couple of

examples to differentiate between the two skein relations.

Example 5.3 We can determine the HOMFLY-PT polynomial of the unlink with two

components by using Figure 5.10. Since L+ and L− are both the trivial knot, we know

that P (L+) = P (L−) = 1. It is also clear that L0 is the unlink of two components. By

the skein relation in Definition 5.4,

86 5. Knot Polynomials

lP (L+) + l−1P (L−) = −mP (L0)

l + l−1 = −mP (L0)

Thus P (L0) = −m−1(l + l−1).

L+ L-- L0

Figure 5.10: Skein diagrams for Example 5.3.

As we can see in the above example, the HOMFLY-PT polynomial is able to

distinguish between split links with some amount of success. This is a significant

advantage compared to the Alexander polynomial.

Example 5.4 Let us reuse Figures 5.6 and 5.7. As before, P (D−) = 1 and P (D′0) = 1.

Using the result from Example 5.3, we know that P (D′−) = −m−1(l + l−1). Hence

lP (D′+) + l−1P (D′−) = −mP (D′0)

lP (D′+) + l−1(−m−1(l + l−1)) = −m

lP (D′+)−m−1(1 + l−2) = −m

lP (D′+) = −m+m−1(1 + l−2)

P (D′+) = −ml−1 +m−1(l−1 + l−3)

5.2. HOMFLY-PT Polynomial 87

So P (D0) = P (D′+) = −ml−1 +m−1(l−1 + l−3). Thus

lP (D+) + l−1P (D−) = −mP (D0)

lP (D+) + l−1 = −m(−ml−1 +m−1(l−1 + l−3))

lP (D+) = m2l−1 − l−1 − l−3 − l−1

lP (D+) = m2l−1 − 2l−1 − l−3

P (D+) = m2l−2 − 2l−2 − l−4

Therefore the HOMFLY-PT polynomial of the trefoil knot is m2l−2 − 2l−2 − l−4.

While not immediately apparent, all of the information that we could glean from

the Alexander polynomial is encoded into the HOMFLY-PT polynomial.

Theorem 5.5 [1, 2, 4] For an oriented link L, PL(i, i(x− x−1)) = ∆L(x).

Proof. If L is the trivial knot, then PL(i, i(x− x−1)) = 1 = ∆L(x). So suppose that L

is not the trivial knot. Then

lP (L+) + l−1P (L−) = −mP (L0)⇒ iP (L+) +
1

i
P (L−) = −i(x− x−1)P (L0)

⇒ iP (L+)− iP (L−) = i(x−1 − x)P (L0)

⇒ P (L+)− P (L−) = (x−1 − x)P (L0).

Since the above skein relation is precisely that of the Alexander polynomial, it will

necessarily give the same result.

Given this clear relationship to our other polynomial, while providing even more

information, it may not be obvious why we bothered to develop the tools required

for the Alexander polynomial. Instead, we could have started off with a simple

skein relation and obtained more powerful results. However, the development of the

Alexander polynomial gave us a way to understand the reasoning behind the final

88 5. Knot Polynomials

result. With the HOMFLY-PT polynomial, the result is more magical because it was

derived recursively.

CHAPTER 6

Braids

Throughout our introduction to knot theory, it may have been apparent that we

avoided discussing the formation of links. While we noted that links are formed by

interweaving string and gluing the appropriate ends, this is rather ambiguous and

imprecise; it provides no systematic way to create links. Rather, we have waved our

hands and a diverse range of links magically appeared. However, there are a number

of techniques for producing links that have been researched since the inception of knot

theory, including Dowker Notation, Conway Notation, and braids [1].

The following chapter will examine the creation of links via braids. First, we will

define braids and establish their connection to links. Then we will explore the meaning

of equivalent braids. Once that relationship has been determined, we will identify a

well-researched invariant of links called the braid index.

6.1 Braid Representations

There are two major interpretations of braids, focusing on either the Artin braid group

or braid diagrams [3]. Despite the attraction of exploring braids using the Artin braid

group, we will emphasize the geometric structure of braids as the visualizations it

provides will be of greater use. However, we will still employ the Artin braid group.

Intuitively, a braid, such as the one in Figure 6.1, is a collection interwoven strings

89

90 6. Braids

held in place by two bars. We can form a braid by using a simple process [1]. Take

a horizontal bar and attach n strings to it. Using pairs of adjacent strings, create

crossings by twisting the appropriate strings around each other. Once finished, attach

the n strings to a second horizontal bar.

Figure 6.1: Example of a braid.

We can use this intuitive notion to help with our formal definition of a braid.

Definition 6.1 [3] A (geometric) braid on n strings is a set D ⊂ R× [0, 1] which

is the union of n topological intervals, known as the strings of D, such that

1. The projection R× [0, 1]→ [0, 1] maps each string homeomorphically onto [0, 1];

2. Every point of {1, 2, . . . , n} × {0, 1} is the endpoint of a unique string;

3. Every point of R× [0, 1] belongs to at most two strings;

4. For each crossing of D, defined to be points belonging to exactly two strings, the

strings must meet transversely and one must be distinguished as undercrossing

and one overcrossing.

Unlike the other conditions, the second requirement for a braid is just a simplifi-

cation that standardizes braid diagrams. It allows us to assume that R× {1} is the

top of the braid and that R× {0} is the bottom of the braid. The remainder of the

6.1. Braid Representations 91

conditions ensure that a braid is similar to a link projection. The topological intervals

are supposed to act like strings whose ends have been fixed. Thus we want them to

be homeomorphic to [0, 1], as given by the first condition. We want to understand

how the topological intervals interact, so we want at most two to be involved in any

intersection (condition 3). Finally, we want to distinguish between the possible ways

that strings could overlap each other, giving us condition 4.

If it is necessary to impose an orientation on the strings, we will orient the strings

from the top of the braid to the bottom as shown in Figure 6.2. Additionally, although

we have displayed bars in many braid diagrams, we will generally not use them

explicity; they are simply a marker of where endpoints of strings have been fixed.

Figure 6.2: Oriented diagram of Figure 6.1.

6.1.1 Closed Braid Representation

The relationship between braids and links may not be immediately apparent. While

both conveniently have to do with strings and crossings, that is not enough to say that

they are related concepts. However, by pulling the bottom bar of an n-string braid

around the point
(
n+ 1, 1

2

)
and identifying it with the top bar (and subsequently

deleting the bar), we get a link such as the one in Figure 6.3 [1]. Thus every braid

diagram corresponds to some link.

92 6. Braids

Figure 6.3: Closure of Figure 6.1.

Example 6.1 Back in Figure 2.17, the initial projection of a trefoil knot is a closed

braid representation where one strand has been isotoped to the other side of the braid.

The natural follow-up question is whether every link can be represented by a braid.

As it turns out, it is possible and this was first proved by James Alexander in 1923

[1, 3, 2].

Theorem 6.1 (Alexander’s Theorem): [1, 2, 3] Every link can be represented by

a closed braid.

While Alexander’s proof is described in [1], the process is not very useful outside

of the proof as it can be difficult to replicate the steps concretely [2, 3]. A modern

approach is to take an oriented link diagram and manipulate it until the corresponding

Seifert circles are nested and have identical orientations [2]. Every braid has this

configuration because the strings share an orientation and so the Seifert circles will as

well.

Shuji Yamada showed that nesting Seifert circles could be done without increasing

the number of Seifert circles compared to the original link projection [2]. Pierre Vogel

improved on Yamada’s result by using a single type of move to obtain the result

[2]. We will be following a different proof of Alexander’s Theorem, discovered by

Pawel Traczyk, which improves on Vogel’s method [2]. Out of the four proofs we have

6.1. Braid Representations 93

mentioned, it is the most concise and elegant proof. While Alexander’s Theorem is

perhaps more elementary, this approach requires additional definitions and lemmas.

Definition 6.2 [2, 3] Two Seifert circles in S2 are compatible if they bound an

annulus and, with respect to that annulus, they have parallel orientations. Otherwise,

the Seifert circles are incompatible.

It turns out that any two disjoint topological circles in S2 bound an annulus, so

this definition applies to any two Seifert circles [2, 3]. We know that if the two Seifert

circles are nested, then they bound an annulus simply because they would bound an

annulus in R2 as well. It is less obvious why this is true if the Seifert circles are not

apparently nested. However, if we consider the isotopies in Figures 6.4 and 6.5, then

we can see that the result is still true. Another visualization is to isotope one Seifert

circle around the sphere until it is clear that the Seifert circles are nested.

Figure 6.4: Compatible Seifert circles.

Definition 6.3 [2, 3] A reducing move on a link L is a Reidemeister II move such

that the involved strands have opposing orientations and the strands belong to different

Seifert circles, as shown in Figure 6.6.

Lemma 6.1 Let L be a link projection. Then there are no pairs of incompatible Seifert

circles if and only if all the Seifert circles of L are nested with parallel orientations.

94 6. Braids

Figure 6.5: Incompatible Seifert circles.

Figure 6.6: Vogel’s reducing move.

Proof. Suppose that no two Seifert circles are incompatible. Then, using our earlier

discussion, any pair can be considered either nested with parallel orientations or nested

with opposing orientations. If we had a nested pair of Seifert circles with opposing

orientations, they would be incompatible by Definition 6.2. Thus each pair must be

nested with parallel orientations.

Conversely, if all Seifert circles are nested with parallel orientations then any two

will be compatible.

While we have proven Lemma 6.1 rather trivially, it is nonetheless essential to

showing that every link has a braid representation. Let us consider the closure of

some oriented n-string braid. Smoothing a crossing, as in Theorem 3.5, will always

result in simply removing that crossing from the braid, leaving the strings otherwise

unaffected. Hence, after smoothing all crossings, we will have nested Seifert circles

with parallel orientations, as shown in Figure 6.7. Thus a braid representation of a

link has no pairs of incompatible Seifert circles by Lemma 6.1.

6.1. Braid Representations 95

B

Figure 6.7: General form of the closure of a braid B, before and after smoothing every crossing.

Conversely, suppose a link has nested Seifert circles with parallel orientations.

Then we can choose the center point of the centermost Seifert circle and choose a line

that goes through each Seifert circle in exactly one point. Cutting along this line, we

obtain a deformed braid. Thus, if we can obtain a representation of a link with no

pairs of incompatible Seifert circles, then it is necessarily a braid.

Lemma 6.2 Let L be a link projection with at least one incompatible pair of Seifert

circles. Then a reducing move is possible.

Proof. We will consider the link projection in S2 as a graph, where every crossing is a

vertex and the edges are the strands between crossings. In this way, we can see that

our graph divides S2 into a set of distinct regions bound by the various edges of the

graph. It follows that every edge belongs to some Seifert circle of L.

We will call a region reducible if two edges bounding the region come from

incompatible Seifert circles. Within a reducible region, we can apply a reducing move

because there are no edges to interfere. We know that a reducible region exists because

we have assumed that there is at least one pair of incompatible Seifert circles. Hence

a reducing move is possible.

96 6. Braids

Lemma 6.3 Let L be a link projection with χL > 0 pairs of incompatible Seifert

circles, n Seifert circles, and L′ the result of applying a reducing move. Then L′ has

n Seifert circles and χL′ = χL − 1 pairs of incompatible Seifert circles.

Proof. Since χL > 0, we know there there is at least one pair of incompatible Seifert

circles and so, by Lemma 6.2, a reducing move is possible. Let S1 and S2 be incom-

patible Seifert circles. In L′, the strands that form S1 and S2 give rise to a different

pair of Seifert circles, S0 and S∞, as shown in Figure 6.8.

S1 S2 8S S0

Figure 6.8: Changes in Seifert circles following a reducing move.

Since reducing moves are local changes in the link, the remainder of L is untouched

and so all other Seifert circles are unchanged. Hence, the transformation of S1 and S2

into S0 and S∞ creates no change in the number of Seifert circles as desired. Moreover,

this means that the pairs of incompatible Seifert circles which involve neither S1 nor

S2 will be unchanged after a reducing move, relative to S0 and S∞. Let us say there

are h such incompatible pairs.

We know that S1 and S2 bound disjoint disks in S2, D1 and D2 respectively, as

shown in Figure 6.9. Let d be the number of Seifert circles lying in S2\(D1 ∪D2) that

are incompatible with S1. Equivalently, these Seifert circles will be incompatible with

S2 because they are in the exterior of D2 and S1 and S2 are incompatible. Finally, for

i = 1, 2, let di be the number of Seifert circles lying in Di. We claim that

χL = h+ 2d+ d1 + d2 + 1 and χL′ = h+ 2d+ d1 + d2.

To substantiate this claim, we will consider each potential case: a given Seifert

6.1. Braid Representations 97

D1 D2 D1 D2

Figure 6.9: Bounded disks before and after a reducing move.

circle of L is either compatible or incompatible with either, both, or neither of S1 and

S2; similarly for a Seifert circle of L′ related to S0 or S∞. We have already shown that

there are h incompatible pairs of Seifert circles that involve neither S1 nor S2 in L

and neither S0 nor S∞ in L′.

Since a Seifert circle of L in S2\(D1∪D2) is incompatible with S1 if and only if it is

incompatible with S2, these Seifert circles contribute d pairs to χL for S1 and another

d pairs for S2 – a total of 2d pairs. Similarly, a Seifert circle of L′ in S2\(D1 ∪D2) is

incompatible with S0 if and only if it is incompatible with S∞. Hence we must add 2d

to χL′ as well.

If a Seifert circle of L is contained in Di, then it must be compatible with either

S1 or S2. Hence every such Seifert circle must be counted, contributing d1 + d2

incompatible pairs to χL. Analogously, a Seifert circle of L′ contained in Di must be

compatible with either S0 or S∞ and so we must count every Seifert circle contained

in D1 ∪D2; contributing d1 + d2 pairs to χL′ .

Finally, we know that S1 and S2 are incompatible, while S0 and S∞ are compatible.

Hence χL = h+ 2d+ d1 + d2 + 1 and χL′ = h+ 2d+ d1 + d2. Thus χL = χL′ + 1 or,

equivalently, χL′ = χL − 1.

We are finally ready to prove Alexander’s Theorem.

Proof (Alexander’s Theorem). Let L be an oriented link projection with n Seifert

circles lying in S2. We will not concern ourselves with the difference between the

closed braids in Figure 6.10 because they are isotopic on S2.

98 6. Braids

B B

Figure 6.10: Isotopic braids on S2.

Let χL be the number of pairs of incompatible Seifert circles. If χL = 0 then, by

Lemma 6.1, we know that L is a closed representation of a n-string braid and we are

done. So suppose that χL 6= 0. Since L has n Seifert circles, χL ≤ n(n−1)
2

.

By Lemma 6.2, we know that we can apply a reducing move to L to obtain L′.

Applying Lemma 6.3 to L, we know that L′ will have χL − 1 pairs of incompatible

Seifert circles. Since χL is finite, we can apply a total of χL reducing moves to L to

obtain a projection with 0 incompatible pairs of Seifert cicles. Thus we have reduced

our problem to the initial case and so this projection of the link is a closed braid

representation.

To solidify the process we used, let us go through an example.

Example 6.2 Let L be the 3-component Hopf link from Figure 3.17. Since we already

have the Seifert surface in the same figure, it is clear that not all of the Seifert circles

are nested with parallel orientations. Hence, there is at least one pair of incompatible

Seifert circles. In this case, the outer circle is compatible with both of the inner

circles, but the two inner circles are incompatible. Let us apply a reducing move to the

highlighted area in Figure 6.11.

Now all of the pairs of Seifert circles are compatible. According to our theorem,

6.1. Braid Representations 99

Figure 6.11: The 3-component Hopf link and its Seifert surface before and after a reducing move.

the link should now be a closed braid representation. We can realize this as shown in

Figure 6.12.

Figure 6.12: A braid representation of the 3-component Hopf link.

Since we have concluded that every link has a braid representation, we will turn

our attention toward representing braids in other ways.

6.1.2 Braid Words

Up-to-now, we have been working under a similar restriction as in our earlier discussion

of knots: we have no clear means of systematically creating a braid. However, the

structure of braids provides a relatively simple method of generating braids.

Definition 6.4 [1] Let D be a braid diagram on n strings. Represent a crossing of D,

formed using strings i and i+1, by σi if string i is the undercrossing string. Otherwise,

100 6. Braids

represent the crossing by σ−1i . Then the set {σ,
1σ2, . . . , σn−1} consists of the braid

generators of D.

Furthermore, a braid word of D is obtained by describing every crossing in terms

of generators and subsequently ordering them from the top of the braid to the bottom.

i i+1 i i+1

si si
-1

Figure 6.13: General form of braid generators.

We should note that it is convention to denote the braid word of the empty braid

on n strings by 1 [3]. This is the braid which consists of n strings, none of which

undercross or overcross any other string. Under the operation of composition, the

n-strings braids form a group with identity 1, called the braid group Bn [3]. However,

the braid group also has other properties which we will touch on later. For now, let

us consider some examples.

Example 6.3 The braid word for the braid in Figure 6.1 is σ1σ
−1
1 σ−12 σ1 and the braid

in Figure 6.12 has braid word σ2σ
−1
1 σ−12 σ−12 σ1σ2.

Unfortunately, this definition does not erradicate all of the potential ambiguities

that come from how we have defined braids. For instance, although arranging braid

generators in a braid word based on their “height” in the braid diagram produces an

ordering of the generators, we have not dealt with braid generators at the same height.

Luckily, we will be able to show that, regardless of how we order these particular braid

generators, the braid does not change. Hence, it is appropriate to refer to braid words

as non-unique structures.

From a given braid word, we are able to recreate the braid by crossing the

appropriate strings for each braid generator in the order that they are listed. Using

6.2. Braid Equivalence 101

this precise construction methodology, we have created a map between braids and braid

words on n strings. However, as noted above, we need to deal with the equivalency of

braids.

6.2 Braid Equivalence

Similar to our earlier notion of link equivalence, braid equivalence is a relation between

isotopic braids.

Definition 6.5 [1, 3] Two braids on n strings B and B′ are said to be braid equiv-

alent if there is an ambient isotopy between B and B′ which leaves the endpoints of

each string fixed.

From a more intuitive perspective, two braids are equivalent if the strings of the

braids can be rearranged to look the same without moving the bars, all-the-while

keeping the strings attached to the bars [1]. Furthermore, the strings cannot be pulled

around the bars because the result would no longer be a braid [1].

Somewhat fortuitously, there are similarities between acceptable isotopies of braids

and Reidemeister moves. On the surface, it would seem as though this would be

enough to handle braid representations of links in its entirety. However, the restrictions

of the movement of the strings will require additional tinkering.

6.2.1 Braid Moves

First let us introduce three specific types of isotopies of braids. We will refer to these

isotopies as braid moves since we will be focusing on how the isotopy affects the

braid word. However, we will start with the geometric description of these moves and

use this intuition to derive the formal braid moves.

As discussed earlier, in a geometric braid, it is possible to have multiple crossings

occur on the same horizontal line. Within this set of crossings, it is irrelevant which

102 6. Braids

one is listed first in the braid word because the rest would follow immediately. When

translated into a braid word, this information can appear lost because generators

are represented so as to avoid this issue (with every crossing occuring on a different

horizontal line). Thus the first braid move formalizes this geometric equivalence

and produces a method of showing that two crossings can be presented on the same

horizontal line, as shown in Figure 6.14.

i i+1 j j+1 i i+1 j j+1

=

=

i i+1 i i+1
i i+1 i+2 i i+1 i+2

=

2 3

 1

Figure 6.14: Braid moves 1, 2 and 3.

The other two braid moves, also shown in Figure 6.14, are simply applying

Reidemeister moves to the braid. The second braid move corresponds to a Reidemeister

III move while the third braid move is precisely a Reidemeister II move [1].

Definition 6.6 [1, 3] Let B be an n-string braid. Then the following operations on

the braid word of B are the result of applying an ambient isotopy to B:

Braid Move 1. If |i− j| > 1 then σa
i σ

b
j = σb

jσ
a
i where a, b ∈ {−1, 1}.

Braid Move 2. For i ≤ n− 2 and a, b ∈ {−1, 1}, σa
i σ

b
i+1σ

b
i = σb

i+1σ
b
iσ

a
i+1.

Braid Move 3. For any i, σiσ
−1
i = 1 = σ−1i σi.

6.2. Braid Equivalence 103

The second braid move is seemingly the most complicated of the three moves.

However, this is only because it must account for all the possible ways that a Rei-

demeister III move could be applied. The necessary distinctions between standard

and inverse generators are not covererd in either [1] or [3], which is a significant

oversight. Both texts simply use the equivalence σiσi+1σi = σi+1σiσi+1. For example,

by their restrictions, it is not apparent that σ−1i σi+1σi = σi+1σiσ
−1
i+1 but it clearly holds

geometrically as shown in Figure 6.14.

While we have listed the isotopy used in braid move 2 as a distinct move, it is a

direct consequence of braids forming a group [3]. Hence, it is actually the first two

moves that are essential for determining braid equivalence [3].

Currently, we have braid moves equivalent to Reidemeister II and III moves. While

we may want something equivalent to a Reidemeister I move, it does not make sense

in this context: the strings of braids do not cross themselves. However, using some

additional terminology, we will be able to handle the equivalent scenario for a braid.

6.2.2 Markov Equivalence

In order to expand the list of acceptable braid moves, we require a more lenient type

of equivalence than braid equivalence.

Definition 6.7 [1] Two braids are Markov equivalent if their closures produce

equivalent links.

Rather than focusing on equivalent braids, Markov equivalence allows us to include

moves that will not change the link type of the closed braid. All of the standard braid

moves produce Markov equivalent braids because the isotopies do not change link

type [1]. However, there are two more moves that produce Markov equivalent braids,

known as Markov moves. While it is possible to derive these operations geometrically,

it is a somewhat less natural way to describe the result. So we will first introduce

Markov moves algebraically and then extract the geometric implications.

104 6. Braids

Definition 6.8 [1, 3] Let B be the braid word for an n-string braid. Then the following

operations on B, called Markov moves, produce Markov equivalent braids via an

ambient isotopy of the closed braid:

Conjugation. Let i ≤ n− 1. Replace B with either σiBσ
−1
i or σ−1i Bσi.

Stabilization. Replace B with Bσn or Bσ−1n .

As alluded to already, Markov moves produce Markov equivalent braids. Braid

conjugation, shown in Figure 6.15, is a more subtle way of performing a Reidemeister

II move on a braid compared to braid move 3. Let us use conjugation to add two

generators to the braid word and then close the braid. Then we can isolate the crossing

on top of the new braid and use ambient isotopies to shift it around to the bottom of

the braid. Then it is clear that we can use a Reidemeister II move to remove these

crossings. Hence the two braids produced equivalent links and so they are Markov

equivalent.

B

i i+1

B

 i i+1

Figure 6.15: Example of braid conjugation.

Stabilizing a braid is the closest approximation of a Reidemeister I move available

to braids. It takes an n-string braid and, after stabilization, it either becomes an

(n+ 1)-string braid, as in Figure 6.16, or an (n− 1)-string braid.

6.2. Braid Equivalence 105

BB

1 n 1 n n+1

Figure 6.16: Example of braid stabilization.

Let B be a braid word for an n-string braid. Stabilizing B to produce Bσ±1n , we

can see that the closure of the new braid has one additional loop in the center of the

braid as in Figure 6.17. This loop can be undone using a Reidemeister I move and

the result is simply the closure of B. Thus stabilization does not change the link type

of the closed braid. Hence B and the stabilization of B are Markov equivalent braids.

B

Figure 6.17: Result of a stabilization operation.

The inverse stabilization move requires a bit more detail. In order for an inverse

stabilization to be possible, there must be precisely one σn−1 in an n-string braid.

106 6. Braids

The inverse operation will then remove this generator and the nth string to create a

Markov-equivalent (n− 1)-string braid.

While we now have an expanded list of moves that will not affect the link type, we

have not eliminated the possibility of there being additional isotopies that we should

consider. Time for another major theorem!

Theorem 6.2 (Markov’s Theorem): [1, 3] Two braids are Markov equivalent if

and only if they are related by a finite sequence of Markov moves and braid moves.

This result was proven by A. Markov in his 1935 paper, but we will not be delving

into his proof [1]. It is sufficient for us to know that we have a complete list of moves

to determine Markov equivalence. Instead, we will go through an example and develop

more theory surrounding braids, including a discussion of a link invariant called the

braid index.

Example 6.4 It is relatively easy to graphically realize that σ2σ
−1
1 σ−22 σ1σ2 (Figure

6.12) and σ−11 σ3σ2σ
−1
1 σ3 are Markov equivalent braids. We will use braid moves and

Markov moves to demonstrate this equivalence.

σ−11 σ3σ2(σ
−1
1 σ3)

1−→ σ−11 (σ3σ2σ3)σ
−1
1

2−→ σ−11 σ2σ3σ2σ
−1
1

conjugation−→ σ2σ
−1
1 σ−11 σ2σ3σ2(σ

−1
1 σ1)σ

−1
2

3−→ σ2σ
−2
1 σ2σ3σ2σ

−1
2

3−→ σ2σ
−2
1 σ2σ3

stabilization−→ σ2σ
−2
1 σ2

conjugation,3−→ σ2
2σ
−2
1

3−→ σ2(σ2σ
−1
1 σ−12)σ2σ

−1
1

2−→ σ2σ
−1
1 σ−12 (σ1σ2σ

−1
1)

2−→ σ2σ
−1
1 σ−12 σ−12 σ1σ2 −→ σ2σ

−1
1 σ−22 σ1σ2.

6.3 Braid Index

In our previous discussion, we have mentioned that it is possible to represent links

using different numbers of strings. In fact, repeatedly applying a stabilization move

can create a braid representation with an arbirarily large number of strings. However,

what is less clear is the fewest number of strings required to represent a braid.

6.3. Braid Index 107

Definition 6.9 [1] The braid index of a link L, denoted b(L), is the fewest number

of strings required in any braid presentation of L.

The fact that braid index is a link invariant is rather trivial. By Theorem 6.1, we

know that every link has a braid presentation. Since braids necessarily have a finite

number of strings, there must be a minimal such number. Hence, the braid index

exists for every link. Moreover, it will not depend on the projection of the link because

we have considered the number of strings across all possible braid representations.

While we can compute upper bounds on the braid index simply by finding a braid

presentation for a link and counting the number of strings, it is difficult to know when

the braid index has been realized. In fact, a great deal of research has gone into finding

a lower bound for the braid index. We know that the unknot will have braid index 1

because the closure of an untwisted string is the unknot. Conversely, a non-trivial

knot must have braid index greater than 1 because a single string cannot cross itself.

Moreover, a link L must have b(L) ≥ µ(L) because each of the µ(L) components must

use at least one string.

Example 6.5 We earlier demonstrated the Markov equivalence of the two braid words

in example 6.4. Since the first braid word uses 3 strings, we know that the 3-component

Hopf link has a braid index of at most 3. However, since it has 3 components, it must

be that the braid index is exactly 3.

Example 6.6 As we have already seen a braid representation of the trefoil knot using

two strings (Figure 2.17), and the trefoil knot is non-trivial, we know that its braid

index must be two. Indeed, there is a class of links called the 2-braid knots which are

created by twisting two strings together [1].

More complicated bounds for braid index include a result by Yoshiyuki Ohyama

which uses the crossing number and states that, for a non-split link L, b(L) ≤ c(L)
2

+ 1

108 6. Braids

[1]. However, the most used bound has come to be referred to as the Morton-Franks-

Williams inequality after the researchers who discovered it [1].

Theorem 6.3 (Morton-Franks-Williams Inequality): [1, 2, 4] Let L be a link

projection and PL(l,m) its HOMFLY-PT polynomial where e and E are respectively

the smallest and largest degrees of l in PL(l,m). Then

b(L) ≥ E − e
2

+ 1.

The Morton-Franks-Williams inequality is sharp for most of the knots with 10 or

fewer crossings. While we will not be applying the result ourselves, it is an important

inequality to keep in mind.

CHAPTER 7

Braid Height and the Machete Number

At this point, we should have sufficient experience and understanding of classical

knot theory to enjoy the machete number. We begin by defining new properties of

braids and then use them to define and explore the machete number. To conclude, we

discuss a myriad of conjectures that arose during the investigation.

7.1 Braid Height

The first new braid concept is that of braid level. Intuitively, a braid level consists of

all the crossings along a given horizontal line in a braid.

Definition 7.1 Let B be a braid word and ω = σi1σi2 · · ·σim a non-empty subsequence

of generators from B. Then [ω] is a braid level of B if |ik − il| > 1 for all k 6= l with

1 ≤ k, l ≤ m.

We can match our formal definition of a braid level with the intuitive understanding

rather simply. In a braid level, every pair of braid generators must satisfy the conditions

for braid move 1 from Definition 6.6. Hence, within the braid level, we can commute any

two generators. Geometrically, this precisely correponds to having a braid projection

where all of the crossings in the braid level can occur along a single horizontal line as

in Figure 7.1.

109

110 7. Braid Height and the Machete Number

i i+1 j j+1 i i+1 j j+1

=

Figure 7.1: Braid generators which can be presented on the same horizontal line.

In order to demarcate braid levels in a braid word, we will adopt the notation of

enclosing the braid level in square brackets. It naturally follows that we can partition

a braid word B into braid levels by requiring that every generator be a part of some

braid level. Let us consider a few examples to solidify the idea.

Example 7.1 Let B1 = σ1σ3σ
−1
5 σ3σ

2
4. The following are three partitions of B1 into

braid levels:

[σ1σ3σ
−1
5][σ3][σ4][σ4], [σ1σ3][σ

−1
5 σ3][σ4][σ4], [σ1][σ3][σ

−1
5 σ3][σ4][σ4].

In the first two cases, B1 is partitioned into 4 braid levels, but the third partition

has 5 braid levels. For the first partition, the first braid level is “maximal” in a

sense – we cannot include any neighboring generators in the braid word into that level.

However, in the second partition, the second braid level would be considered “maximal.”

Finally, in the third partition, none of the first three braid levels can be considered

“maximal.” Thus we cannot truly define an optimal partition of a braid word.

Now take B2 = [σ1][σ2σ4]. This relatively simple braid effectively illustrates an

important fact about braid levels. First note that it is currently impossible to include

σ1 in any other braid level. However, since [σ2σ4] is a braid level, we have σ1[σ2σ4] =

σ1[σ4σ2]. Now we can partition the same braid word as [σ1σ4][σ2]. Hence, not only is

partitioning a non-unique process, but it may not be possible to realize a given partition

without applying braid moves.

As we can see throughout Example 7.1, the decomposition of a braid into braid

7.1. Braid Height 111

levels is not unique and we cannot optimize braid word partitions of a given braid

word. Even so, we can use braid levels to define a new link invariant.

Definition 7.2 Let L be a link. The braid height of L, denoted bh(L), is the smallest

n ∈ N such that there is a braid representation of L with n braid levels.

A braid representation of L that realizes bh(L) braid levels is called a braid height

representation of L.

The fact that braid height is a link invariant follows from the existence of a braid

representation (Theorem 6.1), the existence of a braid level decomposition (we can

always partition a braid into levels consisting of one generator), and the choice of

minimizing braid levels across all possible braid represenations. Note that the unlink

of n components has a braid representation consisting of the empty braid word on n

strings. Thus the unlink has braid height 0. While finding the braid height turns out

to be a relatively difficult task, we can employ a simple bound for non-trivial links.

Proposition 7.1 Every non-trivial link L has bh(L) > 1.

Proof. To the contrary, suppose that L is a link with bh(L) = 1. Consider a braid

height minimal representation of L. Since every string is used by at most one generator,

the strings can be partitioned into collections of strings consisting of either individual

strings or strings used by a generator. Upon closing the braid, these collections form

a split link projection of L, where each component has one crossing. By Corollary 2.1,

each such component is trivial and so L is the unlink. So every link L with bh(L) < 2

is trivial and thus a non-trivial link has braid height of at least 2.

The apparent usefulness of the braid height invariant is that it can be computed

algorithmically. Starting with a list of links with braid height i, it may be possible

to compute all possible braids with braid height (i + 1). We simply enumerate all

possibilities, take the closures, and eliminate those links of braid height i! In general,

this is not a reasonable task because we could always add additional strings to the

112 7. Braid Height and the Machete Number

braid and we would have another possibility. We can simplify matters significantly by

restricting our search to the braid heights of non-split links.

Lemma 7.1 Let L be a non-split link with a braid represenation on n strings. Then

any braid word for L must contain σi for all 1 ≤ i ≤ n− 1.

Proof. Suppose that B is a braid word for L which does not contain σi for some i.

Then strings i and (i+ 1) never cross and so the closure of strings 1 through i form a

link that is split from the closure of strings (i+ 1) through n. However, L was not a

split link and so σi must be present in B.

Lemma 7.1 tells us that we must have every generator in a braid word for a non-split

link. Unfortunately, even with this additional requirement, there is an infinite family

of non-split links with braid height 3. Thus we still have a computational nightmare

on our hands. However, we can still classify all the non-split links up to braid height

3. To accomplish this classification, we will apply the following results that bound the

braid height of composite links.

Theorem 7.1 For any links L1 and L2, bh(L1#L2) ≤ max {bh(L1), bh(L2)}+ 1.

Proof. Consider braid height representations of L1 and L2, B1 and B2 respectively.

Without loss of generality, let B1 be a braid on n strings and let bh(L1) ≥ bh(L2).

So B1 is a sequence of generators selected from {σ1, σ2, σn−1} and inverses of these

generators. Lay B2 next to B1 and compose the resulting braid with σn to form B3,

as in Figure 7.2.

The closure of B3 is L1#L2. Moreover, in B3, we can extend the ith braid

level of B1 to include the generators in the ith braid level of B2 because they use

disjoint strings except for the single σn. Assuming that [σn] is its own level of

B3, this process used bh(L1) + 1 braid levels to represent B3 and so bh(L1#L2) ≤

max {bh(L1), bh(L2)}+ 1.

7.1. Braid Height 113

B1 B2

Figure 7.2: B3, the composition of B1 and B2.

Using a similar idea, we can establish a strong lower bound on the braid height of

a composite link as well.

Theorem 7.2 For any links L1 and L2, bh(L1#L2) ≥ max {bh(L1), bh(L2)}.

Proof. Let B1 and B2 be braid height representations for links L1 and L2 respectively.

Assume, without loss of generality, that B1 uses n strings and bh(L1) ≥ bh(L2). Finally,

to the contrary of our statement, suppose that bh(L1#L2) < bh(L1).

Let B3 be a braid height representation of L1#L2. Since L1#L2 is a composite

link, there is a disk, D, in the closure of B3 which allows us to realize a decomposition

of the link into L1 and L2. Since B3 was a braid, the decomposition using D will

create closed braid representations of L1 and L2. Moreover, each of these braid

representations are partitioned into at most bh(L1#L2) braid levels. Specifically, there

is a braid representation of L1 that uses bh(L1#L2) braid levels, but this contradicts

the minimality of bh(L1). Thus bh(L1#L2) ≥ max {bh(L1), bh(L2)}.

Now we know that a composite link has either bh(L1#L2) = max {bh(L1), bh(L2)}

or bh(L1#L2) = max {bh(L1), bh(L2)} + 1. In our earlier proofs, we ignored the

possibility of including σn in an existing braid level of the composite link (Figure 7.3).

As it turns out, this possibility is actually a fairly common occurence. However, we

must rely on a lemma to prove the result.

Lemma 7.2 Let L be a non-trivial non-split link with an n-string braid representation

114 7. Braid Height and the Machete Number

B1 B2

Figure 7.3: Composition of B1 and B2 with σn in an existing braid level.

B. Then n = 2 if and only if B can be decomposed into braid levels such that every

braid level contains σi for some 1 ≤ i ≤ n− 1.

Proof. First suppose that n = 2. Then B is the composition of some number of σ1’s

and σ−11 ’s. Since both of these generators use string 1, every braid level of B can have

at most one generator. Moreover, every level must contain at least one generator and

so every level of a partition of B would contain σ1 or its inverse.

Now, to the contrary, suppose n 6= 2. Since L is non-trivial, we may ignore the

possibility that n = 1 and so n ≥ 3. By Lemma 7.1, at least one of σi−1 and σi+1 must

be present in some braid level of B. However, the braid level containing either σi−1

or σi+1 cannot contain σi by definition. Yet we assumed that σi was present in every

braid level. Thus n = 2.

Theorem 7.3 If neither L1 nor L2 is a 2-braid link, then

bh(L1#L2) = max {bh(L1), bh(L2)} .

Proof. Suppose that a braid height representation of L1 uses n strings. Without loss

of generality, let us say that bh(L1) ≥ bh(L2). There are two cases to consider:

Case 1: Suppose that bh(L1) > bh(L2). Then it is sufficient to find a braid level

of L1 in which σn can be added. If such a level exists, we can manipulate the braid

such that it becomes the final level of the braid. Visually, this simply requires us to

take the closed braid form and push each of the braid levels below it around the loop

7.1. Braid Height 115

so that they start stacking onto the top of the braid. Formally, this corresponds to a

sequence of conjugation operations. Since L1 is not a 2-braid, there is some level for

which σn can be added by Lemma 7.2.

Case 2: Suppose that bh(L1) = bh(L2). By Case 1, we are able to find a braid

level of L1 in which σn can be added. However, we still require a level of L2 in which

the first string of L2 is not used so that σn can be incorporated into a braid level of

L1#L2. Such a level exists by Lemma 7.2.

In both cases, we have the desired result.

Note that our argument above never made use of L2 not being a 2-braid when

bh(L1) > bh(L2), so we can strengthen this result trivially.

Corollary 7.1 Let L1 and L2 be links with bh(L1) > bh(L2). If L1 is not a 2-braid

then bh(L1#L2) = max {bh(L1), bh(L2)}.

Let us now classify all links with braid height of at most 3. To minimize confusion

and to clearly see the progression of links, we will break this result into smaller results.

By Proposition 7.1, we know that we only need to consider links of braid height at

least 2.

Theorem 7.4 Let L be a non-trivial non-split link. If bh(L) = 2 then L is the Hopf

link.

Proof. Let B be a braid word for a braid height representation of L. If B is not a

2-braid, then B uses n ≥ 3 strings. By Lemma 7.1, σ1, σ2, . . . σn−1 must all be applied

in B. Since σi and σi+1 both use the (i+ 1)st string, they must be on different braid

levels of B. Morever, since B has only two braid levels, each generator must be applied

exactly once. Hence we can stabilize B n− 1 times to obtain the trivial braid on 1

string, which has braid height 0. Therefore, any braid of braid height 2 must use at

most two strings.

116 7. Braid Height and the Machete Number

Suppose that B is a 2-braid instead. By Lemma 7.2, we know that every decompo-

sition of B into braid levels will contain σ1 or σ−11 . Since σ1σ
−1
1 = 1, this braid would

have braid height 0. So B = σ2
1 or B = σ−21 . In either case, the closure of B is the

Hopf link.

Theorem 7.4 tells us that the Hopf link is the first link with non-zero braid height.

This also means that, in cataloging braids of greater braid height, we can use the Hopf

link as a building block. For example, if we take the link composition of two Hopf links,

we obtain the 3-component Hopf link. Generalizing this process, we can compose an

n-component Hopf link with another Hopf link to get an (n+ 1)-component Hopf link

by choosing to compose the “end” components of the respective Hopf links (see Figure

7.4). It turns out that the n-component Hopf link has a predictable braid height.

Figure 7.4: Composition of a 4-component Hopf link with another Hopf link.

Proposition 7.2 The n-component Hopf link has braid height 3 for all n ≥ 3. More-

over, a braid height representation can be realized by the braid on (2n− 2) strings,

Hn = [σ1σ3 · · · σ2n−3][σ1σ3 · · ·σ2n−3][σ2σ4 · · ·σ2n−4].

Proof. We will proceed by mathematical induction on n. A composition of two Hopf

links is given by [σ1σ3][σ1σ3][σ2] which, if we examine the closure, is clearly the

3-component Hopf link as shown in Figure 7.5.

Suppose we know that the braid height of the k-component Hopf link is 3 and that a

braid height representation is Hk = [σ1σ3 · · ·σ2k−3][σ1σ3 · · ·σ2k−3][σ2σ4 · · ·σ2k−4]. Let

7.1. Braid Height 117

Figure 7.5: A braid representation of the 3-component Hopf link.

us lay a Hopf link braid next to Hk, adding two strings and then composing Hk with

σ2
2k−1. Thus we have a 2k-string braid. The composition of these two links is obtained

by further composing this braid with σ2k−2. We claim that Hk+1 = Hkσ
2
2k−1σ2k−2.

Through repeated application of braid move 1, we can commute σ2k−1 with any

generator of Hk. In particular, we get

Hkσ
2
2k−1σ2k−2 = [σ1σ3 · · ·σ2k−3σ2k−1][σ1σ3 · · ·σ2k−3σ2k−1][σ2σ4 · · ·σ2k−4][σ2k−2].

Additionally, we can include σ2k−2 in the final braid level because |(2k − 4) −

(2k − 2)| = 2 > 1 and thus obtain Hk+1 as desired. By Theorem 7.2, we know

that bh(Hk+1) ≥ max {bh(Hk), bh(H2)} = max {3, 2} = 3. Since we have a braid

represenation of the (k+1)-component Hopf link with 3 braid levels, bh(Hk+1) = 3.

Using this fact, we can classify all the links of braid height 3.

Theorem 7.5 Let L be a non-trivial non-split link. If bh(L) = 3 then L is either the

trefoil knot or the n-component Hopf link.

Proof. Let B be a braid word for a braid height representation of L that uses n strings.

As we have seen already, σ3
1 and σ−31 produce the trefoil knots (Figure 2.17). Thus,

if n = 2, it follows from Lemma 7.2 that L is a trefoil knot. Using Proposition 7.2,

118 7. Braid Height and the Machete Number

another possibility is the composition of Hopf links. So suppose we have a link of

braid height 3 on n > 2 strings.

Since L is non-split, every σi must be applied in B by Lemma 7.1. Moreover,

every generator cannot be applied more than twice without producing the trefoil knot

again. If every σi is applied exactly once, then we can trivially untwist L to get the

unknot, a knot of braid height 0. So there must be some σi that is applied twice in

B. Pick k to be the minimal i such that σi appears twice. Then, since L is non-split,

the first k strings of B are trivially twisted in the closure of B. So σ1, σ2, . . . , σk−1 all

appear exactly once and we perform k− 1 Reidemeister I moves to remove these k− 1

generators. Since σk appears twice, we are able to decompose B into the braids σ2
1

and B′ as shown in Figure 7.6.

B’ B’

Figure 7.6: Deomposition of a braid height 3 link.

We will ignore the Hopf link and focus on the remaining braid, B′. Since L was

non-split, the closure of B′ is also non-split. So we can apply the above process again

to split off another Hopf link. Since B had n strings originally, L is the composition

of at most bn/2c Hopf links. Moreover, based on the decomposition method, every

composition needed to reform L involves the end components of the respective Hopf

links and so L was a multi-component Hopf link.

Once we start considering links of braid height 4, it becomes less clear that we have

considered every possible link. However, included in this list are the figure-eight knot

7.2. The Machete Number 119

(given by σ1σ
−1
2 σ1σ

−1
2), the composition of trefoil knots, the composition of trefoil

knots and Hopf links, and possibly more.

7.2 The Machete Number

Recall how, in the process of creating a Seifert surface, we smoothed every crossing of

a link and the result was a set of unlinked circles. The machete number generalizes

this process for braids and turns it into a link invariant. While the goal of smoothing

was to trivialize a fixed projection, the machete number looks at how quickly a link

can be reduced to the unlink. The essential idea is that we select a braid level and

smooth every generator in that level. Visually, we can imagine a machete slicing

through all the generators along the given horizontal line. To produce an invariant,

we first require a formal definition of this generalization.

Definition 7.3 Let B be a braid and [ω] a braid level of B. A machete cut of B

is the braid B′ that is obtained by smoothing every generator in ω. B′ is called the

result of cutting B.

If k ∈ N and [ω] contains at most k generators, a machete cut of B is called a

k-cut of B and B′ is called the result of k-cutting B.

If a given braid level has more than k generators, we can always trivially partition

it into smaller braid levels. Let us consider a few examples of this cutting process.

Example 7.2 Let us focus on the braid on 5 strings with braid word

B = [σ4σ1][σ2][σ3σ1][σ4].

The closure of this braid is the 3-component Hopf link. With the given braid level

partition, note that we cannot apply a 1-cut to either the first or third braid levels.

However, we can apply a k-cut for any k ≥ 2 (or simply use a machete cut). Applying

120 7. Braid Height and the Machete Number

a 2-cut to [σ4σ1], we obtain B′ = [σ2][σ3σ1][σ4] which, when closed, is simply the

unknot.

Suppose we had instead 2-cut [σ3σ1]. The result of this 2-cut is B′′ = [σ4σ1][σ2][σ4].

It does not seem as though the choice of cut should have made a significant difference

and yet the closure of B′′ is the disjoint union of the unknot and the Hopf link.

Finally, suppose we were interested in a 1-cut to B. We can take the braid level

[σ4σ1] and break it into two braid levels, [σ4][σ1]. Let us apply a 1-cut to the first [σ4]

in the braid word, giving us B′′′ = [σ1][σ2][σ3σ1][σ4]. A braid whose closure is the Hopf

link.

Clearly, if we only consider 1-cuts of a braid, we have reduced cutting to simply

smoothing crossings of the braid. Our second-to-last essential definition is the notion

of cutting down a link.

Definition 7.4 Let L be a link, B a braid representation of L, and B′ the result of

applying a finite number of k-cuts to B for a fixed k. Then L is cut down if the

closure of B′ is the unlink with some number of components.

An immediate consequence of this definition is the following:

Proposition 7.3 Every link can be cut down.

Proof. By Theorem 6.1, we know that L has a braid representationB withm generators

and n strings. Decompose B into braid levels which each contain a single generator.

By applying m k-cuts to B, one for each braid level, we have the empty braid on n

number of strings. Since the closure of the empty braid is the unlink of n components,

L has been cut down.

For an example, let us turn back to the braid in Example 7.2. We cut down B with

our first choice of a 2-cut but not our second choice. However, this recent proposition

tells us that it was possible to cut B′′ in some way such that the closure eventually

7.2. The Machete Number 121

produced the trivial link. At long last, using the notion of cutting down links, we can

formally define the machete number.

Definition 7.5 The machete number of L, denoted M(L), is the smallest n ∈ N

such that there is some braid representation of L which can be cut down in n machete

cuts.

For a fixed k ∈ N, the k-machete number of a link L, denoted Mk(L), is the

smallest n ∈ N such that there is some braid representation of L which can be cut

down in n k-cuts.

The fact that the k-machete number is a link invariant is based entirely on the

minimality statement in the definition and Proposition 7.3. Additionally, we can relate

the different k-machete numbers.

Proposition 7.4 For any link L and any k ∈ N, Mk+1(L) ≤Mk(L).

Proof. Pick a sequence of Mk(L) k-cuts which cuts down L. By Definition 7.3, each

k-cut is applied to a braid level with at most k generators. Trivially, each level has at

most (k + 1) generators. Hence each k-cut can be replicated with a (k + 1)-cut and so

L can be reduced in Mk(L) (k + 1)-cuts. Thus Mk+1(L) ≤Mk(L).

Since machete cuts can cut through a braid level of any size, the following corollary

is trivial.

Corollary 7.2 For any link L, M(L) = mink {Mk(L)}.

In Example 7.2, we found a single 2-cut which cut down B. HenceM2(B) ≤ 1. By

Corollary 7.2, we know that M(B) ≤ 1 as well. As we will soon show, this is actually

sharp and soM(B) = 1. To demonstrate this fact, we will also prove a very important

property of the machete number: it distinguishes between trivial and non-trivial links.

Proposition 7.5 For any non-trivial link L, Mk(L) ≥ 1.

122 7. Braid Height and the Machete Number

Proof. Since L is non-trivial, there is no braid representation of L that is trivial.

Hence we must apply at least one k-cut and so Mk(L) ≥ 1.

Without Proposition 7.5, the machete number would be relatively useless as an

invariant. It tells us that that the machete number distinguishes between trivial links

and non-trivial links. Although some link invariants, such as the linking number,

cannot make this distinction, it is comforting when an invariant successfully determines

the triviality of a link. An additional simplification, analogous to braid height, is that

we can reduce the machete number problem to non-split links.

Proposition 7.6 Suppose that L is a split link where L can be split into L1 and L2.

Then M(L) = max {M(L1),M(L2)}.

Proof. Suppose Bi is a braid representation of Li for i = 1, 2. Laying B1 and B2 next

to one another and considering them as a single braid, we have a braid representation

of L, B3. We can use braid move 3 and conjugation to line up any given braid level of

B1 with a level of B2. In B3, since B1 and B2 do not share strings, we can extend the

braid level to include all of these braid generators. We then cut down B3 by following

a sequence of machete cuts that minimally cuts down both B1 and B2.

It is unfortunate that this same result does not apply to the k-machete number in

general, but it is also a significantly more controlled process.

Before we turn our discussion toward bounds on the machete number, we will

demonstrate that the machete number cannot be realized from specific types of link

projections. Our next example demonstrates that braid representations of a link L

with c(L) crossings cannot necessarily be cut down minimally.

Example 7.3 A crossing-minimal braid projection of the 3-component Hopf link is

given by B = σ2
1σ

2
2. In this projection, each braid level necessarily consists of a single

generator and so applying any cut to the braid will remove a single generator. Also

independent of the chosen generator, the closure of the braid resulting from a cut of

7.3. Bounding the Machete Number 123

any size will be the Hopf link. Since the Hopf link is not the unlink, a second cut is

necessary to cut down B. However, using the braid representation from Proposition

7.2, we have B′ = [σ1σ3][σ1σ3][σ2]. We can cut down B′ by cutting the first braid level

and so the machete number of the 3-component Hopf link is 1 6= 2.

Example 7.3 also demonstrates that, for an arbitrary link L, the machete number

cannot necessarily be realized on a b(L)-string braid representation of L. Despite

almost certainty that the machete number cannot necessarily be realized in a braid

height representation, we have not shown it conclusively.

7.3 Bounding the Machete Number

In order to demonstrate the usefulness of the machete number, it is necessary to be

able to compute the value. Unfortunately, in all but the most trivial cases, it remains

unknown. However, we will be able to prove a variety of upper bounds on the machete

number. Using braid height, we can establish a simple upper bound.

Proposition 7.7 For any link L, M(L) ≤ bh(L)− 1.

Proof. Let B be a braid height minimal presentation of L. Suppose we machete cut

bh(L)− 1 levels of B and the result is B′. By the contrapositive of Proposition 7.1,

the closure of B′ must be trivial. Hence B was cut down in bh(L)− 1 machete cuts

and so M(L) ≤ bh(L)− 1.

While the bound given by Proposition 7.7 is sharp for the Hopf link, it is not

difficult to construct an infinite family of links for which it is not tight. However, at

the same time, we will find an infinite family of links with machete number 1.

Proposition 7.8 The n-component Hopf link has machete number 1.

124 7. Braid Height and the Machete Number

Proof. Let n ≥ 2 and consider the braid representation of the n-component Hopf link

used in Proposition 7.2. Applying a machete cut to the first braid level, the resulting

braid is the (2n− 2)-string braid given by

B′ = [σ1σ3 · · ·σ2n−3][σ2σ4 · · ·σ2n−4].

Note that every generator in B′ is used exactly once. Specifically, σ2n−2−1 is used

exactly once and so string 2n− 2 can be removed through stabilization. We can now

repeat this stabilization process, on progressively smaller strings, 2n− 3 more times to

obtain the empty braid on one string. Thus we cut down the n-component Hopf link

in a single machete cut and, since it is a non-trivial link, we have that it has machete

number 1.

Since the n-component Hopf link has braid height 3 and machete number 1, we

have an infinite family of links for which Proposition 7.1 is not sharp.

Let us look at the family of links with braid index 2. Such links necessarily have

a braid representation σn
1 for some n ∈ N. These links are also refered to as the

(n, 2)-torus links [5]. Without going into to too much detail, the idea of a torus link

is that they are links which can be wrapped around the surface of the torus without

self-intersection [1]. A so-called (m,n)-torus link can be represented on the n-string

braid by the braid word T (m,n) = (σ1σ2 · · ·σn−1)m [1, 5]. Moreover, it turns out

T (m,n) and T (n,m) are Markov-equivalent braids [1]. Using these facts, we are able

to prove a simple upper bound for the machete number of an (m, 2)-torus link.

Proposition 7.9 For m > 1, let L be an (m, 2)-torus link. Then M2(L) ≤ dm/2e.

Proof. We will proceed by mathematical induction on m. If m = 2 then L is the Hopf

link and so M(L) = 1 = d2/2e. Suppose that the bound holds for all k < m. Let L

7.3. Bounding the Machete Number 125

be the closure of T (m, 2) = σm
1 . Then, since T (m,n) = T (n,m), an equivalent braid

representation of L is

T (2,m) = (σ1 · · · σm−1)2 = σ1 · · ·σm−2[σm−1σ1]σ2 · · ·σm−1.

Applying a 2-cut to [σm−1σ1], we stabilize the resulting braid to obtain

σ1 · · ·σm−2σ2 · · · σm−2.

In the closed braid, the σ1 is also a trivial crossing and can be removed by a Reidemeister

I move. Relabeling the generators, this new braid has braid word

σ1 · · ·σm−3σ1 · · ·σm−3 = T (2,m− 2).

By the inductive hypothesis,M2(T (2,m− 2)) ≤ dm−2
2
e. ThusM2(L) ≤ dm−2

2
e+ 1 =

dm
2
e.

Extending some of the ideas of this proof, we obtain a general upper bound for

the machete number of a torus link.

Proposition 7.10 For m,n ∈ N,

M(T (m,n)) ≤ min {M(T (m− 1, n)) + dn/2e,M(T (m,n− 1)) + (m− 1)} .

Before turning to the proof of this proposition, let us consider an example of the

process we will generalize to obtain M(T (m,n)) ≤M(T (m− 1, n)) + dn/2e.

Example 7.4 Suppose that m = 2 and n = 5. Then

T (2, 5) = (σ1σ2σ3σ4)
2 = σ1σ2σ3[σ4σ1]σ2σ3σ4.

126 7. Braid Height and the Machete Number

Cutting [σ4σ1], we obtain the braid σ1σ2σ3σ2σ3σ4. Applying a machete cut to σ2 and

another machete cut to σ3, our result is σ1σ2σ3σ4 = T (1, 5). In the process, we used

3 = d5/2e machete cuts and so we require at most M(T (1, 5)) more cuts to cut down

T (2, 5).

Now suppose that m = 2 and n = 6. Then

T (2, 6) = (σ1σ2σ3σ4σ5)
2 = σ1σ2σ3σ4[σ5σ1]σ2σ3σ4σ5.

Cutting [σ5σ1], the resulting braid is σ1σ2σ3[σ4σ2]σ3σ4σ5. Cutting [σ4σ2], the simpler

braid is σ1σ2σ3σ3σ4σ5. Lastly, cutting a σ3, we get σ1σ2σ3σ4σ5 = T (1, 6). In the

process, we used 3 = d6/2e machete cuts and so we require at most M(T (1, 6)) more

cuts to cut down T (2, 6).

Proof (Proposition 7.10). If m = 1 or n = 1 then T (m,n) is a trivial knot and so it

has machete number 0. So we can assume that m,n > 1.

First we will show that we can obtain T (m− 1, n) from T (m,n) in dn/2e machete

cuts. We know that T (m,n) = (σ1σ2 · · · σn−1)m. If we have |(n − 1) − 1| > 1 then,

since m ≥ 2, consider the subsequence

B = σ1σ2 · · · [σn−1σ1]σ2 · · ·σn−1.

Cutting the braid level [σn−1σ1], we obtain B1 = σ1σ2 · · ·σn−2σ2 · · ·σn−1. If

|(n− 2)− 2| > 1, we can partition B1 so that [σn−2σ2] is a braid level. Then we cut

that braid level to obtain B2.

In general, in the kth step, we have Bk = σ1σ2 · · ·σn−kσk · · ·σn−1 and have per-

formed k − 1 machete cuts. So long as |(n − k) − k| > 1, we can repeat the above

procedure to produce Bk+1. Otherwise, we cannot repeat this process. Since n is

finite, it will stop when |(n− k)− k| ≤ 1. By our process, n− k ≥ k.

7.3. Bounding the Machete Number 127

If |n− 2k| = 1 then n− 2k = 1. So n is odd and k = n−1
2

. Thus k = bn/2c and

n− k = dn/2e. Hence

Bk = σ1 · · ·σbn/2c[σdn/2e][σbn/2c]σdn/2e · · · σn−1.

Using two machete cuts to remove [σdn/2e][σbn/2c], we obtain B∗ = σ1 · · ·σn−1. In total,

we applied k − 1 + 2 = bn/2c+ 1 = dn/2e machete cuts to B.

If |n− 2k| = 0 then n = 2k. So n is even, k = n
2
, and n− k = n

2
. Hence

Bk = σ1 · · ·σn/2[σn/2] · · ·σn−1.

Cutting [σn/2], we obtain B∗ = σ1 · · ·σn−1. In total, we applied k−1+1 = n/2 = dn/2e

machete cuts to B.

In both cases, we applied dn/2e machete cuts to T (m,n) to obtain

B∗(σ1σ2 · · ·σn−1)m−2 = (σ1σ2 · · ·σn−1)m−1 = T (m− 1, n).

Hence M(T (m,n)) ≤M(T (m− 1, n)) + dn/2e.

Now we will show that we can obtain T (m,n− 1) from T (m,n) in m− 1 machete

cuts. We know that the generator σn−1 appears a total of m times in T (m,n). Let us

consider the first m− 1 such generators to be on their own braid level and cut each

of these levels. This requires exactly m− 1 cuts. The result is a braid on n strings

with braid word (σ1σ2 · · · σn−2)mσn−1. Since σn−1 appears only once, we stabilize this

braid to obtain the braid on n− 1 strings given by

(σ1σ2 · · ·σn−2)m = T (m,n− 1).

128 7. Braid Height and the Machete Number

ThusM(T (m,n)) ≤M(T (m,n− 1)) + (m− 1). Since the machete number is the

minimal number of cuts required, we take the minimum of our two upper bounds.

Note that, using only Proposition 7.10, we may not trivially obtain Proposi-

tion 7.9. We know that the machete number of the Hopf link, equivalently the

(2, 2)-torus link, is 1. For the trefoil knot, also known as the (3, 2)-torus link, The

smallest upper bound given by Proposition 7.10 matches the bound of Proposition

7.9. So M(T (3, 2)) ≤ 2. However, let us consider the (4, 2)-torus link. In this case,

M(T (4, 2)) ≤ min {M(T (3, 2)) + 1,M(T (4, 1)) + 3}. Since we do not currently know

M(T (3, 2)), this upper bound is either 2 or 3. In the latter case, the bound given by

Proposition 7.9 is tighter as d4/2e = 2.

Since T (m,n) = T (n,m), we can immediately improve Proposition 7.10 by con-

sidering the bounds for both T (m,n) and T (n,m). Moreover, since the proof of

Proposition 7.10 used 2-cuts only, we can restate it in terms of the 2-machete number

instead.

Corollary 7.3 For m,n ∈ N,

M2(T (m,n)) ≤ min {M2(T (m− 1, n)) + dn/2e,M2(T (m,n− 1)) + (m− 1)} .

Finally, since the process of removing one string from the braid T (m,n) required

1-cuts in the proof of Proposition 7.10, we can bound the 1-machete number of a

general torus link using the same process and the fact that T (m,n) = T (n,m).

Corollary 7.4 For m,n ∈ N,

M1(T (m,n)) ≤ min {M1(T (m− 1, n)) + (n− 1),M1(T (m,n− 1)) + (m− 1)} .

7.4. Conclusions and Future Work 129

7.4 Conclusions and Future Work

Despite the fact that our upper bounds for the machete number were obtained using

elementary methods, we also explored other methods of bounding the machete number.

Some of these approaches included attempting to use the linking number, Alexander

polynomial, and the HOMFLY-PT polynomial. It requires a painfully small amount

of work to show that the linking number and Alexander polynomial are useless when

bounding the machete number.

We know that a split link has linking number 0 and, since the machete number

eventually cuts down a braid, the final result must be a split link. Hence, for a

non-zero linking number, it seems as though we should be able to obtain a lower

bound. However, the nature of smoothing poses a problem. Suppose you start with a

nontrivial link of at least two components and smooth one of the crossings between two

components. Then the two components become a knot after smoothing, as shown in

Figure 7.7. Although it may seem as though this process could leave the components

unaffected, a strand going into a link component must also leave that same component

at some point and so the interactions of any two links will occur at an even number

of crossings. Thus, in the case of 2-component links, smoothing makes the linking

number a useless measure – a knot necessarily has linking number 0.

L1 L2

Figure 7.7: Effect of smoothing on strands of different components.

The Alexander polynomial also suffers from the nature of smoothing. As we know

from Theorem 5.3, a split link has Alexander polynomial 0. For a braid on at least

3 strings, it is possible to apply machete cuts to the braid such that we have a split

130 7. Braid Height and the Machete Number

link projection prior to cutting down the braid. At the point of obtaining a split link

projection, we have lost any possible information from the Alexander polynomial.

While the HOMFLY-PT polynomial has been used to bound the braid index of a

link, as in Theorem 6.3, it does not appear that we can use the degree difference of

either the variable l or m to tell us anything about the machete number. However, all

of this is based on anecdotal evidence, and it is possible that some information can be

obtained. Afterall, the HOMFLY-PT polynomial distinguishes between at least some

split links.

One calculation involving links that still shows promise is the writhe. Unfortunately,

in general, the writhe is not a link invariant. Recall that the linking number is a sum

over the signs of crossings between components. Writhe generalizes this notion by

summing over the signs of all crossings in a link [1, 2]. This means that the writhe

varies whenever a Reidemeister I move is applied to the link, and so it is not a link

invariant. However, writhe is known to be an invariant for specific classes of braids. It

is currently unclear what role the writhe plays in the machete number computation,

but it seems to relate to expected machete numbers for certain links.

Given our relative lack of success in bounding and accurately determining the

machete number of a large number of links, we conclude with a list of conjectures that

arose during our investigation of the machete number. The first such conjecture seems

only reasonable for a link invariant that should measure link complexity in some form.

Conjecture 7.1 Let L be a link and L′ the result of cutting a braid form of L. Then

M(L′) ≤M(L).

A proof of this conjecture would confirm that the machete number truly measures

link complexity. Unfortunately, especially since we have had trouble determining the

machete number of even a special class of link, it has been difficult to either prove

this statement or find a good counterexample.

Our second conjecture is the bound that seems to be given by the writhe.

7.4. Conclusions and Future Work 131

Conjecture 7.2 Let B be a braid such that the writhe of the braid, ω(B), is an

invariant. Then M(B) ≥ ω(B)
2

.

Given that there may be a relationship between braid height and the machete

number, a proof of the following conjecture may also be useful.

Conjecture 7.3 The braid height of the (m,n)-torus link can be realized in either

T (m,n) or T (n,m).

Unfortunately, Conjecture 7.3 is all but speculation. However, given that many

link invariants can be realized in the braid representation of the (m,n)-torus link, it

seems plausible that braid height might be as well [1, 2].

The fourth and last conjecture on our list also relates back to the torus links,

although it is specific to the (m, 2)-torus links.

Conjecture 7.4 The bound in Proposition 7.9 is sharp.

While Proposition 7.10 is almost certainly not sharp for all torus links, Proposition

7.9 seems to reduce (m, 2)-torus links very efficiently. Even if it is not sharp for all

(m, 2)-torus links, we suspect that it will be sharp for some of the early ones.

References

1. Colin Adams. The Knot Book. American Mathematical Society, Providence, RI,
2004.

2. Peter Cromwell. Knots and Links. Cambridge University Press, Cambridge, United
Kingdom, 2004.

3. Christian Kassel and Vladimir Turaev. Braid Groups. Springer, New York, NY,
2008.

4. Charles Livingston. Knot Theory. The Mathematical Association of America,
Washington, DC, 1993.

5. Kunio Murasugi. Knot Theory & Its Applications. Birkhäuser, New York, NY,
1996.

6. Dale Rolfsen. Knots and Links. AMS Chelsea Publishing, Providence, RI, 2003.

133

	The College of Wooster Libraries
	Open Works
	2013

	The Machete Number
	David Freund
	Recommended Citation

	Abstract
	Acknowledgments
	Contents
	List of Figures
	Introduction
	Introductory Knot Theory
	Link Projections
	Link Equivalence
	Link Invariants
	Crossing Number
	Linking Number

	Types of Links
	Amphicheiral Links
	Composite Knots

	Surfaces
	Links on Surfaces
	Surfaces with Boundary
	Oriented Surfaces
	Genus and the Classification of Surfaces
	Euler Characteristic
	Seifert Surfaces
	Link Genus

	Graph Theory and Seifert Matrices
	Graph Theory
	Seifert Graphs

	Homology of Graphs
	Seifert Matrices
	S-equivalence of Seifert Matrices
	Determinant and Signature of a Link

	Knot Polynomials
	Alexander Polynomial
	Computation by Seifert Matrix
	Properties of the Alexander Polynomial
	Computation by Conway Polynomial

	HOMFLY-PT Polynomial

	Braids
	Braid Representations
	Closed Braid Representation
	Braid Words

	Braid Equivalence
	Braid Moves
	Markov Equivalence

	Braid Index

	Braid Height and the Machete Number
	Braid Height
	The Machete Number
	Bounding the Machete Number
	Conclusions and Future Work

	References

