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Abstract

Difficulty adjustment, although an important aspect of game development, is a

tedious and costly process that produces uncertain results due to the wide range

of skill among players. Most of the current approaches to difficulty adjustment in

video games include fixed incremental difficulty curves, data generalization, and

extensive manual playtesting. In this study, we explore genetic algorithms as an

alternative approach to difficulty balancing with a focus on adjusting NPC behavior.

A maze-chase game is built for demonstration purposes. Additionally, a genetic

algorithm based on previous theoretical techniques is developed for the game.
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CHAPTER 1

Introduction

Game balancing is a process that involves fine-tuning a game to promote fairness

and maximize player satisfaction. In the field of game design, game balance is

a crucial part of a game’s commercial success. An imbalanced game, whether

that is through an overpowered weapon or a lack of diverse paths to victory, can

greatly hinder the player’s enjoyment and thus engagement. Despite its importance,

game balancing is a tedious and difficult task due to the diverse range in skill and

preferences among players, often requiring extensive manual trial and error testing

or other forms of qualitative research [7].

One of the common types of game balancing is diffculty adjustment, which is the

focus of this Independent Study. As of now, no universal model exists for any form

of difficulty adjustment. Most games rely on fixed incremental difficulty curves (e.g.,

"easy", "medium", "hard" modes) otherwise known as static difficulty adjustment

[17]. This means that the level of difficulty, once chosen, does not often shift over

the course of gameplay, or can only be changed according to a limited set of options.

This type of difficulty adjustment is popular in game design as it provides an easier

solution to maintaining difficulty balance and thus player engagement. However,

with so many factors of player engagement being highly subjective values, it is

challenging to pinpoint the right level(s) of difficulty to implement in a game.

Furthermore, these difficulty levels are often derived from data generalizations or

1



2 1. Introduction

pure guesswork - both of which do not guarantee that everyone will have the same

desired experience while playing them.

To mitigate these issues, much research has been conducted on dynamic difficulty

scaling methods which automatically change a game depending on the player’s

progress or performance. There are many benefits to using dynamic difficulty

adjustment, namely, less manual testing involved during game development and

ensuring that the different needs of most, if not all players, will be met. While

there are many different approaches to developing a dynamic difficulty adjustment

method, utilizing machine learning algorithms have shown promising results thus

far. One of such algorithms is genetic algorithms, a group of heuristic, unsupervised

machine learning algorithms that uses principles inspired by natural selection and

evolution [12]. In genetic algorithms, candidate solutions mate and compete against

each other until convergence occurs [12]. Created to solve nonlinear optimization

or search problems for which little information is known, genetic algorithms do not

depend on training sets of input and output data [12]. Thus, this type of algorithm

is a good choice for accommodating uncertainties such as establishing the right

difficulty for unknown player skill levels.

This Independent Study explores the use of genetic algorithms as an alternative

approach to solving the problem of balancing difficulty in video games. The

genetic algorithm implemented focuses on evolving non-playable character (NPC)

behavior. Although different factors in gameplay could be manipulated for the

purpose of difficulty balancing, NPC behavior provides a large portion of the players’

interactions and experiences in many genres. Thus, NPCs can determine not only a

significant part of gameplay but also difficulty. To aid our investigation into the

use of genetic algorithms for dynamic NPC behavior, a Pac-Man inspired maze

chase game and genetic algorithm are developed for demonstrational purposes.

This type of game was chosen for its reliance on using NPC behaviors as its main
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game mechanic. A genetic algorithm is implemented to run alongside gameplay,

allowing the player to play against enemy characters to collect performance data.
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CHAPTER 2

RelatedWorks

2.1 Game Design Theory

The study of game design is mainly concerned with maximizing player experience

through exploring and leveraging human behaviors. In addition to genetic algo-

rithms, this Independent Study focuses on two concepts belonging to this area of

study, which are game balance and theory of flow. Explanations for such concepts

are provided in this section.

2.1.1 Theory of Flow

The theory of flow is a well-established theory commonly cited in the area of

game design to help maximize player enjoyment [2]. The theory defines flow, a

mental state marked by complete absorption and investment while carrying out a

certain activity [5]. This state of deep immersion is often found in (but not limited

to) recreational, intrinsically rewarding activities known as play in the field of

psychology [5]. As defined by Csíkszentmihályi, the state of flow is identified by

six key elements [5] :

• The merging of action and awareness, or "merged awareness", which entails a

sense of oneness with the task at hand. While performing tasks in a non-flow

5
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state often includes an awareness of limitations and reflective thought, the

flow state makes tasks feel automatic and effortless to the individual. For this

merge to happen, the task must be within one’s capabilities.

• The centering of attention which involves limiting one’s stimulus field. Any

stimuli irrelevant to the current task is ignored. In many cases, this shifting

of focus arises from rules and sources of motivation which help define what

relevant stimuli are in a given situation.

• Loss of self-consciousness. The state of flow provides a temporary environment

free from the constraints or consequences of everyday life and thus the

awareness of self that arises from it.

• Sense of control over one’s actions or their environment derived from the

absence of worry. This makes performing tasks under the state of flow feel

manageable and low-stake. Once again, this requires the task to be feasible

for the individual. Additionally, this is connected to the loss of reflective

self-consciousness which removes the inner critic from one’s thought processes.

• Unambiguous demands for action and feedback. Goals and means are

apparent and non-contradictory. Simple rules along with feasible tasks often

make this aspect easy to achieve.

• Its autotelic nature. Flow is intrinsically rewarding and motivating. In this

state, process often takes precedence over goals.

For all activities, flow is regarded as the state of optimal experience as it

maximizes enjoyment and satisfaction [2]. For this reason, it is crucial for games to

induce and maintain a state of flow. In order to achieve this, conditions that give

rise to this state must be identified. According to Csíkszentmihályi, three conditions

must exist for flow to be induced [5]. The first condition requires a task to have clear
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sets of goals. As flow is autotelic, goals in this state are not seen as ends but rather a

means to provide structure and direction to a task [5]. Another key condition for

flow to arise is clear and immediate feedback. In everyday life, decision making

involves constantly negotiating between changing and often contradictory demands,

making it difficult to achieve or maintain flow. The purpose of having clear and

immediate feedback is similar to that of the first condition, that is to provide

direction for the task at hand [5]. Additionally, clear and immediate feedback

leaves the individual with little doubts regarding their next action. Feedback serves

to inform the individual how they are progressing in an activity, which in turn

dictates how they will adjust or maintain their current actions [5]. Csíkszentmihályi

states that feedback is inherently negative when dealing with challenging tasks [5].

This is seemingly detrimental to maintaining flow, which is meant to be a positive

experience. Despite this, it is still possible for flow to occur due to a third condition

- a balance or match between perceived challenge and ability. Flow is induced when

one sees the challenge as feasible or not too difficult for their skill level [5]. As seen

in Fig. 2.1, the model of flow predicts that flow can occur at high levels of challenge

or demands for action, as long as there is also a high level of skill to match.

As demonstrated by the model of flow depicted in Fig. 2.1, this balance is very

fragile, and thus flow can not be easily maintained for extended periods of time.

An individual who is unable to cope with the current challenges or demands for

action becomes anxious. Meanwhile, when their capabilities exceed the challenge

at hand, boredom occurs. Additionally, if their skills overwhelmingly exceed the

challenge, anxiety overcomes the state of flow once more [5].

It is important to emphasize the subjective nature of the third condition. Csík-

szentmihályi states that flow depends entirely on one’s perception of their own

skills and the challenges at hand. Thus, it is entirely possible for someone to move

between states of anxiety, boredom, and flow while performing the same task [5].
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Figure 2.1: Csíkszentmihályi’s Model of Flow [5]

Furthermore, everyone experiences flow differently. Some people are more prone to

flow and can sustain it, while others can not. The frequency and quality of flow is

experienced at varying levels from one person to another [2].

Recent research shows an apathy state that is experienced when both skill and

challenge, although perfectly matched and within the flow channel, are low [2].

Cruz and Uresti proposes a new model that extends on the original model to

reflect these findings and provide a more detailed description of an individual’s

emotional state. This eight channel model, as seen in Fig. 2.2, is centered around

the concept of a "subject mean", which emphasizes the individualized nature of the

flow experience. "Subject mean" refers to the individual’s ability. According to this

model, an individual achieves the flow state when both challenge and skill, while

being equally matched, are perceived as above their subject mean. Additionally, new

states such as arousal, control, and relaxation are included. States previously seen

in the original model such as worry, anxiety, or boredom are given new placements

on the graph [2].
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Figure 2.2: Cruz’s and Uresti’s Eight Channel Model of Flow [2]

Both models imply that it is difficult for games with static difficulty and mechanics

to maintain a state of flow. To apply the model in such games, one has to assume that

players will perceive skills and challenges objectively. Due to the model being based

on entirely subjective measures of challenge and skill, it is not a reliable predictor of

when a player will achieve flow, even with objectively feasible challenges. Dynamic

game mechanics can, however, avoid this problem and foster or maintain the

player’s flow. Additionally, by specifically utilizing artificial intelligence techniques,

one can completely tailor the elements of the game according to the player’s needs,

therefore bypassing the subjectivity of their experience and perceived skill.
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2.1.2 Game Balancing

Game balancing, which involves fine-tuning various in-game factors to match with

the capabilities and demands of the player, is a crucial aspect of game design. This

is because having good game balance fosters flow and maximizes player enjoyment

or satisfaction. While there are many factors involved in creating a balanced game,

one of the most common types of game balancing is difficulty adjustment. This

often involves ensuring a balance between challenge and what is within the player’s

skill level - the very basis of a flow state [11].

Static difficulty adjustment is currently the most widely employed form of

difficulty balancing in video games. In many games, players are given a fixed

range of predefined difficulty modes to choose from. Such difficulty modes are not

specifically tailored according to the player’s needs; they are general speculations

regarding what the majority of players may be capable of or might find interesting.

It is difficult for games with predefined difficulty levels to consistently optimize

player satisfaction as this approach does not take into account the wide range of

skills and preferences players have. Furthermore, players’ capacity to improve and

adapt over time varies at different rates. Thus, the progression in difficulty may not

line up with the player’s learning. Similarly, a player’s learning strategy may be

completely different from the developer’s expectations [1].

Currently, much of difficulty balancing is done manually through repeated

trial-and-error testing [7]. This process, known as playtesting, is not only time

consuming but also costly. Furthermore, determining what adjustments to make

based on feedback from playtesting is difficult, and subtle changes can drastically

and unpredictably affect the rest of the game. An example of this occured during the

development of Halo 3, in which a sniper rifle weapon was found to be overpowered.

Many small adjustments were made including clip size, time between shots, the

maximum amount of ammo, as well as reload time, with each change involving
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extensive playtesting. As such, implementing static difficulty is largely dependent

on costly but fuzzy answers and intuition, both of which are not very reliable or

effective [7].

As games vary greatly in terms of mechanics and design, no mathematical

formula or universal model exists for the purpose of game balancing [7]. An

alternative approach would be dynamic difficulty adjustment, which adapts various

in-game factors to the player’s skill level while maintaining enough difficulty to keep

the game interesting. Using adaptive mechanisms allows the difficulty adjustment

process to become more fine-grained and in tune with the player’s progression

or learning strategies. While widely different approaches have been proposed

and tested for dynamic difficulty adjustment, such as reinforcement learning or

genetic algorithms - the latter of which is the focus of this Independent Study -

Andrade et al. identifies three basic requirements that all methods must satisfy.

Firstly, such methods must be able to quickly identify and adapt to the player’s skill

level. Secondly, the method must track the player’s progression closely and swiftly.

Thirdly, the method must provide believable and seamless changes. For example,

the game’s enemy should not have to perform several self-defeating actions before

coming up with a suitable resolution. For dynamic difficulty adjustment, timeliness

is a big factor. Any delays or misalignment in progression will remove the player

from the flow state [1].

As mentioned previously, there are various approaches to implementing dynamic

difficulty adjustment. An approach is to have an implicit or explicit measure to

keep track of the difficulty level the player is facing. This measure could be as

function that maps various in game factors to a value that describes how difficult

the game feels to the player. For example, a measure such as rate of successful hits

or game score can be used to interpret the game’s difficulty. An issue that arises

from solely using this approach is the mismatch between perceived and objective
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difficulty. Thus, this may not be the best method for optimizing flow. Another

approach to dynamic difficulty adjustment is to control the game environment,

such as giving players more weapons or increasing their life point recovery rate.

A problem with this approach is the number of rules that have to be manually

implemented, which is not only time-consuming and difficult to maintain but also

error-prone. Furthermore, there is a limit to the game’s adaptive capabilities using

this method [1].

A more intuitive and innovative solution would be to use machine learning to

adapt game agents or environment to the player’s skills [1]. Should this be successful,

much of the unpredictable problems and time-consuming manual work can be

avoided. Additionally, most of the issues that arise from the approaches mentioned

above can be solved with artificial intelligence. In exchange for higher adaptability,

however, machine learning methods often deal with problems regarding timeliness

as convergence can take a long time to achieve. This would lead to long waiting

times on the player’s end which disrupts their flow. The following section discusses

the different ways in which certain genetic algorithms mitigate this problem.

2.2 Genetic Algorithms

This Independent Study aims to use genetic algorithms as an alternative approach

to game balancing. Genetic algorithms provide an alternative heuristic approach to

Artificial Neural Network (ANN) training that is based on natural selection and

biological evolution [12]. Additionally, it is an unsupervised machine learning

method which doesn’t rely on training sets of input-output data [12]. For this

Independent Study, genetic algorithms were chosen over other machine learning

methods due to the number of existing research conducted on closely related

topics. Video games are popular test beds for genetic algorithms, which leads to a
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prevalence of game-related research for this type of machine learning algorithm.

Additionally, game balance and maximizing player enjoyment are both difficult

to measure or predict, even with large sample data. Problems that involve highly

probabilistic interactions such as these are suitable for genetic algorithms, which do

not depend on example pairs of input-output data that are typical of supervised

learning algorithms.

2.2.1 Basic Concepts

All genetic algorithms search through a space of potential solutions or hypotheses

in order to find the best fit hypothesis for a given optimization problem. Such space

is known as the population. In each iteration of the algorithm, the population is

updated to form the current generation. During this process, hypotheses in the

current generation are evaluated based on a fitness score that determines their

accuracy compared to given training data or according to a set of constraints.

Individuals with lower fitness are then removed to make space for better hypotheses

in the next generation. While some hypotheses are kept intact, others are used

to produce new hypotheses for the next generation. For this to occur, all genetic

algorithms undergo crossover and mutation operations similar to that of sexual

reproduction and evolution in nature in order to produce new solutions [12].

Algorithm 1 displays pseudocode for a prototypical genetic algorithm. In

this algorithm, the Fitness parameter represents a fitness function that returns a

numerical score, while FitnessThreshold represents a chosen maximum fitness value

that acts as the terminating condition for the loop. Additionally, p represents the

fixed number of hypotheses in a population throughout all iterations, r represents

a fraction of the population to be replaced by the crossover operation, and m

represents the percentage of hypotheses to be mutated with uniform probability

[12].
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Algorithm 1 Prototypical Genetic Algorithm

function GA(Fitness, FitnessThreshold, p, r, m)
Initialize population with p hypotheses
Evaluate each hypothesis h in P against Fitness function
while maximum fitness of a hypothesis in the population is less than Fit-

nessThreshold do
Create new generation Ps

Probabilistically select (1 − r)p hypotheses from P to add to Ps

Perform crossover on r·p
2 pairs of most fit hypotheses. Produce two

offsprings for each pair, add all to Ps.
Perform mutation on m percent of hypotheses in Ps chosen with uniform

probability
Update current population to Ps

Evaluate each h in Ps against Fitness function
end while
Return hypothesis with highest fitness

The first step in the algorithm is to initialize a population P with p randomly

generated hypotheses. Through each iteration, every hypothesis is evaluated

through the Fitness function. If the largest fitness value among all hypotheses is

smaller than the fitness threshold, the algorithm creates a new generation, which is

denoted by Ps, the successor population. To update the current population, a group

of hypotheses is chosen to be added to the next generation. This is done based on

probability, such as that calculated by Equation 2.1 below [12]:

Pr(hi) =
Fitness(hi)∑p
j=1 Fitness(h j)

(2.1)

This equation describes the probability of being chosen for a hypothesis hi. In

most cases, this probability is proportional to the fitness value of hi and inversely

proportional to the fitness values of other competing members in the population.

For this prototypical algorithm, the probability that hi is chosen is determined by

dividing its fitness value by the sum of all fitness values from the other hypotheses.

Thus, a fitness value that is higher in comparison to that of other members in the

population increases the chances of hypothesis hi to be chosen.
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The next step of the genetic algorithm is the crossover operation which essentially

combines parts of two parent hypotheses to produce a new child hypothesis. Before

crossover can occur, the algorithm first selects r·p
2 pairs of the most fit hypotheses.

Then, for each pair of hypotheses the crossover operator is applied. The inner

workings of crossover operators differ between each genetic algorithm and largely

depend on the genome representation or encoding chosen for such algorithm. Thus

the specifics of the crossover process will be discussed at length in the following

sections.

In addition to crossover, the algorithm also goes through a mutation operator.

The mutation step of the algorithm forms new hypotheses by making random

changes to existing hypotheses. These existing hypotheses, which together make

up to m percent of the members of the population, are also randomly chosen. Once

again, the specifics of this process differs between each genetic algorithm, and will

be explained in the following sections.

2.2.1.1 Genetic Representation

In genetic algorithms, hypotheses, also referred to as genomes, are typically rep-

resented using fixed-length bit strings. Such bit strings are divided into specific

substrings that are used to represent attributes, otherwise known as genes. Within

a substring, each bit position represents a possible value it can take on and thus a

constraint or rule, with 1 enabling the constraint (’true’ or ’yes’) while 0 disables it

(’false’ or ’no’) [12].

To demonstrate how this representation is applied, consider the problem of

encoding if-then rules. These rules, as hypotheses, act like boolean-valued functions

defined over a set of data, i.e. for any given instance the hypothesis returns 0 or

1 depending on whether the instance satisfies its constraints. For this example,

assume that a rule precondition consists of a conjunction of two different attributes -
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Outlook and Temperature [12]. For the attribute Outlook, there exists three possible

values - Sunny, Overcast, and Rain. This can be represented using a three bit string,

where each bit position represents a value available for the attribute. Thus, a bit

string of 010 represents the constraint of Outlook = Overcast, while 111 represents

the most general constraint, namely Outlook = Sunny ∨Overcast ∨ Rain. Similarly,

for the attribute Temperature, there exists four values that can be encoded into a

string of three bits. In this case, each bit represents the values Hot, Cold, Warm, and

Cool. Together, these bit strings would form a larger string of length seven that

make up the precondition statement. Suppose that the postcondition is PlayTennis,

which takes on values of Yes and No, an extra bit can be added which results in an

eight bit string. Thus, a rule such as

IF Outlook = Sunny ∧ Temperature = Cool THEN PlayTennis = Yes (2.2)

can be represented by the bit string

10000011 (2.3)

As this is a fixed-length string representation, attributes in a hypothesis can be

identified easily [12].

2.2.1.2 Operators

In genetic algorithms, operators are used to generate new solutions from pre-

existing solutions. Two types of operators exist in genetic algorithms: crossover

and mutation. While crossover serves to retain attributes from previous hypotheses

with high fitness, mutation is used to introduce new attributes or genes into the

population. Both operators require solutions to be encoded in ways that make it
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possible for genes or attributes to be extracted and identified, such as in the case of

using bit encoding. The ability to easily manipulate attributes is one of the main

advantages of using bit-strings. With fixed-length bit-string representation, one can

perform the crossover or mutation operations by simply modifying bits in the string

[12].

All crossover operators dealing with bit-string representation involve copying

selected bits or substrings from each parent hypothesis through a "crossover mask".

This is illustrated in Figure 2.3 below:

Figure 2.3: Common operators for bit string representation (including mutation operator) [12]

Figure 2.3 displays the common types of crossover operators for genetic algorithms

with bit-string representation. There are many different ways of performing
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crossovers, each with different sets of strengths and weaknesses. The most simple

type of operator, the single-point crossover, works by selecting a single pivot point

for bits to be exchanged using a crossover mask. For a hypothesis with n bits, the

single-point crossover operator chooses the first m bits from one parent and the

remaining n −m bits from the other parent. The offspring would then have its first

n bits from the first parent, and n − m bits from the second parent. In contrast,

two-point crossover works by selecting two crossover points and exchanging the

bit substrings in between or outside of those two points [9].

While single and two-point crossover operators are relatively simple to imple-

ment, they provide very limited options for information exchange. For two parent

hypotheses of length n, the single-point operator only allows for 2n exchanges. As

for two-point operator, there are only n2
− n outcomes. A more effective way would

be to perform uniform crossover, which selects bits instead of segments. Such bits

are chosen randomly and independent of other bits in the string. The crossover

mask for this type of operator is created by generating a random bit string with

each bit chosen at random and uniformly - that is each bit has the same probability

of being chosen. This type of operator allows for a significantly higher number of 2n

outcomes and is suggested through research to be more effective than single point

and two point crossover methods [9].

Mutation, unlike crossover, only requires a single parent. In the mutation process

for bit string representation, a single bit or more are randomly selected and modified

as seen in Fig. 2.3. Mutation is often performed after the crossover process [12]

and is useful for creating variation or recovering lost attributes in the population.

It is intended to be most effective after the algorithm has reached a local minima,

converging to a solution that is good but not the best [9].
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2.2.2 rtNEAT

rtNEAT is the real-time implementation of the NeuroEvolution of Augmenting

Topologies (NEAT) algorithm. Its purpose in the original study conducted by

Stanley and Miikkulainen is to train agents that could respond and adapt to the

player’s actions dynamically [16]. In the study, rtNEAT served as the core mechanic

for the experimental game NeuroEvolving Robotic Operatives (NERO), which was

solely developed for this research. The premise of NERO revolves around the player

training a team of agents to battle against other teams in the game. The training is

done in real time with the help of the rtNEAT algorithm. Over time, as the agents

gain experience and more training is given, their behavior complexifies and adapts

to the player’s tactics [16].

At the fundamental level, rtNEAT is indistinguishable from NEAT and retains

all features and operators of the original algorithm. Unlike many genetic algorithms,

rtNEAT or NEAT uses neural networks instead of bit strings for hypothesis repre-

sentation. NEAT evolves structures and weights of neural networks by repeatedly

performing crossover and mutation operators on the best hypotheses in the current

population or generation. The algorithm begins with simple, randomized neural

network structures and evolves hypotheses on its own without the need for a

predetermined starting topology. By doing so it is able to efficiently converge to

the simplest solution through incremental structural changes. Additionally, this

allows NEAT to minimize the search space much faster with less evaluations during

training compared to other Neuroevolution (NE) methods [15].

2.2.2.1 Genetic Representation

NEAT and rtNEAT evolves hypotheses or genomes in the form of neural network

structures and sets of weights and genes. According to Stanley and Miikkulainen,

there is a distinction to be made between these two forms of representation [16].
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The set of weights and genes are described as genotypes whereas neural networks

that result from the mappings carried by such genotypes are called phenotypes (Fig.

2.4). Both are representations of a single genome [16].

Figure 2.4: Mapping of genotype into phenotype [16]

In NEAT, each hypothesis or genome contains two types of genes: connection

genes and node genes. Node genes are neurons in the network, whereas connection

genes conceptually refer to the connection between two neurons. To be specific,

connection genes are sets of a weight value and two connected node genes - the

in-node and out-node, with in-nodes situating in the lower levels of the neural

network as shown through the direction of arrows illustrated in Fig. 2.4. The

weight value of the gene determines how much influence it has over the final

solution. Additionally, a connection gene set also contains an enable bit as well as

an innovation number, both of which play an essential part in the crossover and

mutation process. An enable bit keeps track of whether or not the connection gene

is active, while the innovation number keeps track of a connection gene’s historical

origin and identifies matching genes for the crossover process [14].
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2.2.2.2 Initial Population

Genetic algorithms that evolve neural networks often start with a completely

randomized set of topologies [16]. This strategy often takes many generations for

the algorithm to find a solution [16]. NEAT, however, begins with an initial uniform

population of network with no hidden genomes and random weight values [16].

This allows the algorithm to begin minimally and have networks grow only out of

necessity. New structures are introduced to the population incrementally through

mutations, and survive only when they are proven to be useful over time. An

advantage of this approach is that NEAT requires significantly less evaluations than

that of the norm and efficiently minimizes the search space. The resulting solution

is thus minimal and optimal [16].

2.2.2.3 Operators

In both NEAT and rtNEAT, crossover is done by matching the connection genes

of two parent genomes according to their innovation numbers. As illustrated in

Fig. 2.5, NEAT’s crossover process begins by aligning the genes according to their

innovation numbers. Genes that don’t have a match are called disjoint or excess

genes, which are topologies or attributes seen in only one genome and not the

other [14]. In most cases where two genomes have varying levels of fitness, genes

with matching innovation numbers are randomly inherited while excess genes are

chosen from the fitter parent. In the case where both parents are of equal fitness,

however, excess genes are also randomly inherited, as shown in Fig. 2.5 [16].

Unlike what occurs in the mutation process for bitstring representation, mutation

for NEAT revolves around manipulating the topology of neural networks. This

is done by adding node or connection genes. Both types of genes are involved

in the mutation process, thus two types of mutation can occur: add connection

mutation and add node mutation. As shown in Fig. 2.6, add connection mutation
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Figure 2.5: NEAT’s Crossover Process. The numbers on top of each box represents the innovation
number of each gene [16]

involves inserting a new connection between two pre-existing but unconnected

nodes in the neural network. This new connection is also assigned a random weight

value. Meanwhile, add node mutation involves inserting a new node in between

two previously connected nodes. This leads the existing connection to disable and

results in two new connection genes. The weight of the original connection is then

transferred to the second half of the split that leads out from the new node while

the first half leading into the node receives a weight value of 1 [14].
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Figure 2.6: NEAT’s Mutation Process. Add connections mutation inserts a new connection node to
two existing unconnected nodes. This node, which in this case is node 7, is assigned a
random weight value. Add node mutation inserts a new node to an existing connection.
In this diagram, node 5 is disabled. Nodes 8 and 9 are added, with 9 receiving the
original weight and 8 receiving a weight value of 1 [16].

2.2.2.4 Speciation

Crowding, a phenomenon in which a highly fit genome and its offspring begin

to take over the population, often occurs in genetic algorithms [12]. In NEAT,

crowding is associated with a loss of innovations, a term which refers to structures

or attributes added to the population through the mutation operation [16]. For such

modifications to be innovations, it should not exist prior to the current generation.

To recall, mutations is how genetic algorithms introduce variation and diversity

into the population. However, introducing new mutations to a network initially

decreases its fitness, as this destroys desirable structures that were inherited from

previous generations. Because of this loss of fitness, innovations will often not

survive long enough in the population to be optimized due to new genes being

discarded as soon as they are introduced. Not being able to inherit these new genes

will lead to less diversity [14].
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To maintain innovations and avoid crowding, NEAT categorizes similar network

structures into different niches called species. The premise behind speciating the

population is to force genomes into competing with other structurally similar

individuals in their species. This would allow innovations to remain and optimize

through niches in the population, rather than individual genomes [15]. Additionally,

further preventative measures are employed to keep one species from taking over

the population. To do this, NEAT uses two concepts: explicit fitness sharing and

historical markings.

Historical markings is one of the concepts unique to NEAT-derived algorithms

[16]. It is the system used to track matching topology among genes during the

crossover processes. The idea behind historical markings is that structurally

identical genes are derived from the same ancestral origin. For every new gene that

is introduced as the result of a mutation operation, the global innovation number is

incremented. This value is then assigned to the new gene as its innovation number,

which does not change should it be inherited. As historical markings keep track of

innovations and matching genes, it can be used to determine topological similarity,

which is necessary for speciation. For example, a smaller number of excess or

disjoint genes would imply more matching genes and thus shared ancestry and

greater similarity. By taking advantage of this idea and specifying some form of

hard threshold for similarity, genomes can now be categorized into different niches

in the population. In NEAT, the equation used to measure the compatibility distance

δ is expressed through the following mathematical formula [14]:

δ = c1
E
N

+ c2
D
N

+ c3W (2.4)

The compatibility distance value between two genomes is obtained from a linear

combination of the number of excess and disjoint genes as well as the average

weight difference of matching genes, both enabled and disabled. This is represented



2.2. Genetic Algorithms 25

by the variables E, D, and W respectively. The coefficients c1, c2, and c3 determine

the importance of each of these factors. N is the number of genes in the larger

genome of the pair [16].

NEAT keeps an ordered list of species in the population, which allows genomes

to be speciated in a sequential manner [14]. Speciation is done on a per generation

basis [14]. To determine a genome’s compatibility with one of the species in the

population, a representative genome of such species is randomly selected from the

previous generation. Using a compatibility threshold δt, if the resulting δ value

does not exceed this threshold, the current genome is therefore compatible with the

representative genome and will be added into the species. However, if the resulting

δ value crosses the threshold, a new species will be created with the current genome

as its only member. In the case that a genome is compatible with multiple species, it

is placed in the first compatible species in the ordered list. The steps involved in

speciation are summarized in the Genome Loop pseudocode below [16]:

Algorithm 2 The Genome Loop

for genome g in population P do
for species s in list S (The Species Loop) do

if δ > δt for all species in S, generate new species snew with g as its member
then

else
if δ < δt for s, place g in s then

Another prevention measure for crowding and loss of innovation is explicit

fitness sharing, which manages the size of each species. Explicit fitness sharing is

implemented to ensure that species with high performing genomes are not able

to dominate and take over the population. In explicit fitness sharing, genomes in

the same species share fitness. This means that species have to avoid becoming

too large as the average fitness will decrease as a result of having to share among
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too many genomes. The mathematical formula for adjusting the fitness value of a

genome is given as follows [16]:

f ′i =
fi∑n

j=1 sh(δ(i, j))
(2.5)

fi represents the original fitness of the genome i, whereas f ′i represents the adjusted

value. The sharing function sh returns 0 or 1 depending on whether the compatibility

distance between i and some genome j in the population is above or below the

threshold δt (respectively), which means that
∑n

j=1 sh(δ(i, j)) represents the number

of genomes belonging to the same species as i. Thus, the adjusted fitness value is

simply the original fitness divided by the number of genomes in i’s species [14].

Given the adjusted fitness values for each genomes, the new size of a species is

recalculated every generation using the following mathematical formula [15]:

N′j =

∑N j

i=1 fi j

f
, (2.6)

where N′j and N j denote the new and old number of genomes in species j respectively.

The new size N′j is calculated by dividing the sum of adjusted fitness values fi j of

genomes i in the species j by the mean adjusted fitness of the entire population

f . Upon finding the new size N′j, the algorithm then randomly mates the best-

performing r percent of the species. This process generates N′i offspring, which are

then used to replace the species’ entire population and thus eliminate low-performing

individuals. Through this formula, the effects of explicit fitness sharing can be seen:

species grow when their average adjusted fitness is above the population’s average,

or shrink when the reverse is true [15].
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2.2.2.5 Real-time Implementation

NEAT is highly effective against other neuroevolution methods when it comes

to complex tasks such as the benchmark double pole balancing task [15]. Thus,

it can be adapted to work in real time for video games. As NEAT is an offline

algorithm, some modifications are required for it to function in an online setting. In

scenarios such as the game NERO, game agents are treated by rtNEAT as genomes

in the population [16]. In order to behave dynamically, genomes must continuously

evolve and be replaced at the same time as fitness evaluations [16]. This is not the

case for the original NEAT algorithm, which only replaces the current generation of

genomes once it is done evaluating the entire population [16]. Depending on the

type of game and the player’s expectations, this strategy may still work. However

with games like NERO whose seamless evolutionary mechanic plays a central part,

replacing the entire population all at once may feel unnatural to the player and

ruins immersion as the changes are too obvious.

rtNEAT mitigates this by implementing an additional feature that constantly

replaces an individual in the current population after a certain amount of time.

Usually this time interval is relatively short so that the replacement feels invisible

to the player. Furthermore, as only a single individual with poor fitness is replaced

at a time, the changes feel more gradual and natural to the player. The algorithm

for this new feature is demonstrated in Algorithm 3 below [16]:

Algorithm 3 rtNEAT Replacement Cycle

for every n ticks of the game clock do
Calculate adjusted fitness value for all genomes in population
Remove genome with worst adjusted fitness after a sufficient amount of time

has passed
Re-calculate average adjusted fitness for each species
Choose two genomes from a parent species and create offspring
Adjust dynamic compatibility threshold, reassign genomes to species
Replace removed genome with new offspring
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Figure 2.7: rtNEAT’s continuous removal and replacement cycle [16]

rtNEAT, despite being modified with many changes, still retains the speciation,

complexification, and protection of innovation that was key to the original algorithm.

It is important to specify that only the genome with the lowest adjusted fitness is

removed from the population. This prevents new topological mutations from being

removed prematurely. Removing genomes with lowest unadjusted fitness does not

take fitness sharing or speciation into consideration, and thus innovation will no

longer be protected. Additionally, time is also taken into account when deciding

the worst genome to be removed. In a real-time context, each agent is introduced

into the population at different time periods. In order to protect innovation, it is

important for such agents to remain for a sufficient amount of time before removal.

This will allow new genes to persist among the population through mating and

inheritance [16].
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Offspring creation in rtNEAT also retains the speciation dynamics of the original

algorithm. Parent genomes are randomly chosen from high performing species,

which are chosen probabilistically based on how their average adjusted fitness values

compare to the overall population average. As for species reassignment, rtNEAT

uses a dynamic compatibility threshold that slightly raises or lowers depending

on whether there are too many or too few species in the population. This keeps

the number of species in the population consistently stable. In addition, rtNEAT

does not reassign genomes every time a replacement occurs. In NERO, for example,

species are reorganized after every five replacements [16].

A unique problem that arises with implementing rtNEAT is determining the

time interval, or n ticks, between each replacement. Using a law of eligibility,

an appropriate value can be determined. This is expressed by the following

mathematical formula [16]:

I =
m
|P|n

(2.7)

where I represents a fraction of ineligible agents in the population, m denotes

the minimum time before eligibility, n is the time between each replacement, and

|P| is the size of the population. To recall, rtNEAT takes into consideration the

age of each genome in the population. Given a minimum time m, agents are only

eligible for replacement when its age exceeds this threshold. According to this law

of eligibility, the fraction of ineligible agents I lower with a smaller m threshold or a

larger population and n value. Whether or not I should remain small depends on

various factors; the mating pool minimizes when I is larger, but too many eligible

agents can affect the game’s performance due to limited CPU resources [16].
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2.2.3 CIGAR

Case-Injected Genetic Algorithm, also known as CIGAR, combines genetic al-

gorithms with long term case-based memory for better performance and faster

problem-solving. The idea behind CIGAR is to allow genetic algorithms to gain

experience and apply previous knowledge to solve a similar problem rather than

starting from scratch. To recall, genetic algorithms typically begin with a random-

ized population of hypotheses to ensure diversity and avoid search bias. Such

bias, however, may be beneficial for systems that are frequently required to solve

similar or related problems. One of such systems is video games, the domain of our

research. From a simple game like Pac-Man to an open world like that of Skyrim,

game mechanics often revolve around a repeated set of actions. Such actions may

be slightly altered or expanded upon for variety and difficulty adjustment, but they

rarely change completely throughout the course of the game. Additionally, compu-

tational performance is a big area of interest in the domain of video games. Resource

limitations often play a big part in not only determining accessibility and player

enjoyment but also game design. As implementing machine learning methods

such as genetic algorithms may take up significant resources, CIGAR’s case-based

memory can greatly improve game performance through faster problem-solving.

Furthermore, CIGAR’s faster performance is necessary for genetic algorithms to

function as a game mechanic or work concurrently with gameplay, such as in the

game NERO from the rtNEAT study.

Overall, CIGAR has been shown to not only learn from previous experience but

also produce faster and better solutions compared to traditional genetic algorithm

techniques [10]. These results were obtained over a series of 50 problems. In

the study conducted by Louis and McDonnell, sets of 50 similar problems were

generated based on three different domains: combinational circuit design, strike

force asset allocation, and job shop scheduling. CIGAR was applied to such problems
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with the goal of demonstrating improved quality of solutions and performance in

mind. In the study, quality of solutions is determined by the best fitness values

obtained from solving each of the 50 problems. Meanwhile, performance is dictated

by the time taken to solve each problem as well as number of generations taken to

find the best solution [10].

2.2.3.1 Algorithm

As illustrated in both Fig. 2.8 and Fig. 2.10, the CIGAR system can be seen as being

composed of interactions between the genetic algorithm and case-based reasoning

modules. CIGAR works by periodically introducing appropriate solutions, both full

and partial, from previously solved problems into the population to quickly find

solutions without having to start from scratch. Such solutions are taken from the

case base - a database that stores and supplies the genetic algorithm with problems

and solutions, the latter of which is what makes up the term "cases". To be specific,

a case in CIGAR refers to a candidate solution genome with additional information

on its fitness value as well as when it was created. CIGAR doesn’t need to begin

with a predefined set of cases; the case base is able to boot itself and grow over time

through the genetic algorithm module’s problem solving attempts [10].

There are two ways of approaching the CIGAR algorithm. The first approach,

referred to as CIGARp in the Louis and McDonnell study, injects cases based on a

problem similarity metric. This approach is based on the assumption that similar

problems will have similar solutions. As illustrated in Fig. 2.8, this version of

CIGAR works by first finding similar problems in the case base then injecting a

few of their solutions into the genetic algorithm’s initial population. In addition to

the small group of injected solutions, the rest of the genomes in the population are

randomly initialized to ensure diversity. Afterwards, the genetic algorithm carries

out its search as usual, storing any good partial solutions it comes across into the
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case base through a preprocessor. Note that these solutions are saved from different

generations and vary in fitness. Such solutions consist of genomes with the highest

fitness in their current populations. This process works cyclically every time the

system is given a new but similar problem to solve [10].

Figure 2.8: Conceptual diagram of CIGARp [10]

To examine how CIGARp works in the long run, let there be n problems that

need to be solved sequentially, as illustrated in Fig. 2.9. Each problem is denoted

by Pn. Prior to solving the problems, the case base is initially empty. Starting with

P0, a genetic algorithm is initialized with a random population of genomes. As the

algorithm attempts to solve the problem, the system generates cases to be stored in

the case base. At this point, it will not attempt to inject solutions from cases into the

population. Moving onto P1, it will once again generate new cases to be added to

the case base. However, this time it will also attempt to inject cases from P0. For

problem P2, it should be noted that while the process is repeated, the case base

now has cases from both P0 and P1 for the system to choose from. Thus, it can be

generalized that for an arbitrary problem Pn, the system injects cases from P0 to Pn−1

into its population [10].

When applied to a parity checker design problem, Louis and McDonnell found

certain patterns that arose in CIGARp’s behavior. Firstly, for any two problems that
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Figure 2.9: Solving n problems with CIGARp [10]

are far apart, CIGARp performs better when it injects into Pnew less fit solutions

from Pold. This pattern is further exaggerated in larger sized problems. Secondly,

injecting cases with higher fitness in Pold tend to lead to a quicker flattening of the

learning curve over time [10].

The second approach to CIGAR - CIGARs - works under the assumption that

similar solutions will have similar problems. For each problem, CIGARs periodically

removes genomes with lowest fitness and replaces them with solutions from the

case base that are similar to the current best genome. Unlike CIGARp, injection and

generation of cases occurs repeatedly within a single problem, as illustrated in Fig.

2.10. The algorithm for CIGARs is given below [10]:

This pseudocode adapts the standard steps involved in a canonical genetic

algorithm but performs additional injection and caching steps. These steps are

carried out after a certain time interval and not during every iteration of the while

loop. The period of time stored in the variable injectPeriod is determined by the

experimenter. It is important to choose a sufficiently large time interval for the
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Algorithm 4 CIGARs algorithm

t = 0
Initialize P(t), which is currently at the first generation.
while termination condition has not occurred do

if t%injectPeriod == 0 then
Perform InjectFromCaseBase(P(t),CaseBase)

end if
Generate the next generation’s population P(t + 1) using selection, mutation,

and crossover techniques
t = t + 1
if NewBest(P(t)) then

Cache the new best individual
end if

end while
Save cached genome into case base

=0

Figure 2.10: Conceptual diagram of CIGARs [10]

genetic algorithm to make some progress before case injection and population

replacement occurs. After injecting cases and removing a small, low performing

part of the population in function InjectFromCaseBase, the genetic algorithm goes on

to create the next generation using the standard selection, crossover, and mutation

techniques. At this point, should the injected individuals lead to a new best genome

or an increase in the maximum fitness value of the population, such genome will be

cached then later saved into the case base [10].
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2.2.3.2 Determining Similarity

For CIGAR to work, it is important for the injected solutions to be relevant - this

means simply injecting random solutions will not provide good results [10]. As

two different versions of CIGAR exists, there are two different ways of determining

similarity.

The first approach is based on problem similarity. To recall, CIGARp works

under the assumption that similar problems have similar solutions. The algorithm

focuses on finding cases from similar or relevant problems in the case base before

injecting their solutions into the population. For this approach, determining a

problem similarity metric is not only necessary but also non-trivial, according to

previous research [10]. However, defining such a metric is often difficult. Problem

similarity depends on the problem or domain at hand, and each domain will have a

different similarity metric [10]. Furthermore, genetic algorithms are often applied

to poorly understood domains or problems where predetermined sets of inputs and

outputs are not necessarily available [10].

While having a similarity metric is necessary when using this approach, making

it exact is not. An inexact, problem-independent similarity metric may still work

as long as a wide variety of solutions are stored in the case base or injected into

the population [10]. This means solutions with varying levels of fitness taken from

different generations. By effectively covering all bases, CIGARp lets the genetic

algorithm module determine relevant solutions by assigning such solutions fitness

values. This is the more realistic and widely applicable approach [10]. Should none

of the injected solutions be useful, they will have low fitness and be eliminated

from the population over time. Thus, the system will fall back into a purely genetic

algorithm based approach. With the case-based reasoning module gone, CIGAR’s

performance will definitely decrease, but it will generate a solution nonetheless [10].

The second approach is based on solution similarity. Typically, solution similarity
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in CIGAR determines what cases to be injected based on their similarity or closeness

to the current best genome in the population [10]. This is often much simpler than

determining problem similarity, as the system can take advantage of the genetic

representation used by the genetic algorithm [10]. Genetic algorithms commonly

uses string or binary representations, and determining similarity between strings

is relatively easy [10]. This similarity is also domain independent, unlike the

problem similarity metric of the first CIGAR approach [10]. This makes CIGARs the

preferable approach, and research has shown good results from having a similarity

measure that is solely syntactic [10]. However, this does not mean that the similarity

metric of CIGARs is nontrivial. Similar to the CIGARp, solution similarity metrics

can be inexact and noisy [10]. However, due to the way genetic algorithms function,

unsuitable cases will be quickly eliminated from having low fitness. In addition,

injecting cases with an inexact metric can still aid with maintaining diversity in the

population [10].

In the study conducted by Louis and McDonnell on sets of 50 problems, injection

of relevant solutions was determined probabilistically based on syntactic solution

similarity. The following mathematical formula was used [10]:

Prob(C) =
l −D(I,C)∑i=n
i=1(l −D(I, J)

(2.8)

The formula describes the probability of injection as being proportional to its

similarity to the current best member of the population. I denotes the best performing

genome, whereas C represents the case being considered at hand. Additionally, l

stands for the length of the bit string representation and n represents the amount of

cases in the case base. D in this case is the function used to determine the number

of bits that differ between two binary strings, otherwise known as the hamming

distance. This function is given by the following formula [10]:
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D(A,B) =

i=l∑
i=0

Ai ⊕ Bi (2.9)

where l remains the genome length and ⊕ represents the exclusive or operator. As

the hamming distance determines the number of bit positions at which the values

of two bit strings differ, l −D, in reverse, is used to find syntactic similarity between

two genomes [10].

Using an inexact or problem-independent similarity metric, different strategies

can be applied depending on the closeness of solutions from two given problems.

For example, if solutions differ more, cases from earlier generations are more useful.

Conversely, if their solutions differ less, cases from later generations should be used

instead.

2.2.4 ACTB

Advocates and Critics for Tactical Behaviors (ACTB) is a genetic algorithm originally

created for controlling unmanned ground vehicles, but was later adapted to address

the need for flexible and believable NPC behavior in video games [6]. Like rtNEAT,

it adapts genetic or evolutionary techniques to real-time problem-solving. This

is necessary as games are becoming more open-ended, and what makes them

enjoyable no longer relies on limited sets of objectives, rules, or roles [6]. Instead,

a large number of games now depend on the simulation and immersion seen in

first person shooters or open-world games. With a more open-ended or simulative

approach to game design, there is a growing expectation for NPCs to produce

not only useful but also believable behavior, which was not the case in the past.

Furthermore, having dynamic NPC behavior is necessary to avoid predictability,

which was often an issue in older games that rely on scripted behaviors.

ACTB at a higher level functions as a control interface or a genetic computational
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human behavior model (HBM). Attempts at applying static, non-evolutionary

HBMs to control NPC behavior has been previously explored with mixed results

[6]. A HBM-based NPC controller decides, in real-time, what actions an NPC

should perform based on a combination of internal metrics and factors available in

game [6], such as game rules or points. While achieving complex NPC behavior

is possible for static HBMs, maintaining such level of complexity while ensuring

effectiveness is not an easy task without machine learning [6]. Furthermore, the core

aspects of good and effective NPC behavior should not be sacrificed for excessive

complexity or poor performance. In addition, complexity is not the only factor when

it comes to creating dynamic and believable behavior, as addressed in the following

section. ACTB alleviates these issues by including an evolutionary component to

the HBM. ACTB works by controlling NPCs with continuous re-planning cycles

in addition to internal game logic, allowing them to adapt to changing conditions

and strategize against human players as the game goes on. Each genome in the

population represents a plan that can be changed through traditional crossover

and mutation operators as well as the additional flagging system explained in the

following sections. Plans are evaluated against a set of criteria that determines their

fitness and thus effectiveness [6].

2.2.4.1 Metrics

Good NPC behavior at its core is comprised of three different criteria: the ability to

achieve objectives, to perform in an efficient manner, and to be interesting. The first

criterion, which is being able to achieve objectives or to "play well", is what makes

an NPC useful to a game. In many games, this is easily achieved through strict or

straightforward rules and winning conditions, such as that of backgammon, which

simplifies the roles NPCs play. The second criterion, which is to perform efficiently

and intelligently, requires the game to have NPCs not only achieve their objectives
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but also do so in the right way. For example, an enemy NPC should not have to do

any excessive or unnecessary actions before shooting at the player. Determining

effectiveness depends on the mechanics of each game, but may include factors such

as resources consumed or the amount of damage taken. The third criterion, which

is to perform tasks in an interesting way, is much more subjective than the other

two as it heavily depends on the player’s perception. This subjective quality can be

determined through numerous factors including unpredictability, interpretability,

or variety. In older video games, the first two criteria are much more applicable and

perhaps easier to achieve due to their predictable and scripted gameplay. The third

is more achievable for games with a simulative and open-ended approach [1].

One of the factors that can be used to determine interesting behavior is believ-

ability. This factor is the key idea behind the development of ACTB. What makes a

behavior believable is how human-like it is. In order to create believable behavior,

human behavior has to be broken down and understood to be emulated. Hussain

and Vidaver define believable behavior as being comprised of three broad categories

- plan, act, and react [6]. Such categories are used by human players to judge NPC

behavior. The plan category includes being able to strategize, coordinate actions

with other players or NPCs, and recognizing failed attempts. The act category

expects abilities and timing that are human-like or within human capabilities. The

last category, react, includes reacting to different factors and agents in the game

appropriately. This includes players, changes in environment, foes, and allies [6].

Believability forms the basis for much of the features and inner workings of

ACTB. The categories of believable behavior act as principles that guide the set of

criteria or objectives plans are evaluated against. Such objectives form a unique

feature called critics, which comprises of [6]:

• ObjectiveSuccess, which determines whether the planned path successfully

reaches the objectives of the game.
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• Safety, which deals with the amount of risk involved in the plan. Risk is often

identified as being within the enemy’s line of sight.

• Traversability, which relates to the amount of obstacles present in the path.

• Duration, which pertains to the time it takes to completely traverse through a

path.

• TimeToObjective, which is the time to complete a certain objective.

• ComplexPath, which deals with the complexity of a path, i.e: the number of

segments or branches present in it.

• Skulk, which measures visual exposure. This is different from Safety, as an

NPC can be visually exposed but still safe from the enemy.

It should be noted that each critic as defined in the original research conducted by

Hussain and Vidaver is meant for games with NPC path planning and stealth or

aggression mechanics [6]. However, such critics can be easily altered to suit the

needs of other game types. Critics can also be added or removed. To ensure that

NPCs can react in real-time, however, there is a limit to the number of critics added

to the ACTB controller [6].

2.2.4.2 Framework

Fig. 2.11 summarizes the workings of ACTB at a higher level. ACTB depends on a

real-time cycle of replanning that constantly changes and introduces new plans into

the system. The two key components involved in this process are critics, which are

criteria that determines a plan’s effectiveness (as explained in section 2.2.4.1), as

well as advocates, which make changes to previous plans and creates new plans

according to the system’s current knowledge of the game world. In ACTB, plans

consist of sequences of waypoints or paths leading up to an in-game destination as
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well as actions to perform at every step along the way. These actions may consist

of avoiding enemies or obstacles, collecting key items, and so on. In each cycle,

ACTB re-ranks plans according to their effectiveness using the critics model, and

chooses the best plan to be executed in game. A portion of the remaining plans then

undergo changes via the advocates component, and the cycle restarts once more [6].

Figure 2.11: Overview of the ACTB cycle [6].

Like all genetic algorithms, ACTB performs a search through the space of possible

genomes or solutions. For ACTB, such genomes are plans for NPC movements

or paths. Such plans are evaluated against critics, whose weighted sum make up

their fitness values. Creating new genomes or plans is mainly managed by the

advocates component. Alongside the canonical crossover and mutation techniques,

the advocates component introduces new plans into the population via a flagging



42 2. Related Works

system. This system involves evaluating plans against critics criteria and marking

problematic parts of the genome that need change [6].

Detecting changes to the game world and updating the system’s knowledge

is done cyclically. With large quantities of new information constantly available

in game, it can be difficult for the system to keep track of changes and form plans

that respond to them in a timely manner. Furthermore, taking into consideration

that each cycle of the system involves updating the entire population, having too

many factors to consider at once would reduce performance significantly. In order

to effectively handle such changes in real-time, ACTB utilizes categories of reactions

or behavioral themes. Such themes, termed as attitudes, include Brave, Scared,

Cautious, and Ambitious. They are illustrated in Fig. 2.12 below. In response to

changes to world conditions, ACTB identifies the appropriate attitudes used by

critics and advocates to plan accordingly. Each attitude prioritizes and rewards

different critics, for instance a Scared attitude would give higher weight to the Skulk

or Safety critic [6].
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Figure 2.12: Decision making through attitudes in ACTB [6]
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CHAPTER 3

Software

The aim of the software portion of this Independent Study is to demonstrate how

genetic algorithms can determine the right kinds of NPC behaviors that would

suit the player’s skill level. Thus, a game with NPCs is implemented along with

a genetic algorithm that is developed specifically for the game’s mechanics. This

chapter is divided into two main sections to discuss features of the base game and

its genetic component.

3.1 Game Overview

The game developed for this Independent Study is inspired by Pac-Man, an

influential maze chase video game. Pac-Man was chosen as the main source of

inspiration due to its 2D graphics, straightfoward core mechanics and high replay

value. Additionally, this game has less graphical and computational requirements

allowing for it to perform well on most machines and lessen the performance impact

that may stem from its genetic component, despite using a genetic algorithm with

binary representation is typically fast. Furthermore, Pac-Man’s gameplay mechanics

are simple yet sufficiently complex to give rise to many different possibilities for

genome representations. Given the straightforward and well-established nature of

Pac-Man NPC’s, any changes to their behavior can be easily identified. Having too

many or too complex mechanics may make changes in difficulty hard to quantify. In

45
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terms of replay value, the games’ replayability provides an infinite ceiling for growth

in both challenge and skill, which is necessary to maintain a state of flow according

to Cruz’s and Uresti’s model [2]. Additionally, if behavior of NPCs change slowly

and require many iterations of the genetic loop, the game’s replayability can help

mask these issues and allow the algorithm ample time for correction. Furthermore,

it is a game that contains enemy characters with a variety of different behaviors and

states that could be useful for an attitude-based approach to genetic algorithms,

similar to that of ACTB. The amount of enemy characters in the game may also

work in a real-time approach similar to that of rtNEAT where each character acts as

a separate genome in the population, although typically in genetic algorithms ideal

population sizes are much bigger [13].

For the purpose of this Independent Study, some changes have been made to

the gameplay mechanics of the original Pac-Man:

• Firstly, the game does not implement "modes" for the enemy characters. In the

original Pac-Man, all four ghost characters behave according to three different

modes - Chase, Scatter, and Frightened. To summarize, ghosts often spend

most of their time alternating between Chase mode, which involves following

Pac-Man based on the player’s current tile position, and Scatter mode, which

leads them to disperse. Frightened mode is uniquely triggered by the player

character consuming one of the "Power Pellets" or "Energizers" which are

represented by larger dots on the map. In Frightened mode, ghosts move

slower and randomly, allowing them to be eaten by Pac-Man.

In our game, ghost characters are always in Chase mode. This decision was

made to simplify the game, provide a testbed that displays clear qualitative

results, as well as accommodate the workings of the genetic algorithm. Thus,

without the genetic component, it is important to maintain balance and prevent

ghosts from overpowering the player. With four ghosts constantly being in
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Chase mode, they can easily catch up to and corner the player. Their default

speed is therefore set to a value of 3 compared of that of 8 from the player. In

our game, a lower number represents slower speed, whereas a higher number

represents faster speed.

• Power Pellets in Pac-Man forces all ghosts on screen to go into Frightened

mode. This mode, along with Scatter mode, however, are both removed to

simplify the game for testing and implementation of the genetic component.

With only Chase mode implemented, the game’s Power Pellet feature is

therefore removed. Collecting small pellets will generate 1 point, while large

pellets will give the player 10 points.

• Similarly, there will be no "Bonus Fruits" feature for simplicity. In the original

Pac-Man game, Bonus Fruits refer to collectibles that give players additional

points in addition to the pellets available on screen. They appear near the

starting point of the ghosts’ paths and tend to disappear after a set amount of

time. This enables a "High Score" feature, which does not exist in the game

developed for this Independent Study.

• The score system of the game keeps track of how far the player is from collecting

all of the available points on the map. This provides a clear winning condition

for the player to achieve which matches one of the conditions for inducing

flow - having unambiguous demands for action and feedback. Furthermore,

having a capped maximum score can inform the genetic algorithm the player’s

progress towards victory, which could be useful information for its fitness

function. Additionally, there is now more emphasis on the performance and

behavior of the enemy ghost characters in determining the game’s replay

value.

• The health system does not exist in the game implemented for this Independent
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Study. The original Pac-Man gives players "extra lives" - several chances for

the player to keep playing after colliding with the enemy. No penalties are

applied and all progress (e.g, pellets consumed, points, time recorded, etc.) is

saved upon restarting the game through an extra life. The game only reaches

the game over state when all lives are lost. To simplify the game’s mechanics

and shorten single playthroughs, our game implements an "instant death"

feature. This means that no progress is saved upon player character death,

and the game instantly triggers a game over state. The reason behind the

shortening of playthroughs is to accomodate the workings of the genetic

algorithm, which performs fitness updates at the end of each run during win

or game over states. An in-depth explanation on the genetic algorithm will be

explained in the following sections.

• A timer is added to our game alongside a score tracker to implement the

fitness function. In the original Pac-Man game, a timer does not exist. The

timer serves to inform the algorithm of how fast the player character is killed

by a ghost, whereas the score tracker keeps track of how far the player is from

victory. Both of these factors can be taken into consideration by the genetic

algorithm’s fitness function.

• In the map of our game, no "warp tunnels" exist. In the original Pac-Man,

this feature denotes two special tiles located in the middle portion of the map.

These tiles are aligned and placed in two opposite sides. They appear open

instead of closed like the rest of the tiles that surround the edges of the maze.

These tiles serve to allow Pac-Man to travel to the opposite side of the map,

which is a good mechanic to have to balance the difficulty of the original game.

In order to compensate for the lack of warp tunnels and Frightened or Scatter

modes, the speed of the ghosts have been slowed down significantly in the
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static version of our game. This is to create more distance between the player

and enemy characters as well as allow players more time to strategize and

plan their next move.

• The original Pac-Man has a total of 256 levels and features the same map

throughout the game. For this Independent Study, only one level and one

map is created as a control variable. This helps to accurately compare the

differences in difficulty brought by changing ghost behaviors and speed in

each playthrough.

Both parts of the software - the game and the genetic algorithm - are developed

in Unity using C#. The original game without the genetic component is stored in the

"Game" scene of the project. Meanwhile, the version that incorporates the genetic

algorithm can be accessed through the scene "Game GA". In order for the restart

button to function, simply comment out the respective code block for one of the

scenes in function "RestartButton" of HUDController.cs.

The following subsections explain the components that make up the game’s core

mechanics. Although referred to as "controllers" or "managers" at a higher level,

each component is implemented as a separate class in code form.

3.1.1 Node Controller

Nodes, which are single squares of a grid, form the underlying organizational struc-

ture of the game. This is to mimic the way the original Pac-Man was implemented.

This grid system allows both player and enemy characters to travel around the

maze easily on a node to node basis. Additionally, enemy characters can track

down and follow Pac-Man easily without the need for raycasting or line of sight

techniques. Furthermore, in terms of designing the maze, the grid system makes it
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easy to standardize and restrict the height or width of paths to the dimensions of a

one-by-one square.

The Node Controller class is attached to each node on the map, which altogether

forms a maze. For each node, the controller keeps track of all four neighboring

nodes (based on cardinal directions) and whether they are valid positions for a

character to move to - for example, whether a neighboring node is a wall or a part

of the path, marked by "false" or "true" respectively. In addition to keeping track of

neighboring nodes, the Node Controller also checks whether its node contains a

pellet or an energizer. Most nodes contain a pellet by default, but special nodes such

as the Ghost Starting Nodes (explained in section 3.1.1.1) of the static game do not.

In order to keep track of neighboring nodes, two variables - one boolean and one

GameObject variable - are provided for each cardinal direction (left, right, up, down).

For clarification, a GameObject is a class specific to Unity, and holds reference to an

instance of an in game object - in this case, that is a nearby node object. The process

of checking for neighboring nodes first involve raycasting, which is performed for

all directions in the start of the game. A boolean variable for a certain direction is set

to true if a valid neighboring node exists for that direction. GameObject variables

will then store reference to the node object so that it can be accessed by the method

GetNextNode as well as the Movement Controller. The method GetNextNode

receives a direction and returns the node that exists in such direction.

By default and at the start of the game, most nodes have a pellet boolean variable

set to true and an energizer boolean variable set to false. If a node has the pellet

variable set to true, it contains a pellet. The Node Controller will then check for an

"Energizer" tag attached to the pellet object. If there is an "Energizer" tag set for the

pellet object, the pellet is an energizer. Thus, the energizer variable is also set to true.
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3.1.1.1 Ghost Starting Nodes

Ghost Starting Nodes are special nodes that provide starting positions for the ghost

characters in game. This mechanic is directly taken from the original Pac-Man game.

In the static game, housing the ghosts in these nodes gives the player some time to

move away from the enemy characters at the start and thus balances the game’s

difficulty. There are four different starting nodes denoted by the names "Left",

"Right", "Center", and "Start". "Left" refers to the leftmost node within the box that

houses the ghosts at the start of the game. Similarly, "Right" refers to the rightmost

node within the box. "Center" refers to the node between "Left" and "Right". "Start"

is located above "Center" and within the paths of the maze, in between two of the

normal nodes containing pellets. To leave this box, the ghosts follow the order of

"Left" or "Right" node to "Center" node and finally "Start" node, as illustrated in Fig.

3.1 . For example, ghosts positioned on the "Left" and "Right" starting nodes move

towards the "Center" node and upwards to the "Start" node. Meanwhile, the ghost

on the "Center" node simply has to move to the "Start" node. From the "Start" node,

they would then move along the paths of the maze to chase the player. This feature

is only implemented in the game’s static version, as it was later discovered that

the different starting positions may impact a ghost’s fitness, which also takes into

account its average distance away from the player.

3.1.2 Movement Controller

The Movement Controller is built on top of the Node Controller. It is attached

to both enemy and player characters on screen. Whereas Node Controller is in

charged of organizing and linking nodes in the map, the Movement Controller is

the component that directs characters to move in between such nodes. A character’s

Movement Controller also contains details regarding its movement speed, and in
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Figure 3.1: Initial ghost movement pattern from the static version of the game.

the case of the player is also able to remove pellet objects once they have been

consumed. Using the GetNextNode method provided in the Node Controller, the

Movement Controller makes it possible for additional, character-specific controllers

to simply specify desired directions in the form of strings (e.g, "right" or "up") for a

character to follow. More details regarding these character-specific controllers will

be provided in the following sections.

A Movement Controller contains the following variables or objects: the GameOb-

ject "nextNode" to store the next node to move to, a floating point number denoting

the character’s speed, strings for both the current and next directions, as well as a

boolean variable isGhost that is set to true for enemy characters. This controller func-

tions through the Update and FixedUpdate functions provided by Unity. Detection

of input is done on Update, whereas FixedUpdate handles the transformations to

simulate continuous character movement. This is because Update is not guaranteed



3.1. Game Overview 53

to call in fixed intervals while FixedUpdate is. Update is then used as a "steerer" that

constantly checks whether a character is directly aligned on top of a node and tells

them which node to go towards next depending on whether a node exists in a given

direction. FixedUpdate then comes in to physically move the character towards that

next node. Note that the given direction does not change until a new direction is

specified through an additional character-specific controller. This creates the effect

of characters to continue to move in one direction until a new direction is specified,

similar to the way characters move in the original Pac-Man game.

3.1.3 Player Controller

The Player Controller is an additional character-specific controller. Its purpose

is to receive keyboard inputs and use them to dictate the player character’s next

direction. In the game, the player can choose to use both "WASD" or arrow keys

control schemes to move their character. "W" or the up arrow key is used to direct

the character towards the northern cardinal direction. "A" or the left arrow key is

used to direct the character towards the west. "S" or the down arrow key is used

to direct the character towards the south cardinal direction. Lastly, for "D" or the

right arrow key, the player will be directed towards the eastern direction. For each

keyboard input, their respective cardinal direction is saved into a string which

is then fed to the player character’s Movement Controller through the method

SetDirection.

3.1.4 Enemy Controller

Similar to the Player Controller above, the Enemy Controller is an additional

controller specialized for enemy or ghost character behaviors. Unlike the player

character, however, the movement of ghosts are not dictated by keyboard inputs.
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Enemy characters move autonomously around the maze using algorithms. Addi-

tionally, enemy characters do not consume or interact with pellets like the player

character does. Instead, they have a unique feature that allows them to cause a

game over event upon colliding with the player character.

Similar to the original Pac-Man, four different types of enemies exist in this game

- red, blue, pink, and orange ghosts. Although the goal of all enemy characters is

to chase the player character down, they each do so in a slightly different manner.

The different algorithms implemented for each enemy character’s behavior are

described in the following subsections.

In order for all four enemy characters to follow the player, the method GetCloses-

tDirection is provided. GetClosestDirection allows enemy characters to determine

their next direction based on a provided target position. Note that this target

position is not necessarily the player’s position but has to be related to it in some

way - certain ghosts, for example, target the location several tiles ahead and in

the current direction of the player character. The method works by calculating

the distance between the enemy and target for all valid directions (determined

through the Node Controller). A direction is chosen if it has the shortest distance

and doesn’t make the enemy character backtrack - for example, if it is currently

moving towards the right the chosen direction can not be "left". The formula used

for calculating distance is given below, where d represents the distance calculated,

(x1, y1) represents the coordinates of the first point - the enemy character’s location -

and (x2, y2) represents the coordinates of the second point - the target’s location:

d =
√

(x2 − x1)2 + (y2 − y1)2 (3.1)

The differing targets for each ghost type adds a level of complexity to their

behavior, as it allows these enemies to move in different patterns. Additionally, it

gives them a sense of personality, which can be enjoyable for the player to watch.
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These patterns, although simple individually, do give rise to complex group behavior.

For example, two of the ghosts can seemingly "work together" to corner the player

character. Other times, the player may also feel a sense of being "ambushed" by

the ghost characters. The variety this provides may give room to replay value and

provide an exciting level of challenge for the player depending on their skill level.

3.1.4.1 Red Ghost

The red ghost is based on Blinky, one of the ghost characters from the original Pac-

Man video game. It chases the player character consistently and is often seen directly

following them in the game. Like the original Pac-Man, this game uses the player’s

current position as the red ghost’s target. The algorithm for its movement is the

simplest out of all four ghosts, as all it requires is supplying the GetClosestDirection

method with the player character’s current position coordinates. The direction

obtained from GetClosestDirection is then set as the next direction in the Movement

Controller. This is illustrated in Fig. 3.2 [3]

Figure 3.2: Movement pattern for the red ghost type.
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3.1.4.2 Pink Ghost

The pink ghost character is based on "Pinky" from the original Pac-Man game.

Unlike the red ghost, its target position is two tiles ahead of the player’s current

position, in the same direction they’re heading in. This gives the effect of the ghost

"ambushing" the player, as it strives to always constantly move ahead of the player

instead of directly tailing them. This is illustrated in Fig. 3.3.

Figure 3.3: Movement pattern for the pink ghost type. The yellow square and arrow illustrates the
current direction of the player. The pink arrow shows the target of the ghost.

The algorithm for the pink ghost first involves obtaining the player’s target direction

and position. Depending on the player’s direction, it adds to or subtracts from the x

or y coordinate of the player’s position a distance of 2 tiles. If the target direction

is "left", 2 is subtracted from the player position’s x coordinate. Conversely, if the

target direction is "right", 2 is added to the player position’s x coordinate. Similarly,
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for "up" 2 is added to the y coordinate, while for "down" 2 is subtracted from the y

coordinate. The resulting position will serve as the target for the ghost.

3.1.4.3 Blue Ghost

The blue ghost character is based on "Inky", who is also from the original Pac-Man

game. Inky’s character is known in the original game to be difficult to predict. To

program this behavior, the blue ghost takes into account the positions of both the

player character as well as the red ghost. Its target is calculated firstly through

obtaining the location two tiles ahead of the player’s current position and in their

direction of travel. It then obtains the distances between this location and the

red ghost’s position in terms of x and y coordinates. These distances are then

respectively added to the x and y coordinates of the previously obtained location

that is two tiles ahead of the player. Essentially, the algorithm draws a vector from

the red ghost to this location and doubles the vector’s length in order to find the

final target position. This is demonstrated in Fig. 3.4.

In the genetic version of the game, the existence of a red ghost among the genome

population is not ensured. Thus, an invisible red ghost is implemented to ensure

the blue ghost will always behave unpredictably as planned. This red ghost, unlike

its visible counterpart, does not trigger a game over event upon colliding with the

player.

3.1.4.4 Orange Ghost

The orange ghost is based on the character "Clyde" from the original Pac-Man game.

The character’s behavior is unique in the way it switches between two different

modes depending on its proximity to the player character. The first mode occurs

when the player character is less than eight tiles away from the orange ghost. This

mode causes the orange ghost to behave like the red ghost and uses the player’s
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Figure 3.4: Movement pattern for the blue ghost type. The yellow square and arrow illustrate the
current direction of the player. The blue arrow shows the ghost’s current target.

current position as its target. If the player character is more than eight tiles away,

the second mode occurs which sets a tile outside of the maze as its target. This is

illustrated in Fig. 3.5.

The algorithm for the orange ghost calculates the distance between it and the

player’s current position with the same distance formula used in the method

GetClosestDirection. As for implementing the second mode, a special node is placed

just below the maze’s bottom left corner. This node is empty and has no pellet,

unlike the ones in the maze.
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Figure 3.5: Movement pattern for the orange ghost type. Two potential targets exist for the orange
ghost - a location outside of the maze and the player character.

3.1.5 GameManager

The Game Manager controls and keeps track of the various states and events

happening in game, such as win or game over scenarios. It also keeps track of the

current score and playtime. This is all done through the Game Manager class’s

Update loop, which constantly updates the time and score as well as number of

pellets and energizers in game. If the number of pellets and energizers goes to zero,

the win state is set.

Updating score is done by constantly keeping track of the number of pellets as

well as the number of energizers available in game. As stated previously in section

3.1, each pellet will reward the player with 1 point while each energizer will give

them 10 points. The score is simply the sum of all the pellets or energizers obtained

multiplied with their respective points.
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It is intended for other classes to reference the Game Manager class for infor-

mation regarding time, score, and game state. Furthermore, all information in this

class is set to public in order for other classes to modify the game state. For example,

Enemy Controllers are able to change the game state, which is stored in the Game

Manager, to game over if the enemy collides with the player.

3.1.6 HUD Manager

The HUD Manager is in charge of managing the heads-up display of the game.

This includes displaying score and time as well as a pop-up that communicates

to the player whether they have won or lost the game. As demonstrated in Fig.

3.6, this pop-up appears as a basic grey rectangle accompanied by words saying

"You Lost!" or "You Win!" depending on the state the player has achieved after a

single playthrough. It also includes a "play again" button which resets the scene

and begins another playthrough.

3.2 Genetic Algorithm Overview

The genetic component of the game takes several ideas from Stanley et al.’s NERO

game as well as the rtNEAT algorithm, although with the standard binary encoding

and mating operators. Firstly, it treats each enemy character on screen as a single

genome in the population, and the end of a single playthrough as an epoch or

iteration of the genetic loop. This means that the four ghost characters will count

as the entire population, and fitness evaluations for each member will only be

calculated after a run is over. Secondly, the algorithm allows the player to participate

in the evolutionary process and train enemy characters to behave in ways that

match the player’s skill level - what will now be referred to as the "trainer" model

from this point onwards. Training in the case of our game simply constitutes of
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Figure 3.6: Game Over pop-up.

playing several runs against the four enemy characters generated from the current

population of genomes. To accommodate evolution, a training session will always

consists of more than one run until convergence occurs. Lastly, as a part of the

trainer model it is intended for the algorithm to converge to a suitable solution

that can be stored for use in future playthroughs. Ideally, multiple solutions from

different training sessions can be assembled into a team of new enemies completely

tailored to the player’s needs - this feature is not implemented in the game however,

and is left for future research.

3.2.1 Genome Representation

This genetic algorithm uses binary encoding for its genome representation. It uses a

system of 5 bits, with the first two representing ghost types or color, and the last

three bits representing speed. The first two bits are capable of representing four
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different types - 00 for red, 01 for pink, 10 for blue, and 11 for orange. Meanwhile,

the last three bits are capable of representing speeds from 0 to 7, which is a suitable

range for enemy characters in game. Note that enemies in the static version of

the game have a speed of 3, whereas the player has a speed of 8 in both versions.

While the player is always faster than each of the ghosts, these characters can easily

overpower the player in terms of numbers, even in slower speeds. With a speed

number that is much higher than that of the player’s, the game will be difficult to

test as loss is almost guaranteed.

The reason as to why both ghost type and speed is taken into account is firstly

due to chromosome or genome length. For example, having speed alone would

lead to a length of 3. This not ideal for mating operations, as there are not enough

possibilities for a good solution to arise [8]. This issue is referred to as lack of design

freedom, which does contribute bias to solutions [8]. There is also the observation

that even ghosts of the same type can move differently if set to different speeds.

This is because each ghost will be responding to the player’s positional changes at

different locations of the maze despite having the same behavior patterns. Their

response will vary regarding the closest direction that would lead each of them

to the player. Additionally, speed is a logical and easy way to quantify difficulty.

In contrast, a feature such as ghost type would require extensive playtesting to

determine their respective difficulty levels. Even then, results obtained from such

playtesting may not be applicable to all players. Speed, on the other hand, is more

likely to be a universal or objective measure of difficulty. Everyone can agree

that faster moving enemies are harder to evade, whereas avoiding slower moving

enemies is easier.
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3.2.2 Genome Selection

The genetic algorithm implemented for the game encorporates two selection meth-

ods. In each iteration of the genetic loop, two genomes are probabilistically selected

using the "roulette wheel" algorithm. With roulette wheel, genomes with higher

fitnesses have a higher change of being chosen. The pseudocode for this algorithm

is provided below in Algorithm 5 [4]. Such genomes are intended to be used for

crossover, which produces 2 children genomes. In addition to this selection, after

the mating and mutation processes are over, two fittest genomes of the current

population are also chosen, a selection process called "elitism". Elitism ensures

that the best genomes are always taken to the next generation. In many genetic

algorithms roulette wheel and elitism often go hand in hand. The reason for this is

because roulette wheel does not guarantee the selection of the best genomes and

works probabilistically, which may lead to the loss of good genes in the population

pool. Elitism helps mitigate this problem by guaranteeing that those with highest

fitness scores will always be selected [4].

Algorithm 5 Roulette Wheel Selection

Select random number between zero and total fitness score
Cumulative sum = 0
for each genome in the population do

Add current genome’s fitness to the cumulative sum cumulative sum >
random numberReturn current genome
end for

Roulette wheel works by first selecting a random number between zero and the total

fitness score of the current population. Setting this number aside, the algorithm

iterates through the population and performs a cumulative sum calculation at each

step. Before moving to the next genome, the algorithms check to see if the current

cumulative sum is larger than the random number. If so, the genome at the current

index of the population list is selected.
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Following the rules of a standard genetic algorithm, moving from one generation

to another does not change the population size. Two genomes are removed from the

population at each iteration of the genetic loop to be replaced by two new children

genomes produced from the crossover and mutation processes.

3.2.3 Mating Operators

For this genetic algorithm, the crossover rate and mutation rate are 0.7 and 0.001

respectively. These values are chosen based on Buckland’s recommendations [4]. In

general, choosing values for such rates is highly experimental. To reflect evolution

in real life, the mutation rate is generally set to be much lower than the crossover

rate, as mutations are rare occurrences in nature [4].

The crossover operator chosen for this genetic algorithm is the standard single

point crossover operator previous described and explained in chapter 2. Additional

pseudocode, however, are provided below in Algorithm 6:

As for the mutation operator, single point mutation is chosen for this genetic

algorithm. Similarly, its workings are described in chapter 2. The mutation algorithm

iterates through each bit of the genome encoding and probabilistically changes a bit.

The pseudocode for this operator is provided below in Algorithm 7:

3.2.4 Fitness Function

The fitness function for this genetic algorithm is formed through decomposition.

In this approach, the problem at hand is broken down into several objectives or

criteria. Each objective is assigned a weight which determines their importance

in terms of a genome’s fitness. After a genome’s performance is evaluated, scores

are assigned to each objective. Such scores are then normalized, multiplied by its

weight value and added to form the fitness score.
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Algorithm 6 Single Point Crossover

function Crossover(mom, dad, child1, child2)
if randFloat > crossoverRate || mom == dad then . If the random floating

point number generated is larger than the crossover rate
child1 = mom
child2 = dad

else
crossPoint = random point to swap
for index = 0 to crossPoint do

child1 += mom(index)
end for
for index = crossPoint to end of genome bit list do

child1 += dad(index)
end for
for index = 0 to crossPoint do

child2 += dad(index)
end for
for index = crossPoint to end of genome bit list do

child2 += mom(index)
end for

end if

Algorithm 7 Single Point Mutation

for index = 0 to end of genome bit list genomeBits do
if randFloat < mutationRate then . Flip the bit

if genomeBits(index) == 0 then
genomeBits(index) == 1

end if
if genomeBits(index) == 1 then

genomeBits(index) == 0
end if

end if
end for=0
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In this case, four objectives are identified. In the first objective, a genome, or

a ghost character, has to strive to collide with the player character and trigger a

game over event. However, it should not do this too early in the playthrough.

Through some experimentation, the first 6 seconds is chosen as the threshold for

this objective, although more research is needed to determine the right value. Points

will be rewarded to ghosts that manage to collide with the player, but if they do so

before the aforementioned threshold, points will also be deducted. For the second

objective, in the case of a win event the genome closest to the player will be rewarded

to encourage more aggression. For the third objective, a range is given regarding

the average distance between the player and genome throughout the entire run.

Genomes that fall outside of this range will be punished, whereas those that fall

within the range will be rewarded. The experimental threshold range chosen is

between distances 8 and 20 units, keeping in mind that the maximum distance

obtainable in the map is about 40.361 units measured between two diagonal corners.

Lastly, for the fourth objective, a genome with the speed of zero will be heavily

punished in order to remove it entirely from the population. The reason behind

this objective is because ghosts with the speed of zero prevents the players from

obtaining the last pellet required to win the game.

The mathematical formula provided in Equation 3.2 sums up the fitness function:

Fitness(h) = normobj1(h) + 1.5 ∗ normobj2(h) + normobj3(h) + obj4(h) (3.2)

where normalization is done through the min-max normalization method:

normobji(h) =
obji(h) −min
max −min

(3.3)

h in this case denotes hypothesis, another term for genome. obji(h) denotes the score

obtained from objective i for genome h. The weights for the four objectives, after



3.2. Genetic Algorithm Overview 67

some experimentation, are chosen to be 1, 1.5, 1, and 1 respectively. All objectives,

with the exception of objective 4, are normalized, as very large deductions from the

fitness is desirable. min and max represents the minimum and maximum scores

obtainable for each objective. Each objective has different minimum and maximum

values. For the first objective, the minimum value is 0, and the maximum value

is 10. These values are also the minimum and maximum scores for the second

objective. For the third objective, the minimum score is −658.902, whereas the

maximum score is 36. These scores are the smallest and highest values obtained

from a quadratic function within the range of [0, 40.361]. Objective 3 utilizes

the parabola y = −(x − 8)(x − 20), where 8 and 20 are the previously mentioned

thresholds. The intention behind utilizing such equation is to reward or punish

genomes dynamically - for example, distances closer to the range will have less

points deducted compared to distances further from the range.

Note that more experimentation is needed to determine the ideal thresholds

for this fitness function. For the third objective, the quadratic parabola can also be

replaced with other graphs.

In addition to the fitness function, fitness scaling is also performed. In a standard

genetic algorithm, scaling is generally used to prevent early convergence from using

raw fitness scores [4]. For this genetic algorithm, a method called sigma scaling

is chosen, which keeps convergence from happening too slowly or quickly. Its

formula is provided below [4].


f itness = 0, if σ = 0

f itness =
OldFitness−AverageFitness

2σ , otherwise
(3.4)

where σ represents the standard deviation of the population [4]:

σ =

√∑
( f −m f )2

N
(3.5)
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with f being the fitness of one genome, m f representing the average fitness of the

entire population, and N denoting the size of the population.

3.2.5 Implementation

In terms of code, the genetic component of the game is implemented through three

classes: GeneticController, GeneticData, and the Genome class. The GeneticCon-

troller class is where the genetic loop and various mating operators are programmed.

In the genetic loop implemented by this class, it considers each run or scene reset in

game as one iteration due to the fact that fitness evaluations can only occur after a

playthrough is over. The GeneticController is considered to be the main controller

behind all evolutionary processes that happen in the software, whereas the two

other classes act as helper classes. The first helper class, Genome, encapsulates all

information regarding a genome, such as its encoding in the form of a bit list, its

fitness score, its age in terms of generation, and access to the ghost GameObject

that it instantiated on screen. Throughout all generations, a list of Genome class

objects are kept in the GeneticController class as the population. As for the second

helper class, the GeneticData class serves to retain information between each run

or playthrough in a training session. This class is necessary as resetting a scene in

Unity, a feature used to implement the restart or play again button, removes all

information collected in the previous playthrough. GeneticData stores game and

evolutionary data in static variables, and through its public get and set methods

other classes can essentially use it to load and save information.



CHAPTER 4

Conclusion

4.1 Results

It is expected that the population of a genetic algorithm will at one point converge,

that is all four ghosts characters on screen will eventually have the same color and

speed. With a smaller population, there is no doubt that this will happen relatively

quickly within a few generations. The goal is to have the algorithm recognize and

remove genes that are deemed unsuitable for the player’s experience. This should

result in one type of ghost character that is unique to the player and accommodates

their level of skill. The easiest scenario to determine is all losses within the first

6 seconds till convergence, which should lead to the genome with the slowest

speed no matter what ghost type it belongs to. To recall, speed is an easier way of

quantifying difficulty in comparison to ghost types. Although the different ghost

behavior patterns do factor into a genome’s fitness score, speed also plays a very

large role, especially during the initial stages of a run when all ghosts diverge from

the same location and are closer to one another. Thus, analysis of results will largely

focus on the relationship between a genome’s speed and fitness score as well as the

end game state (i.e. win or loss).

A test was devised in order to determine whether or not the algorithm will

69
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behave as expected. One part of the test involves simulating a total loss scenario,

where the player loses every run early on until convergence. In this scenario, the

player simply stays still in their original spawn location and let the ghosts come to

them. Meanwhile, the other part of the test involves playing normally but with at

least one win playthrough. Losses in this case do not necessarily occur early on in

each run. For both parts, 5 training sessions were performed till convergence to

make up for the non-deterministic nature of genetic algorithms.

Tables 4.1. 4.2, 4.3-4.4, 4.5, 4.6 display all data collected in 5 training sessions

conducted for the total loss scenario. In all tables, the data obtained suggests that,

with the exception of speed 0, the algorithm consistently manages to converge

to the genome with slowest speed. In cases where genomes with the speed of 0

are present, they are removed from the population pool early on. Convergence is

caused by rewarding slower genomes with higher fitness scores. Fig. 4.1 and 4.2,

which illustrate trends in the average speed per generation for training sessions

2 and 4, also display an overall decrease in average population speed stemming

from faster genomes being replaced by slower ones as training progresses. For

most training sessions, convergence occurs quickly with the exception of training

session 3 (Table 4.3), which took 13 generations to reach convergence. The average

number of generations taken for 5 training sessions of the total loss scenario is 5.2

generations. Overall, for this scenario, the data obtained suggest that the algorithm

behaves as expected.

For the second scenario, data from Tables 4.7, 4.8, 4.9, 4.10, 4.11 suggests that the

algorithm works as expected even with a combination of loss and win runs within

a single training session. While additional playtesting is needed to see whether

players find the end results produced by the algorithm to be suitable for their skills,

the algorithm does seem to behave in a logical manner. There is a slight positive

correlation between higher speed and fitness in win runs. As seen in generation
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Generation Color Speed Fitness ScaledFit Age
1 2 2 0.93335 0.40999 0

0 3 0.93373 0.43352 0
1 4 0.92606 -0.04214 0
3 6 0.91380 -0.80137 0

2 2 2 0.92732 0.28868 0
2 2 0.92732 0.28868 0
0 3 0.90778 -0.86603 1
2 2 0.92732 0.28868 1

3 2 2 0.89357 0 0
2 2 0.89357 0 0
2 2 0.89357 0 1
2 2 0.89357 0 1

Table 4.1: Training session 1 for total loss scenario

Generation Color Speed Fitness ScaledFit Age
1 1 1 0.92981 0.28868 0

3 6 0.91765 0.28864 0
2 0 -299.07 -0.86603 0
2 3 0.93660 0.28871 0

2 1 1 0.93321 0.28868 0
1 1 0.93321 0.28868 0
2 3 0.91004 -0.86603 1
1 1 0.93321 0.28868 1

3 1 1 0.89746 0 0
1 1 0.89746 0 0
1 1 0.89746 0 1
1 1 0.89746 0 1

Table 4.2: Training session 2 for total loss scenario
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Generation Color Speed Fitness ScaledFit Age
1 0 5 0.89899 0.28863 0

1 4 0.91506 0.28870 0
2 4 0.91596 0.28870 0
3 0 -299.07 -0.86603 0

2 0 5 0.89427 -0.5 0
0 5 0.89427 -0.5 0
1 4 0.91249 0.5 1
2 4 0.91249 0.5 1

3 0 5 0.90230 -0.5 0
0 5 0.90230 -0.5 0
1 4 0.91482 0.5 2
2 4 0.91482 0.5 2

4 0 5 0.90164 -0.5 0
0 5 0.90164 -0.5 0
1 4 0.91349 0.5 3
2 4 0.91349 0.5 3

5 0 5 0.90168 -0.5 0
0 5 0.90168 -0.5 0
1 4 0.91436 0.5 4
2 4 0.91436 0.5 4

6 0 5 0.90952 -0.5 0
0 5 0.90952 -0.5 0
1 4 0.91771 0.5 5
2 4 0.91771 0.5 5

7 0 5 0.90868 -0.5 0
0 5 0.90868 -0.5 0
1 4 0.91733 0.5 6
2 4 0.91733 0.5 6

Table 4.3: Training session 3 for total loss scenario
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Generation Color Speed Fitness ScaledFit Age
8 0 5 0.89427 -0.5 0

0 5 0.89427 -0.5 0
1 4 0.91249 0.5 7
2 4 0.91249 0.5 7

9 0 5 0.90147 -0.5 0
0 5 0.90147 -0.5 0
1 4 0.91313 0.5 8
2 4 0.91313 0.5 8

10 0 5 0.90952 -0.5 0
0 5 0.90952 -0.5 0
1 4 0.91771 0.5 9
2 4 0.91771 0.5 9

11 0 5 0.89649 -0.5 0
0 5 0.89649 -0.5 0
1 4 0.91123 0.5 10
2 4 0.91123 0.5 10

12 2 4 0.91204 0 0
2 4 0.91204 0 0
1 4 0.91204 0 11
2 4 0.91204 0 11

13 2 4 0.88943 0 0
2 4 0.88943 0 0
2 4 0.88943 0 1
2 4 0.88943 0 1

Table 4.4: Training session 3 for total loss scenario (continued)

Generation Color Speed Fitness ScaledFit Age
1 3 7 0.91536 -0.44146 0

1 3 0.93660 0.83924 0
1 6 0.91765 -0.303 0
0 5 0.921107 -0.09478 0

2 1 3 0.93019 0.28868 0
1 3 0.93019 0.28868 0
1 3 0.93019 0.28868 1
0 5 0.91540 -0.86603 1

3 1 3 0.91051 0 0
1 3 0.91051 0 0
1 3 0.91051 0 1
1 3 0.91051 0 1

Table 4.5: Training session 4 for total loss scenario
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Generation Color Speed Fitness ScaledFit Age
1 1 7 0.91447 0.28865 0

1 0 -299.07 -0.86603 0
3 2 0.93184 0.28872 0
0 7 0.91447 0.28865 0

2 1 7 0.91689 -0.28868 0
1 7 0.91689 -0.28868 0
3 2 0.93102 0.86603 1
1 7 0.91689 -0.28868 1

3 3 2 0.93102 0.28868 0
3 2 0.93102 0.28868 0
3 2 0.93102 0.28868 2
1 7 0.91689 -0.86603 1

4 3 2 0.90222 0 0
3 2 0.90222 0 0
3 2 0.90222 0 1
3 2 0.90222 0 1

Table 4.6: Training session 5 for total loss scenario

Figure 4.1: Average population speed per generation in a total loss scenario for training session 2.

2 of training session 4 (Table 4.10) and generation 2 of training session 2 (Table

4.8), upon winning the fastest genomes are rewarded with a higher fitness score.

However, in generation 2 of training session 3 (Table 4.9) or generation 1 of training
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Figure 4.2: Average population speed per generation in a total loss scenario for training session 4.

session 5 (Table 4.11), this is not the case. Observe that in the latter examples, the

population is filled with what can be deemed as drastically different ghost types.

The orange ghost, for example, which is present in such examples, generally do not

venture beyond the bottom left corner of the maze. The red, pink, and blue ghosts

on the other hand, tend to travel together all across the maze to ambush the player.

Therefore, the red, pink, and blue ghosts have similar behavior. This suggests that

the algorithm rewards faster and thus harder genomes for more skilled players if

ghost types are similar enough for speed to become the only factor that dictates

difficulty. Furthermore, while the difficulty levels of each of the four ghost types are

unknown, the orange ghost is more likely to fall outside of the distance threshold

range of objective 3 in the fitness function due to its behavior patterns.

Overall, it appears that the algorithm does respond appropriately to different

scenarios. However, there is one untested scenario - the total win scenario. This is

due to the difficulty of the game exceeding the researcher’s skill. Participants with

higher skill levels will be needed to obtain data for this case.
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Generation Status Color Speed Fitness ScaledFit Age
1 Loss 0 2 0.99905 0.47272 0

1 2 0.99940 0.48012 0
3 3 0.96444 -0.26186 0
0 7 0.94422 -0.69098 0

2 Win 0 2 0.98954 -0.28868 0
0 2 0.98954 -0.28868 0
1 2 0.99005 0.86603 1
0 2 0.98954 -0.28868 1

3 Win 1 2 0.99888 -0.28868 0
1 2 0.99888 -0.28868 0
1 2 0.99888 -0.28868 2
0 2 0.999902 0.86603 1

4 Win 0 2 0.999945 0.28868 0
0 2 0.99945 0.28868 0
0 2 0.99945 0.28868 2
1 2 0.99915 -0.86603 1

5 Win 0 2 0.993178 0 0
0 2 0.993178 0 0
0 2 0.993178 0 1
0 2 0.993178 0 1

Table 4.7: Training session 1 for at normal playthrough scenario
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Generation Status Color Speed Fitness ScaledFit Age
1 Loss 0 2 0.95879 -0.70437 0

2 5 0.98413 0.19445 0
0 4 0.99738 0.66486 0
2 6 0.97428 -0.15494 0

2 Win 0 4 0.98277 -0.28868 0
0 4 0.98277 -0.28868 0
0 4 0.98277 -0.28868 1
2 5 0.98848 0.86603 1

3 Loss 0 0 -299.005 -0.28868 0
0 0 -299.005 -0.28868 0
2 5 0.95905 0.86603 2
0 0 -299.005 -0.28868 1

4 Loss 2 5 0.95020 0.28868 0
2 5 0.95020 0.28868 0
2 5 0.95020 0.28868 3
0 0 -299.001 -0.86603 1

5 Loss 2 5 0.98076 0 0
2 5 0.98076 0 0
2 5 0.98076 0 1
2 5 0.98076 0 1

Table 4.8: Training session 2 for at normal playthrough scenario

Generation Status Color Speed Fitness ScaledFit Age
1 Loss 3 2 0.99677 0.51078 0

1 1 0.99630 0.48634 0
1 4 0.97617 -0.5508 0
0 5 0.97820 -0.44632 0

2 Win 3 2 0.97993 -0.28868 0
3 2 0.97993 -0.28868 0
3 2 0.97993 -0.28868 1
1 1 0.98204 0.86603 1

3 Win 3 2 0.99525 0.28868 0
3 2 0.99525 0.28868 0
1 1 0.99275 -0.86603 2
3 2 0.99525 0.28868 1

4 Win 3 2 0.99097 0 0
3 2 0.99097 0 0
3 2 0.99097 0 1
3 2 0.99097 0 1

Table 4.9: Training session 3 for at normal playthrough scenario
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Generation Status Color Speed Fitness ScaledFit Age
1 Loss 0 0 -299.069 -0.86603 0

0 5 0.93765 0.28866 0
3 3 0.94611 0.28870 0
3 4 0.941713 0.28868 0

2 Win 3 4 0.99988 0.28868 0
3 4 0.99988 0.28868 0
3 3 0.99185 -0.86603 1
3 4 0.99988 0.28868 1

3 Win 3 4 0.98208 0 0
3 4 0.98208 0 0
3 4 0.98208 0 1
3 4 0.98208 0 1

Table 4.10: Training session 4 for at normal playthrough scenario

Generation Status Color Speed Fitness ScaledFit Age
1 Win 3 4 0.99356 0.76102 0

0 4 0.97801 -0.44852 0
3 6 0.98553 0.13602 0
0 4 0.97801 -0.44852 0

2 Loss 3 4 0.99816 0.28868 0
3 4 0.99816 0.28868 0
3 4 0.99816 0.28868 1
3 6 0.998088 -0.86603 1

3 Win 3 4 0.98758 0 0
3 4 0.98758 0 0
3 4 0.98758 0 1
3 4 0.98758 0 1

Table 4.11: Training session 5 for at normal playthrough scenario
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4.2 Discussion

Although genetic algorithms are suitable for complex, nonlinear problems, adapting

this technique to real-time gaming scenarios is difficult. It is clear that games, even

within the same genre, vary widely and thus require unique algorithms. Genetic

algorithms have to be to tailored to the games’ unique mechanics. Furthermore, in

the "trainer" model inspired by Stanley et al.’s rtNEAT and NERO, the difficulty lies

in the fact that genetic algorithms often work with population sizes much larger

than the typical NPC count in a game. This is because smaller population sizes

are often at risk for early convergence and poor solutions from losing diversity

too quickly [? ]. As the training process is intended to be a major part of the

game, repeatedly achieving poor solutions in this stage will definitely lead to player

dissatisfaction. At the same time, the process of achieving a good solution can

also interfere with the player’s experience, especially when the algorithm takes

too long to converge. Thus, a key to creating a good genetic algorithm for our

game is to balance between solution quality and training speed. Additionally, when

incorporating the cycle of genome replacement in a game, gameplay and mechanics

also have to be taken into account. To prevent breaking the player’s flow, the cycle

of replacement can not happen in the middle of a run unless carefully disguised

under a game mechanic. Conversely, only performing fitness evaluations at the end

of each run may slow down the evolutionary process significantly. The player will

have to play several rounds of seemingly arbitrary runs before reaching the end

results, which is not ideal. Thus, another factor to consider would be the trade-off

between player experience and algorithm performance.

The algorithm developed for this Independent Study does take into account

some of the issues discussed in the above paragraph. It performs fitness evaluations

at the end of each run, which is the best possible timing in regards to preventing

the loss of the flow during gameplay. Although doing so can slow down the
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training process, this is not an issue for our game as each playthrough is fast-paced.

Furthermore, convergence happens relatively quickly with a small population size,

allowing the player to speed through the training process. While this suggests a

strong possibility of early convergence, the results obtained thus far seem sufficient

enough to compromise in exchange for better player experience.

One flaw of the current "trainer" model lies in the fact that a game like Pac-Man

does rely on the behavior of ghost characters as a group. While each ghost alone

performs simple, repetitive movements, as a group they are able to form complex,

unpredictable behaviors. For example, the behavior patterns of the blue and red

ghosts complement each other. When performed simultaneously they can easily

"ambush" the player, even at slower speeds. Because a part of the game relies on

enemy group dynamics, the "trainer" model which focuses individually on each

ghost fails to take into account all factors that affect the game’s difficulty. An

alternative model to the current "trainer" model would be the "resource allocation"

model, where each genome represents different combinations of the four ghost

types. However, this model is difficult to apply as the player would have to play

a lot more runs for one training session in order to evaluate the fitness of each

genome.

During testing, it was suggested by the collected data that the algorithm gives

faster genomes higher fitness scores in win runs if the current population contains

ghosts with similar behavior patterns. Perhaps the next step of this study would

be to remove ghost types from the genome representation and perform tests solely

on speed. This would also solve the problem of certain ghost types having more

advantages over others in a potentially imbalanced map. Given that length is

important in bit list representations, one could simply allow a larger speed range

for enemy characters. A very high speed number however makes the game difficult
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to test. Another solution would be to employ a different form of representation and

discard the bit list altogether.

It is important to examine whether this research is sufficient to be used in the area

of game balancing. To recall, chapter 2 discusses Andrade et al.’s three requirements

for difficulty balancing methods. Firstly, the algorithm must be able to quickly

identify and adapt to the player’s skill. Secondly, it must also be able to track the

player’s progression in an accurate and timely manner. Lastly, it must also be able

to provide seamless and believable changes []. Based on the results obtained in

the section above, the genetic algorithm developed for this study does seem to

fulfill two of these requirements, namely the first and the third. Regarding the first

requirement, the algorithm responds to the player’s wins or losses immediately and

assigns appropriate fitness scores to each of the genomes in the current population.

For the third requirement, seamless and believable changes in the case of a Pac-

Man inspired game is about making logical changes in each run and maintaining

the player’s flow. The algorithm fulfills this requirement by performing fitness

evaluations at the end of each run and makes changes to the population at the start

of a new run. Changes to the population are done logically - for example, if the

player has lost the previous round, the game rewards genomes with an "easier"

combination of ghost type and speed, the latter often being slower.

The current algorithm is unable to fulfill Andrade et al.’s second requirement

on its own without the "case-injection" stage. This is due to the fact that it relies

on immediate results. The algorithm can only make decisions by looking at the

outcome from the closest previous run. It basically makes adjustments using a

process of elimination. This means that genes from previous runs can no longer

be retrieved once they are removed from the population. The algorithm removes

more and more genes until it reaches convergence where attributes from a single

genome now dominate the entire population. Logically, when it comes to tracking
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a player’s results, the game has to reintroduce some form of difficulty when the

player improves and can now play in a harder mode - this would be where the

"case-injection" stage comes in to reintroduce diversity into the population.

One implication of the genetic algorithm developed for this Independent Study

is that the resulting enemy genome can then be saved into a "seeding pool" or "case

bank", similar to that of the NERO game or the CIGAR algorithm. Afterwards,

members of the seeding pool can then be injected into both non-GA (static) and GA

(dynamic) playthroughs. This is the long term goal for the project, and can certainly

be developed and tested in the future. Playtesting can then be done on both the

training stage (that was implemented in this study) and the future "case-injection"

stage where genomes obtained from training are applied back into the game. This

would cover the gap of information regarding player experience and feedback that

could not be obtained in this study.
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