
The College of Wooster The College of Wooster

Open Works Open Works

Senior Independent Study Theses

2022

Stroke Clustering And Fitting In Vector Art Stroke Clustering And Fitting In Vector Art

Khandokar Shakib
The College of Wooster, kshakib22@wooster.edu

Follow this and additional works at: https://openworks.wooster.edu/independentstudy

 Part of the Discrete Mathematics and Combinatorics Commons, Geometry and Topology Commons,

Graphics and Human Computer Interfaces Commons, Numerical Analysis and Computation Commons,

Ordinary Differential Equations and Applied Dynamics Commons, and the Other Mathematics Commons

Recommended Citation Recommended Citation
Shakib, Khandokar, "Stroke Clustering And Fitting In Vector Art" (2022). Senior Independent Study Theses.
Paper 9702.

This Senior Independent Study Thesis Exemplar is brought to you by Open Works, a service of The College of
Wooster Libraries. It has been accepted for inclusion in Senior Independent Study Theses by an authorized
administrator of Open Works. For more information, please contact openworks@wooster.edu.

© Copyright 2022 Khandokar Shakib

https://openworks.wooster.edu/
https://openworks.wooster.edu/independentstudy
https://openworks.wooster.edu/independentstudy?utm_source=openworks.wooster.edu%2Findependentstudy%2F9702&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/178?utm_source=openworks.wooster.edu%2Findependentstudy%2F9702&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/180?utm_source=openworks.wooster.edu%2Findependentstudy%2F9702&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=openworks.wooster.edu%2Findependentstudy%2F9702&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/119?utm_source=openworks.wooster.edu%2Findependentstudy%2F9702&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/121?utm_source=openworks.wooster.edu%2Findependentstudy%2F9702&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/185?utm_source=openworks.wooster.edu%2Findependentstudy%2F9702&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openworks.wooster.edu/independentstudy/9702?utm_source=openworks.wooster.edu%2Findependentstudy%2F9702&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:openworks@wooster.edu

Stroke Clustering and
Fitting in Vector Art

Independent Study Thesis

Presented in Partial Fulfillment of the Requirements for
the Degree Bachelor of Arts in Computer Science and

Mathematics in the
Mathematical and Computational Sciences at The College

of Wooster at The College of Wooster

by
Khandokar Shakib

The College of Wooster
2022

Advised by:

Professor Kowshik Bhowmik

© 2022 by Khandokar Shakib

iv

Abstract

Vectorization of art involves turning free-hand drawings into vector graphics that

can be further scaled and manipulated. In this paper, we explore the concept of

vectorization of line drawings and study multiple approaches that attempt to achieve

this in the most accurate way possible. We utilize a software called StrokeStrip to

discuss the different mathematics behind the parameterization and fitting involved

in the drawings.

v

vi

Acknowledgments

I would like to express my gratitude to the Computer Science and Mathematics

department at the College of Wooster for the amazing education throughout my

undergraduate years. I would specifically like to thank Dr. Nathan Sommer for

his invaluable lessons and directions towards my goals as a computer scientist.

Additionally, I would like to thank Professor Kowshik Bhowmik for his remarkable

patience and support throughout my senior IS. Thanks to my parents, who believed

in and trusted me no matter the circumstances. I would also like to thank my

friends, whom I owe an incredible amount of gratitude. Thanks to Eraj Sikandar,

Riya Joshi and Sai Kwan Khal for never giving up on me. Special thanks to my

roommates Arnav Bhatnagar and Shivam Bhasin for being through thick, thin, and

the invisible. Finally, I would like to thank my host mom Sharon Delgadillo for

always loving me without any limits!

vii

viii

Contents

Abstract v

Acknowledgments vii

Contents ix

CHAPTER PAGE

1 Introduction 1

2 Raster and Vector graphics 3

3 Arc Length Parameterization 5
3.1 Parametric Equations . 5

3.1.1 Curves . 5
3.1.2 Arc Length of parametric curves 6

3.2 Vector Valued Functions . 7
3.2.1 Curvature of curves . 8

3.3 Arc length parameterization . 8

4 Curves in Computer graphics 11
4.1 Basic Idea . 11
4.2 Types of curves . 12

4.2.1 Explicit . 12
4.2.2 Implicit Curves . 13
4.2.3 Parametric . 14

4.3 Modeling smooth curves . 15
4.3.1 General Principles . 15
4.3.2 Continuity . 17
4.3.3 Parametric Cubic curves . 20
4.3.4 Hermite Curves . 24
4.3.5 Bézier curves . 28

5 Human Perception for Over-sketched Art 33

6 Clustering 37
6.1 Overview . 37
6.2 Method Details . 37

6.2.1 Coarse Clustering . 38
6.2.2 Fine Clustering . 40

ix

6.2.3 Final fitting . 41

7 Fitting Curves 43
7.1 Orbay and Kara fitting . 44
7.2 StrokeStrip Parameterization and Fitting 46

7.2.1 Problem Statement and Goals 47
7.2.2 Formulation . 50
7.2.3 Solution and Algorithm . 52

7.2.3.1 Pairwise Gradient Orientation 53
7.2.3.2 Core Parameterization 54
7.2.3.3 Curve Fitting . 54

8 Methods 57
8.1 Input using Adobe Illustrator . 57
8.2 StrokeAggregator . 58

8.2.1 Input Format . 58
8.2.2 Svg to Scap Conversion . 59

8.3 Aggregator Labeller . 60
8.3.1 Application UI . 61
8.3.2 Labeller Usage . 64

8.4 StrokeStrip Fit . 67
8.4.1 Prerequisites . 67
8.4.2 Running and Generating Files 69

9 Results and Discussion 73
9.1 Special Case Study . 79

10 Conclusion 85

References 87

x

CHAPTER 1

Introduction

Free-form drawings are still the most common method artists use to give shapes

to their ideas and images. Line drawings are usually rough sketches intended to

provide a framework for the main drawing. While drawing these outline sketches,

artists focus less on details and more on producing the general shapes. This means

the drawings are often over-sketched, where multiple strokes are used to produce an

overall, aggregate stroke that represents the intended curves. These rough drawings

are typically retraced and the groups of strokes are carefully drawn as aggregate

strokes. For digital media, these artworks are also often digitally ’cleaned’ before

production. This step is especially important for digital art, illustrations, and 2D

animations.

Typically, an artist would require a considerable amount of time to consolidate

all the drawings into a quality drawing that can be used in animations. To make this

process time-efficient and effective, multiple algorithms have been developed to

automate this process. The main purpose of this paper is to study such an algorithm

through a project named StrokeStrip. StrokeStrip is a new powerful method that

fits intended curves into stroke clusters [13]. The consolidation carried out by such

software involves multiple steps, each performing a crucial part of the task. We

explore each of these steps in moderate detail to learn more about how drawings

can be automatically cleaned (or consolidated). We first study mathematical curves

1

2 1. Introduction

Figure 1.1: Raw sketch (left) and manual consolidation (right) [13]

and their application in approximating curves using points and their geometrical

properties. To get a deeper understanding of the process as a whole, we also

explore a few related projects. This includes the projects StrokeAggregator [7]

and Beautification of Design Sketches by Orbay and Kara [9]. While we discuss

individual steps involved in the StrokeStrip algorithm, we two similar steps that

are involved in these papers to get a broader sense of these specific stages.

Before we explore the algorithmic implementation, we briefly discuss the two

major types of digital graphics - Raster graphics and Vector graphics. We also

explain the differences between these two formats and how they are related to the

automatic generation of clean line art.

CHAPTER 2

Raster and Vector graphics

Traditionally, the most common format used for any sort of graphics is known as

Raster graphics. Raster graphics work by storing information about the individual

pixels of an image. It stores information such as how many total pixels are present

in the image, their individual color, and their position. The number of pixels in the

image determines its resolution. If we try to zoom in on (or practically stretch) an

image beyond its resolution, computers have to make approximations for the extra

pixels to be displayed. This ’approximation’ of the larger image is often produced

at the expense of quality. The result is a blurry image with poor details where

individual pixel shapes can be spotted - a situation which is commonly referred to

as ’pixelation’.

Compared to raster graphics, Vector graphics work in a fundamentally different

way. Vectors graphics do not store information about pixels, rather it defines images

with polygons, lines, shapes, and their position. Shapes like lines, boxes, and

curves are used and their geometric position is saved in the vector file format. The

positional data is relative, for which scaling is not an issue for vector images. For

example, a 2 cm by 2 cm square in vector format will become a 4 cm by 4 cm square

when zoomed to 200%. Information about the square is stored as mathematical

coordinates, and hence can be freely scaled. This difference in image quality due to

format difference is illustrated in Figure 2.1.

3

4 2. Raster and Vector graphics

Figure 2.1: Raster vs Vector images [4]

Storing data about individual pixels requires significantly more memory than

mathematically defined curves and shapes. Millions of pixels in raster graphics

allow a very high level of granularity and details for the image. This makes raster

graphics the preferred type for most graphics, especially photographs and art. In

certain applications, however, vector graphics is irreplaceable. Images in vector

format contain anchors and nodes within each part of the figure. This allows the

artwork to be re-shaped or resized at each anchor point. For a shape in vector, we can

even change thickness, length, and curvature for individual strokes. In applications

such as logo drawings, posters, minimalist art, etc, this feature is leveraged along

with its scalability. This makes vector graphics the perfect medium for creating

schematic drawings. In 2D animation, the dynamic parts are usually drawn in a

simplistic manner to ensure fluid and efficient animation. But the characters are

re-drawn for multiple frames and scenes, making the whole process quite tedious.

If a basic character design can be accurately vectorized, the drawing can then be

simply edited for different scenes that use roughly the point of view.

CHAPTER 3

Arc Length Parameterization

In this chapter, we explore the concept of parameterizing arc length. This is a

crucial concept for understanding the formation of strips from the required cluster

of strokes. In chapter 7 we will discuss the use of, arc length parameterization and

isolines for forming strips. Once the parameterization has been computed, we can

produce the final fitted curve from it. The fitted curve reflects the overall shape of

the cluster at individual parameter values [13].

3.1 Parametric Equations

3.1.1 Curves

A common way to describe functions is through Cartesian coordinates. But for a lot

of curves, the functions for them do not show us the complete picture. We take the

equation of circle to illustrate this. In Cartesian coordinates, the equation of a circle

with center (0, 0) and radius r can be written as

x2 + y2 = r2

Now, if we want to investigate any individual variables, it will be very difficult

5

6 3. Arc Length Parameterization

to do so using a single function. The x variable, for example, would require the two

functions

x =
√

r2 − y2

x = −
√

r2 − y2

for describing two individual halves of the circle. This means without further

information about the quadrants, we can only work with one half of the circle at

a time. This is where parametric equations are particularly useful. We use a third

parameter, which is an independent variable. The parameter is set in a way that x

and y are functions of this third parameter. These functions are called parametric

equations. Suppose our x and y values are given as functions of the parameter t by

the following equations

x = f (t)

y = g(t).

As the value of the parameter t varies, the point (x, y) = (f (t), g(t)) varies and

traces out a curve as shown in Figure 3.1 [12]. This curve is known as a parametric

curve or a plane curve, commonly denoted by C.

3.1.2 Arc Length of parametric curves

For a curve C in Cartesian coordinates, we use the arc length formula to show its

length L. If the curve is in form y = F(x), where a ≤ x ≤ b for continuous F′, we get

L =
∫ b

a

√
1 +

(
dy
dx

)2

dx (3.1)

3.2. Vector Valued Functions 7

Figure 3.1: Parametric curve [12]

Let us set the boundary on our parameter t such that α ≤ t ≤ β. For our

parametric equations x = f (t) and y = g(t), we consider dx/dt = f ′(t) > 0. This

means we traverse the curve C once as t increases from α to β and f (α) = a, f (β) = b.

Using substitution on equation 3.1 we get

L =
∫ b

a

√
1 +

(
dy
dx

)2

dx =
∫ β

α

√
1 +

(
dy/dt
dx/dt

)2 dx
dt

dt.

Considering dx/dt = f ′(t) > 0 we derive the formula for arc length of C as

L =
∫ β

α

√(
dx
dt

)2

+

(
dy
dt

)2

dt. (3.2)

3.2 Vector Valued Functions

Before we discuss arc-length parameterization, we revisit the concept of vector valued

functions. A vector valued function in two dimensions is a function of the form

r(t) = f (t)i + g(t)j. (3.3)

Alternatively, r(t) = ⟨ f (t), g(t)⟩. (3.4)

The functions f and g are real valued functions of parameter t known as

8 3. Arc Length Parameterization

component functions [8]. Restrictions on vector-valued functions can be placed

through either the parameter t or the component functions themselves. For two

dimensional curves with parametric equations f (t) and g(t), the arc length L can be

calculated for the interval a ≤ t ≤ b using the following formula :

L =
∫ b

a

√
f ′(t)2 + g′(t)2 dx. (3.5)

3.2.1 Curvature of curves

At a specific point on a curve, curvature can be understood as a measure of how

quickly the curve changes direction at the point. Mathematically, curvature is the

rate of change of the unit tangent vector with respect to arc length [12].

The unit tangent vector for parameter value t denoted by T(t) is

T(t) =
r′(t)
|r′(t)|

(3.6)

The curvature in terms of the tangent vector can hence be written as:

κ =

∣∣∣∣∣dT
ds

∣∣∣∣∣ (3.7)

This makes the final equation:

κ(t) =
|T′(t)|
|r′(t)|

(3.8)

3.3 Arc length parameterization

A vector function r(t) gives the exact position of a point through the parameter

t. This parameter is often considered to be time, which might not always be the

case. Suppose from some fixed point, we denote the distance along the curve

3.3. Arc length parameterization 9

r(t) as s. If s is used as a variable, we get r(s) which describes the position in the

space curve in terms of the distance along the curve from the starting point. The

curve still represents the position of the object, but not at any specific value of the

parameter. It gives the position as a function of the distance traveled by the object.

The computation to determine arc length through the parameter t often poses to be

quite difficult. But when the curve is arc-length parameterized, the computation

becomes simpler as the arc-length (distance drawn) is in a one-to-one ratio with

the parameter (the variable). For example, if r is arc length parameterized, the

magnitude of r(s) for a ≤ s ≤ b is just |b − a|.

For a smooth curve r(t) defined for t ≥ a, the arc length function is given by

s(t) =
∫ t

a
∥r′(u)∥ du (3.9)

where the integral is from the starting point a to point t. Using this arc length

function, we can find a different parameterization of the curve which is known as

arc-length parameterization. Given that our original function is vector-valued, we

can reparameterize the integral in Equation 3.9 by changing the variables. By using

the arc length function s(t), we first need to solve for t as a function of s(t). Using

this expression for t, we can substitute it inside the original function r(t) for the

curve. This changes the parameter of the vector-values function to s, which is the

arc-length of the curve.

To further understand the arc-length parameterization, we use a simple example

using a circle of radius 2. That would give us the parameterization

r(t) = ⟨2 sin t, 2 cos t⟩. (3.10)

Using Equation 3.9 starting from parameter value a = 0 and using u as the

variable of integration, we get the following arc-length function:

10 3. Arc Length Parameterization

s(t) =
∫ t

a
∥r′(u)∥ du

=

∫ t

0
∥⟨2 sin u, 2 cos u⟩∥du

=

∫ t

0

√
(2 sin u)2 + (2 cos u)2du

=

∫ t

0

√
4 sin2 u + 4 cos2 udu

=

∫ t

0
2du = 2t,

(3.11)

This gives us the relationship between arc length s and parameter t as t = s/2 [8].

This allows us to express r(t) as a function of arc length s as follows:

r(s) = 2 sin
(s
2

)
i + 2 cos

(s
2

)
j. (3.12)

Here, Equation 3.12 represents the arc-length parameterization of the curve r(t)

with the new boundary s ≥ 0.

CHAPTER 4

Curves in Computer graphics

4.1 Basic Idea

Curves can be intuitively imagined as drawing with a pen on paper using lines.

Using simple lines, we are unable to produce filled regions. But it allows us to give

the outline of the shape or object being drawn. The concept of curves is crucial

in understanding how graphics allows us to create remarkable shapes into flat

objects. Although objects we observe are usually not flat, numerous objects can

be drawn by making use of multiple curves. This is possible as modern graphics

systems can render flat, 3D polygons at very impressive rates. This includes

intermediate processes such as performing hidden-surface removal, shading, and

texture mapping [3].

A curve can be imagined as a set containing infinite points. The beginning and

the end of the curve are known as endpoints. Every point besides these endpoints

should have two neighboring points. A simple line is also considered a curve, even

though it might not look like it is ‘curved’. Curves can also be closed, which means

the curve meets itself and forms a connection in a loop. Mathematically, A curve can

be defined as a continuous map from a one-dimensional space to a n-dimensional

space.

11

12 4. Curves in Computer graphics

Figure 4.1: (From left to right) A line, cubic curve, and a circle

4.2 Types of curves

Due to the broad definition of a curve, it is not possible to give a name to every

curve. Curves that are used commonly have their own names, such as lines, circles,

ellipses, parabolas, etc. A curve can also be free-form, which is a curve that can

take practically any shape but does not have a specific name for it. Using the types

of object representation in mathematical form, curves can be classified into three

categories - explicit, implicit, and parametric [3]. In the following portion, we

discuss these three ways of modeling curves and surfaces.

4.2.1 Explicit

The explicit forms of a curve in two dimensions take the value of a single variable

and produce the value of another variable. The input variable is known as the

independent variable and the variable whose value is produced is known as the

dependent variable.

4.2.2 Implicit Curves 13

Figure 4.2: Graph of a parabola from explicit function y = x2.

In the Cartesian xy-plane, we can write this as y = f (x) where x and y are

independent and dependent variables respectively. We can even try to find the

inverse function to express x as a function of y as x = g(y). But generally, there is no

guarantee for explicit curves to have either of the forms. This means that a curve

in the plane might not be the complete representation of the function. This is an

inherent issue with explicit representation. This mainly occurs as the representation

is coordinate-system dependent [3].

4.2.2 Implicit Curves

These curves are represented by a set of points on the curve using an implicit

function that checks if a point lies on this curve. In other words, it divides the

Cartesian space into points that are part of the curve, and those which do not.

14 4. Curves in Computer graphics

Figure 4.3: The lemniscate of Bernoulli given by the implicit form (x2 + y2)2
− (x2

− y2). [5]

The implicit form of curves is less coordinate-system dependent than the explicit

form. It can be used to represent all lines and circles [3]. For example, the function

for circle in implicit form is :

f (x, y) = 0 (4.1)

However, this representation does not give a straightforward way to calculate a

y value on the curve from a given x value. Implicit representations often arise in

practical applications of curves and surfaces. But due to the difficulty of attaining

the points on the curve, the use of implicit representations is limited.

4.2.3 Parametric

These curves are mappings from a free parameter to the set of points on the curve.

An example would be drawing on paper with a pencil, where the free parameter is

time. The time ranges from when we begin drawing to the time when we finish.

4.3. Modeling smooth curves 15

The parametric equation for the curve gives us the position at any instance in the

time range.

x, y = f (t) (4.2)

Figure 4.4: The curve given by parametric equations x(t) = 3cos(t) + cos(3t), y(t) = 3sin(t) − sin(3t).

A parameterized curve in Rn is a map γ : (α, β),→ Rn, for some α, β with

−∞ ≤ α < β ≤ ∞. We have discussed parameterized curve in more detail in Section

3.

4.3 Modeling smooth curves

4.3.1 General Principles

For the paper, one of our major goals is to study how we can approximate smooth

curves from a given point set.

An obvious method for controlling curves would be by specifying points to be

interpolated. This would form an approximation to the curve by forming lines

16 4. Curves in Computer graphics

Figure 4.5: Polyline approximation of a curve. The approximation is shown with a blue line.

between adjacent points, as shown in Figure 4.5. This method is known as polyline

conversion, and it is especially tempting to use as the computational approximations

are easy to work with. Although this method is straightforward, this gives rise to a

few undesirable properties. This method has less continuity with very less control

of the actions between the points. If we need to move the curve in any direction,

a polyline approximation gives us a static representation of the curve. To shift

the curve in any direction, all the points are required to be shifted as well. Addi-

tionally, the number of points plays a major role in the accuracy of the approximation.

The two main demands that we expect from a curve approximating method are

expressiveness and simplicity [11]. The representation should be able to approxi-

mate most shapes (within its degree of freedom). While a combination of multiple

approximations might be useful in some cases, it is better to have a method that

extends its application over most of the general uses. It is practically impossible to

work in the space containing all possible curves, as that space would contain infinite

curves. At the same time, we do not want a method that is overly complicated to

4.3.2 Continuity 17

implement.

Compared to methods that involve specifying exact points, approximation

methods using control points are preferred. Control or data points influence the

overall shape of the curve, allowing us more local control and a better idea about

the curve behavior.

4.3.2 Continuity

When two separate parametric pieces come together to form an aggregate curve, it

is crucial to understand the local properties at this point. The functions must have a

single value corresponding to the given parameter values. Having multiple values

would indicate that the curve is ’broken’, which means the curve cannot be drawn

in a single, continuous pen stroke.

To better understand this local continuity, we introduce the notion of parametric

continuity and geometric continuity. To express nth order parametric continuity, we

use the symbol Cn. Similarly, we use Gn to represent nth order geometric continuity.

Two curves are C1 continuous if their tangent vectors are equal in terms of both

magnitude and direction. When the tangent vectors have the same direction but

different magnitudes, then the two curves have G1 continuity [6].

Consider Figure 4.6, where the polynomial on the left is g(t) and the other

polynomial is h(t). We consider the polynomials and their derivatives at parameter

value t = 1 for g(t). At the same time, we take the corresponding values of h(t) at

parameter value t = 0. For the function to be continuous, we need to enforce the

following conditions:

18 4. Curves in Computer graphics

Figure 4.6: Continuity

g(1) =


gx(1)

gy(1)

gz(1)

 = h(0) =


hx(0)

hy(0)

hz(0)

 . (4.3)

When all the individual parametric components are equal at the joining point,

we can say that the curve has C0 parametric continuity [3]. Taking the same idea,

we can also consider the following conditions for the first derivatives:

g(1) =


g′x(1)

g′y(1)

g′z(1)

 = h(0) =


h′x(0)

h′y(0)

h′z(0)

 . (4.4)

When all of the parametric and derivative conditions in Equation 4.3 and

Equation 4.4 are satisfied, the curve has C1 parametric continuity.

4.3.2 Continuity 19

Figure 4.7: (a) C0 Continuity. (b) C1 Continuity [11].

In terms of geometry of the curve, we address the continuity in a different

manner. Similar to the conditions in equation 4.4, we also consider the derivative

for geometric continuity. But instead of enforcing the derivatives of two segments

at the joint point to be equal, we impose the rule that they should be proportional

[3]. This would mean

g′(1) = κh′(0),

for some positive number κ. In simple terms, this condition implies that the two

segments may have different magnitudes for tangent value. But as the tangents

are proportional, their direction remains to be the same. This type of continuity is

known as G1 geometric continuity, as shown in Figure 4.8 [3].

From the above conditions, we notice that geometric continuity is less restrictive

than parametric continuity as it does not require the magnitudes of the tangents

to be equal. This means a Cn parametric continuous curve necessarily has Gn

geometric continuity (if the derivatives are non-zero), but the converse is not always

20 4. Curves in Computer graphics

Figure 4.8: (a) G0 Continuity (sharp turn). (b) G1 Continuity (smooth connection) [11].

true. Additionally, C0 and G0 continuity are analogous, and it means that the two

segments share a common endpoint [6].

4.3.3 Parametric Cubic curves

In computer graphics, piecewise parametric functions are the most commonly used

representation. Using this approach, the curve being approximated is broken down

into multiple pieces where each piece is a polynomial of the parameter.

When choosing parametric polynomial curves for approximation, the degree

of the curve must be chosen as well. Choosing a higher degree polynomial would

give us more parameters that can be modified to give us the required shape. But

the computation involving points on the curve will be demanding. Polynomials

with high orders also tend to contain more bends, which might not be the optimum

pick to model smooth curves. In contrast, a polynomial of a low order may not

offer the required number of parameters needed to represent the desired shape.

To choose a degree that balances out the pros and cons mentioned above, we can

design each curve segment over a short interval and choose a polynomial of lower

order [3]. Choosing a small region of the curve allows us to produce the required

4.3.3 Parametric Cubic curves 21

shape even with fewer parameters. This tradeoff between flexibility and simplicity

is best provided by parametric cubic curves. The fundamental form of a parametric

cubic curve is as follows

F(t) = a + bt + ct2 + dt3 (4.5)

where a, b, c, d are constant vectors [6]. Every value of F(t) is a point on the curve

corresponding to the parameter value of t. In three dimensions, we can write the

components of F(t) separately in x, y, and z directions. These individual parametric

equations are

Fx(t) = ax + bxt + cxt2 + dxt3

Fy(t) = ay + byt + cyt2 + dyt3

Fz(t) = az + bzt + czt2 + dzt3.

(4.6)

In matrix form, we can write the previous equations as a matrix product of

coefficients with the parameters.

F(t) =


ax bx cx dx

ay by cy dy

az bz cz dz





1

t

t2

t3


(4.7)

We can condense the product to write

F(t) = CT(t), (4.8)

where C is the matrix containing the coefficients, and T(t) = ⟨1, t, t2, t3
⟩ [6]. To

find the tangent direction of the curve at t, we need to calculate the derivative of

22 4. Curves in Computer graphics

F(t). The matrix C here contains constant values, which gives us a straightforward

way to write the derivative of F(t) as

F′(t) = C
d
dt

T(t) = C



0

1

2t

3t2


. (4.9)

While attempting to utilize cubic curves to approximate curves, we need to

factor in the geometrical constraints given to us. For the purpose of this paper, we

focus on the constraints on endpoint values (values of function F(t) at t = 0 and

t = 1) or tangent directions at endpoints (F‘(t) values at t = 0 and t = 1). We know

that any arbitrary cubic function contains four coefficients, which means we require

four constraints to define the specific curve. Suppose we denote these constraints

as g1, g2, g3, and g4. We can then use these constraints to formulate a weighted sum,

and incorporate the sum to get the following expression for F(t) [6]

F(t) =
(
a1 + b1t + c1t2 + d1t3

)
g1

+
(
a2 + b2t + c2t2 + d2t3

)
g2

+
(
a3 + b3t + c3t2 + d3t3

)
g3

+
(
a4 + b4t + c4t2 + d4t3

)
g4.

(4.10)

Here we observe that there is a polynomial function ai + bit + cit2 + dit3 for each

of the four constraints. These polynomials are known as blending functions, which

allow the behavior of the curve to have a reasonable abstraction. Blending functions

specify how much the parameter vector values ‘blend’ together by representing the

curve as a weighted linear combination of its control points. Using matrix notation,

we re-write equation 4.10 as

4.3.3 Parametric Cubic curves 23

F(t) =
[

g1 g2 g3 g4

]


a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4





1

t

t2

t3


. (4.11)

This can be condensed down to just

F(t) = GMT(t), (4.12)

where the matrix G is

G =
[

g1 g2 g3 g4

]
=


(
g1

)
x

(
g2

)
x

(
g3

)
x

(
g4

)
x(

g1
)

y
(
g2

)
y

(
g3

)
y

(
g4

)
y(

g1
)

z
(
g2

)
z

(
g3

)
z

(
g4

)
z

 . (4.13)

This matrix G is called the geometry matrix. The 4 × 4 matrix M is the basis

matrix and is defined as

M =



a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4


. (4.14)

These two matrices are very important in investigating the curves being approx-

imated. For example, each class of cubic curves will have a constant basis matrix M.

The formation of the shapes of specific curves in each of these classes are determined

exclusively by the geometry matrix G [6].

24 4. Curves in Computer graphics

4.3.4 Hermite Curves

The interpolation method or curves using cubic curves in the preceding chapter

are completely dependent on the control points given. More precisely, it hinges on

using the points to construct parametric segments that pass through them. A major

downside of using a point-based approach is the lack of control over the curves.

Given a set of points to approximate a curve, we cannot move any points as the

curve needs to pass through all of them. The only way to modify the outlook of

the curve formed from such approximation is by adding more points to create a

better interpolation. From a designer’s perspective, it would be quite convenient

to include an aspect to these approximations such that the curve can be adjusted

interactively. This allows the designer to modify the shape of the curve more

intuitively without the computational overhead of adding more points. The Hermite

interpolation is a method designed to deal with such issues.

Figure 4.9: Different Hermite curve segments [11].

A cubic Hermite curve can be defined using two endpoints P1 and P2 and

the tangent vectors T1 and T2 at these endpoints [6]. Here, we assume that the

derivatives of the polynomial exist at the endpoints to calculate the tangent values.

4.3.4 Hermite Curves 25

All these four quantities are used to obtain the geometry matrix, and a Hermite

curve H(t) can be expressed as

H(t) =
[

P1 P2 T1 T2

]
MH



1

t

t2

t3


, (4.15)

where we need to determine the 4 × 4 basis matrix MH [6]. The known four

quantities P1,P2,T1, and T2 can be used to find the imposed geometrical constraints.

For parameter values t = 0 and t = 1, we first calculate the parameter matrix

⟨1, t, t2, t3
⟩ in Equation 4.15. We also calculate the derivative for the parameter matrix

⟨0, 1, 2t, 3t2
⟩ at t = 0 and t = 1. This leads us to the following four equations:

H(0) =
[

P1 P2 T1 T2

]
MH⟨1, 0, 0, 0⟩ = P1

H(1) =
[

P1 P2 T1 T2

]
MH⟨1, 1, 1, 1⟩ = P2

H′(0) =
[

P1 P2 T1 T2

]
MH⟨0, 1, 0, 0⟩ = T1

H′(1) =
[

P1 P2 T1 T2

]
MH⟨0, 1, 2, 3⟩ = T2.

(4.16)

We can write this as a single equation in matrix notation as

[
P1 P2 T1 T2

]
MH



1 1 0 0

0 1 1 1

0 1 0 2

0 1 0 3


=

[
P1 P2 T1 T2

]
(4.17)

26 4. Curves in Computer graphics

Using Equation 4.17, we observe that simple matrix operations allow us to

calculate the basis matrix MH by

MH =



1 1 0 0

0 1 1 1

0 1 0 2

0 1 0 3



−1

=



1 0 −3 2

0 0 3 −2

0 1 −2 1

0 0 −1 1


(4.18)

The values of the matrix MH in Equation 4.18 give us the coefficients of the

blending function for Hermite curves. We use the coefficients to represent the

Hermite curve as the weighted sum of the constraints P1,P2,T1, and T2 [6].

H(t) =
(
1 − 3t2 + 2t3

)
P1 + t2(3 − 2t)P2 + t(t − 1)2T1 + t2(t − 1)T2 (4.19)

To thoroughly understand the behavior of the Hermite interpolation method,

we can separate individual blending functions from Equation 4.19 and study how

each function affects the interpolation. The four Hermite blending functions are

F1(t) =
(
1 − 3t2 + 2t3

)
, F2(t) =

(
−2t3 + 3t2

)
= 1 − F1(t)

F3(t) =
(
t3
− 2t2 + t

)
, F4(t) =

(
t3
− t2

)
.

(4.20)

From equation 4.19 we observe that function F1(t) and F2(t) is the weight function

associated with the start point P1 and endpoint P2 respectively. The function F1(t)

starts from its maximum value F1(0) = 1, and gradually descends to F1(1) = 0. This

is because for small values of t (closer to 0) the curve is close to P1. But further away

when the value of t increases, P1 has minimal influence on the curve. The case for

F2(t) is the exact opposite of F1(t).

4.3.4 Hermite Curves 27

Figure 4.10: Blending functions for Hermite cubic curves.

The behavior of function F3(t) is a little more complicated compared to F1(t) and

F2(t). The peak of both F3(t) and F4(t) is much smaller compared to either F1(t) or

F2(t), which means the overall influence of the tangent weight functions is less than

the endpoint weight functions. Function F3(t) begins as zero, gradually reaching a

maximum point when t = 1/3. From here, the function slowly reaches zero at t = 0.

At t = 1/3 the weight of F4(t) is very small, so using equation 4.19 we can write

H(t) =
(
1 − 3t2 + 2t3

)
P1 + t2(3 − 2t)P2 + t(t − 1)2T1.

Here the sum of the weights of F1(t)P1 and F2(t)P2 make the largest contribution.

28 4. Curves in Computer graphics

But F3(t)T1 makes a small contribution, due to which the weight of F3(t) seems to

‘pull’ the curve in the direction of the tangent vector T1. As t values increase, F3(t)

once again influences the curve minimally. Function F4(t) can be interpreted in a

similar manner as F3(t). At t = 2/3, function F3(t) has negligible effect while F4(t)

has its maximum negative value. This means the curve approaches the endpoint P2

while moving in the same direction as T2 [11].

4.3.5 Bézier curves

The Hermite form and the cubic interpolation form have their own advantages and

disadvantages. The major similarity between them is the fact that they are both

cubic polynomials curves. However, it is difficult to compare the two methods

as they fundamentally use different data to form an approximation[3]. During

derivation of the interpolating curves, we used the data for control points. Using the

same control points, we can approximate the derivative data required for Hermite

curves. This results in the formation of Bézier curves. As it is using the same data as

the interpolating curves, it is comparable to them on equal terms. Additionally, as

they do not require calculating derivatives, Bézier curves are great for graphics and

design purposes.

Similar to the other forms of approximation, a Bèzier curve segment is a single

polynomial of order n, containing n + 1 control points. A Bèzier curve B(t) of order

n is given by the parametric function

B(t) =
n∑

k=0

Bn,k(t)Pk. (4.21)

Here Bn,k(t) are special blending functions known as Bernstein polynomials [6]

using binomial coefficients, given by

4.3.5 Bézier curves 29

Bn,k =

 n

k

 tk(1 − t)n−k (4.22)

We consider the example where we have four control points p0, p1, p2, and p3

for a cubic polynomial C(t). The Bèzier curve, therefore, has an order of 3, and it is

given by the expression

B(t) = (1 − t)3p0 + 3t(1 − t)2p1 + 3t2(1 − t)p2 + t3p3 (4.23)

The value of parameter t changes from 0 to 1 as we move along the endpoints of

the curve. Assuming the two endpoints are p0 and p3, we have

p0 = C(0)

p3 = C(1)

For Bézier curves, we do not use the remaining control points p2 and p3 to

perform interpolation. These two points are used to find the tangents at parameter

values t = 0 and t = 1. Expanding the expression in Equation 4.23, we derive the

basis matrix MB for cubic Bèzier curve as:

MB =



1 −3 3 −1

0 3 −6 3

0 0 3 −3

0 0 0 1


(4.24)

Using the basis matrix, we can then write the Bèzier function B(t) as follows:

30 4. Curves in Computer graphics

B(t) =
[

p0 p1 p2 p3

]


1 −3 3 −1

0 3 −6 3

0 0 3 −3

0 0 0 1





1

t

t2

t3


(4.25)

Each of the four polynomials for each point in Equation 4.23 is an individual

blending function. The blending functions for a cubic Bèzier curve are shown in

Figure 4.11.

Figure 4.11: Blending functions for cubic Bèzier function

As the curve moves from its starting point to the end, it is contained within

the convex hull of all the control points without actually passing through them.

While Hermite curves contain controls that are vectors, controls of Bèzier curves

are completely contained within the same space as the curve. This is illustrated in

Figure 4.12.

4.3.5 Bézier curves 31

Figure 4.12: Convex Hull and Bézier polynomial [3].

32 4. Curves in Computer graphics

CHAPTER 5

Human Perception for Over-sketched Art

The StrokeStrip algorithm uses different techniques for parameterization based on

our natural perception on line drawings. There are a few factors that we consider

and process when presented with a sketch. These factors have been derived from

perception literature and sketching tutorials [7]. We utilize these special cases

in our algorithm to fine-tune different parameters for accurate and robust digital

consolidation.

Angular compatibility. Multiple studies conclude that whenever a drawing is

viewed, the perspective relies on angular compatibility. This can be understood as

the similarity between stroke slopes when they are viewed side-by-side(cite). If two

adjacent strokes bend independently but at a similar slope, these two strokes can be

considered ‘compatible’ . This allows the strokes to be seen as a continuation of each

other, expressing the flow of the drawing. This means even when separate strokes

are viewed, this helps us to see the strokes as an aggregate according to the flow.

Relative proximity. Relative distance or proximity between objects have shown

to be the way humans visually group objects [14]. Given multiple shapes together,

we group them together if the space between them is smaller than the space that

exists between other objects in the same drawing. This form of grouping that uses

relative distance is independent of scale. This means scaling distance changes the

spacing throughout the image, but the relative spacing and hence the grouping

stays the same. But this means to determine the ‘relative’ proximity, which implies

33

34 5. Human Perception for Over-sketched Art

we need some context to compare the spacing with. Proximity also detects when

multiple adjacent objects do not belong together. In the case that the drawing

contains moderately even-spaced strokes, determining relative proximity does not

provide us with any new information.

Connectedness. Perception research [14] suggests that inter-connected objects or

strokes are also grouped together by viewers. Longer strokes could be at an angle

in the middle, or curved. But if their ends are connected, we group them together

as a single, thick stroke. To ensure accurate clustering, the connectedness is used to

group intersecting strokes only if it does not contradict any other cues.

Narrowness/Width. Curves in general are understood as being ‘narrow’ by

humans. Narrow here is defined as strokes with small width but a relatively larger

length. Using this width-length ratio, this information becomes particularly useful

in our clustering algorithm. A threshold is used to determine narrowness and

can be estimated through the perception study. This is a major parameter for our

algorithm.

Strength in numbers. After utilizing multiple factors for the artist’s perception,

comprehending some art styles would still depend too heavily on individual

perception. For such situations, the artist’s intent is leveraged over perception. The

general intention for artists is to help us assemble a clear mental image of their

drawings. They often rely on thicker, extended lines to separate certain strokes from

others. In this case, tight multiple-strokes aid in additional clarity of drawings by

putting extra emphasis on the strokes. Without the use of multiple strokes, a single

stroke in such cases might produce even more confusing results. This problem is

solved as a ’strength in numbers’ problem where stroke numbers are used within a

cluster. Numbering them allows us to use these numbers as factors for final fitting.

Combining all the information about drawings gathered till now, we can use it

to judge whether groups of strokes are part of an aggregate curve. But transforming

35

this information into algorithmic form for the computer to execute is exceptionally

difficult. There is no existing clustering framework that combines all of these artistic

signals into a single algorithm. The clustering is therefore done in multiple steps,

where each succeeding step carries out a more refined and local clustering than the

previous. This clustering step is discussed in detail in Chapter 6. Once we have

clustered our drawings into multiple aggregate strokes, we need to carry out fitting

to finally produce the single line, ‘clean’ version of the original artwork.

36 5. Human Perception for Over-sketched Art

CHAPTER 6

Clustering

6.1 Overview

For most vector joint consolidation processes, the first step is to cluster them into

groups of aggregate strokes before fitting them. StrokeStrip uses a joint parame-

terization and fitting and does not include a clustering step in its algorithm. To

understand the StrokeStrip method in comparison to more commonly implemented

methods, we chose to study the clustering process involved in the tangent based

fitting done by the project StrokeAggregator [7]. Clustering in StrokeAggregator

is done in increasing levels of granularity. It also utilizes all the grouping cues

as mentioned earlier in Chapter 5. First, a coarse clustering is carried out on the

drawing based on the stroke-wise properties. This coarse clustering is further

refined on smaller, local groups within the art. Finally, the method uses the final

reliable clusters to finalize the stroke results.

6.2 Method Details

We have already discussed how the perception cues could be used to find an

aggregate curve from a bunch of strokes. But these cues each demand a different

37

38 6. Clustering

method to be implemented. Moreover, these visual perception cues are quite

difficult to be translated into a computer program. Multiple clustering frameworks

attempt to cluster in a similar fashion. But for the specific methods mentioned here,

there is no existing standard framework. This means for this clustering method, a

separate framework was created in accordance with these requirements. We now

discuss the individual stages of this clustering framework.

6.2.1 Coarse Clustering

The first step in coarse clustering is to remove strokes that are highly unlikely to form

an aggregate. This is done by sequentially carrying out the stroke cues discussed in

Chapter 5. The two initial cues used are angular compatibility and relative proximity

cues. The goal of using angular compatibility is to separate angle incompatible

strokes while keeping almost parallel strokes together. The relative proximity cue

helps us separate these roughly parallel strokes into distinct components. This is

implemented using density-based clustering using the stroke-wise proximity.

The first portion of clustering is very general; the strokes are clustered in

accordance with their average, or global compatibility. Firstly, coarse clustering

makes use of the angular compatibility of every pair of strokes independently [7].

Strokes that are placed at a similar angle, would get grouped together. This assumes

that strokes within a cluster are roughly parallel along side-by-side sections. For two

nearby strokes Si and S j, an angular compatibility score ComA(Si,S j) is calculated

that attempts to deal with multiple scenarios. Positive scores imply that strokes are

angle compatible, while negative score suggests incompatibility. Greater magnitude

of the value means greater compatibility (or incompatibility).

6.2.1 Coarse Clustering 39

Com A
(
Si,S j

)
=



1, ϕ < 8◦

exp
(
−

(ϕ−8◦)2

2σ2
1

)
, 8◦ ≤ ϕ < 17◦

0, 17◦ ≤ ϕ < 23◦,

−1.5 exp
(
−

(ϕ−23◦)2

2σ2
2

)
, 23◦ ≤ ϕ < 30◦

−1.5, 30◦ ≤ ϕ

(6.1)

Here ϕ is the angular distance between the aggregate curve and each stroke. The

values of ϕ have been derived from perception research. From perception literature,

20◦ is considered as the threshold value for viewers to differentiate between similar

and not-so similar tangent values in strokes [14].

After the initial segmentation, we carry out a bunch of refinements to get to our

final result. The first step of refinement is by using the relative proximity between

stroke clusters that have been formed already. We want to separate the initial,

roughly-parallel strokes into distinct components. This is implemented using

density-based clustering using the stroke-wise proximity. Given that the strokes are

already angle compatible, this step measures the average spacing between strokes

in the same cluster. This creates sub-clusters with strokes that have approximately

the same space between them. Following this step, the width of the resulting

sub-clusters is assessed along with its local spacing uniformity [7]. These two cues

are used in conjunction to identify clusters that are only weakly connected. This

means strokes from one cluster have a few branches that travel into another cluster

and vice versa. This provides us with an output that satisfies all the perceptual

criteria we mentioned in the human perception of over-sketched art.

Till this stage, the edge cases were discussed as more of a nuance. But we have

to consider clustering them as well to get the most accurate results. These outlying

clusters did not present any solid evidence for compatibility till now. But we realize

40 6. Clustering

that at this stage of clustering, the algorithm has already produced clusters that

contain multiple strokes. We can now focus on these clusters and refine the strokes

within them.

6.2.2 Fine Clustering

The ‘relative’ proximity calculation in the previous step requires context to be judged.

This implies the algorithm would not perform well on any strokes or stroke-pairs

that are relatively distant and do not have any adjacent stroke pairs. For any given

stroke pair, the distance between them can vary quite a lot. There would be strokes

that branch into other strokes but are originally from a different curve. To overcome

such issues, the algorithm carries out a targeted clustering framework that improves

cluster refinement gradually. This is done by integrating new and more confined

perceptual cues into the clustering.

In any sketch, it is common for local parts of the sketch to contain multiple

varying proximities. This is known as branching. Branching is separated by a

recursive method based on local contextualized relative proximity. In the coarse

clustering step, the proximity for strokes was determined in isolation between a

pair of strokes. In this fine clustering step, we compute the proximity based on the

local point-wise value relative to all the strokes within the cluster. This approach

calculates the inter-distance between points on different strokes. The inter-distance

is then compared against inner-distance between points on the same stroke. If the

inter-distance is much larger compared to the inner distance, it indicates that the two

strokes being compared should be separate. This process is repeated for multiple

points at consecutive locations on the stroke for reliability.

6.2.3 Final fitting 41

6.2.3 Final fitting

After carrying out these steps, we are left with distinct clusters of strokes. Strokes

in these clusters belong to the same group according to our algorithm and are

called ‘reliable’ clusters. With our stroke grouping complete, these reliable clusters

themselves are re-assessed with our earlier cues. If they satisfy all our cues, they

are merged together to get the final result.

Figure 6.1: Different colors represent different envelopes

As most individual clusters contain multiple strokes, the re-assessment is more

reliable for calculating the width of the aggregate curve. Every cluster is first fitted

with an aggregate curve, and widths of these curves Wc are computed. We check if

the distance from the aggregate curve to the outermost intersection with a cluster

stroke is greater than 0.5 ∗Wc for that curve. If the condition is fulfilled, then this is

considered a sub-section within the cluster. Within this sub-section, the point of

intersection as mentioned in the condition is regarded as envelope vertex [7]. For

sections of the curve that do not satisfy the condition, a ‘ray’ is passed through the

half-width distance. These rays are considered ‘boundary’ for the envelope. The

idea of the envelope is illustrated in Figure 6.1. Once we have two boundaries with

an envelope vertex between them, we pass a ray from one boundary to the other,

passing through the envelope point to create the aggregate curve for this section.

The aggregate now roughly reflects the average width of the cluster, while being

completely contained within it as well [7].

42 6. Clustering

CHAPTER 7

Fitting Curves

In this chapter, we explore smoothing and curve fitting for sketch inputs. There

are multiple methods to group strokes that together form our input images. The

problem of combining these strokes to a proper fit has been relatively less explored.

Fitting the strokes involves multiple factors to be considered that help us achieve

an accurate depiction of the intended drawing. The older methods mentioned in

the StrokeStrip paper are Orbay-Kara [9] and StrokeAggregator [7]. The approach

by Orbay and Kara used spectral embedding to order the points, which were then

fitted to a curve. StrokeAggregator utilizes a spanning tree for the moving least

squares method to order the points. The algorithm then fits the curve to the longest

path as seen. The major focus for StrokeStrip, however, was to produce a completely

new method to fit these intended curves to vector stroke clusters.

In terms of fitting curves, the perception study helped us observe that humans

view clusters of strokes as continuous, varying-width strips whose paths are

described by the intended curves [13]. This is a fundamental observation in this

paper, as all the fitting is done by turning each stroke cluster into strips. This helps

to construct the geometry of the drawings provided, without any actual geometry

data provided to us. Eventually, this method is what provides the robustness of

StrokeStrip’s performance.

For this paper, we first study the curve fitting process in the project "Beautification

43

44 7. Fitting Curves

of Design Sketches Using Trainable Stroke Clustering and Curve Fitting" by Gunay

Orbay and Levent Burak Kara [9]. The StrokeStrip project uses a few principles fitting

that has components and conclusions from multiple papers and studies, including

this project. We explore the fitting method by Orbay and Kara to understand the

contrasting difference between this fitting and StrokeStrip’s own fitting method.

7.1 Orbay and Kara fitting

Suppose we begin the parameterization process with a single stroke. We want to

assign a number to every point on the stroke that should smoothly go from 0 to the

magnitude of length of the stroke. This denotes that 0 is the beginning of the stroke

and we reach the other end of the stroke by traversing the total length of the stroke.

One approach would be to just calculate directly the fraction of the distance along

the stroke for each point. The value of this fraction would be the desired parameter

value. Although this would give us the most accurate answer, we explore another

method more suited for our purpose. We can also think of the parameterization

as an optimization problem: we want the difference in value between two adjacent

points to be as close as possible to the distance between those two points. The

constraint here is that we have set one point to be 0 and another point to be the total

length. If the stroke is divided into a collection of discrete line segments between

points, this could be thought of as a least squares sort of optimization. Each discrete

segment are regarded to be "as close to the distance as possible". These segments

now become the error terms that we want to minimize through our optimization.

The mathematical explanation is further clarified in Figure 7.1.

For any point set, we start from one end and locally fit an approximate quadratic

7.1. Orbay and Kara fitting 45

curve to a fixed number of points [9]. The vertical projection of every point on the

original point set (xp, yp) onto the curve is then calculated.

Figure 7.1: Approximation of normal projection on the curve [9]

This produces the projection point (xp,P(xp)). The projection point is then run

along the local tangent to the curve at this point. This is done until we reach a point

(xe, ye) where the distance to the original point (xp, yp) is minimized. When repeated

for all the points, we obtain a first order approximation of the normal projection of

(xp, yp) on the local quadratic curve [9]. Using the distances between these projected

points, a final parameterization is computed. If the new parameterization produces

a point ordering that is not equivalent to the original order, the point set is rectified

accordingly. This process is repeated several times over the original coordinates

until the endpoint of the stroke is reached. Using the final parameterization, the

46 7. Fitting Curves

entire point set can be approximated to a curve using cubic B-spline approximation.

Figure 7.2: Ordered points for parameterization [9]

As we have seen in Chapter 4, cubic approximation for curves depends on

control points. For B-spline fitting, in this case, the number of control points can

be set by the user. If we ignore the variation in the fitting caused by pen or stylus

pressure, the approach for the fitting involves minimizing an error-function defined

between points on the curve and the original points. For K control points, this error

function can be written as follows:

E =
1
2

K∑
k=1

∥P (uk) − Xk∥
2 . (7.1)

Here, Xk is the actual position vector for kth point and P(uk) is the position vector

of that point on the curve with a parameter value of uk.

7.2 StrokeStrip Parameterization and Fitting

Overview

The major working assumption for the fitting method used by StrokeStrip is that

users perceive stroke clusters as strips with varying widths. The perception tells us

that we follow these hypothetical strips along a path that follows the artist-intended

curves. Human observers portray the outline of these strips mentally by viewing

7.2.1 Problem Statement and Goals 47

cross-sections along the paths that follow these aggregate curves [13]. This helps us

determine the points in the drawing that are next to each other within the strip. This

distinction is important as we can also judge whether the points are within the strip

or simply nearby considering Euclidean space. A number of points lie neighboring

in the Euclidean space but is part of a different section of the observed strip. These

particular findings resulted in the formation of a 1D parameterization problem.

7.2.1 Problem Statement and Goals

Before we discuss the different properties of our parameterization, we first define in

simple terms, what exactly ‘strip’ means for this project.

The three major aspects of a strip are :

• Centerline The centerline of a strip can be considered as the ‘backbone’ of the

strip. This is a single curve that passes through the center of the strip from

one end to the other.

• Arclength Centerline of the strip is directly related to the arc-length of the

strip. This is the one-dimensional length of the strip if we imagine it to be

flattened into a straight line.

• Width The width of a strip is the same as the width of the cross-section of the

strip. This can also be imagined as twice the distance of the edge of a strip

from the centerline.

A strip is essentially two separate arcs connected together. These arcs can be of

varying width and length, but as long as it is closed, it forms a strip. This allows

a strip to be parameterized naturally using its arc-length. Every stroke cluster

would contain isolines that help us define the cross-sections of the strip. During the

parameterization, the isolines are orthogonal to the path. If we assign smoothly

48 7. Fitting Curves

varying isovalues to all points on the strip, then we can parameterize the strip.

This means the natural arclength 1-D strip parameterization can be defined by the

arclength of the strip’s path. This parameterization can then be extended to the

strip using path-orthogonal isolines. The resultant parameterization isolines are

straight and evenly spaced on average. This allows them to cross the strip from one

side to the other while forming cross-sections, as shown in Figure 7.3(b).

Figure 7.3: Path and Strip parameterization followed by Fitted curve

Once this joint parameterization of the strokes on the strip has been determined,

we can directly compute the desired parametric fitted curve. The shape of this

new curve - its position, tangent, and curvature - at each parameter value reflects

the average shape of the input strokes. This means the fitting problem used by

StrokeStrip is essentially a parameterization problem first, which then uses this

same parameterization to fit the curve, shown in Figure 7.3.

To get a clear understanding of which methods to use to predict a-priori geometry,

we first discuss what properties of the arclength parameterization are desired.

• Tangent Alignment For every input stroke clusters, we first check the direction

of the strokes in this specific cluster. We seek strips whose path is aligned

7.2.1 Problem Statement and Goals 49

with this direction. This can be achieved by comparing the gradient of the

parameterization with the tangents of the strokes in the cluster. If these two

values are aligned, the tangent alignment property is then satisfied.

• Arc Length Preservation The parameterization for our fitting must be arc-

length preserving. We calculate the gradient of the arc length of the strip and

average it over an isoline. These should always be perpendicular to each other

and should have the same unit value over the strip. This ensures an even

sampling of stroke points is achieved when the subsequent fitting is carried

out.

• Monotonicity For a strip, we observe that the arc length parameterization

would always be monotonic to its gradient direction. Recall that a monotonic

function is a function that does not change direction. In other words, monotonic

functions are either always increasing, or decreasing. For our case, we expect

the parameter value to keep increasing or conversely, keep decreasing. As

we have already established our property of tangent alignment, we expect

the gradients of the parameter (u) for all the strokes along their isolines to be

similar.

• Isoline Span According to the perception research, we consider the fact that

viewers perceive nearby strokes with similar tangent values to be adjacent

within the strip. Therefore, we want the parameter values on these different

strokes (but perceived as adjacent) to be similar. This property is referred to

as isoline span [13].

All these requirements mentioned are combined to form an objective function.

The objective function is provided with a set of constraints. All the parameterization

satisfying these requirements is considered as joint [13]. In the following section,

50 7. Fitting Curves

Figure 7.4: The notion of a strip from its arclength [13]

we will discuss the formulation of the objective function along with the different

constraints.

7.2.2 Formulation

Mathematically, a strip can be described using its centerline. The centerline can be

written as γ(t) ∈ R2 where t is the arclength t ∈ [0,L] and width W(t). The width

W(t) is always perpendicular to the centerline at any point. The width is essentially

twice the distance from the sides, towards the direction of normal. The overall

expression for the centerline then becomes γ(t) ± W(t)
2 n(t), where n(t) is the normal

direction at arclength value t. We can visualize the strip similar to Figure 7.4. Here

the thin black curve passing through the middle of the strip is its centerline which

depends on the arclength of this curve. The dotted grey line represents the isoline at

that point, and the strip is shaded from blue to red in accordance with its parameter

values. The parameter values across the isolines should remain constant.

For a strip S ⊂ R2 that is not self intersecting, the arc length parameterization

u : S → Rminimizes the following variational problem:

7.2.2 Formulation 51

min
u

∫ L

0

∥∥∥∥∥∥ 1
W(t)

∫
C(t)
∇u(x)dx − τ(t)

∥∥∥∥∥∥
2

dt. (7.2)

Here the outer integration is done with respect to t which is the arclength for the

centerline. The inner integral is over the cross-section C(t) with length W(t), which

crosses the strip perpendicular to the strip [13]. However, this formulation cannot

be directly applied to strokes, since the gradient of u - denoted as ∇u - is not clearly

defined. Here we leverage the fact that the gradient for arc-length parameterization

is always orthogonal to the path tangent. Moreover, the average over each of the

gradient cross-sections has unit length. This allows us to write the parameterization

in terms of projection of the expression inside the norm onto the centerline’s tangent

and normal [13].

Now, we seek the function u whose domain is the strip formed from the set of

strokes in our strip. The range for this function is the arc length, and the functions

minimize the functionals Elength and Ealign while satisfying a monotonicity constraint.

The formulation in this manner is shown as follows:

Elength =

∫ L

0

∣∣∣∣∣∣ 1
W(t)

∫
C(t)
∇u(x) · τ̄(t)dx − 1

∣∣∣∣∣∣
2

dt

Ealign =

∫ L

0

∫
C(t)
|∇u(x) · n̄(t)|2dxdt

min
u

Earc = min
u

(
Elength + Ealign

)
,

(7.3)

where τ̄ is the average of stroke tangents τ along the cross sections. The

term n̄ is the vector perpendicular to τ̄. This formulation satisfies two goals - arc

length preservation (Elength) and tangent alignment (Ealign). The tangent alignment

here implies that the tangents of the aggregate curve and the gradient of the

parameterization that defines it should align with stroke tangents.

As mentioned earlier, the formulation is also subjected to a monotonicity

constraint. Suppose we describe a sample on an input stroke as {s, i}where i is the

52 7. Fitting Curves

index of the sample. We can denote the position of the sample as ps,i. The length of

a segment along a specific polyline can therefore be written as ls,i where

ls,i =
∥∥∥ps,i − ps,i−1

∥∥∥
between sample points ps,i and ps,i−1. We can also define the gradient orientation

as os ∈ {1,−1}. The orientation os = 1 means gradient at stroke s is ascending, and

os = −1 implies the gradient is descending. Combining these notations, we can now

write our constraint for the minimizer problem:

(
us,i − us,i−1

)
os ≥

ls,i

2
∀s, i. (7.4)

Geometrically, each of the functionals in Equation 7.3 has a distinct interpretation.

First, we look at the arc-length preserving functional Elength . The term
∫

C(t)
means

we are integrating along each cross-section of the strip and then
∫ L

0
denotes that we

are integrating along the length of the strip. The term ∇u(x) · τ̄(t)dx − 1 tells us that

u should change at the rate of 1 in the direction of aggregate curve. For our tangent

alignment functional Ealign , we also integrate along cross-section and length of the

strip similar to Elength . The term ∇u(x) · n̄(t) tells us that at each point, we want the

gradient of u to be orthogonal to the normal to the aggregate curve. This is crucial

as this would make the isolines formed during parameterization to be orthogonal

to the aggregate curve, and would align the tangents.

7.2.3 Solution and Algorithm

With the functionals mentioned in Equation 7.3 and the constraint in Equation 7.4,

we can attempt to formulate the parameterization. But the strip geometry is still

unknown, which means we do not have a continuous C(t) as formulated. Without

the strip geometry itself, we lack a proper definition for the cross-section. To find

7.2.3 Solution and Algorithm 53

minu

(
Elength + Ealign

)
we need to solve for three sets of variables. These variables

are :

1. The parameter values at all stroke points.

2. The gradient orientations of each stroke.

3. A set of isoline cross-sections defined for parameter values of u, including the

set of stroke points that lie on each of these cross-sections.

The parameter values u are continuous, but we need to discretize the C(t) to find

the set of cross-sections. We have the monotonicity constraint as well, which requires

discrete gradient orientations. The gradient orientation os can be reliably predicted

for the parameterization gradients along individual strokes. This is therefore

our first step for parameterization. Next, the parameterization cross-sections and

parameter values along them are calculated simultaneously using a variational

framework [13]. Lastly, this parameterization would allow us to define parametric

fitted curves for the final aggregate result. We now look at these steps individually

to get a better understanding of each step.

7.2.3.1 Pairwise Gradient Orientation

Our goal is to maximize isoline span and tangent alignment properties for our

strokes. This means we aim to maximize the similarity of gradient direction for

strokes that are roughly parallel. Taking each pair of adjacent strokes, the most

compatible orientation is computed locally. For stroke pairs that might have

multiple strip interpretations, orientations that are consistent with narrower strips

are preferred. Additionally, any orientation that produces isolines with diverging

gradient is avoided. Once the pairwise local compatibility has been determined,

the impact of this orientation is checked against the global solution. We take the

global orientation that overall maximizes compatibility between stroke pairs. The

54 7. Fitting Curves

formulation and solution to this optimization are done using integer programming

[13].

7.2.3.2 Core Parameterization

For solving the parameterization problem, the continuous strip parameterization

formula in Equation 7.3 is discretized and restricted to the strokes. This creates a

discrete, energy functional that can be optimized for getting the parameterization.

But we still face the challenge of finding which points adjacent in Euclidean space

are also adjacent within the strip. This is solved as a multi-step problem. First, a

set of close points are identified, that is likely to be strip-adjacent. This is done

by generating a set of stroke-orthogonal cross-sections. Using these cross-sections

we compute an approximate parameterization to check the likelihood of pairs of

points on the current cross-sections of being adjacent. This computation is an

iterative computation process that alternates between calculating parameter value

and likelihood update steps. This approach is known as the coordinate descent

method. It essentially means we only optimize one thing at a time, and go back and

forth optimizing one property or the other until the results stop changing. During

this step, we aim to filter highly unlikely pairings of strokes. This includes strokes

with poor tangent similarity, outlier inter-stroke distances, large gaps between

connections, etc.

7.2.3.3 Curve Fitting

Once we reach a point where our previous parameterization method converges,

we use the final parameterization to compute a fitted curve. The shape at each

parameter value u should reflect the shape of input strokes at this u value. During

this computation, the fitting accounts for mainly three properties: positions, tangents,

7.2.3 Solution and Algorithm 55

and curvatures. A higher priority is given to curvature and tangent preservation

over position approximation, as suggested by observations from prior work [13].

56 7. Fitting Curves

CHAPTER 8

Methods

One of the main goals of this project was to use StrokeStrip’s algorithm on various

types of input. This includes creating our own inputs and applying fitting to explore

the artistic perspective of the project. The method for using custom input files

involves primarily four steps:

1. Draw the desired graphical input in vector format.

2. Convert the vector image to the appropriate input format (.scap).

3. Break the image into different groups of aggregate strokes.

4. Perform fitting on the file produced in step 3.

Each step involves the use of different software and/or script to carry out our

goals. In this chapter, we discuss each of these individual steps in detail and

understand how they combine to give us clean line drawings from our drawings.

8.1 Input using Adobe Illustrator

To create our own input, we require a drawing tool that can support .svg format

export. For this paper, the custom input files were created using Adobe Illustrator

version 2.1. The device used was iPad Air (4th generation) running on iPadOS 15.3

alongside Apple Pencil with pressure sensitivity disabled. For drawing the input,

57

58 8. Methods

multiple drawing tools were tested to check compatibility with the StrokeStrip code.

This includes tools such as the pen tool, pencil tool, blob brush, etc. The only tool

that always produced compatible .svg files was the pencil tool. The pencil tool

was selected with a 1pt, thin stroke setting with the fill setting turned off. Inputs

were drawn on a letter-sized (612 × 792 pt) canvas which was exported as .svg files.

During export to .svg format, the font was selected as SVG. Selecting ‘outlines’ as

the font during extraction would cause the strokes to be hollow outlines which is

not optimal for our purposes. Once exported, the .svg file is ready for conversion in

the next step.

8.2 StrokeAggregator

For our next step, we convert valid .svg vector drawing files to .scap files. We use

the svg_to_scap.py script from the StrokeAggregator project [7] to generate input

files for the next step.

8.2.1 Input Format

The input files for the project are vector drawings with the custom format with

.scap extension. In .scap files, drawings are stored as strokes that are encoded as

polylines. The format of .scap files is shown below:

#[width] [height]

@[thickness]

{

#[stroke_id] [cluster_id]

[x1] [y1] [pressure1]

[x2] [y2] [pressure2]

[x3] [y3] [pressure3]

8.2.2 Svg to Scap Conversion 59

[...etc]

}

[...etc]

Individual stroke information is contained in pairs of braces { ... }. This

information contains a unique stroke ID for individual strokes in the drawing. It also

contains a unique cluster ID which is the same for all strokes that collectively form a

single aggregate curve. The width and the height values collectively determine the

origin of the drawing relative to the dimensions of the canvas. The stroke polylines

are simply x and y coordinates in the Cartesian plane, with respect to the determined

origin. Each coordinate also contains a field for pressure value, which is taken under

consideration if the drawing input was done using a pressure-sensitive stylus. For

this paper, we do not take the pressure value into account and omit it by setting

it to a default value of 0. The thickness value in the file lets the user incorporate

the thickness of the stroke for fitting. By default, we consider the thickness of all

strokes to be the same and set it to 1 for most cases.

As the .scap files are very specific to this specific project, it is quite difficult to

generate them from scratch. Simple conversion from usual vector image formats is

difficult too, as we need to extract the information from individual files and format

them in the exact order of the .scap format. For this reason, we use .svg files as our

preliminary file format and then convert these files into .scap files.

8.2.2 Svg to Scap Conversion

The SVG (Scalable Vector Graphics) file format is a popular two-dimensional vector

graphics format for illustrations [1]. Image information is stored in text format

written in XML (Extensible Markup Language) format, which gives it a considerable

amount of flexibility, especially for web-based usage.

60 8. Methods

The python script svg_to_scap.py reads SVG files and converts the mathematical

information contained into stroke information for the SCAP files. This is done

entirely through the command line and requires the installation of Python and

the svgpathtools package. The script also re-parameterizes the path from SVG

during conversion. There is an option to control sampling step size during re-

parameterization using the command line argument -r SAMPLE_STEM_MM. The

resampling and step size only apply to parametric curves such as Bèzier curves,

but not to piecewise linear curves. The step size is also useful as we can reduce its

value if our input contains minute details.

8.3 Aggregator Labeller

Once we have converted our .svg file to .scap file, we move to the next step which

involves labeling the strokes into their respective clusters. This is a required step as

the newly converted .scap file contains the whole drawing as one single group. Our

main script for fitting curve expects input files to have multiple aggregate strokes

for different sections of the image, which means it will not accept .scap files with a

single curve as valid input.

We use the labeler to only group strokes that are perceived as a single aggregate

stroke. For this step, we use the JavaScript application from the StrokeAggrega-

torLabeller project [10]. The web application is run through a browser by hosting

the application on our local server. This is done by using SimpleHTTPServer in

python. A local server allows us to statically server files from our own directory.

This lets the JavaScript app dynamically read files from this directory and perform

the labelling task.

8.3.1 Application UI 61

8.3.1 Application UI

The user interface (UI) of the application is shown in Figure ??. Once a .scap file is

loaded onto the browser, the sketch with overdrawn strokes is viewed. Some of

these strokes can be grouped together to depict the clean version of the same curve.

As a user, our task is to interactively group strokes in the drawing that we perceive

to be a single clean curve.

The cursor acts as a small circular selection tool that helps the user to choose

strokes or choose a specific point on the stroke. The input drawing is shown on

the screen with all the buttons on the right side of the screen. Clicking on any of

the buttons activate the function of the button. Once a change has been made to

the drawing, the user needs to click on Confirm Change button if satisfied with the

outcome.

Figure 8.1: StrokeAggregator Labeller user interface

Otherwise, the user can also disregard the immediate changes made by clicking

62 8. Methods

on Discard Change button. Each button serves a different purpose, but there are

mainly five buttons that serve the purpose of the labelling task. We now discuss the

function of each of these five main buttons.

Highlight Groups When this is activated, the cursor highlights any selected group

in pink while reducing the transparency of all other groups in the background.

If a single stroke is selected using this tool, it shows a warning message

notifying the user that a single stroke is not a part of any group.

Figure 8.2: The group highlighted is shown in pink

Merge Groups This button allows the user to select two or more groups to be

merged together. This mode also lets the user select a single stroke and then

select the group it belongs to or another stroke, and merge them.

Figure 8.3: Merging the selected group (on the left) with the newly selected group (on the right).
The selected group is given a light pink shade in both pictures.

8.3.1 Application UI 63

Split Groups The split group button allows the user to select one or more strokes

within an existing group to split the selected strokes into a new group. The

desired strokes turn red when selected, indicating that these are the specific

strokes that leave the group to form a new group on their own.

Figure 8.4: Splitting a group (marked red) from a larger group (marked light pink on the left).

Break Stroke The purpose of this button is to break a single, continuous stroke

into two separate segments that belong to different groups. When this option

is selected, the user is prompted to select a stroke. Once selected, a pointer

appears on the stroke which can be moved to the point where the user wants

to break the stroke.

Figure 8.5: Breaking the stroke (marked red) at the selected point (red dot), shown in the center
picture.

64 8. Methods

Animate Groups This button does not have any direct effect on the strokes, but is

useful to visualize the different groups in a drawing after labelling has been

carried out. Clicking this button highlights individual groups in the order

they were created to create an animated representation of all the different

groups present.

8.3.2 Labeller Usage

The main goal of the labeler is to form different groups of strokes within the original

drawing, where each group represents a single aggregate curve. Without separating

the individual groups, the fitting algorithm would group the entire drawing into

a single curve and attempt to fit them together. This would fundamentally be

impossible and would cause an error in the code, failing to generate any files.

Figure 8.6: Input drawing grouped using labeler

As we observe and mentally group the strokes together, we try to incorporate the

human perception factors as mentioned in Section 5. As shown in Figure 8.7, some

strokes might be disconnected from the group as a whole but can be very similar

in terms of distance and tangent directions. This would imply these strokes are in

8.3.2 Labeller Usage 65

the same group. For strokes connected in Euclidean space with different tangent

directions has to be split into two different strokes. Finally, in the case where the

strokes are very similar in terms of direction but contain a significant amount of

space between them, they should be regarded as different strokes as well.

Figure 8.7: Examples to demonstrate appropriate stroke grouping. Here, the same color represents
the same group.

Sketches with shadings are required to be separately grouped as well. In the

example shown in Figure 8.8, we group the shading (brown) separately from the

non-shading (blue).

Figure 8.8: Shading

66 8. Methods

Sharp turns within stroke produce segments that move in different directions.

Even with a direct connection between strokes, there is a significant change in the

tangent direction between the two segments. This means these turns will always be

grouped differently, as shown in Figure 8.9

Figure 8.9: Grouping strokes with sharp turning points

Finally, strokes can form smooth overall curves from individual smooth strokes.

Strokes that form curves through such smooth transition should be grouped together.

8.4. StrokeStrip Fit 67

Figure 8.10: Smooth curves as a single group

Once the sketch has been successfully labelled into different groups, the user

can either press the Save and Exit button or the Save and Next button on the

UI. The Save and Next button prompt the user to save the new .scap file for the

processed sketch and then moves to the next image to be labeled. The next images

are determined by the order set in the input.js file in the data folder. Clicking the

Save and Exit button first prompts the save option, then exits the labeler application

from the browser. Using this labeled .scap file, we can run the main StrokeStrip

script to fit the stroke clusters.

8.4 StrokeStrip Fit

For the final fitting, we use the main project discussed in this paper - StrokeStrip -

to perform joint parameterization and fitting of the input drawing [13]. The .scap

file to be processed is placed in the appropriate folder and the script is run. Once

processed, it generates different .svg files during the fitting process, including the

final fitted sketch.

8.4.1 Prerequisites

For our experiments, the code was run on a Mac M1 (2020) with macOS Monterey

version 12.2.1. The project is written in C++ language, requiring the installation

68 8. Methods

of a few third party libraries. The first one is the Gurobi Optimization library

which is a mathematical programming solver for different types of mathematical

problems [2]. Although this library requires a license, a free academic license is

available for college students, which was used to register and use for our code. It is

crucial to make some changes to the CmakeLists.txt file and the FindGUROBI.cmake

file to allow the system to detect and successfully use this library. The version of

Gurobi used for the project is version 9.5.0. In the FindGUROBI.cmake file, we edited

the find_library function to account for the version number. This was done by

changing the gurobi version number to gurobi95 as shown below.

find_library(GUROBI_LIBRARY

NAMES gurobi gurobi95

HINTS ${GUROBI_DIR} $ENV{GUROBI_HOME}

PATH_SUFFIXES lib)

Additionally, a few lines were added to the CmakeLists.txt file to include

the path for finding the library folders including the GUROIB_CXX_LIBRARY. The

additional lines are shown below. It is worth noting that the individual paths and

version numbers will vary across different machines and Gurobi versions.

find_path(GUROBI_INCLUDE_DIR

NAMES gurobi_c++.h

PATHS "$ENV{GUROBI_HOME}/include"

"/Library/gurobi950/macos_universal2/include"

)

find_package(GUROBI_LIBRARY

NAMES gurobi

gurobi45

8.4.2 Running and Generating Files 69

gurobi46

gurobi50

gurobi51

gurobi52

gurobi55

gurobi56

gurobi60

gurobi65

PATHS "$ENV{GUROBI_HOME}/lib"

"/Library/gurobi950/macos_universal2/lib"

)

find_package(GUROBI_CXX_LIBRARY

NAMES gurobi_c++

PATHS "$ENV{GUROBI_HOME}/lib"

"/Library/gurobi950/macos_universal2/lib"

)

Once Gurobi has been manually installed, the project provides a script for

installing other third party libraries. These include Cmake, Eigen, and xcode on

a mac. With all the required dependencies fulfilled, we can build the StrokeStrip

project using CMake, and start running experiments on our .scap files.

8.4.2 Running and Generating Files

The .scap inputs for the study are saved in the examples/study_inputs directory.

To run the code, we use the strokestrip executable from the build folder using the fol-

lowing command: build/strokestrip examples/study_inputs/filename.scap

where ‘filename’ is replaced by the name of the input file. Our script produces four

70 8. Methods

different .svg files as results, each representing different stages of the computation.

The four types of result files generated are gradient orientation, parameteriza-

tion, isolines, and the final fitted curve. We now discuss the purpose behind the

generation of each of these four types of output images.

Gradient orientation We know that predicting the orientations of the gradients

along each stroke is quite reliable. For this reason, the code first computes the

optimal gradient orientations for all strokes in all clusters. The code generates

files with ending ‘_orientation.svg’ which reflects the gradient orientation in

the input file.

Figure 8.11: Example to show gradient orientation

Parameterization and Parameter Values The next step for the code is to compute

both parameterization cross-sections and parameter values at the same time.

The file generated for this step ends with ‘_params.svg’. An example is shown

in Figure 8.12 where the input strokes are colored blue to red. The colors

depend on parameter values, which in turn depend on the distance of each

point on each stroke in the group. This means two opposite ends would have

two different colors - red and blue.

8.4.2 Running and Generating Files 71

Figure 8.12: Example to show parameterization

Isolines After the parameterization step, the algorithm computer the arc length

cluster parameterization by finding the cross-section isolines and isovalues [13].

As a final result of this step, we solve for the optimized cross-sections joining

together points that are supposed to have similar isovalues. The isolines for

within-the-strip adjacent points are then calculated and shown as an output

similar to the ones shown in Figure 8.13.

Figure 8.13: Example to show isolines

Fitted Curve Using both the cross-sectional data and parameter values, the algo-

rithm moves on to the final step - defining the parametric fitted curve. The

fitted image generated ends in ‘_fit.svg’ and its shape represents the geometric

properties of the input curve that forms a clean line drawing. An example

72 8. Methods

is shown in Figure 8.14 where the parameterized drawing in Figure 8.12 has

been fitted.

Figure 8.14: Example to show the final fitted result

CHAPTER 9

Results and Discussion

To study the results of the Strokestrip algorithm, we chose multiple inputs. These

inputs include some of the .scap input files provided by the project itself. Additional

inputs include our own sketches created through Adobe Illustrator. These inputs

contain letters and words from different languages, and a few drawings for slightly

more complex input.

For every input, there will be four different types of output produced as

mentioned in Section 8.4.2 and illustrated in Figure 9.1. For the purposes of this

paper, we would mainly focus on the parameterization and final fit, as seen in

Figure 9.1a and Figure 9.1d respectively. The input drawing is analogous to the

parameterized picture. The only difference between the input and the parameterized

output picture is the absence of shaded parameter values in the input. The two

colors chosen for expressing the two ends of the stroke parameter values are red

and blue. The shading ranges from blue at the start to purple and then red at the

end, for every stroke being parameterized.

73

74 9. Results and Discussion

(a) Parameterized input

(b) Gradient Orientation

(c) Isolines

(d) Fitted output

Figure 9.1: Types of outputs produced

We recall from Chapter 7.2.1 that the StrokeStrip algorithm aims to satisfy the

following properties during arc length parameterization: tangent alignment, arc

length preservation, monotonicity, and isoline span. For our inputs, we tried to

create drawings that face different challenges based on these requirements. The

tangent alignment requirement can be challenged by multiple strokes that are

adjacent but moving at slightly different angles. This can be illustrated by the

example shown in Figure 9.2.

In Figure 9.2a, we observe that there multiple strokes seem to converge (or

75

diverge) with respect to a point from different angles. But as they are within-the-

strip adjacent, the tangents are aligned and parameterized accordingly. For such

strokes, we see that the individual strokes forming the curve have very similar

parameter values, as color coded in Figure 9.2a. In Figure 9.2b we see that the

algorithm successfully fits the strokes in an aggregate curve representing the average

geometric representation of the letter.

(a) Parameterized input (b) Fitted output

Figure 9.2: Fitted letter ’Do’ from Bengali alphabets

These strokes could also form a loop instead of combining the two strokes that

form an aggregate. In that case, the strokes would be considered a single stroke

being parameterized from one end to the other. But instead, both the strokes have

similar parameter colors side-by-side and the converging point is considered one

of the ends. This satisfies both the monotonicity and isoline span properties. To

test the same challenges on strokes actually crossing and turning back, we ran the

StrokeStrip code on a drawing of a loop shown in Figure 9.3.

76 9. Results and Discussion

(a) Parameterized input (b) Fitted output

Figure 9.3: Fitted ’loop’ drawing

(a) Parameterized input (b) Fitted output

Figure 9.4: Fitted drawing of a glass with a label

As we can see in Figure 9.3a, the parameter values for side-by-side strokes are

not the same (represented by different colors). This is because the algorithm used

tangent alignment requirements and correctly detected the drawing as a loop going

from one end to the other. Treating them as within the strip adjacent would also

77

violate the isoline span property. The fitted result in Figure 9.3b is a smooth curve,

which has been formed from the parameterization and fit by preserving the arc

length of the complete loop. Similar results are also shown in Figure 9.4 for a slightly

more complex input. The two strokes on the bottom of Figure 9.4 seem to join

together smoothly, while still retaining the overall intended shape. The fitted curve

does not take the space in between the strokes, but rather fits it into the portion

connected to the glass itself. This is a good example to illustrate how we prioritize

curvature over position, as mentioned in Section 7.2.3.3.

(a) Parameterized input (b) Fitted output

Figure 9.5: Fitted results for the drawing of an insect

Figure 9.5 shows the performance of the algorithm on a moderately complicated

input. The fit on the wings and the central body of the bug are quite accurate

to possible intended curves. The input on the top right ‘leg’ shows a different

curvature of the input compared to the output. From Figure 9.5a, we see that there

78 9. Results and Discussion

is a small, disjoint stroke at the right edge that has been parameterized in a similar

manner to the stroke underneath.

Using the labeler, we can enforce strokes to be in a specific group. In a similar

manner, we can also take out strokes from groups into a separate group or just a

standalone stroke. By overriding the usual expectations from strokes forming an

aggregate curve, we can inspect the behavior of the algorithm in such situations.

One such example is shown in Figure 9.6. In this example, vertical strokes on the

right form an open loop, which connects the two strokes into a single stroke. This

tells the code to treat it as a continuous, single stroke that does not get fit into an

aggregate curve as seen in Figure 9.6b.

(a) Parameterized input (b) Fitted output

Figure 9.6: Fitted results for Bengali letter ’Sho’

From the parameterized input in Figure 9.6a, we can also see how the color

changes from one end to the other without treating them as separate strokes. This

fit does not satisfy our required isoline span expectations. Ideally, the whole stroke

should be treated as two separate strokes due to its sharp turn, as suggested in

Figure 8.9. In terms of the labeler, the stroke should be broken at the turning point,

9.1. Special Case Study 79

into two separate strokes. Only then we can put these two strokes in the same

group.

9.1 Special Case Study

To see how different labeling causes separate nuances in the fitted output, we move

from a custom letter input to a custom word input. The drawing shown in Figure

9.7 is the word ‘Riya’ written in the Hindi language, but with some added extra

strokes to convey the word more like a sketch. The extra added strokes also allow

us to track how the algorithm deal with distinct stroke groupings.

Figure 9.7: Raw sketch of the word ‘Riya’ in Hindi

As we can see in Figure 9.7, there are a few places where the extra strokes can be

treated slightly differently in terms of grouping them. These different groupings for

a specific letter (that spells ’R’ in English) from the word are shown in Figure 9.8

80 9. Results and Discussion

(a) Grouping A

(b) Grouping B

Figure 9.8: Two possible groupings at Hindi letter ’R’

We observe that group A in Figure 9.8a contains only two strokes for this specific

letter. One group is highlighted as pink, and the other group is the stroke that is

colored brown. For group B, we divide the letter into four different groups shown

in different colors. This is shown in Figure 9.8b, where we break the top two strokes

in a single group, divide the loop into two groups, and keep the bottom end of the

letter as a standalone stroke. In a similar fashion, we create two different stroke

orientations for the other letter (that spells ’Y’ in English) for both the groups. The

comparative stroke grouping for this letter is shown in Figure 9.9

9.1. Special Case Study 81

(a) Grouping A

(b) Grouping B

Figure 9.9: Two possible groupings at Hindi letter ’Y’

For group A, there are three groups including the highlighted group as shown

in Figure 9.9a. In group B, there are four groups where the loop has been broken

into two groups at the turning point. This signifies the different types of orientation

that the StrokeStrip algorithm can deal with separately.

82 9. Results and Discussion

Figure 9.10: Fit for group A

The aim of this test was to see whether a further division of strokes into different

types of shapes helped with the overall fit of the drawing. The final fit for both

group A and group B is shown in Figure 9.10 and Figure 9.11 respectively. From

Figure 9.10 we see that in group A the letter ‘R’ was fitted smoothly without any

breaks. But for group B fit in Figure 9.11, there is a break on the top stroke fit, which

does not keep the fit smooth. Similarly, group A fit for the letter ‘Y’ in Figure 9.10

has a small break at the point where the loop starts from the right. But the group B

fit contains two breakpoints at the bottom of the loop in two different directions.

9.1. Special Case Study 83

Figure 9.11: Fit for group B

Although both the fit for this letter are very close to the intended curve, the

fit with a single breakpoint may be preferred over the one with two breakpoints

residing close to each other. This illustrates that refining the strokes too much makes

the algorithm fit them separately, which does not always guarantee the smooth,

continuous curve that a user might expect. Grouping strokes that ‘belong’ to each

other should be preferred rather than grouping strokes that individually ‘should’

produce the final aggregate curve.

84 9. Results and Discussion

CHAPTER 10

Conclusion

The main goal of this paper was to understand the basic principles involved in

the automatic consolidation of freely drawn sketches. These basic principles involve

steps such as point ordering, stroke clustering, stroke orientation, curve fitting,

etc. Each of these steps performs certain tasks that allow the overall algorithm to

systematically proceed towards the final result. There is quite a few underlying math

involved in each of these steps, which we studied throughout this paper. The main

subject of our study was the project StrokeStrip, which parameterizes clusters by

computing the restriction of the strokes to their natural arclength parameterization

[13]. This arc length parameterization is done by imagining stroke clusters as strips.

Besides numerous mathematical concepts, the project is heavily involved with

artistic ideas. We saw how the software implementation was majorly dependent

on the artist’s insights on how humans perceive art. Specifically, the algorithm

utilizes information on how humans visualize the overall intended art when there

are multiple strokes being used to depict different curves and shapes. These help to

make decisions such as finding adjacent strokes, differentiate between continuous

and disjoint strokes, etc. We studied clustering and fitting steps that are generally

the two main steps involved in such art consolidation frameworks. This helped

us to view StrokeStrip in contrast to other methods, as StrokeStrip performs joint

parameterization and fitting without any point ordering or clustering.

85

86 10. Conclusion

To explore the project in terms of performance, we the fitted output produced

by StrokeStrip on multiple inputs. These inputs were both project-provided .scap

files and our own sketch inputs, with varying levels of complexity. The outputs

were studied and the performance on each image was recorded. The results were

compared in accordance with the mathematical factors and assumptions involved

in the joint parameterization process. This helped us understand the functionality

and usage of the code, as well as some of its limitations on different types of output.

For future works, the software can make use of a graphical user interface that

combines multiple steps of the whole process together. The .svg to .scap conversion

can be a part of the GUI, allowing the user to then label the strokes from the newly

generated .scap file. The fitting process can then use these labeled strokes to carry

out parameterization and fitting to produce output, all through a simple interface.

Additionally, the project can be extended beyond simply processing sketches. It

can be used in conjunction with raster-to-vector conversion techniques to clean

older images and manuscripts. In general, StrokeStrip would be very useful in

applications where there are multiple paths involved as image, that requires to be

fitted into curves. Finally, more research can be focused on the perceptual study of

different factors that humans engage during the mental consolidation of sketches.

The findings can then be used and applied to StrokeStrip’s existing method to

further refine the parameterization and consolidation process.

References

1. SVG files: How to create, edit and open them | adobe. URL https://www.adobe.
com/creativecloud/file-types/image/vector/svg-file.html. 59

2. Gurobi optimizer. URL https://www.gurobi.com/products/
gurobi-optimizer/. 68

3. Edward Angel and Dave Shreiner. Interactive computer graphics: a top-down
approach with WebGL. Pearson, 7th edition edition. ISBN 978-0-13-357484-5. 11,
12, 13, 14, 18, 19, 20, 28, 31

4. Emily Brewer. Vector vs. raster. URL https://thinkeps.com/2020/08/11/
vector-vs-raster/. 4

5. Ron Goldman. CHAPTER 1 - introduction: Foundations. In Ron Gold-
man, editor, Pyramid Algorithms, The Morgan Kaufmann Series in Computer
Graphics, pages 1–43. Morgan Kaufmann. ISBN 978-1-55860-354-7. doi:
10.1016/B978-155860354-7/50002-7. URL https://www.sciencedirect.com/
science/article/pii/B9781558603547500027. 14

6. Eric Lengyel. Mathematics for 3D game programming and computer graphics.
Game development series. Charles River Media, 2nd ed., [repr.] edition. ISBN
978-1-58450-277-7. 17, 20, 21, 22, 23, 24, 25, 26, 28

7. Chenxi Liu, Enrique Rosales, and Alla Sheffer. StrokeAggregator: consolidating
raw sketches into artist-intended curve drawings. ACM Transactions on Graphics,
37(4):97:1–97:15, July 2018. ISSN 0730-0301. doi: 10.1145/3197517.3201314. URL
https://doi.org/10.1145/3197517.3201314. 2, 33, 37, 38, 39, 41, 43, 58

8. OpenStax, BCcampus, OpenStax College, and University of Min-
nesota. Calculus Volume 3. OpenStax College, Houston, 2016.
URL http://VH7QX3XE2P.search.serialssolutions.com/?V=1.0&L=
VH7QX3XE2P&S=AC_T_B&C=Calculus%20Volume%203&T=marc&tab=BOOKS. OCLC:
1066560292. 8, 10

9. Gunay Orbay and Levent Burak Kara. Beautification of Design Sketches
Using Trainable Stroke Clustering and Curve Fitting. IEEE Transactions on
Visualization and Computer Graphics, 17(5):694–708, May 2011. ISSN 1941-0506. doi:
10.1109/TVCG.2010.105. Conference Name: IEEE Transactions on Visualization
and Computer Graphics. 2, 43, 44, 45, 46

87

https://www.adobe.com/creativecloud/file-types/image/vector/svg-file.html
https://www.adobe.com/creativecloud/file-types/image/vector/svg-file.html
https://www.gurobi.com/products/gurobi-optimizer/
https://www.gurobi.com/products/gurobi-optimizer/
https://thinkeps.com/2020/08/11/vector-vs-raster/
https://thinkeps.com/2020/08/11/vector-vs-raster/
https://www.sciencedirect.com/science/article/pii/B9781558603547500027
https://www.sciencedirect.com/science/article/pii/B9781558603547500027
https://doi.org/10.1145/3197517.3201314
http://VH7QX3XE2P.search.serialssolutions.com/?V=1.0&L=VH7QX3XE2P&S=AC_T_B&C=Calculus%20Volume%203&T=marc&tab=BOOKS
http://VH7QX3XE2P.search.serialssolutions.com/?V=1.0&L=VH7QX3XE2P&S=AC_T_B&C=Calculus%20Volume%203&T=marc&tab=BOOKS

88 References

10. Dave Pagurek. Labeller. URL https://github.com/davepagurek/
StrokeAggregatorLabeller. original-date: 2019-10-08T22:03:12Z. 60

11. D. Salomon. Curves and surfaces for computer graphics. Springer. ISBN 978-0-387-
24196-8 978-0-387-28452-1. 16, 19, 20, 24, 28

12. James Stewart. Multivariable calculus. Brooks/Cole Cengage Learning, Belmont,
CA, 7th ed edition, 2012. ISBN 978-0-538-49787-9. 6, 7, 8

13. Dave Pagurek Van Mossel, Chenxi Liu, Nicholas Vining, Mikhail Bessmeltsev,
and Alla Sheffer. StrokeStrip: joint parameterization and fitting of stroke clusters.
ACM Transactions on Graphics, 40(4):50:1–50:18, July 2021. ISSN 0730-0301. doi:
10.1145/3450626.3459777. URL https://doi.org/10.1145/3450626.3459777.
1, 2, 5, 43, 47, 49, 50, 51, 53, 54, 55, 67, 71, 85

14. Johan Wagemans, James H. Elder, Michael Kubovy, Stephen E. Palmer, Mary A.
Peterson, Manish Singh, and Rüdiger von der Heydt. A century of gestalt
psychology in visual perception: I. perceptual grouping and figure–ground
organization. 138(6):1172–1217. ISSN 1939-1455, 0033-2909. doi: 10.1037/
a0029333. URL http://doi.apa.org/getdoi.cfm?doi=10.1037/a0029333. 33,
34, 39

https://github.com/davepagurek/StrokeAggregatorLabeller
https://github.com/davepagurek/StrokeAggregatorLabeller
https://doi.org/10.1145/3450626.3459777
http://doi.apa.org/getdoi.cfm?doi=10.1037/a0029333

	Stroke Clustering And Fitting In Vector Art
	Recommended Citation

	Abstract
	Acknowledgments
	Contents
	Introduction
	Raster and Vector graphics
	Arc Length Parameterization
	Parametric Equations
	Curves
	Arc Length of parametric curves

	Vector Valued Functions
	Curvature of curves

	Arc length parameterization

	Curves in Computer graphics
	Basic Idea
	Types of curves
	Explicit
	Implicit Curves
	Parametric

	Modeling smooth curves
	General Principles
	Continuity
	Parametric Cubic curves
	Hermite Curves
	Bézier curves

	Human Perception for Over-sketched Art
	Clustering
	Overview
	Method Details
	Coarse Clustering
	Fine Clustering
	Final fitting

	Fitting Curves
	Orbay and Kara fitting
	StrokeStrip Parameterization and Fitting
	Problem Statement and Goals
	Formulation
	Solution and Algorithm
	Pairwise Gradient Orientation
	Core Parameterization
	Curve Fitting

	Methods
	Input using Adobe Illustrator
	StrokeAggregator
	Input Format
	Svg to Scap Conversion

	Aggregator Labeller
	Application UI
	Labeller Usage

	StrokeStrip Fit
	Prerequisites
	Running and Generating Files

	Results and Discussion
	Special Case Study

	Conclusion
	References

