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BRAID COMPUTATIONS FOR THE CROSSING NUMBER OF

KLEIN LINKS

MICHAEL BUSH, DANIELLE SHEPHERD, JOSEPH SMITH,
SARAH SMITH-POLDERMAN, JENNIFER BOWEN, AND JOHN RAMSAY

Abstract. Klein links are a non-orientable counterpart to torus knots and

links. It is shown that braids representing a subset of Klein links take on

the form of a very positive braid after manipulation. Once the braid has
reached this form, its number of crossings is the crossing number of the link

it represents. Two formulas are proven to calculate the crossing number of

K(m,n) Klein links, where m ≥ n ≥ 1. In combination with previous results,
these formulas can be used to calculate the crossing number for any Klein link

with given values of m and n.

Keywords. 57M25, 57M27

1. Introduction

A key aspect in the classification of distinct knots and links is the crossing
number, a link invariant. The crossing number of a link A, denoted c(A), is the
minimum number of crossings that can occur in any projection of the link [1].
Through the use of Alexander-Briggs notation, prime links are placed into finite
sets based on both their crossing number and number of components [1, 6]. This
paper will use Alexander-Briggs notation, specifically corresponding to the labels
given by Rolfsen [6], where the 421 link has four crossings, two components, and is
the first link listed with these invariant values. Braid relations are used to simplify
the general braid word for Klein links, which allows us to find their minimal number
of crossings.

2. Torus links and Klein Links

A torus link is a link that can be placed on the surface of a torus such that
it does not cross over itself [1]. Torus links are denoted T (m,n), where m is the
number of times the link wraps around the longitude of the torus, and n is the
number of times it wraps around the meridian. Torus links are a commonly studied
class of links and formulas that can be used to determine many of their invariants
are known. Given the values of m and n, the crossing number can be computed
with the formula, c(T (m,n)) = m(n− 1) where m ≥ n [5, 9].

Similarly, Klein links are links that can be placed on the surface of a once punc-
tured Klein bottle so that they do not intersect themselves. One method used
to form this set of Klein links begins with the identified rectangular representa-
tion of the Klein bottle seen in Figure 1. For these Klein links, K(m,n), the m
strands originating on the left side of the rectangular diagram are placed to remain
entirely below the “hole” representing the self-intersection of the once punctured
Klein bottle, and the n strands originating from the top remain entirely above the
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hole [2, 3, 7, 8]. After a link is formed, the Klein bottle is removed and the link is
classified based on its invariants.

Figure 1. K(5, 3) on the identified rectangular representation of
a Klein bottle and on the equivalent once punctured Klein bot-
tle. Dashed lines represent portions of the link that lie on hidden
surfaces of the Klein bottle.

3. Braids

Braids are a useful technique for representing and classifying links since all links
can be represented by braids [1]. A braid is a set of strings connected between a
top and bottom bar such that each string always progresses downwards as it crosses
above or below the other strings [1, 7]. The strings of an n-braid are numbered
from 1 to n, going from the leftmost to the rightmost string. A closed braid rep-
resentation of a link is formed when these top and bottom bars are connected and
the corresponding strings are attached. When describing braids, braid words are
commonly used due to their simplicity and usefulness. Each crossing is labeled
using σεi , where i represents the ith strand of the braid crossing over or under the
(i + 1)st strand, as illustrated in Figure 2. When the ith strand crosses over the
(i+ 1)st strand ε = 1 and when it crosses under ε = −1.

i     i+1     i      i+1

si                      si
-1

Figure 2. Braid generators [8].
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Braids are commonly used to study Klein links and torus links since the corre-
sponding braids are known for given values of m and n. The properties of these
braids are exploited to find new properties of the links.

Proposition 1 ([1]). A general braid word for a torus link is (σ1σ2 . . . σn−1)m

when m ≥ 1 and n ≥ 2.

Proposition 2 ([7, 8]). A general braid word for a K(m,n) Klein link composes

the general braid word of a torus link with the half twist,

n−1∏
i=1

(σ−1n−1σ
−1
n−2 . . . σ

−1
i )

shown in Figure 3, which gives:

K(m,n) = (σ1σ2 . . . σn−1)m
n−1∏
i=1

(σ−1n−1σ
−1
n−2 . . . σ

−1
i ).

Figure 3. A half twist on an n-strand braid [7].

Unlike the general braid word for torus links, the general braid word for Klein
links can be manipulated with braid relations to reduce the number of crossings in
the braid [5, 9].

Definition 1 ([1, 8]). Braid relations, corresponding to the Reidemeister moves
for links, allow a braid to be transformed between equivalent forms without alter-
ing the link the closed braid represents. The first three braid moves are shown in
Figure 4, conjugation is shown in Figure 5, and stabilization is shown in Figure 6.

Move 1: σiσ
−1
i = 1 = σ−1i σi

Move 2: σiσi+1σi = σi+1σiσi+1

Move 3: For |i− j| > 1, σiσj = σjσi
Conjugation: For an n-string braid word z, for i from 1 to n − 1, z =
σizσ

−1
i = σ−1i zσi.

Stabilization: For an n-string braid word z, z = zσn or z = zσ−1n , resulting
in an (n + 1)-string braid word. Also for an (n + 1)-string braid word z,
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assuming z does not contain σn or σ−1n , stabilization allows zσn = z or
z = zσ−1n , resulting in an n-string braid word.

i     i+1  j     j+1 i     i+1   j     j+1

=

=

i     i+1     i  i+1
i     i+1   i+2 i     i+1   i+2

=

I          II

III

Figure 4. Braid moves 1, 2, and 3 [8].

B

i              i+1

B

     i    i+1

Figure 5. Conjugation [8].

BB

1                  n 1                  n            n+1

Figure 6. Stabilization [8].
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When m ≥ n, a generalized sequence of the first and third braid moves is used
to manipulate the general braid word of a Klein link into a form w that untangles
the negative half-twist in Lemma 1 below.

Lemma 1. For K(m,n) where m ≥ n, a simplified version of the braid word, w,
is

w = (σ1σ2 . . . σn−1)m−n+1(σ1σ2 . . . σn−2)(σ1σ2 . . . σn−3) . . . σ1.

Proof. For m ≥ n, a standard K(m,n) braid can be simplified using the following
sequence of braid moves 1 and 3:

K(m,n) = (σ1σ2 . . . σn−1)m(σ−1n−1σ
−1
n−2 . . . σ

−1
1 )(σ−1n−1σ

−1
n−2 . . . σ

−1
2 ) . . . σ−1n−1

= (σ1σ2 . . . σn−1)m−1(σ−1n−1σ
−1
n−2 . . . σ

−1
2 )(σ−1n−1σ

−1
n−2 . . . σ

−1
3 ) . . . σ−1n−1

= (σ1σ2 . . . σn−1)m−2(σ−1n−1σ
−1
n−2 . . . σ

−1
3 )(σ−1n−1σ

−1
n−2 . . . σ

−1
4 ) . . . σ−1n−1σ1

= (σ1σ2 . . . σn−1)m−3(σ−1n−1σ
−1
n−2 . . . σ

−1
4 ) . . . σ−1n−1σ1σ2σ1

...

= (σ1σ2 . . . σn−1)m−n+2σ−1n−1(σ1σ2 . . . σn−3)(σ1σ2 . . . σn−4) . . . σ1

= (σ1σ2 . . . σn−1)m−n+1(σ1σ2 . . . σn−2)(σ1σ2 . . . σn−3) . . . σ1

�

In this braid word w, all crossings are positive (ε = 1 for all σεi ), which means it
is classified as a homogeneous braid and a positive braid, as defined below.

Definition 2 ([5]). A braid, γ = σε1i1 . . . σ
εk
ik

, is a homogeneous braid if εj = εl
(εi = ±1) whenever ij = il.

Definition 3. A homogeneous braid a, is a positive braid if εj = εl for all σi.

The following definitions and properties provide important information about
another class of braids, very positive braids.

Definition 4 ([4]). A braid with r strands has a full twist (∆2) if the braid word
contains (σ1σ2σ3 . . . σr−1)r.

Note that a full twist can occur at any point within a braid as shown in Figure 7.

Definition 5 ([4]). A positive braid with a full twist is a very positive braid.

Definition 6. The link invariant braid index is the minimum number of strands
needed to represent a link L as a braid, denoted b(L).

Proposition 3 ([4, 9]). When a braid is a very positive braid p, b(p) = s, where s
is the number of strands in the very positive braid representation of p.

Theorem 1 ([5]). A homogeneous n-braid, h, where b(h) = n, has the minimal
number of crossings for the link it represents.

These properties are combined to form an important crossing number result for
very positive braids.

Lemma 2. A very positive braid representation of a link has minimal crossings for
that link.
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     1            2                    r - 1            r

1

2

r-1

r

Full
Twist

Braid

Braid
     1            2                    r - 1            r

Figure 7. A full twist on an r-strand braid.

Proof. Let p be a very positive braid. By Proposition 3 we know b(p) is equal to
the number of strands in p and p is a homogeneous braid by Definition 2. Thus, by
Theorem 1, a very positive braid contains exactly the number of crossings as the
crossing number of the link it represents. �

Very positive braids are useful for determining properties of links since invariants
including the crossing number and braid index can be found from braids in this form.
For certain values of m and n, w is already in this form and in other cases, the
braid word can be simplified into this form. In determining the crossing number
for these links, it is useful to know the number of crossings contained within the
half-twist of the Klein link braid word.

Lemma 3. The number of crossings in a half-twist of an n-braid is

n−1∑
i=1

i =
n2 − n

2
.

Proof. The half-twist

n−1∏
i=1

(σ−1n−1σ
−1
n−2 . . . σ

−1
i ), illustrated in Figure 3, has a crossing

for each σ term in the product, or (n− 1) + (n− 2) + · · ·+ 2 + 1. �

4. Crossing Number Theorem

For certain values of m and n, w is a very positive braid, which means that the
crossing number for the corresponding Klein link can be easily determined.
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Theorem 2. For m ≥ n ≥ 1, and m ≥ 2n− 1,

c(K(m,n)) = m(n− 1)− n2 − n
2

.

Proof. Consider the simplified version of the braid word of K(m,n) from Lemma 1:

w = (σ1σ2 . . . σn−1)m−n+1(σ1σ2 . . . σn−2)(σ1σ2 . . . σn−3) . . . σ1.

This braid word contains the same number of crossings as c(T (m,n)) − n2−n
2 due

to the reduction process in Lemma 1, which removed one crossing from the torus
braid for each crossing in the Klein link half-twist corresponding to the use of
braid move 1. Referring to Definition 4, this braid word contains a full twist when
m−n+ 1 ≥ n since (σ1σ2σ3 . . . σr−1) must occur at least r times and r = n. Thus,
when m ≥ 2n−1, the simplified braid word will be very positive, and by Lemma 2,
will have the minimal number of crossings. �

5. Finding Very Positive Braid Representations

For other values of m and n, a full twist is not contained within w, so only an
upper bound on the crossing number is initially known. Since w is a positive braid,
stabilization is the only braid relation that can remove crossings. The following
example illustrates how braid relations reduce the K(6, 5) to a very positive braid.
For simplicity, sub-words will be specific patterns of consecutive σi terms within
a braid word.

Example: Let us demonstrate the stabilization process to obtain a full twist on
a K(6, 5). First we will consider the reduced braid word w of the K(6, 5):

σ1σ2σ3σ4σ1σ2σ3σ4σ1σ2σ3σ1σ2σ1.

One can see that there are two sub-words of (σ1σ2σ3σ4) and three sub-words
of (σ1σ2σ3), but these do not satisfy the requirements of a full twist. Thus, when
re-examining the braid word, one can see that there are at least three sub-words of
(σ1σ2), satisfying the requirements of a full twist if put in order (on a three strand
braid):

σ1σ2σ3σ4σ1σ2σ3σ4σ1σ2σ3σ1σ2σ1.

Using braid moves (noted before they are applied), with two stabilizations, we
will manipulate the braid word to obtain a full twist:

K(6, 5)

= σ1σ2σ3σ4σ1σ2σ3σ4σ1σ2σ3σ1σ2σ1 (braid move 3)

= [σ1σ2σ3σ1σ2σ4σ3σ4σ1σ2σ3σ1σ2σ1] (braid move 2, conjugation)

= σ3σ1σ2σ3σ1σ2σ1[σ1σ2σ3σ1σ2σ3σ4σ3σ1σ2σ3σ1σ2σ1]σ−11 σ−12 σ−11 σ−13 σ−12 σ−11 σ−13

(braid move 1)

= σ3σ1σ2σ3σ1σ2σ1σ1σ2σ3σ1σ2σ3σ4 (braid move 3, first stabilization)

= σ1σ3σ2σ3σ1σ2σ1σ1σ2σ3σ1σ2σ3 (braid move 2, braid move 1)

= [σ1σ2σ3σ2σ1σ2σ1σ1σ2σ1σ3σ2σ3] (braid move 2, braid move 2, conjugation)

= σ3σ2[σ1σ2σ3σ1σ2σ1σ1σ1σ2σ1σ2σ3σ2]σ−12 σ−13 (braid move 1)

= σ3σ2σ1σ2σ3σ1σ2σ1σ1σ1σ2σ1σ2 (braid move 2)

= σ3σ1σ2σ1σ3σ1σ2σ1σ1σ1σ2σ1σ2 (braid move 3, braid move 3)
7



= [σ1σ3σ2σ3σ1σ1σ2σ1σ1σ1σ2σ1σ2] (braid move 2, conjugation)

= σ−12 σ−11 [σ1σ2σ3σ2σ1σ1σ2σ1σ1σ1σ2σ1σ2σ1σ2] (braid move 1)

= σ3σ2σ1σ1σ2σ1σ1σ1σ2σ1σ2σ1σ2 (second stabilization)

= σ2σ1σ1σ2σ1σ1σ1σ2σ1σ2σ1σ2.

This positive braid contains a full twist after two stabilization moves. Note that
this is one way to obtain a full twist, and the full twist may not always appear at
the beginning or end of the braid word.

This process of finding the number of stabilization moves needed to find a very
positive form of the Klein link is generalized in Theorem 3 below. The set S in
Lemma 4, is used to help determine the number of stabilization moves needed to
manipulate the braid into a very positive form.

Lemma 4. The set S, defined as

S = {k ∈ Z+| σ1σ2 . . . σk−1 occurs at least k times in w},
is non-empty and finite for K(m,n) when 1 ≤ n ≤ m < 2n− 1.

Proof. There will always be at least two σ1 terms in w from Lemma 1, since m ≥ n
and the exponent (m − n + 1) ≥ 1. Thus, because at least the first term and the
last term of the braid word must each be σ1, 2 ∈ S and S is nonempty. The set S
is finite because there are exactly n strands in w; thus if j > n, then j /∈ S. �

Theorem 3. For 1 ≤ n ≤ m < 2n− 1,

c(K(m,n)) = m(n− 1)− n2 − n
2

−
⌊

2n−m
2

⌋
.

Proof. Consider the simplified version of the braid word of K(m,n) from Lemma 1:

w = (σ1σ2 . . . σn−1)m−n+1(σ1σ2 . . . σn−2)(σ1σ2 . . . σn−3) . . . σ1.

Referring to the definition of a full twist, one can see that this braid word (before
manipulation using braid moves) will never contain a full twist because the exponent
m − n + 1 < n. Since there is not a full twist, the braid is positive, but not very
positive and the braid index and crossing number remain unknown.

In order to become a very positive braid, a braid representing a Klein link must
be transformed so that it is a positive braid with a full twist. Referring to Lemma 4
with m < 2n− 1, one can identify the presence of at least k sub-words of the form
(σ1σ2 . . . σk−1) where k is a positive integer. Lemma 4 shows S to be non-empty
and finite; let r = max(S). Therefore, the sub-word (σ1σ2 . . . σr−1) occurs at least
r times in w.

If a sub-word (σ1σ2 . . . σk−1) occurs exactly (k + 1) times in a braid word w,
then r must equal k. This means the sub-word (σ1σ2 . . . σk) must occur k times
due to the form of w. Assume k 6= r, then (k + 1) ∈ S, since k 6= max(S). Since
the sub-word (σ1σ2 . . . σk) does not occur (k + 1) times, (k + 1) 6∈ S; this is a
contradiction, and therefore k = r = max(S).

Assume there are (r+2) sub-words of the form (σ1σ2 . . . σr−1). This implies that
there exist (r + 1) sub-words of the form (σ1σ2 . . . σr) as seen from the simplified
braid word w. This implies that (r + 1) ∈ S and therefore r 6= max(S), which
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is a contradiction. This means there will not be (r + 2) sub-words of the form
(σ1σ2 . . . σr−1) when r = max(S). Similarly, when there exist more than (r + 2)
sub-words of the form (σ1σ2 . . . σr−1) then there is a value k ∈ S such that k > r
so r 6= max(S), which is a contradiction. Therefore, only r or (r + 1) sub-words of
the form (σ1σ2 . . . σr−1) can exist in the simplified braid word of a Klein link where
m < 2n− 1. We consider these two cases separately.

Case 1. This case examines these simplified braids with r sub-words of the form
(σ1σ2 . . . σr−1). From the simplified braid word form w, it is known that there are
(m − n + 1) sub-words of the form (σ1σ2 . . . σn−1), where n represents the initial
number of strands in the braid. For each stabilization, the number of strands in the
braid is decreased by one, and the number of sub-words of (σ1σ2 . . . σn′−1), where
n′ is the number of strands in the braid, is increased by one since the maximum
index (n′ − 1) is decreased with each stabilization. If x is equal to the number of
stabilizations that must be used to obtain a full twist, then this relationship gives:

(m− n+ 1) + x = n− x.

Solving this equation for x yields

x =
2n−m− 1

2
.

Case 2. Now this case will examine when (r+1) sub-words of the form (σ1σ2 . . . σr−1)
are present in the simplified braid word of a Klein link. Similar to Case 1, it is
known that there are (m − n + 1) sub-words of (σ1σ2 . . . σn−1), and each stabi-
lization decreases the number of strands in the braid by one. However, specific to
this case, it is known that there is one additional (σ1σ2 . . . σn−1) sub-word that is
unnecessary in the formation of the full twist. Thus, where x is still the number of
stabilizations needed,

(m− n+ 1)− 1 + x = n− x.

Solving this equation for x yields

x =
2n−m

2
.

If the two cases are compared, it can be seen that that the values for x only
differ by 1

2 . Thus, they can be combined with the following relationship:

x =

⌊
2n−m

2

⌋
.

These stabilizations, which reduce the number of strands in the braid, each
correspond to the elimination of one crossing from the reduced braid word. Since
the resulting braid word contains a full twist and is positive, the braid is very
positive, and by Lemma 2, has a minimum number of crossings. Thus,

c(K(m,n)) = m(n− 1)− n2 − n
2

−
⌊

2n−m
2

⌋
.

�
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6. Conclusion

These theorems increase our knowledge of Klein links [2, 3, 7, 8], while providing
new properties that can be used to find additional connections between torus links
and Klein links. With previous results regarding the crossing number for K(m,n)
with m ≤ n and for m = 0 or n = 0, the crossing number for any Klein link in this
set can be calculated [3, 7]. Through the use of these theorems, we have completed
a catalog of Klein links that lists the crossing number, number of components, and
complete Alexander-Briggs notation (if available) for all Klein links between K(1, 0)
and K(8, 8) [2].
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