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Abstract

This project is concerned with articulating the necessary background in order to

understand the famous result of the undecidability of the continuum hypothesis.

The first chapter of this independent study discusses the foundations of set theory,

stating fundamental definitions and theorems that will be used throughout the

remainder of the project. The second chapter focuses on ordinal and cardinal

numbers which will directly relate to the final chapter. First, there is a clear

explanation of the notion of order and what it means for a set to be well-ordered.

Then ordinal numbers are defined and some properties are listed and proved. The

second half of this chapter discusses cardinal numbers. Similarly, they are defined

and some of their properties are stated. Some arithmetic rules surrounding cardinal

numbers are discussed as an extension to those properties. The next chapter is

concerned with Zermelo-Fraenkel set theory and the axiom of choice (ZFC) which

introduces the idea of set theoretic systems and models. All nine axioms are

listed and expanded upon. Additional focus is put on the axiom of choice and its

equivalent statements. The final chapter states the continuum hypothesis, as well as

the weak continuum hypothesis and the generalized continuum hypothesis. Some

additional background of inner models is discussed for subsequent proof. Kurt

Gödel proved that the continuum hypothesis could not be proven false within ZFC.

The outline for this proof is discussed to reflect its main points. Paul Cohen proved

that the continuum hypothesis could not be proven true within ZFC, although this

v



is not discussed as extensively. With this last chapter, the end result becomes clear

that the continuum hypothesis is independent of ZFC.
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CHAPTER 1

Introduction

Infinity has been a topic that mathematicians have pondered for decades and

became an important subject discussed in the field of set theory. Set theory is the

basis for many famous results in mathematics. It provides us with the tools needed

to understand fascinating concepts such as infinity. And with this understanding,

we can ask more questions and investigate new topics and problems such as the

continuum hypothesis. The continuum hypothesis is a fascinating problem, and it

combines many different set theoretic objects such as cardinal and ordinal numbers

to form a problem that tells us a lot about the nature of mathematical systems. The

path to resolving the continuum hypothesis also shows how much the field of set

theory has evolved since it was first introduced.

Set theory originated from German mathematician Georg Cantor in the late

1800s when up to this point there was only the discovery of finite sets. Cantor

was the first to introduce infinite sets and the idea of countable and uncountable

infinities. He constructed some fundamental definitions such as subsets, power sets,

and cardinality. His discovery of countable and uncountable sets presented new

ideas about different sizes of infinity, leaving mathematicians to ask more questions

such as how many different sizes of infinity exist. Turns out, there are an infinite

number of different sizes of infinity.

Not long after Cantor’s discovery of different sizes of infinity, he formulated his
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2 1. Introduction

continuum hypothesis initially stating that there exists no infinity of a size that is in

between that of countable and uncountable infinity. In other words, there is no set

less than an uncountable set but greater than a countable set. He later generalized

this, to state it for all sizes of infinity, beyond just the two countable and uncountable

infinite sets. The continuum hypothesis was attempted to be proven or disproven,

but no one was successful. For this reason, it was placed first on Hilbert’s list of

problems which was published in 1900. Hilbert’s list of problems is a famous list of

23 influential mathematical problems that were unsolved at the time. The fact that

the continuum hypothesis was placed first on the list emphasizes its significance.

Having introduced Cantor’s role in the field of set theory, it is important to

note that his original set theory was not perfect and revealed issues and paradoxes

such as Russell’s Paradox. This does not at all dismiss his work as he is one of the

most influential mathematicians in the field. However, these issues did need to be

resolved with a more rigorous system of set theory. Mathematicians Ernst Zermelo

and Abraham Fraenkel did just that by proposing a system of axioms that would

eliminate those paradoxes known as the Zermelo-Fraenkel axioms in the early 1900s.

Another important axiom, the axiom of choice, was added later to construct the

general model of set theory we use today referred to as ZFC. Within this system,

mathematicians were able to find the conclusive results of the continuum hypothesis.

It was proven that it cannot be proven true and proven that it cannot be proven

false within the Zermelo-Fraenkel axioms.

The famous result of the continuum hypothesis is that it is unprovable in ZFC.

In 1940 Kurt Gödel proved that it cannot be proven false within ZFC, and in 1963

Paul Cohen proved that it cannot be proven true within ZFC. This is a compelling

result that requires much background to fully understand. We will begin with the

foundations of set theory leading us to explore topics of infinity and cardinality.

Expanding on this, we will talk about different types of numbers called ordinal and
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cardinal numbers. The last piece of background we will go over are the axioms in

ZFC and their relevance to the topic at hand. We will see that most of these topics

are intertwined. For this reason, our final discussion on the continuum hypothesis

will be cumulative tying in all the prior concepts. We will be able to clearly state the

hypothesis, consider its implications, and gain a more sound understanding of how

Gödel and Cohen arrived at the result of unprovability.
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CHAPTER 2

Countable and Uncountable Sets

The objective of this chapter is to introduce important concepts in set theory

related to cardinality and infinity. First, we want to understand some baseline

definitions introduced by Georg Cantor in the 1800s. This collection of definitions

that we will cover in this chapter is often referred to as naive set theory. When we

use the term naive, we mean that although these definitions are true, they have not

been established in a formal system. We will see in a later chapter that this can lead

to some negative consequences.

2.1 Finite Sets

Simply speaking, a set is a collection of things such as numbers, letters, ordered

pairs, functions, etc. The things inside the sets are called elements. Sets are typically

denoted by listing the elements in closed brackets separated by commas such as

A = {1, 2, 3} which is the set A with elements 1, 2, 3. We can write 1 ∈ A and 4 < A

since 1 is an element of A and 4 is not. A set is finite if it contains a finite number

of elements such as {2, 4, 6, 8}. A set is infinite if it contains an infinite number of

elements. For infinite sets, there will be several sets used throughout this chapter

that we must define. We haveN = {1, 2, 3, . . .} denotes the set of natural numbers. Z

denotes the set of all integers {. . .−2,−1, 0, 1, 2, . . .}. ThenQ = { pq : p, q ∈ Z and q , 0}

5



6 2. Countable and Uncountable Sets

which denotes the set of rational numbers. Finally,R denotes the set of real numbers.

There is also the empty set denoted ∅ that contains no elements. Thus, ∅ = {}.

If every element of A is an element of another set B then A is a subset of B

denoted A ⊆ B. This would make B a superset of A. We would call A a proper

subset of B denoted A ⊂ B if A is still a subset of B, but there are elements in B that

are not contained in A. Formally, we define subsets as follows,

Definition 2.1.1. A set A is a subset of B if for any x ∈ A, x ∈ A⇒ x ∈ B.

It is important to note that the empty set ∅ will always be a subset of any set. If

a finite set contains n elements then it has 2n subsets. Two subsets are said to be

equal if they both contain the same elements. However, as sets become larger, it

may become difficult to compare every single element. Instead, we can use subsets

to determine this equality.

Theorem 2.1.2. If A ⊆ B and B ⊆ A then A = B.

Another type of set is a power set which is the set of all the subsets of a set. As

mentioned earlier, if a set A contains n elements, then it has 2n subsets. Thus, P(A)

must contain 2n elements.

Definition 2.1.3. Given a set A, the power set of A denoted P(A) is the set of all subsets of

A. P(A) = {X : X ⊆ A}.

Now we can discuss some operations on sets such as the union and intersection

between two sets. The union between two sets is the set of elements that are in

either set. The intersection of two sets contains the elements that the two sets have

in common. If two sets are disjoint, they share no elements in common. Thus, the

intersection of two disjoint sets equals the empty set.

Definition 2.1.4. 1. The union of sets A and B denoted A ∪ B is A ∪ B = {x : x ∈

A or x ∈ B}.
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2. The intersection of sets A and B denoted A ∩ B is A ∩ B = {x : x ∈ A and x ∈ B}.

Another operation that we can perform on sets is the cartesian product. The

cartesian product of two sets A and B denoted A×B results in a set of ordered pairs.

Definition 2.1.5. The cartesian product of two sets A and B denoted A × B results in

another set defined as A × B = {(a, b) : a ∈ A, b ∈ B}.

Let’s suppose A = {1, 2} and B = {2, 4}, then the cartesian product would be

A × B = {(1, 2), (1, 4), (2, 2), (2, 4)}.

Next, we want to introduce the idea of cardinality. For finite sets, we can define

cardinality to be the number of elements in the set. We can say the cardinality of our

set A = {1, 2} denoted |A| is 2 since there are two elements in the set. Thus, |A| = 2.

Also, A ∪ B = {1, 2, 4}, so |A ∪ B| = 3. The cardinality of the empty set ∅ equals 0.

Knowing the definition of power set, we can also state the cardinality of any power

set.

Theorem 2.1.6. If |A| = n for some n ∈N, then |P(A)| = 2n.

The difference between cardinality of finite sets and infinite sets is that cardinality

of finite sets will give us some natural number. However, with an infinite set, we

determine its cardinality by comparing it to another infinite set which we will now

discuss.

2.2 Infinite Sets

Cardinality for finite sets is as simple as counting each element in the set. However,

when sets get larger and larger the process of counting the number of elements

becomes more difficult. It becomes even more complicated when we are dealing

with infinite sets. To resolve this issue, we need to define cardinality differently
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when discussing infinite sets. To do this we must introduce functions and what it

means for a function to be one-to-one and onto.

A function is a relation or mapping between two sets such as f : A→ B. In this

case we would call the set A the domain of the function and B the codomain. The

range is all of the possible outputs of f or the set { f (a) : a ∈ A}. The formal definition

of a function is stated below:

Definition 2.2.1. A function f from A to B is a relation f ⊆ A × B from A to B, satisfying

the property that for each a ∈ A the relation f contains exactly one ordered pair of form

(a, b).

We can have f (a) = b for some a ∈ A and b ∈ B resulting in the ordered pair (a, b).

Then we would call a the pre-image of b, and we would call b the image of a.

Definition 2.2.2. Consider the function f : A→ B.

1. If X ⊆ A, the image of X is the set f (X) = { f (x) : x ∈ X} ⊆ B

2. If Y ⊆ B, the pre-image of Y is the set f −1(Y) = {x ∈ A : f (x) ∈ Y} ⊆ A

Understanding the fundamentals of functions, we can now define what it means

for a function to be injective, surjective, and bijective.

Definition 2.2.3. 1. A function is injective (one-to-one) if for all a1, a2 ∈ A, a1 , a2

implies f (a1) , f (a2).

2. A function is surjective (onto) if for all b ∈ B, there exists an a ∈ A such that

f (a) = b.

3. A function is bijective if it is both injective and surjective.

Another way of saying a function is injective is saying that it is one-to-one which

may be more intuitive. No two elements in the domain can map to the same element
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in the range. Each element in the range can only be mapped to by one element

in the domain, hence the phrase one-to-one. Another way of saying a function is

surjective is saying that it is onto. In other words, every element in the codomain

must be mapped to by some element in the domain. Finally, another way of saying

a function is bijective is by saying there exists a one-to-one correspondence between

the sets. Each element in the domain maps to exactly one element in the codomain,

and the mapping of all the elements in the domain gives us the entire codomain.

The definitions of injection and surjection can be used to compare cardinalities

of sets. If there are two sets A and B and |A| ≤ |B|, then there exists an injective

function f : A → B. If |A| ≥ |B|, then there exists a surjective function g : A → B.

Finally, if |A| = |B|, then there exists a bijective function h : A→ B. We have defined

cardinality for finite sets to be the number of elements in the sets. Thus, two finite

sets have the same cardinality if they have an equal number of elements. Since

this definition does not work for infinite sets, we can use the notion of bijection to

determine if two sets have the same cardinality.

Definition 2.2.4. Two sets A and B have the same cardinality (|A| = |B|) if and only if there

exists a bijective function f : A→ B.

When two sets have the same cardinality, we say the two sets are equinumerous

(A ≈ B). Thus, we can say a set is finite if and only if it is equinumerous to some

unique natural number. This is using the convention that each natural number is

the set including all the natural numbers before it. Using this convention in an

example, we have that 5 = {1, 2, 3, 4, 5}. This can hold for any subset ofN. If a finite

set has a cardinality of k, then it forms a bijection with a subset {1, 2, 3, . . . , k} ofN.

We know that the number must be unique because we can show that a finite set

cannot be equinumerous to a proper subset of itself. To show this, we will first start

by stating the Pigeonhole Principle.

Theorem 2.2.5 (Pigeonhole Principle). If n objects are placed into k pigeonholes, where
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k < n, then at least one pigeonhole will have more than one object. In other words, no

natural number is equinumerous to a proper subset of itself.

Since finite sets are equinumerous to a natural number, we can use the same

logic we use in the pigeonhole principle to show that the natural number must be

unique.

Theorem 2.2.6. A finite set A is equinumerous to a unique natural number.

Proof. Assume for the sake of contradiction that the natural number is not unique,

that is A ≈ n and A ≈ m where n , m. Then m must be equinumerous to n, m ≈ n.

Then, by trichotomy either n < m, m < n, or n = m. We already stated that n , m, so

that rules out the last possibility. Then either n < m or m < n meaning one must be a

proper subset of the other. However, since m ≈ n and m and n are finite, this cannot

be possible, so we have found a contradiction from our assumption. Therefore,

n = m so the natural number is unique. □

Finally, we can formally define what it means for a set to be finite or infinite.

Definition 2.2.7. Consider the set X.

1. The set X is finite if there exists a bijection between X and some subset of natural

numbers {1, 2, 3, . . . , k}.

2. The set X is infinite if it is not finite.

If a set is not equinumerous to a natural number then the set is infinite. Using

this definition we can now prove sets to be either finite or infinite. For example, we

can show that the set S = {2, 3, 6, 7, 9} is finite by showing that there exists a bijection

between S and some subset ofN. We can define a bijective function from S to the

set {1, 2, 3, 4, 5} ⊆N:
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f (x) =



1 x = 2

2 x = 3

3 x = 6

4 x = 7

5 x = 9

We now can see that this function is injective since each element in S maps to a

unique element in the subset ofN It is also surjective because it maps to all elements

in {1, 2, 3, 4, 5}. Since it is both injective and surjective, we can conclude that the

function is bijective. Thus, we have formed a bijection between the set S and some

subset of natural numbers. Therefore S must be finite.

This is one example of how we can form a bijective function between two sets

to determine that a set is finite. Now, let’s look at an example of how we may

determine that a set is infinite such as the set of natural numbers.

Theorem 2.2.8.N is an infinite set.

Proof. We will proceed with this proof by contradiction. Suppose thatN is finite.

Then by definition 2.2.7, there exists a bijection between N and some subset of

natural numbers K = {1, 2, 3, . . . , k} ⊆ N. We can define a function f : N→ K and

begin to attempt to show that f is bijective. Let’s define f by mapping elements in

N to elements in K: f (1) = 1, f (2) = 2, f (3) = 3 . . .. We can proceed like this up to

k, so f (k − 1) = k − 1, f (k) = k. However, let’s see what happens when we consider

the f (k + 1). Notice that all elements in S have already been mapped to. Then

f (k + 1) must map to an element that has been mapped to by another element by

the Pigeonhole Principle. So, we have two elements in N that map to the same

element in S. Therefore, f is not injective. Since f is not injective, f is not bijective.
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We have found a contradiction to our original assumption. Thus, N must be an

infinite set. □

We can also draw additional conclusions that can help us determine whether or

not a set is finite such as the theorem below that makes use of proper subsets.

Theorem 2.2.9. If A is not finite and A ⊂ B, then B is not finite.

Proof. Suppose for the sake of contradiction, B is finite and A is not finite with

A ⊂ B. Then B contains n elements for some n ∈N. Then if A ⊂ B, then there exists

an injection f : A → B. However, we can first map n elements in A to n unique

elements in B. But since A does not have a finite number of elements n, we can try

to map n + 1 to some other unique element in B. Then, by the pigeonhole principle,

it will have to map to an element that has already been mapped to. Thus, f is not

injective which poses a contradiction. Therefore, B cannot be finite. □

When working with cardinality of infinite sets, we will also find definition 2.2.4

to be very useful. Another useful theorem is the Cantor-Bernstein Theorem which

will give us an alternate way to determine if there exits a bijection between two sets

[9].

Theorem 2.2.10 (Cantor-Bernstein). If there are injections f : A → B and g : B → A,

then there is a bijection A→ B. In other words |A| ≤ |B| and |B| ≤ |A| implies |A| = |B|.

Proof. Consider the functions f : A → B and g : B → A to be injective functions.

Beginning with any element b1 ∈ B, we can construct a sequence b1, a1, b2, a2, b3, a3, . . .

alternating elements of A and B such that first, there may or may not exists an a1 ∈ A

where f (a1) = b1. If a1 exists then it is unique since f is injective. Then we let a1 be

the inverse of the image of b1 under f . Similarly, we choose a b2 such that g(b2) = a1

where b2 is a unique element in B. Then we can choose a2 such that f (a2) = b2, and

the process continues, f −1(b1) = a1, g−1(a1) = b2, f −1(b2) = a2.
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Figure 2.1: Process of constructing the sequence between sets A and B for the Cantor-Bernstein
Theorem.

Continuing this process, there are three possible outcomes.

1. The process ends because we reach some an ∈ A where there exists no

bn+1 ∈ B such that g−1(an) = bn+1 (which is possible because g is not necessarily

surjective).

2. The process ends because we reach some bn ∈ B where there exists no an ∈ A

such that f −1(bn) = an ( f is also not necessarily surjective).

3. The process continues forever.

The process for each a ∈ A and b ∈ B has three different possibilities, so we can

first partition the set A into three mutually disjoint subsets that correspond to each

possibility.

1. AA = the set of all a ∈ A such that the process ends with a an

2. AB = the set of all a ∈ A such that the process ends with a bn



14 2. Countable and Uncountable Sets

3. A∞ = all a ∈ A such that the process never ends

We can do the same thing with B

1. BA = the set of all b ∈ B such that the process ends with a an

2. BB = the set of all b ∈ B such that the process ends with a bn

3. B∞ = all b ∈ B such that the process never ends

We want to show that there exist bijections AA → BA, AB → BB, and A∞ → B∞ to

show that there exist bijections between sets A and B.

Let’s start by proving AA → BA We know f is injective, so we want to show the

f (a) is in BA. Suppose an ∈ AA, that is the process applied to a ends in A. Now

consider the same process applied to f (an) where we know f (an) ∈ B. Then the next

element in the sequence would be an since that would be the preimage of f (a). Then

the process would once again be applied to an which we had already established

ends in A. Thus f (a) ∈ BA.

Next, we want to show that f : AA → BA is surjective, that is for all b ∈ BA, there

exists an a ∈ AA such that f (a) = b. Suppose that bn ∈ BA, so the process applied to

b ends in A. This must mean that f −1(bn) exists in AA because if that wasn’t true

then b would end in B rather than A. Continuing the process f −1(bn) = an. Note

that the continuation of the process applied to b must be the same process applied

to a, therefore it ends in A. Thus an ∈ AA. We have shown that f : AA → BA is

bijective. The same argument can be followed to show AB → BB using g−1 instead

of f −1. The first part of the proof remains exactly the same but proving surjectivity

is slightly different. We want to show that for all b ∈ BB there exists an a ∈ AB such

that g−1(a) = b. Starting with an arbitrary bn ∈ BB, we know that g(bn) ∈ AB exists

because if it didn’t then the process would end in A rather than B. And g(bn) = an−1.

Then once we continue the process we end up with g−1(an−1) = bn which we know

ends in B. Thus, g−1(bn) ∈ AB.
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Finally, we want to show that f : A∞ → A∞ is bijective. We already know that f

is injective by the way it is defined. To show that f is surjective, we want to show

that for every b ∈ B∞, there exists an a such that f (a) = b. This must be true since the

sequence never ends. Then this would be the same as starting with b ∈ B, g(b) = a.

Thus we have shown there is a bijection A→ B.

Thus, we can form a bijective function between each pair of subsets. We can

define the bijection F : A→ B as,

F(x) =


f (x) x ∈ AA

g−1(x) x ∈ AB

f (x) x ∈ A∞

□

The Cantor-Bernstein Theorem holds for both finite and infinite sets. Although

it may seem counterintuitive, not all infinite sets have the same cardinality. In this

chapter, we will define infinite sets to be either countable or uncountable.

Definition 2.2.11. A set is countable if there exists a bijection between that set andN. If

there does not exist such a bijection then the set is uncountable.

The cardinality of uncountable sets is larger than countable sets which we will

confirm later in this chapter. Although we will not explicitly show it, we could

confirm that the integers Z are countable using a bijective piecewise function

f :N→ Zwhere f (n) = n
2 when n is even, and f (n) = −n−1

2 when n is odd. Using

definition 2.2.11 we can also show thatN ×N is countable.

Theorem 2.2.12.N ×N is countable.

Proof. To show thatN×N is countable we want to show that there exists a bijection

between N × N and N. Let’s consider the function f : N × N → N defined
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by f (m,n) = 2m−1(2n − 1). To prove that f is bijective, we want to prove that it

is both injective and surjective. First, let’s prove that f is injective. We want

to show that if f (m,n) = f (k, p), then (m,n) = (k, p) or m = k and n = p. Let’s

suppose f (m,n) = f (k, p). Then, 2m−1(2n − 1) = 2k−1(2p − 1). By the uniqueness of

prime factorization, if two numbers are equal then they must have the same prime

factorization or the same amount of each prime factor. Since both 2n − 1 and 2p − 1

are odd, there are no 2’s in their prime factorization. However, since both numbers

2m−1(2n − 1) and 2k−1(2p − 1) are equal, and they must have an equal number of 2’s

in their prime factorization, then 2m−1 = 2k−1. Multiplying both sides by two gives

2m = 2k. So m = k, thus f is injective.

Next, we want to show that f is surjective. Consider some x ∈ N. Since x is a

natural number it can be written as a product of some power of 2 multiplied by

an odd number since it can either be even or odd. Thus, x = 2y(2z + 1) for some

y, z ∈ N ∪ {0}. We want to show that there exists some (m,n) ∈ N ×N such that

f (m,n) = x. Suppose m = y+1 and n = z+1. Then x = 2m−1(2n−1) and from how we

defined our function f (m,n) = 2m−1(2n−1). Thus, there exists an (m,n) = (y+1, z+1)

such f (m,n) = x. Therefore, f is surjective.

Since f is both injective and surjective, then f is bijective. Thus, there exists a

bijection betweenN ×N andN. □

We can use the result above and the Cantor-Bernstein theorem to also prove that

the rational numbers are countable.

Theorem 2.2.13. Q is countably infinite.

Proof. Knowing that N ×N is countably infinite since it is bijective with N, we

want to define a function f : N ×N→ Q as f (m,n) = m
n where m

n is fully reduced

(gcd(m,n)=1) and show that f is bijective. First, let’s show that f is injective.
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Suppose f (a, b) = f (c, d). Then a
b =

c
d . Since both fractions are fully reduced, then

a = c and b = d. Thus, f is injective.

Next let’s show that the function g : Q → N ×N is also injective where g is

defined as follows: g(m
n ) = (m,n) where m

n is fully reduced. Suppose f ( a
b) = f ( c

d).

Then (a, b) = (c, d) or a = c and b = d. Thus g is injective.

Since both f and g are injective, by the Cantor-Bernstein Theorem, we can state

that there is a bijection betweenN ×N and Q. □

The image below shows a visual argument for why Q is countably infinite by

listing them out in the following way.

Figure 2.2: Visual process of listing the rational numbers [4].

Now we must understand how we can show that some sets are uncountable

such as the set (0, 1). We observe that a set is countable if and only if its elements

can be arranged in a list.

Theorem 2.2.14. The interval (0, 1) is uncountable.

Proof. This proof follows Cantor’s diagonalization argument. Suppose for the sake
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of contradiction that the interval (0, 1) is countable, that is we can list out all the

numbers in the interval,

x1 = 0.a1a2a3a4...

x2 = 0.b1b2b3b4...

x3 = 0.c1c2c3c4...

x4 = 0.d1d2d3d4...

...

Let’s consider the digits on the diagonal, a1, b2, c3, d4, .... Now consider an element

y ∈ (0, 1) where y = 0.y1y2y3y4... where y1 , a1, y2 , b2, y3 , c3, y4 , d4, etc. Since

each element in our list has at least one digit that is not equal to the corresponding

digit in y, we have found an element that is not in our list. Therefore, the interval

(0, 1) is uncountable. □

This proof also shows that |(0, 1)| > |N| since there is an injection from N to

|(0, 1)|, but no surjection. For this reason, we can conclude that uncountable sets

are greater than countable sets. We can also show that the intervals (0, 1), [0, 1], and

[0, 1) are in bijection with each other and are all uncountable.

Theorem 2.2.15. There exists a bijection between [0, 1) and (0, 1). That is, [0, 1) is

uncountable.

Proof. By the Cantor-Bernstein Theorem, we can show a bijection by showing there

exists injective functions f : (0, 1)→ [0, 1) and g : [0, 1)→ (0, 1). Let’s consider the

function f (x) = x. We can show this is injective by considering f (a) = f (b) ∈ (0, 1).

Then a = b by how we defined f and a, b ∈ [0, 1). Next, let’s consider the function

g : [0, 1)→ (0, 1) and define it as a piecewise function.
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g(x) =


1
2 x = 0

x
2 x , 0

We can show that g is injective by supposing g(a) = g(b). If g(a) = 1
2 = g(b) we

know that a = b = 0. Or we have that a
2 =

b
2 , and solving for that we get a = b. Thus,

g is injective. Since we have shown that there exists injective functions f from (0, 1)

to [0, 1) and g from [0, 1) to (0, 1), we have proven that there is a bijection between

[0, 1) and (0, 1). □

We would use a similar method to show that |[0, 1]| = |(0, 1)|.

We can combine some of the methods we have used to discuss a very fascinating

set called the Cantor set and prove that it is uncountable. The Cantor set is the set

constructed by starting with all the real numbers on the number line from 0 to 1.

Then the middle third is removed and you are left with two lines each of length 1/3.

Then you remove the middle third from each of those lines and you are left with

four lines of length 1/9. This process continues forever and results in the Cantor set

shown below.

Figure 2.3: Construction of the Cantor Set [17]

To prove that the Cantor set is uncountable we must first understand what

elements are in the Cantor set. This part of the proof uses base-3 numbers.

Although we will not encounter them throughout the rest of this project, they are

very significant in this proof. To briefly summarize base-3 notation is a way of

representing decimal numbers (base-10 numbers) using 0s, 1s, and 2s. It is similar

to how binary numbers work when adding powers of 2, but instead, we are adding
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powers of three or powers of 1
3 like a× 1

31 + b× 1
32 + c× 1

33 + . . .where a, b, c can be 0,1,

or 2 [16].

Theorem 2.2.16. For any element x ∈ C where C is the Cantor set, the base 3 representation

of x contains no 1.

Proof. For each iteration of the Cantor set, we remove the middle third. For the first

iteration, we are removing the interval (1
3 ,

2
3). And we know that those numbers

must be represented as 1
31 +

a2
32 +

a3
33 + .... Thus, we are removing the numbers

that can only be represented as 0.1a2a3a4... in base 3 leaving numbers that can be

represented as 0.0a2a3a4... and 0.2a2a3a4.... Next, we are removing the middle third in

the second iteration. Thus we are removing any number represented by 0.01a3a4...

and 0.21a3a4... since we are removing the intervals ( 0
31 +

1
32 ,

0
31 +

2
32 ) and ( 2

31 +
1
32 ,

2
31 +

2
32 ).

Therefore, every element whose second ternary digit is 1 is removed. This leaves

elements with ternary representation as 0.00a3a4..., 0.02a3a4..., 0.20a3a4..., 0.22a3a4...

in the Cantor set. Then the third step would remove all elements containing a 1 in

the third ternary digit, and the fourth step would remove all elements containing a

1 in the fourth ternary digit. At the nth step, we would have removed all elements

containing one from the first to the nth ternary digit. Thus, the base 3 representation

of any element x ∈ C contains no 1. □

Now that we know which elements are in the Cantor set, we can now prove that

it is uncountable [16].

Theorem 2.2.17. The Cantor set is uncountable.

Proof. We want to show that the Cantor set is uncountable, that is it forms a bijection

with the interval [0,1]. This proof follows Cantor’s diagonalization proof. We have

proven above that the Cantor set is made up of any element that contains only 0’s

and 2’s in base 3 representation. We can treat these elements as sequences of 0’s and

2’s. We can prove this the same was we proved the interval [0,1] was uncountable.
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Assume for the sake of contradiction that the set of numbers on the interval [0,1]

containing 0 and 2 is countable. Then we can list them as,

x1 = 0.00000...

x2 = 0.22222...

x3 = 0.02020...

x4 = 0.20202...

...

Then we can take all the digits on the diagonal to get a number 0.0200. Then we

can form a new number y such that none of the digits in y equal the digits on the

diagonal y = 0.2022. Since each element in the list contains at least one different

digit than y, we have found an element that is not in our set. Thus, we cannot list all

the possible numbers containing 0 and 2 on the interval [0,1]. Therefore, the Cantor

set contains uncountably infinite elements. In other words, it is uncountable. □

For countable sets, we determined they were countable by seeing if there exists

a bijection between a given set and a known countable set, such asN. We can do a

similar thing to prove that certain sets are uncountable. If we can prove that there

exists a bijection between a certain set A and a known uncountable set such as (0, 1)

we can say that set A is also uncountable and |A| = |(0, 1)|. We can do this to show

that the set of real numbers R is uncountable.

Theorem 2.2.18. R is uncountable.

Proof. To show that R is uncountable, we can show that there exists a bijection

between R and (0,1) since we have just proven (0,1) is uncountable. Let’s consider
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the function f : (0, 1)→ R defined by f (x) = tan
(
πx − π

2

)
. The graph of this function

is below.

Figure 2.4: Graph of tan
(
πx − π

2

)
using Desmos Graphing Calculator

From the graph, we can see that the function should be both injective and

surjective, but we are still going to confirm that fact. First, let’s show that this function

is injective. Suppose we have a, b ∈ [0, 1] and f (a) = f (b). Then tan
(
πa − π

2

)
=

tan
(
πb − π

2

)
. We know in general the tangent function is not one-to-one unless

we restrict it to a range, and in this case, our range is 0 < x < 1 which means

−
π
2 < πx − π

2 <
π
2 . Since we are taking tan

(
πx − π

2

)
, that range makes it so that no

two numbers can map to the same thing. With that clarification, we can proceed to

solve.

tan−1 tan
(
πa −

π
2

)
= tan−1 tan

(
πb −

π
2

)
πa −

π
2
= πb −

π
2

Solving this the rest of the way we find that a = b. Thus, f is injective. Next, we

want to show that f is surjective. Let’s suppose y ∈ R. We want to find a w ∈ [0, 1]

such that f (w) = y, so tan
(
πw − π

2

)
= y. Solving for this we get w = tan−1 y

π + 1
2 . Note

that the range for the inverse tangent function is (0, 1). Therefore, 1
2 ≤ w ≤ 3

4 which
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is within (0, 1). Since there exists a w ∈ (0, 1) such that f (w) = y, then f is also

surjective. Since f is both injective and surjective, we can conclude that f is bijective.

Thus, |(0, 1)| = |R| implying R is uncountable. □

Next, let’s look at a generalization that relates two sets in bijection with their

power sets. The theorem below holds for both finite and infinite sets.

Theorem 2.2.19. For two sets A and B, if there exists a bijection g : A → B, then there

exists a bijection f : P(A)→ P(B). In other words |A| = |B| implies |P(A)| = |P(B)|.

Proof. We want to show there exists a function f such that f forms a bijection

between P(A) and P(B). Let’s consider the function f (X) = {g(x) : x ∈ X} for all

X ⊆ A. First, let’s show that f is injective. Let S,T ⊆ A and f (S) = f (T). Then,

{g(x) : x ∈ S} = {g(x) : x ∈ T}. If we take some s ∈ S, then we have g(s) ∈ f (S). And

since f (S) = f (T), then g(s) ∈ f (T). Then there must exist a t ∈ T such that g(s) = g(t).

And since g is a bijection s = t. So s ∈ S implies s ∈ T. Thus, S ⊆ T. We can use the

same logic to prove that T ⊆ S. Thus, S = T as desired.

Next, let’s show that f is surjective. We want to show that for all Y ⊆ B, there

exists some X ⊆ A such that f (X) = Y. Since g is a bijection, g−1 exists so we

can define it as X = {g−1(x) : x ∈ Y}. Let y ∈ Y which means g−1(y) ∈ X. Then

g(g−1(y)) ∈ f (X), so y ∈ f (X). We have that y ∈ Y implies y ∈ f (X), so Y ⊆ f (X). Now

we need to show that f (X) ⊆ Y. Let’s suppose that t ∈ f (X). Then there exists an

x ∈ X such that f (x) = t. Since, x ∈ X, there must be some y ∈ Y such that f −1(y) = x.

Then substituting this back into f (x) = t, we get that f ( f −1(y)) = t. Then, y = t and

since t ∈ f (X), y ∈ f (X). Thus f (X) ⊆ Y. We have that Y ⊆ f (X) and f (X) ⊆ Y, so

f (X) = Y as desired. Since we have shown that f is both injective and surjective, f

is bijective. Therefore, |P(A)| = |P(B)|. □

While on the topic of power sets, we should discuss a significant theorem,

Cantor’s Theorem, We have already established that there are at least two different
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types of infinity, countable and uncountable. However, with Cantor’s theorem, we

can conclude that there are in fact infinitely many different sizes of infinity [6].

Theorem 2.2.20 (Cantor’s Theorem). Given any set A, the set is always going to be

strictly less than its power set: |A| < |P(A)|.

Proof. To show that |A| < |P(A)|, we want to show that the map f : A → P(A) is

not surjective. Suppose for the sake of contradiction that f is surjective. Consider

the set B where B ⊆ A such that elements in B are not in the image of f . So

B = {a ∈ A|a < f (a)} ⊆ A. Since we assumed f is surjective, then there exists an x ∈ A

such that f (x) = B. It is either the case that x ∈ B or x < B. If x ∈ B, then x < f (x) = B,

so x < B which is a contradiction. If x < B, then x ∈ f (x) = D, so x ∈ D which is a

contradiction for the second case. In both cases, we reach a contradiction, so our

assumption is not true. Thus, f is not surjective, so |A| < |P(A)|. □

Using Cantor’s theorem, we can conclude that for any A, the following result

hold:

|A| < |P(A)| < |P(P(A))| < . . .

Cantor’s theorem will be prevalent throughout much of this thesis, so it is

important that we understand that this holds for both finite and infinite sets.

Cantor’s theorem establishes that |N| < |P(N)|. And we previously established

|N| < |R|. Now we are ready to prove the following result [9].

Theorem 2.2.21. |P(N)| = |R|.

Proof. We want to show that |P(N)| = |[0, 1)| knowing the fact that |R| = |[0, 1)|. To

show this, we must show there exists injections P(N)→ [0, 1) and [0, 1)→ P(N).

First, let’s show that there exists an injection f : P(N)→ [0, 1). Let X ⊆N. Then

we can construct a decimal expansion 0.a0a1a2 . . . where
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ai =


0 i < X

1 i ∈ X

Suppose f (X) = f (Y) = 0.a0a1a2 . . .. The i ∈ X if and only if ai = 1 which also

means i ∈ Y, so X = Y since both subsets map to the same decimal expansion. So

ai = 1 for f (Y). Thus, f is injective.

Next, we want to show that there exists an injection g : [0, 1)→ P(N). We must

first note that any element of [0, 1) can be expressed uniquely as a decimal in the

form,

0.n0n1n2 . . . , 0 ≤ nk ≤ 9

And we take g(0) = ∅. For some given x ∈ [0, 1) we can write x = 0.n0n1n2 . . .

as defined above and define g(x) = {nk10k : k ∈ N}. Suppose g(x) = g(y) where

x = 0.n1n2n3 . . . and y = 0.m1m2m3 . . .. Given some k ∈ N we know mk10k
∈ g(x),

thus mk10k
∈ g(y) since g(x) = g(y). Then mk10k = mi10i for some i ∈N. Since mk and

ni are single digit numbers, then i = k. So mk = nk. Thus, x = y, so g : [0, 1)→ P(N)

is injective. Since we have shown injections f : P(N)→ [0, 1) and g : [0, 1)→ P(N),

we can conclude by the Cantor-Bernstein Theorem that there exists a bijection

P(N)→ [0, 1). Thus, it must also follow that there there exists a bijection P(N)→ R

since |R| = |[0, 1)|. Therefore, |P(N)| = |R|. □

Before we begin our next chapter which discusses cardinal numbers and ordinal

numbers, let’s go back to one of the infinite sets that we have become familiar with:

the natural numbersN. We have established that the set of natural numbers is the

set of integers greater than or equal to 1, that isN = {1, 2, 3, . . .}. Although this is

true, we want to redefine what it means for a number to be a natural number in a

set theoretic way. There are multiple ways that we could define natural numbers,

but the way we will use is from mathematician John von Neumman as it is the most
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advantageous and is the standard used by most set theorists. Von Neumman’s

construction defines each natural number as the set of natural numbers that precedes

it [6]. We begin with the convention that 1 is the empty set. With this convention,

we can continue to define the natural numbers as follows.

1 = {} = ∅

2 = {1} = {∅}

3 = {1, 2} = {∅, {∅}}

4 = {1, 2, 3} = {∅, {∅}, {∅, {∅}}}

...

We see some interesting properties result from this construction. First notice

that each number, which we are now treating as sets, is an element in its successor.

1 ∈ 2 ∈ 3 ∈ 4 . . .

We could also write the same thing using the sets we defined corresponding to

each natural number which may make the result more obvious.

∅ ∈ {∅} ∈ {∅, {∅}} ∈ {∅, {∅}, {∅, {∅}}} ∈ . . .

Another interesting result is that each set is also a subset of the succeeding set.

1 ⊆ 2 ⊆ 3 ⊆ . . .

∅ ⊆ {∅} ⊆ {∅, {∅}} ⊆ {∅, {∅}, {∅, {∅}}} ⊆ . . .

After seeing how we have defined the first few natural numbers, we have a
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better understanding, so that we can define the entire set of natural numbers. We

have used the word successor several times throughout this discussion which we

will formally define in the next chapter. Simply speaking, the successor here is the

set that follows immediately after the set before it. With this definition of natural

numbers, we are now ready to introduce the notion of ordinal numbers and cardinal

numbers which is a topic directly related to infinite sets.
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CHAPTER 3

Ordinal Numbers and Cardinal Numbers

We all have an intuitive sense of what infinity is, and from our initial discussion of

infinite sets, it may have become clearer. We have learned that there are different sizes

of infinity and have looked in-depth at the two sizes: countable and uncountable.

However, as Cantor’s theorem had introduced there are an infinite number of sizes

of infinity. There are more things we can say about this idea which we will elaborate

on through our discussion of ordinal and cardinal numbers. Not only, will this

chapter be helpful to that extent, but ordinal and cardinal numbers are directly used

in our concluding chapter about the continuum hypothesis, so it is important to

keep these definitions in mind. We will begin with discussing something we have

made use of, but have yet to formally define. This is the notion of order which will

lead us to our discussion of ordinal numbers.

3.1 Order and Ordinal Numbers

Our first step towards understanding ordinal numbers is to understand the notion

of ordering and order relations.

29
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Definition 3.1.1. A binary relation on a set A is an order relation if it is

1. reflexive: aRa holds for every a ∈ A

2. anti-symmetric: aRb and bRa implies a = b for all a, b ∈ A, if x , y and x < y, then

y < x does not hold

3. transitive: aRb and bRc implies aRc for all a, b, c ∈ A

With this definition, we can now simply define what it means for a set to be

ordered.

Definition 3.1.2. An ordered set X is a set such that there exists an order relation R that

holds in X.

To be more specific, an ordered set can either be partially ordered or totally

ordered. These two types of sets require additional definitions of what makes a

relation a partial ordering or a total ordering. We will start will partial ordering.

Definition 3.1.3. A strict partial ordering is a relation R that satisfies the following two

conditions:

1. R is transitive

2. R is irreflexive

Some partial ordering examples are <, or ⊂. Notice because both are transitive

and irreflexive. Both hold for transitivity,

a < b < c⇒ a < c

a ⊂ b ⊂ c⇒ a ⊂ c

The relations are also irreflexive, that is the statements x < x and x ⊂ x are

impossible. Next, we must define a total order relation.
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Definition 3.1.4. An order relation R is a total order relation on a set S if and only if for

every pair x, y ∈ S either xRy or yRx is true.

Let’s consider two examples to clarify what we mean by total order. Suppose

we have the set S = {1, 2, 4, 6, 8, 10, 12, 14, 16}where the order operation on S is an

element divides another element. In fig. 3.2, we have an ordering diagram to see

how each element is related through our division relation. Each arrow in the figure

represents the existence of the relation between the elements. Note, that the relation

is transitive. So although there is no direct arrow between some related elements

because we are accounting for transitivity. For example, from 1 to 8 we can follow

the arrows from 1 to 2 to 4 to 8. Thus, by transitivity, 1 and 8 are related although

there is not one direct arrow relating the two.

Figure 3.1: Order diagram of division relations on the set S.

However, for a relation to be a total order on a set, we need either xRy or yRx for

all elements in S. If we look at the elements 4 and 6, neither 4 divides 6 nor 6 divides

4. Thus, our condition for the relation to be a total order fails, and this is the case for

several other pairs of elements in S. We can alter this set to create S′ = {1, 2, 4, 8, 16}

with the same relation of elements divide other elements. Now our relation holds,

because for any pair of elements x, y ∈ S′, we have that either xRy or yRx hold.

Keeping transitivity in mind, we can more clearly see how this is true in fig. 3.2.
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Figure 3.2: Order diagram of division relations on the set S′.

More common examples of total ordering are the relations of magnitude (less

than or greater than) on the natural numbers, integers, or real numbers.

We can also use orders to compare two different ordered sets. Similar to how

we compared cardinalities of sets, we can compare two sets based on their order

relation through order isomorphism defined below.

Definition 3.1.5. Given sets X and Y, let X be ordered by a relation R and Y be ordered by

a relation S. The function f : X→ Y is order-preserving if for all n,m ∈ X, (n,m) ∈ R if

and only if ( f (n), f (m)) ∈ S. There exists an order isomorphism if f is also bijective. Two

sets are order isomorphic if there is an order isomorphism between them.

Let us look at an example of two sets that are order isomorphic and understand

why using the definition above [9].

Theorem 3.1.6. The sets P(N) and P(Z) both ordered by the subset relation ⊆ are order

isomorphic.

Proof. First, let us show that there exists a bijection between P(N) and P(Z). We

know that there exists a bijection g : N → Z as we had established in chapter

2. Both sets are countably infinite and have the same cardinality. We also know

from theorem 2.2.19 that if two sets have the same cardinality, then their power

sets have the same cardinality. Then if both sets have the same cardinality there

must exist a bijection f : P(N) → P(Z). Specifically, this function is defined as

f (A) = {g(x) : x ∈ A} for all A ⊆N as we had also discussed shown chapter 2. Next,

we want to show that the two sets are order-preserving. We want to show A ⊆ B if

and only if f (A) ⊆ f (B) for all A,B ∈N. First, let’s suppose A ⊆ B and let a ∈ f (A).
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This means that a = g(x) for some x ∈ A. It also must hold that x ∈ B since A ⊆ B.

Since x is also in B, then a is also an element of f (B). So we have that a ∈ f (A) implies

a ∈ f (B). Thus, f (A) ⊆ f (B) as desired. Now we will show the other direction

supposing that f (A) ⊆ f (B) and letting x ∈ A. If x ∈ A then g(x) ∈ f (A) meaning

g(x) ∈ f (B) since f (A) ⊆ f (B) as desired. Now we will show the other direction

supposing that f (A) ⊆ f (B). Then g(x) = g(y) for some y ∈ B. Finally, since g is a

bijective function it must follow that x = y for x ∈ A and y ∈ B. Thus, x ∈ B. We

have that x ∈ A implies x ∈ B; therefore, A ⊆ B. We have shown that the two sets

are in bijection with each other and that they are order-preserving. Thus, we can

conclude that the two sets are order isomorphic. □

An important property of order isomorphisms is that they also preserve least

and greatest elements. If we had two sets A ordered by R and B ordered by S, and

a bijection f : A→ B, then if x ∈ A is the least element in A, f (x) must be the least

element in B in order for the two sets to be order isomorphic. For example, Z and

N both ordered by the less than relation are not isomorphic because there exists

a least element 1 ∈ N, but there does not exist a least element in Z. The last two

definitions we need to cover before our discussion of ordinal numbers are related to

well-ordered sets. First, let’s understand what makes a set well-ordered.

Definition 3.1.7. A total ordered set A is called well-ordered if every non-empty subset of

A has a least element.

An example of a well-ordered set would be the natural numbers ordered by

magnitude. Since there is a least element 1 ∈N, then any subset will have a least

element n ≥ 1. A set that isn’t well-ordered would be the set of integers Z. For

example, let’s take the subset {. . . − 4,−3,−2,−1} ⊆ Z to be the set of all negative

integers. This set does not contain a least element, and since we found a subset ofZ

that does not have a least element, Z is not well-ordered. However, this example
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brings up another important principle in mathematics called the well-ordering

principle [9].

Theorem 3.1.8 (Well-Ordering Principle). Given any set X, there exists a binary relation

R on X that makes X a well-ordered set.

This principle will come up later during our discussion of Zermelo-Fraenkel

set theory and the axiom of choice. With the idea of well-ordered sets established,

we can look at how to find an initial segment of a well-ordered set. This concept

of initial segments will be important when later discussing properties of ordinal

numbers [9].

Definition 3.1.9. Suppose X is a well-ordered set, ordered by a relation R. An initial

segment of X is found by choosing an element a ∈ X. The initial segment is the subset

{y ∈ X : yRa and y , a}. We would denote this set Xa.

Suppose we have the well-ordered set X = {1, 2, 3, 4, 5, 6, 7, 8} where our relation

R is magnitude (less than). Then we can form the initial segment X5 = {1, 2, 3, 4}

for example. This example is represented in fig. 3.3 where the blue arrows are the

relation R.

Figure 3.3: How to determine the initial segment of a set.

The element a ∈ X that we choose will not be in Xa, so we can say that for any

a ∈ X, a will be the least element in X\Xa. Another important remark to state is that

if we have a, b ∈ X, then Xa ⊆ Xb.
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We are now ready to discuss ordinal numbers. Although we have called it an

ordinal number, it is actually a set, not a number. Often ordinal numbers are just

referred to as ordinals. We will use these two terms interchangeably.

Definition 3.1.10. An ordinal number is a well-ordered set in which each element is the

set of all its predecessors, that is a set A well-ordered by a relation R is an ordinal number if

for every x ∈ A, x = {y ∈ A : yRx and y , x}.

Note the similarities between this definition and definition 3.1.9. The distinction

here is that we are not creating a subset from a well-ordered set by choosing some

element a as we saw with initial segments. In this case, we are concerned with

the whole set, not subsets. We have actually seen an application of this definition

already. Recall the way we defined the natural numbers. Following von Neumann’s

definition, he states that a natural number is the set of natural numbers that precede

it beginning with the convention that 1 = ∅. Thus, each natural number is the set of

all its predecessors. Then by definition 3.1.10 every natural number is an ordinal

number. We call these finite ordinals.

Definition 3.1.11. For a given ordinal α, the next biggest ordinal is the set α ∪ {α} and is

called the successor of α denoted α+.

For the finite ordinals we just discussed, we can rewrite them in terms of

successors as shown below.

1 = ∅, 2 = ∅+, 3 = ∅++, 4 = ∅+++, . . .

There are finite ordinals and limit ordinals which we will discuss shortly. Before

we introduce limit ordinals, let’s discuss some important properties of ordinal

numbers to further our understanding of what we have already discussed, and to

later help us make sense of limit ordinals. These properties and their proofs follow

from [9].
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Theorem 3.1.12. Given any two well-ordered sets, either the two sets are isomorphic to

each other or one is isomorphic to an initial segment of the other.

We use the term isomorphic here the same way we had defined it in defini-

tion 3.1.5. We will omit the proof of this theorem, but this theorem is important to

include as it will help us prove some other significant properties of ordinals listed

below.

Theorem 3.1.13. The following about ordinals holds:

1. An initial segment of an ordinal is an ordinal, that is every element of an ordinal is an

ordinal.

2. The order relation on an ordinal is always ⊆.

3. If two ordinals are isomorphic, then they are equal.

4. If α and β are ordinals, then either α = β, α ∈ β, β ∈ α.

Proof. We will omit the proof for parts 1 and 3, and establish that they are true.

Proof of 2. Suppose we have an ordinal α with the order relation R on α. We

want to show that for any x, y ∈ R, xRy if and only if x ⊆ y. Then, from what we

stated earlier about initial segments, we have that xRy if and only if αx ⊆ αy. But

since α is an ordinal number, x = αx and y = αy. Thus, xRy if and only if x ⊆ y.

Proof of 4. Suppose α and β are ordinals. Then, by theorem 3.1.12, either α is

isomorphic to β, α is isomorphic to an initial segment of β, or β is isomorphic to an

initial segment of α. If α is isomorphic to β, then α = β by part 3. Now let’s suppose

that α is an initial segment of β, let’s say βa. Then α ∈ β because α is the set of all

predecessors of a ∈ β. That set of predecessors must also be in β since β is ordinal,

so α ∈ β. For the same reason if β is an initial segment of α, then β ∈ α. □

So far, we have only discussed finite ordinals, but there is a different type of

ordinal number called a limit ordinal.
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Definition 3.1.14. A limit ordinal is an ordinal number that is not the successor of any

other ordinal.

Let’s suppose λ is a limit ordinal, and β ∈ λ. Now let’s consider the successor

of β, β+. By theorem 3.1.13, then β+ = λ, β+ ∈ λ, or λ ∈ β+. We can rule out the

last option since β+ is still a predecessor to λ. We can also rule out the possibility

that β+ = λ since this would mean λ is the successor to β, but λ is not a successor

to any ordinal as we had established. Thus, β+ ∈ λ. Then if β+ ∈ λ, then β++ ∈ λ,

β+++ ∈ λ, β++++ ∈ λ, and so on [6]. The successor for any element in the limit ordinal

is contained in the limit ordinal and is never equal to it. We call the first limit ordinal

ω which contains all natural numbers. Notice that it is not the successor of any of

the numbers (the finite ordinals) because for every number, its successor is another

finite ordinal, not a limit ordinal. For any smaller ordinal, there is another ordinal

as its successor that is still smaller than ω.

Although we have made a distinction between finite and limit ordinal, the

properties from theorem 3.1.13 hold for both. We can further convince ourselves

of this by looking at one of the properties such as the order relation on an ordinal

is always the subset relation ⊆. We can recall that for the natural numbers each

number is in fact ordered by the subset relation. On the finite ordinal of the third

natural number for example, we have the set 3 = {∅, {∅}} = {1, 2}. Thus, it holds that

∅ ⊆ {∅} ⊆ {∅, {∅}} or 1 ⊆ 2 ⊆ 3. With this, we can also see how this would hold for the

first limit ordinal. The limit ordinal is the set

ω = {1, 2, 3, 4, . . .} = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}} . . .}

which continues forever. Note that the subset relation still holds for the infinite set

1 ⊆ 2 ⊆ 3 ⊆ 4 ⊆ . . .. The subset relation will hold on all ordinal numbers, both finite

and limit ordinals. This completes our discussion on ordinal numbers, but we will
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be able to make some connections between this topic and our next topic: cardinal

numbers.

3.2 Cardinal Numbers

Simply speaking cardinal numbers are used to define cardinality of sets and are

often referred to just as cardinals. Each set is associated with a unique cardinal

number, and if two sets are equinumerous then they are associated with the same

cardinal number. However, there are different types of cardinal numbers. The

simplest of these would be the cardinal numbers used to denote finite sets. For

finite sets, our definition is the same as we had when we introduced cardinality in

chapter 2. For finite sets, our cardinal number is the number of elements in that

set. This will always be represented by a natural number. Consider the finite set

A = {w, x, y, z, v}. Then the cardinal number used to represent A is 5 the same way

that |A| = 5. There also exists the cardinal number 0 which is used to represent the

empty set.

Finite cardinal numbers are the simplest case. However, there is one other

type of cardinal number which will be much more relevant throughout the rest of

this project and in our discussion of the continuum hypothesis. These are infinite

cardinals which are associated with infinite sets. Unlike cardinal numbers for finite

sets, we do not consider infinite cardinals to be numbers, nor do we represent them

as such. Instead, we will introduce a new symbol called aleph ℵ. When we use

this symbol, we do not think of it as a number, but rather just a notation used to

represent the size of an infinite set. For example, by convention we would denote ℵ0

to be the cardinal number associated withN, that is |N| = ℵ0 [7]. And we know that

if two sets are equinumerous they are associated with the same cardinal number.

SinceN is equinumerous to Z, then we would also associate Zwith the cardinal
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number ℵ0. Thus, we have cardinal numbers that are either equal to 0 for the empty

set, some natural number for finite sets, or some infinite cardinal ℵα for infinite

sets. And we will also introduce the idea that ℵ1 is associated with the set of real

numbers, that is |R| = ℵ1. We will not elaborate on this convention at this point as

that would require a more in-depth discussion of the continuum hypothesis that

we will get to later. However, this convention is necessary to state as we begin

discussing some properties of cardinals. We will begin by redefining what it means

for a set to be finite, countable, or uncountable in terms of cardinal numbers.

Definition 3.2.1. 1. A set is considered finite if its cardinality is less than ℵ0.

2. A set is considered countable if its cardinality is at most ℵ0.

3. A set is considered uncountable if its cardinlaity is at least ℵ1.

These definitions reiterate what was discussed earlier, but with our newly

defined cardinal numbers. We have discussed ordinal numbers, and have now

introduced cardinal numbers. It turns out that the two concepts are closely related.

The following theorem regarding the ordering on cardinals will allow us to elaborate

on this idea [7].

Theorem 3.2.2. Given a cardinal ℵα, there exists a successor cardinal ℵ+α . In other words,

the set of cardinals is well-ordered.

We will not prove this as the proof is too complex for the scope of this project.

However, let’s convince ourselves that the set of cardinals is well-ordered. The

smallest cardinal is 0 associated with the empty set, so in the case of the set of finite

cardinals, any subset must also have a least element. For the set of infinite cardinals,

we still have a least element: ℵ0. Thus, if we had a subset of infinite cardinals, we

will always have a least element. We can order the cardinals in the following way.

0 < 1 < 2 < . . . (all other finite cardinals) . . . < ℵ0 < ℵ1 < ℵ2 < . . .
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If we were to write this in terms of successors we would have to separate them.

Similar to ordinals, the first infinite cardinal ℵ0 is not a successor to any other

cardinal. For this reason we would call ℵ0 a limit cardinal.

ℵ0 < ℵ
+
0 < ℵ

++
0 < ℵ+++0 < . . .

Cardinal numbers also follow similar properties to ordinals such as the trichotomy

property. For any two cardinals α and β, either α < β, β < α, or α = β.

One other thing that is interesting about infinite cardinal numbers is that they

do not follow the same arithmetic rules as natural numbers or real numbers. One

may be curious to know what happens if we try to add infinities or multiply them.

The answer to these questions can be answered using cardinal arithmetic. These

arithmetic rules and their proofs follow from [7]. First, let’s define addition on

infinite cardinals.

Definition 3.2.3. Let ℵα and ℵβ be infinite cardinals such that ℵα = |A| and ℵβ = |B|.

Then, ℵα + ℵβ = |A ∪ B|.

This definition can be used to prove the next two theorems.

Theorem 3.2.4. Let ℵ be any infinite cardinal. Then,

1. If n = |A| where n ∈N, then n + ℵ = ℵ

2. ℵ + ℵ = ℵ

Proof. Proof of 1. Let there be an infinite set A such that ℵ = |A|.

Case 1. Suppose n = 0. We have established that this means n = |∅|. Then we

have

0 + ℵ = |∅ ∪ A| = |A| = ℵ
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Case 2. Suppose n > 0. Since n < ℵ, and A is infinite, then there exists a finite set

{a1, a2, . . . , an} ⊂ A such that |{a1, a2, . . . an}| = n. Then we have,

n + ℵ = |{a1, a2, . . . , an} ∪ A| = |A| = ℵ

Proof of 2. Continuing the convention that ℵ = |A|we have,

ℵ + ℵ = |A ∪ A| = |A| = ℵ

□

Theorem 3.2.5. For two infinite cardinals α and β such that α < β, then α + β = β.

Proof. Let’s denote sets A and B such that α = |A| and β = |B|, so |A| < |B|. Then there

is an injective function f : A→ B. First let’s show that there is a bijective function F

such that F : A→ f (A), in other words A = f (A). We can look at fig. 3.4 to visually

understand this mapping.

Figure 3.4: Mapping from A to f (A) [7]
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Both f and F follow the same rule and conditions but just map into different sets.

So f is only injective and not surjective, but we will show that F is bijective. We

know F is injective because it follows the same rules as f which we had established

is an injective function. To show that F is surjective consider a y ∈ f (A). Then by

definition of f (A) there exists an x ∈ A such that F(x) = f (x) = y. Thus F is surjective.

Since F is injective and surjective, then F : A → f (A) is bijective. Since f (A) ⊂ B,

then f (A) ∪ B = B. So,

α + β = |A| + |B| = | f (A)| + |B| = |A ∪ B| = |B| = β

Thus we have shown that the sum of two infinite cardinals is equal to the larger

cardinal. □

The result from theorem 3.2.5 can also be applied to cardinal multiplication. An

example of this is considering the two sets R andN. We used the convention that

|N| = ℵ0 and |R| = ℵ1 and ℵ0 < ℵ1. Then by definition 3.2.3, ℵ0 + ℵ1 = |N ∪R|. The

natural numbers are a subset of the real numbers, so the union of the two must

equal the real numbers. Thus, ℵ0+ℵ1 = |N∪R| = |R| = ℵ1. Therefore, theorem 3.2.5

holds. The result from this theorem can also be applied to understand cardinal

multiplication.

Definition 3.2.6. For two infinite cardinals α and β such that α < β, then α × β = β.

We have introduced addition and multiplication on cardinals, but now we must

discuss powers of cardinals which will be most relevant to this project. For finite

cardinals, the power rules hold as one would expect. For two cardinal numbers,

5 and 2 associated with two different sets, taking the power would be intuitive,

52 = 25, and would result in another finite cardinal number: 25. We can define this.

Definition 3.2.7. Suppose α and β are cardinals associated with two sets A and B such that

α = |A| and β = |B|. Then βα = |BA
| where BA is the set of all functions f : A→ B.
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What may not be as intuitive is that the same applies to infinite cardinals.

However, using this definition for infinite cardinals it is important to be cautious

that we are no longer dealing with numbers. In this project, we are only really

concerned with using them to denote power sets of infinite sets. Looking back

to how we defined power sets if a finite set has cardinality n, its power set has

cardinality 2n. This is still the same for infinite cardinals, but we must think of it

differently. If we have a finite cardinal number n associated with a set, then we

would get another finite number m associated with its power set. However, let’s

say we wanted to take the power set ofN. We know that the size ofN is associated

with the cardinal number ℵ0. Then the power set of the natural numbers, P(N)

would be 2ℵ0 . This is the main extent to which powers of cardinals are used: to

denote power sets of infinite sets. Thus, what we have stated is that |P(N)| = 2ℵ0 .

We also know that |P(N)| = |R|, so we can say |R| = 2ℵ0 . Then by Cantor’s Theorem,

we can state that ℵ0 < 2ℵ0 . We will keep this fact in mind for our discussion of the

continuum hypothesis, but will not go any further at this moment.

Every concept we have discussed so far is related to set theory. However, we

have yet to define a formal system used for set theory. Throughout this project, we

have yet to question the existence of these objects such as ordinals and cardinals.

Everything we have covered intuitively makes sense and we take it to be true.

However, the existence of these objects can only be guaranteed if we define a formal

system of set theory for which they are a part of.
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CHAPTER 4

Zermelo-Fraenkel Set Theory

The way we defined sets in the previous chapters gives us a base understanding

of some of the concepts we will see throughout this project. However, it is not

always sufficient. I would like to raise an issue that may occur with the way we

have defined sets using naive set theory in chapter 2 using a famous example called

Russell’s Paradox. Mathematician Bertrand Russell was the first to realize that this

misuse of sets can lead to paradoxical situations. The ‘set’ constructed in Russell’s

paradox is defined as follows:

A = {X : X is a set and X < X}

In other words, A is the set of all sets that do not contain themselves as elements.

This holds for the empty set because ∅ is a set and ∅ < ∅, thus ∅ ∈ A. We can also

provide an example of a set that is not in A. Consider the set B = {{{{. . .}}}} where B

can be thought of as a box containing a box, containing a box, and so on where the

boxes are endlessly nested inside each other. Then, for this reason, B is the set B

itself

B = { {{{ . . .}}}︸   ︷︷   ︸
B

} = {B}

Thus, B ∈ B, so B < A. However, what would happen if we asked the question

45
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of whether or not A ∈ A. Then A cannot be in A by the way the set is defined. If

A < A, then A must be in A again by how the set is defined.

This is a paradox within naive set theory. To resolve this, mathematicians Ernst

Zermelo and Abraham Fraenkel created a system of axioms in the early 1900s that

was structured in a way that would eliminate these paradoxes and contradictions.

It was called Zermelo-Fraenkel set theory and consisted of nine axioms and later

the axiom of choice. This system is what we use when we discuss set theory. So,

up to this point, when we proved theorems about cardinality, sets, cardinals, and

ordinals, we were proving them within this system although there was no need to

formally stated it. We will go through all nine axioms beginning with the axiom of

extensionality, and end with a discussion on the axiom of choice.

4.1 Zermelo-Fraenkel Axioms

Axiom 4.1.1. (Axiom of Extensionality) Two sets are equal if and only if they contain the

same elements.

Formally, we can write the axiom of extensionality as,

∀A,∀B (A = B⇐⇒ ∀x (x ∈ A⇐⇒ x ∈ B))

In this expression, we have x ∈ A ⇒ x ∈ B and x ∈ B ⇒ x ∈ A implies A = B.

This is the same thing as saying A ⊆ B and A ⊆ B implies A = B. Therefore, we can

conclude that the axiom of extensionality states the same thing as theorem 2.1.2. We

can rewrite our formal definition as follows,

∀A,∀B (A = B⇐⇒ A ⊆ B and B ⊆ A)
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It is important to note that it does not matter how many times a single element

is listed or the order of the elements. Let’s look at the following example.

{1, 1, 2} = {1, 2} = {2, 1} = {2, 1, 2}

All these sets are equal according to the axiom of extensionality since they

contain the same elements. Without the axiom of extensionality, we could have

multisets which are sets where the number of a single element in the set is used

to define the set. If we to consider multisets, then {1, 1, 2} , {1, 2}. We would also

have ordered sets where the order of elements in the set is used to define the set.

If this were the case, then {1, 2} , {2, 1}. However, by implementing the axiom of

extensionality we do not come across these issues, and those sets are all considered

to be equal. The next axiom we will discuss is the empty set axiom, which will

require a much shorter explanation.

Axiom 4.1.2. (The Empty Set Axiom) There is a set called the null set, denoted ∅ that

contains no elements.

We have discussed the existence of the set in chapter 2. Although this axiom

may seem trivial, this axiom is necessary for understanding other Zermelo-Fraenkel

axioms and to uphold certain set theory consequences and results.

The next axiom is the pairing axiom which discusses a procedure for constructing

sets, but only involving pairs of sets.

Axiom 4.1.3. (Pairing Axiom) Given any sets X and Y, there exists a set Z such that the

elements of Z are X and Y.

In other words, if X is a set and Y is a set, then the set {X,Y} exists. This is an

example of the case where X , Y which results in sets of pairs of sets. Now, let’s

consider the case where we have two sets A and B such that A = B. In this case,

we get singletons or sets that contain a singular element. Thus, there exists a set
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C whose only element is the set A. The pairing axiom results in pairs, {X,Y}, or

singletons, {X}. The pairs are unordered pairs, but as we have seen from the axiom

of extensionality {X,Y} = {Y,X} and we know that the set {X,X} will result in the

singleton {X}. The pairing axiom is closely related to the next axiom, the axiom of

union as it is necessary to introduce a new notion of the union of sets.

Axiom 4.1.4. (Axiom of Union) If X is a set whose elements are sets, there is a set
⋃

X

consisting of all elements of all elements of X.

When we had first introduced what the union between two sets looks like we

defined it as c ∈ A∪B if c ∈ A or c ∈ B. Although this is true, we need to redefine this

notion so we can explicitly define the process of constructing these sets. Suppose

we have two sets A and B. Our goal is to construct the union of these sets, which

is the set A ∪ B. First, by axiom 4.1.3, we know that the set {A,B} exists, so we

construct that set. Then, by the axiom of union, we can construct the set
⋃
{A,B}

whose elements are all elements of A and B which is the set we had intended to

form. Thus, combining the pairing axiom and the axiom of union guarantees the

union of two sets and provides a process of their formations. We can now formally

redefine union from these two axioms.

Definition 4.1.5. The union of two sets A ∪ B is
⋃
{A,B} following axiom 4.1.3 and

axiom 4.1.4 for sets A and B.

This axiom is also helpful for proving the existence of ordinal numbers. With

the completion of this fourth axiom, we can now construct basic finite sets using

singletons, pairs, and unions. We have seen examples already of forming singletons,

pairs, and unions of each. However, let’s say we had three sets C,D, and E. Then we

could define the set {C,D,E} as
⋃
{
⋃
{C,D}, {E}}. Now, let’s say we have more than

three sets. Suppose we have n sets for some n ∈N, that is we have sets s1, s2, s3, . . . sn.

Then similarly we can define the set {s1, s2, s3, . . . sn} as
⋃
{
⋃
{s1, s2, s3, . . . sn−1}, {sn}} [9].
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We have yet to understand how we may construct the intersection between

two sets, but that will be discussed in a later axiom. The next axiom discusses the

existence of power sets, a notion we have already become somewhat familiar with.

Axiom 4.1.6. (Power Set Axiom) Given any set X there is a power set of X, denoted P(X)

whose elements are all subsets of X.

Formally, the axiom states,

∀X,∃P(X),∀a (a ∈ P(X)⇐⇒ a ⊆ X)

We introduced power sets when we discussed set theory background, so this

axiom does not require much more explanation. If the set X exists then the set P(X)

exists. Since P(X) is a set, then the set P(P(X)) also exists. An interesting result of

this axiom allows us to create a sequence of power sets which we will come back to

shortly.

These first five axioms give us enough information to understand basic set

properties and construct simple sets. The remaining axioms follow more intuitive

principles about the construction and properties of sets. The next two axioms relate

to the comprehension principle which was first introduced by Zermelo and later

modified by Fraenkel and Thoralf Skolem [9].

Axiom 4.1.7. (Axiom of Separation) Given a condition ψ and a set X there exists a set Y

that contains the elements of X and satisfies the condition ψ.

We can formally state the axiom as follows,

∀X,∃Y,∀a(a ∈ Y⇐⇒ (a ∈ X and a ∈ ψ(a)))

Essentially this axiom is stating that we can create subsets from a given condition

or assertion ψ. However, notice that there are an infinite number of assertions that
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can be made, so this is not technically one single axiom. For this reason, the axiom

of separation is often referred to as an axiom scheme. The condition takes one

free variable a, so we would have ψ(a). The condition must also be expressible as a

well-formed formula in Zermelo-Fraenkel set theory. This means it can be expressible

using only the following propositions: equality, a = b or set membership a ∈ B.

The formulas must also be made up of logical operations such as quantifiers,

implications, and negations. Let’s look at two simple examples where we can take a

condition and express it as a well-formed formula.

Let A and B be two fixed sets and we start with the set A ∪ B. Suppose we

want to construct the set A ∩ B. So we want the condition that for any element z,

z ∈ A∩ B. However, this formula is not well-formed in Zermelo-Fraenkel set theory.

Instead, we want the set which can be constructed from a condition expressed as a

well-formed formula, such as the one stated below.

{z ∈ A : z ∈ B}

This is stating the same exact thing as A ∩ B, but we have instead expressed it using

a well-formed formula. Next, suppose we wanted to construct the set of the relative

complement of B, that is the set of all elements z in A/B. However, using this

notation of A/B is again not well-formed in Zermelo-Fraenkel set theory. Instead,

we can construct the set by expressing the condition again using a well-formed

formula stated below.

{z ∈ A : z < B}

Note, that we correctly stated the condition of z ∈ A\B only using the allowed

notation that characterizes it as a well-formed formula. However, with any of the

possible conditions ψ, there is no guarantee that any possible member satisfies that
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condition. It may instead be the case that the set contains no elements and we

would have the empty set which we know exists by axiom 4.1.2.

This axiom was one of the significant responses to Russell’s paradox as it asserted

a correct way of constructing a set. However, it was later discovered that the axiom

was not sufficient to cover all constructible sets. Let’s go back to the interesting result

that we introduced in our discussion of the power set axiom. Suppose we have a

set X. Then we know the power set of X P(X) exists by axiom 4.1.6. Then again, by

axiom 4.1.6 P(P(X)) also exists. We can continue constructing these sets as we know

they will all exist by the power set axiom, so we would have X,P(X),P(P(X)) . . . and

continue with this process forever. Now let’s try constructing the sets of all these

power sets which would look like {X,P(X),P(P(X)) . . .}. Intuitively, we should be

able to do this; however, with the axioms we have discussed so far, there is actually

no guarantee that this is a legitimate set. Axiom 4.1.7 cannot be applied here because

this set is not a subset of our starting set X. These types of issues lead us to the next

axiom, the axiom of replacement.

Axiom 4.1.8. (Axiom of Replacement) Suppose F is a function that can be expressed as

a well-formed formula in Zermelo-Fraenkel set theory. For any set X, there exists a set Y

which is the set of all images of each element in X under the function F .

Roughly speaking, this axiom states that the image of a set under any function

must also be a set. Similar to the axiom of separation, the axiom of replacement

is also considered to be an axiom schema since there are infinite possibilities for a

function F . We can create a well-formed formula for our function F the same way

we did for our condition ψ in the axiom of separation. However, in axiom 4.1.7, our

condition took one variable, so we had ψ(a). In this case, our function is constructed

by taking two free variables, so we would have F (x, y). After discussing both the

axiom of separation and the axiom of replacement, we can look at an interesting

result that shows the close relation between the two axiom schemes [9].
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Theorem 4.1.9. The axiom of replacement implies the axiom of separation.

Proof. Let ψ(y) be some well-formed formula as we saw in axiom 4.1.7, and let X

be a set. Then the elements in X either satisfy the condition ψ or do not satisfy the

condition. If no element satisfies the condition, then we get the empty set which we

know exists by axiom 4.1.2. Then let F (u, v) be the formula u = v and ψ(u). This

formula determines the identity function on all u for which ψ(u) holds. If we restrict

this function to the set X, then it would be the function on all u ∈ X such that ψ(u)

holds. This gives us the set

w = {v : (∃u)(u ∈ X and F (u, v))}

deduced by the axiom of separation which is the exact same set as

{v ∈ X : ψ(v)}

required by the axiom of replacement. Therefore, we can deduce the same formula

from the axiom of separation without the need for the axiom of replacement. □

This result shows that the axiom of separation is a repetitive axiom in Zermelo-

Fraenkel set theory, but it is still included since it describes a more standard way of

constructing sets than the axiom of separation.

Going back to the issue we had earlier of the set of power sets {X,P(X),P(P(X)) . . .},

we can use the axiom of foundation to show that this is a legitimate set. We can

state that this set is the image of the set of natural numbers. The function associates

every natural number n with Pn−1(X). To more clearly show this, we can create a

table of the elements inN associated with each elements image under this function.
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n Image

1 X

2 P(X)

3 P(P(X))
...

...

We started with the set N and defined a function Pn−1(X). In this case our

variables would be the setN and the set X. Then, by the replacement axiom there

exists a set containing all images of the elements ofN under this function. Therefore,

the set does in fact exist and we have shown the first few elements that would be in

the set. However, this example still has an issue. We have used a procedure that

allows us to construct an infinite set using another infinite set, the set of natural

numbers. However, up to this point we have not yet seen an infinite constructible

set, nor have any of our axioms led us from finite sets to infinite sets. We must

address this notion of infinite sets before moving on, which leads us to the infinity

axiom.

Axiom 4.1.10. (Infinity Axiom) There is a set X that contains the empty set ∅ and if a ∈ X

then a ∪ {a} ∈ X must also be true.

Such a set is infinite, so this axiom confirms that there exists a set which is infinite.

In addition, it states exactly what elements the set contains. The element we start

with in the set is the empty set ∅, so ∅ ∈ X. Then as the axiom states, ∅ ∪ {∅}must

also be in the set X. Since this is also an element in the set, we continue the process.

So we get ∅ ∪ {∅} ∪ {∅ ∪ {∅}} ∈ X. This process continues forever and results in the

following set.

{∅, ∅ ∪ {∅}, ∅ ∪ {∅} ∪ {∅ ∪ {∅}} . . .}

In this case, we were just considering the set containing the empty set, but the
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set may contain other elements as well. We have chosen the sequence ∅, ∅ ∪ {∅}, ∅ ∪

{∅} ∪ {∅ ∪ {∅}} . . .. With this sequence it is clear that all the members are distinct

which is necessary for us to say that the set is infinite. However we could have

also chosen a different sequence of such as ∅, {∅}, {{∅}} . . . used by Zermelo and still

have an infinite sequence of distinct members. There are many other processes we

could use to form the sequence, but the process we worked with was first used by

mathematician John von Neumann [9]. The final axiom we will discuss is the axiom

of foundation, which follows an intuitive property of set theory.

Axiom 4.1.11. (Axiom of Foundation) If X is a set, there is an a ∈ X such that a ∩ X = ∅.

In other words this axiom states that every non-empty set contains an element

that is disjoint from that set. The purpose this axiom serves is that it tells us it is

impossible to have an infinite chain of sets of which there must be a predecessor

contained in each set. We have seen examples of the opposite being true, that is

each element is contained in its successor such as the construction of the natural

numbers.

1 ∈ 2 ∈ 3 ∈ . . .

However, this axiom states that the opposite of this construction is impossible.

Suppose, we started with a set X0. Then we could choose an element X1 ∈ X0, then

X2 ∈ X1, X3 ∈ X2, and so on attempting to create the sequence shown below.

. . .Xn+1 ∈ Xn ∈ . . .X3 ∈ X2 ∈ X1 ∈ X0

This is impossible by the axiom of foundation and let’s convince ourselves why

this is the case. Suppose we had the set A = {a1, a2, a3, . . .} and assume an+1 ∈ an for

all n ∈ N. Then by the axiom of foundation, A must contain an element b that is

disjoint from the set, that is A ∩ b = ∅. If b ∈ A, then b = am for some m ∈N. And by

our original assumption am+1 ∈ am. If this assumption is true then am+1 must also
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be in A. So, we have that am+1 ∈ am, where am = b, and am+1 ∈ A. Thus, am+1 ∈ b ∩ A.

However, b ∩ A = ∅, so no elements can be contained within the intersection. This

poses a contradiction. Thus, using the axiom of foundation, we can understand that

these types of sequences where . . . am+1 ∈ am . . . a2 ∈ a1 are impossible [9].

With the completion of this axiom, we now have constructed the model of

Zermelo-Fraenkel set theory also referred to as ZF. The next section discusses an

axiom that is used as an extension to ZF, the axiom of choice. With the addition of

the axiom of choice, we form the model often referred to as ZFC.

4.2 Axiom of Choice

The axiom of choice allows mathematicians to select elements from a nonempty set

to construct other mathematical objects. Some mathematicians argue that the axiom

is unnecessary. However, there are some true statements in math that cannot be

proved without the axiom of choice. For example, we need the axiom of choice to

prove that the union of countably many countable sets is uncountable. The axiom

also becomes very useful in our discussion of the continuum hypothesis as we are

proving its independence from ZFC. Before we state the axiom of choice we must

first define a choice function.

Definition 4.2.1. A choice function f defined on a collection X of nonempty sets is a

function such that for every set A ∈ X, f (A) ∈ A.

This choice function is what we will use to form new sets. Now we can state the

axiom of choice which we will abbreviate as AC.

Axiom 4.2.2 (AC). For any set X (whose elements are sets) where ∅ < X, there exists a

choice function f on X that maps each set of X to an element of that set.

We can see how this may work for a finite set such as X = {W,Y,Z} where
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W = {a, b, c, d, e}, Y = {1, 2, 3, 4, 5}, Z = {α, β, γ, δ, σ}. Then we can define a choice

function f that maps each set W,Y, and Z to an element in each corresponding set.

{a, b, c, d, e}
f (W)
−−−→ b

{1, 2, 3, 4, 5}
f (Y)
−−→ 5

{α, β, γ, δ, σ}
f (Z)
−−→ α

Note that the axiom of choice is really an intuitive truth as an extension to our

Zermelo-Fraenkel axioms. In many of the proofs that we have done so far in set

theory have just been ZF, we did not assume the axiom of choice. This is the case for

all set theory proofs unless explicitly stating that we are assuming that the axiom of

choice holds. There has been much discussion about whether or not the axiom of

choice should be accepted, although now most mathematicians do accept it [12].

However, for our purposes of discussing the continuum hypothesis, the axiom of

choice becomes very relevant. But first, let’s look at some other direct applications

related to infinite sets.

One application of the axiom of choice is proving that every infinite set has an

infinite countable subset [9]. Informally, the proof follows that given an infinite set

A, which can be countable or uncountable, choose an element a0 ∈ A. Then choose

another element a1 ∈ A where a0 , a1. Then, choose an a2 ∈ A such that a2 , a1 , a0.

This continues forever and we form a sequence of distinct elements in A as follows:

a0, a1, a2, . . .. Notice how the axiom of choice is necessary for this outline of the proof.

The axiom of choice also has many equivalences such as the well-ordering principle

as stated in theorem 3.1.8 and Zorn’s Lemma which we will state below.

Lemma 4.2.3 (Zorn’s Lemma). Suppose S is a partially ordered set. If every totally ordered

subset of S has an upper bound, then S contains a maximal element.
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With these three equivalent statements, we can actually show that each of these

statements implies the other. So if we only assumed one of them to be an axiom, it

must follow that the other two are also true. Typically there are three implications

in the following order and we will prove the last one.

Theorem 4.2.4. 1. The axiom of choice implies Zorn’s Lemma.

2. Zorn’s lemma implies the well-ordering principle.

3. The well-ordering principle implies the axiom of choice.

Proof of 3. We can prove this implication by showing that we can construct a choice

function by means of the well-ordering principle. Given any collection of sets,

let’s first form the union of all sets in the collection. We know this union can be

well-ordered by the well-ordering principle. Then for each set X in the collection

we can specify a choice function f where f (X) is the least element of X relative

to the order relation. Thus, we were able to specify a choice function f from the

well-ordering principle. □

Although theorem 4.2.4 states the typical direction of these implications, we can

prove the opposite direction without going through Zorn’s Lemma, although the

proof is more extensive.

Theorem 4.2.5. The axiom of choice implies the well-ordering principle.

To complete this proof, we will prove several claims that will lead us to the

desired result. The proof technique we will be using is from [14]. We will utilize

our result from theorem 3.1.12 about isomorphisms between well-ordered sets.

First, consider an arbitrary set X. We want to use the axiom of choice to show

that there exists some well-ordering on X. Let’s consider a choice function f such

that f (Y) ∈ X\Y where Y ⊂ X has a non-empty complement. The remainder of this
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proof will relate to this function f . With this function, we will define something

called an f -string which will be referred to many times throughout the proof.

Definition 4.2.6. An f-string is a pair ⟨A,R⟩ where A ⊆ X and R is a well-ordering on A

such that

∀a ∈ A, (a = f ({b ∈ A | bRa}))

As of right now, we do not know for sure if an f-string exists, but if this condition

is true we would call that pair an f-string. Before we begin proving anything, let’s

make a final remark about the commonality of the least element of an f -string.

Remark 4.2.7. If ⟨A,R⟩ is a nonempty f -string and a0 is the R-least element of A (the least

element relative to the relation R), then the least element will be common for all non-empty

f -strings.

a0 = f ({b ∈ A | bRa0}) = f (∅)

When we say for all non-empty f -strings, we mean that given the set A for all R

that well-orders A, the R-least element of A will always be the same and be equal to

f (∅). With this definition and remark established, we are now ready to begin the

proof of our first lemma.

Lemma 4.2.8. An initial segment of an f -string is an f -string.

Proof. Suppose ⟨B,S⟩ is an initial segment of the f -string ⟨A,R⟩ and let a ∈ B. Then,

a = f ({b ∈ A | bRa}) = f ({b ∈ B | bSa})

Since ⟨B,S⟩ is an initial segment of ⟨A,R⟩ then the above statement holds since S is

just R relative to only B ⊂ A. And we know that b ∈ B by transitivity since b is the

predecessor of some a ∈ B which we can see more clearly in fig. 4.1.



4.2. Axiom of Choice 59

Figure 4.1: The element b is a predecessor of a, so it must also be in B.

Thus, the initial segment is still an f -string. □

We now move on to proving four claims in progressing order that will lead us to

the end of the proof.

Claim 4.2.9. Suppose that ⟨B,S⟩ and ⟨A,R⟩ be f -strings and let g be an isomorphism

between initial segments of the strings. Then, g(a) = a for all a in the domain.

Proof. For the sake of contradiction, let a be the least element in A under a relation

R such that g(a) , a. Instead, let g(a) = b for some b ∈ A. Then g(c) = c whenever

c ∈ A and cRa. We know that g is an isomorphism, so the following must be true for

some d ∈ B.

{d ∈ B | dSb} = {g(c) | cRa} = {c ∈ A | cRa}

Here we have for the set of d ∈ B where dSb. This must be the same as g(c) where cRa

since g(a) = b and we said g(c) = c wherever cRa. So by isomorphism, for wherever

dSb, the same must be true to give us cRa as depicted in fig. 4.2.
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Figure 4.2: Any c where cRa must map to c contained in the set of all d where dSb.

However, since ⟨B,S⟩ and ⟨A,R⟩ are f -strings it also follows from definition 4.2.6

that,

a = f ({c ∈ A | cRa}) = f ({d ∈ B | dSb}) = b

So we have a = b. However, this is a contradiction from our original assumption

that a , g(a) and g(a) = b. Therefore, it must be true that g(a) = a for all a in the

domain. □

Claim 4.2.10. Any two f -strings are either equal, or one is an initial segment of the other.

Proof. By theorem 3.1.12 the two f -strings are either isomorphic or one is isomorphic

to an initial segment of the other. Then by lemma 4.2.8 and claim 4.2.9 the

isomorphism will always be the identity function. Therefore, the claim holds. □

With this claim, we can now form a total order on the f -strings by initial segment

ordering. Let A be the union of all B where ⟨B,S⟩ is an f -string and let R be the

union of all relations S such that ⟨B,S⟩ is again an f -string.
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Claim 4.2.11. ⟨A,R⟩ is an f -string.

Proof. There are two parts to this proof. We want to show that R is a well-ordering

on A, and we want to show that ⟨A,R⟩ follows our established definition of f -string.

Let’s first show that R is a well-ordering on A.

We want to show that any arbitrary subset of A contains a least element. Suppose

C ⊂ A where C is nonempty. By its construction, we know that A =
⋃

Bα for all Bα

where ⟨Bα,Sα⟩ is an f -string. Then there exists an α such that Bα∩C , ∅. Continuing

on, we will just refer to Bα as B and Sα as S. Since ⟨B,S⟩ is an f -string, then S is a

well-ordering on B. Then S is also a well-ordering on Bα ∩ C meaning that there

exists some a that is the S-least element of Bα ∩ C. Recall from claim 4.2.10 that any

two f -strings are either equal or one is an initial segment of the other. So, we know

⟨B,S⟩ is an f -string and we know A =
⋃

B. We also know by the construction of

⟨A,R⟩, that S is just R restricted to B. With these two facts we can conclude that

⟨B,S⟩ is an initial segment of ⟨A,R⟩. So far we have established what is shown in

fig. 4.3 for some arbitrary subset C ⊂ A.

Figure 4.3: We know that C ⊂ A. Then ⟨B,S⟩ is an initial segment of ⟨A,R⟩, and a is the least element
of B ∩ C.

Now suppose for the sake of contradiction that d ∈ C\B and dRa where a is still

our least element in B ∩ C. However, since a ∈ B and ⟨B,S⟩ is an initial segment,

then dSa which means that d ∈ B. This poses a contradiction since we initially stated
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that d ∈ C\B. Thus, aRd for all d ∈ C\B. Thus we have shown that a is the S-least on

B ∩ C and C\B. In other words, a is the R-least element restricted to B ∩ C and C\B.

Therefore, a is the R-least element on our arbitrary subset C, so R is a well-ordering

on A. Next, we want to show that ⟨A,R⟩ is consistent with our definition of f -string

in definition 4.2.6.

We know that if a ∈ B, then a = f ({b ∈ B | bSa}) since ⟨B,S⟩ is an f -string. We

want to show that a = f ({b ∈ A | bRa}). Suppose a ∈ A where A =
⋃

Bα. Then there

exists a Bβ such that a ∈ Bβ. So we have,

a = f ({b ∈ Bβ | bSβa})

However, by our construction of ⟨A,R⟩ the relation R restricted to only Bβ is

exactly Sβ. Thus, we can state the following.

a = f ({b ∈ Bβ | bRa})

Recall, that this Bβ is some Bα in
⋃

Bα. And if b ∈ Bβ then b ∈
⋃

Bα, where
⋃

Bα = A.

Now we can state the following.

a = f ({b ∈
⋃

Bα | bRa}) = a = f ({b ∈ A | bRa})

This is our definition of f -string and we have proven that it holds for ⟨A,R⟩. □

Finally we can state and prove our last theorem that will lead us to the desired

result.

Claim 4.2.12. The set A that we constructed is equal to X. Thus, R is a well-ordering of X.

Proof. Assume for the sake of contradiction that A ⊂ X. Also let b = f (A), B = A∪{b},

and S = R ∪ {⟨a, b⟩ | a ∈ A}. Then ⟨B,S⟩ is also an f -string, thus b ∈ A by our
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construction of A. This is a contradiction since we said that b < A. Therefore the

claim holds. □

For an arbitrary set X, we have concluded by claim 4.2.12 that there does in fact

exists a relation R that well-orders X. Thus, we have proven that the axiom of choice

implies the well-ordering principle.

With Zermelo-Fraenkel axioms and the axiom of choice, we have formed our

model for ZFC which is the standard model used for set theory. The importance

of this model is directly related to our final topic: the continuum hypothesis. The

major result we will discuss is that the continuum hypothesis is independent of ZFC,

and we will elaborate on what exactly it means when a statement is independent of

a system.
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CHAPTER 5

The Continuum Hypothesis

5.1 Background

What we have discussed so far has been the background required to understand

a significant result in mathematics: the continuum hypothesis. There is the weak

continuum hypothesis and the generalized continuum hypothesis. The continuum

hypothesis was first thought up by Cantor after he discovered two different sizes of

infinity: countable and uncountable. We later learned that there are infinitely many

sizes of infinity, but this hypothesis originally stems from just those two sizes: |N|

and |R|. This leads us to Cantor’s weak continuum hypothesis [13].

Hypothesis 5.1.1 (Weak Continuum Hypothesis). Any infinite subset of R either can

either be put in one-to-one correspondence withN or R.

In other words, this theorem states that there exists no set S such that,

|N| < |S| < |R|

This was Cantor’s weak continuum hypothesis, but with this as a starting point, he

was able to state the hypothesis more specifically in terms of cardinal numbers. First,

recall from theorem 2.1.6 that for any set X with |X| = n, where n is a finite cardinal

65
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number |P(X)| = 2n. And from Cantor’s Theorem, we know that |X| < |P(X)|. Let’s

look at how this might translate to the continuum hypothesis. We have established

in chapter 3 that ℵ0 is the first infinite cardinal, that is |N| = ℵ0. We also proved

in theorem 2.2.21 that |P(N)| = |R|. Thus, we can use 2ℵ0 to denote |P(N)| and |R|,

so ℵ0 < 2ℵ0 . These are all conclusions we can draw from what we have already

discussed. With these conclusions, we can state the more complete version of

Cantor’s continuum hypothesis [5].

Hypothesis 5.1.2 (Continuum Hypothesis). The continuum c is the immediate successor

of the first infinite cardinal. In other words,

ℵ0 < 2ℵ0 = ℵ+0 = ℵ1 = c

Thus, |N| = ℵ0, and |R| = ℵ1 = c. We could go even further with this hypothesis

to discuss the generalized continuum hypothesis. Going back to hypothesis 5.1.1

more generally, we would say that for sets, A and B, if |A| ≤ |B| ≤ |P(A)| then

either |B| = |A| or |B| = |P(A)|. This is the main idea of the generalized continuum

hypothesis; however, we want to understand it in terms of cardinal numbers. We

take the infinite cardinals are ordered by magnitude. We can recall the following

from chapter 3.

ℵ0 < ℵ1 < ℵ2 < ℵ3 < . . .

Then, we can form the generalized continuum hypothesis [7].

Hypothesis 5.1.3 (Generalized Continuum Hypothesis). For every cardinal number

ℵα, its successor is the next immediate cardinal.

ℵ
+
α = ℵα+1 = 2ℵα
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This means we would have

ℵ0 < ℵ1 = 2ℵ0 < ℵ2 = 2ℵ1 < ℵ3 = 2ℵ2 < . . .

ℵ0 < ℵ1 = 2ℵ0 < ℵ2 = 22ℵ0 < ℵ3 = 222ℵ0
< . . .

These three theorems introduce and state the continuum hypothesis, and give

us the background needed to discuss its more significant results.

5.2 Provability

One of the main reasons why the continuum hypothesis became well-known in the

world of mathematics is due to its unprovability. It challenged the prior notion that

every statement in mathematics can either be proven or disproven. Mathematician

Kurt Gödel proved that the statement cannot be proven false. However, another

mathematician, Paul Cohen, later proved that it cannot be proven true. We will only

discuss some background and strategies of Gödel’s proof as giving his formal proof

is beyond the scope of this project. Gödel’s proof consists of proving three theorems.

Before we state those theorems, we need some more background on the concepts he

uses beginning with the universe of sets V discovered by von Neumann.

We call V the universe of all sets which may seem like a fact that we should

just accept, but let’s try to understand exactly what that means and define it more

explicitly. Within V there exists a hierarchy such that each rank in the hierarchy

is based on ordinal numbers. For this reason, V can also be referred to as the

cumulative hierarchy of sets or the von Neumann Hierarchy. This hierarchy is

created by iterations of power sets [11]. The first level of the hierarchy V0 consists
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of the empty set.

V0 = ∅

Then for each ordinal number α, there is a corresponding rank Vα in the hierarchy.

The next rank succeeding V0 would be V1. To get this we use the power set P(∅)

[5]. We can see how these iterations might look by finding the next few succeeding

ranks.

V1 = P(∅) = {∅}

V2 = P({∅}) = {∅, {∅}}

V3 = P({∅, {∅}}) = {∅, {∅}, {{∅}}, {∅, {∅}}}

Then the process continues forever forming the hierarchy of sets.

Figure 5.1: Visual representation of the cumulative hierarchy of sets [3].

In fig. 5.1, we can visually see how this hierarchy works. In this image, the

singular square in V0 represents the empty set. Then, V1 is the set of the empty set

since there is another square around our initial square. Every time there is another

square, we can read that as "the set of" whatever is inside it. For every rank Vα+1,

Vα+1 will contain all subsets of Vα that is,

Vα+1 = P(Vα)
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Additionally, Vα ⊆ Vα+1. From what we have discussed we are only dealing with

finite ordinals. Let’s look at what will happen if we have a limit ordinal. Let’s

suppose we have a limit ordinal γ. Then,

Vγ =
⋃
α<γ

Vα

Note, with the limit ordinals we are not taking any power set operation since we

form limit ordinals by collecting all the previous ordinals, so we are not introducing

anything new. Up to this point, we still have not established exactly why V is the

universe of all sets. As an example, consider this: we are able to write all the natural

numbers in terms of empty sets. This means that every set of natural numbers is

also a collection of elements from some rank. And since we are including limit

ordinals, the power set of the natural numbers P(N) is also contained in one of the

ranks. And since |P(N)| = |R|, we can also represent any collection of real numbers

in terms of sets of empty sets.

Now that we have discussed the universe of sets, let’s discuss the constructible

universe of sets L. This universe is an inner model of Zermelo-Fraenkel set theory.

By inner model we mean that it is a substructure of Zermelo-Fraenkel set theory, so

both its domain and relations are restricted to that in ZF.

The constructible universe denoted L is similar to V but follows a few different

principles. The hierarchy is still based on ordinal numbers, but instead, each level

contains the sets in the previous level that satisfy a well-formed formula. Similar to

V, we start with L0 = ∅. Then Lα+1 is defined as follows.

Lα+1 = all x ∈ Lα that can be described by means of a well-formed formula
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If we have a limit ordinal γ then the following is true.

Lγ =
⋃
α<γ

Lα

The constructible universe L is the union of these sets in Lα over all ordinals.

L =
⋃
α

Lα

The sets that belong to L are called constructible sets. More specifically, the way

constructing these hierarchies works is let’s start with a constructed set Lα. Let’s

suppose that ψ(vn) is a well-formed formula as defined in the axiom of separation

with one free variable vn. If the sets a1, a2, . . . , am, which denote ψ, are in Lα then

X ∈ Lα+1 where X is all x ∈ Lα such that ψ(x) holds. In other words, if an open

sentence a1, a2, . . . am ∈ Lα, then the solutions x ∈ Lα for that open sentence, where

ψ(x) is true for x ∈ Lα, make up the collection X. And X ∈ Lα+1 [5]. Understanding

the exact rules that this model follows is not as crucial for our sake. The importance

here is that it is similar to our universe V, and with some rule exceptions we create

a different model called the constructible universe. Noticing this difference gives us

enough knowledge to state our next axiom, the axiom of constructibility.

Axiom 5.2.1 (Axiom of Constructibility). V = L, so V =
⋃
α Lα.

This axiom, along with the rest of the Zermelo-Fraenkel axioms are the two

axioms required for constructible set theory. The axiom of constructibility is consistent

with ZFC and independent of ZFC, so we must add it as an additional axiom. A

system is considered consistent if there are no contradicting statements within the

system. When we say that an axiom is independent of ZFC, we mean that the axiom

is not provable with just the axioms in ZFC [5]. This model of ZFC + (V = L) is an
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extension to our model of ZFC, and the fact that this axiom is independent of ZFC

will be a significant point to keep in mind as we begin discussing Gödel’s proof.

We now have enough information to discuss Gödel’s proof that the continuum

hypothesis cannot be proven false. As I mentioned earlier, Gödel proves this result

using three theorems which can be found in [2]. We will now state those theorems

and try to understand exactly what they are saying and why they are useful. We

will not formally prove any of the theorems as they are lengthy and require much

more additional background.

Theorem 5.2.2. Let A be any axiom of the Zermelo-Fraenkel axioms. Then, AL is provable

in ZF where AL denotes the fact that the axiom is restricted to only the constructible sets

x ∈ L.

Essentially, what this first theorem states is that every axiom in Zermelo-Fraenkel

set theory (we are not including the axiom of choice) is provable in our inner model

L. To formally prove this, we would go through each axiom to show that they all

are consistent in L; however, we will omit this proof.

Theorem 5.2.3. The axiom of constructibility restricted to the model L is provable in ZF. So

(V = L)L is provable.

This theorem provides us with a smaller point, yet it is still important. Here

we are saying that a constructible set is constructible when it is relative to the

constructible universe L.

Theorem 5.2.4. The axiom of constructibility (V = L) implies that the axiom of choice

combined with the continuum hypothesis is provable in ZF.

This final theorem shows the implication of the continuum hypothesis. By prov-

ing these three theorems, Gödel has shown that by constructing this extended model

of ZFC using the axiom of constructibility, where the axiom itself is independent of
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ZFC, the continuum hypothesis holds. Similarly, Paul Cohen constructed a model

extending on ZFC using a method called forcing. In this model, the continuum

hypothesis fails. Both mathematicians constructed models that were consistent and

independent of ZFC. In one of these systems, the continuum hypothesis holds, and

in the other, it fails. This leads us to the conclusion that the continuum hypothesis

is not provable in ZFC.

5.3 Subsequent Inquiries and Implications

The idea that a mathematical statement is unprovable may seem counter-intuitive,

and many mathematicians would agree. However, I will leave the reader with

one last theorem which allows for these kinds of results: Gödel’s incompleteness

theorem [15].

Theorem 5.3.1. If S is a consistent formal system, then there is a statement of the language

S which is true, but not provable in S.

This result has been was proven extensively by Gödel in 1931. If we take ZFC

to be our consistent formal system, then this theorem allows for statements that

are not provable within ZFC such as the continuum hypothesis. This theorem was

influential as it had challenged prior ideas about mathematical truth and logic.

There have been other statements that have been proven to be not provable in

ZFC such as the diamond principle in the field of order theory. However, among

these lists of statements we can use a statement to imply another, similar to how

we did with the axiom of constructibility to imply the continuum hypothesis in

theorem 5.2.4 and the axiom of choice to imply its equivalences in theorem 4.2.4.

We have stated that the continuum hypothesis is independent of ZFC which

is even more convincing after stating Gödel’s incompleteness theorem. However,

we can take this one step further. Similar to how we created a model using ZFC
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and the axiom of constructibility, we could create a model using ZFC and the

continuum hypothesis. We could actually construct two models: one that takes the

continuum hypothesis as an axiom and one that takes its negation as an axiom, that

is ZFC + CH and ZFC + ∼CH respectively. We could utilize these models to prove

other statements to be independent of ZFC. Mathematicians have already done so

in the same way that Gödel used the axiom of constructibility to help prove the

independence of the continuum hypothesis. An example of one of these statements

is the Whitehead Problem in the field of abstract algebra. There have also been

statements that are consistent in ZFC only if the continuum hypothesis is taken to

be an axiom or its negation is taken to be an axiom. For example, an axiom called

Martin’s axiom in the field of set theory is consistent in ZFC only when the negation

of the continuum hypothesis is included in the system.

We could take this one more step further and ask whether or not there are

statements that are independent of ZFC + CH or ZFC + ∼CH, or independent of

both systems. We would find that there are in fact statements that are independent

of one or both of these systems. Going beyond content covered in this independent

study requires further investigation into this topic and exploring other statements

independent of ZFC. However, we end with having gained an understanding of the

important role that the continuum hypothesis plays in these inquiries of logic and

consistency of mathematical systems.
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Afterword

With the completion of the project, I have gained a better understanding of different

objects used in set theory, set theoretic systems in general, and the significance of

the result of the continuum hypothesis. I was able to draw connections between

concepts that at first I thought were unrelated. I think being able to make these

connections demonstrates my improved expertise on the subject. There were many

topics I struggled to understand throughout this process such as proving axiom of

choice implications and the universe of constructible sets. However, through these

struggles, I learned new approaches to different problems and determined which

strategies worked best for me. Being able to accomplish this will be useful for any

future endeavor I wish to pursue.

Moving forward with this project, I would like to continue exploring the ideas

mentioned in the concluding paragraph. Specifically, I would like to look at how

the continuum hypothesis may relate to statements in other fields besides set theory.

I am curious to know more details about the implications that we would see if

we treated the continuum hypothesis as an axiom. In addition, I would like to go

into more detail with Gödel’s proof and look further into Cohen’s proof. I have an

understanding of how the strategies of the proofs work, but I would like to have a

better understanding of the specifics.
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