
The College of Wooster The College of Wooster 

Open Works Open Works 

Senior Independent Study Theses 

2022 

On Implementing And Testing The RSA Algorithm On Implementing And Testing The RSA Algorithm 

Kien Trung Le 
The College of Wooster, kle22@wooster.edu 

Follow this and additional works at: https://openworks.wooster.edu/independentstudy 

 Part of the Applied Mathematics Commons, and the Information Security Commons 

Recommended Citation Recommended Citation 
Le, Kien Trung, "On Implementing And Testing The RSA Algorithm" (2022). Senior Independent Study 
Theses. Paper 9841. 

This Senior Independent Study Thesis Exemplar is brought to you by Open Works, a service of The College of 
Wooster Libraries. It has been accepted for inclusion in Senior Independent Study Theses by an authorized 
administrator of Open Works. For more information, please contact openworks@wooster.edu. 

© Copyright 2022 Kien Trung Le 

https://openworks.wooster.edu/
https://openworks.wooster.edu/independentstudy
https://openworks.wooster.edu/independentstudy?utm_source=openworks.wooster.edu%2Findependentstudy%2F9841&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/115?utm_source=openworks.wooster.edu%2Findependentstudy%2F9841&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=openworks.wooster.edu%2Findependentstudy%2F9841&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openworks.wooster.edu/independentstudy/9841?utm_source=openworks.wooster.edu%2Findependentstudy%2F9841&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:openworks@wooster.edu


On Implementing and
Testing the RSA Algorithm

Independent Study Thesis

Presented in Partial Fulfillment of the Requirements for
the Degree Bachelor of Arts in Mathematics and Computer

Science in the
Department of Mathematical and Computational Sciences

at The College of Wooster

by
Kien Le

The College of Wooster
2022

Advised by:

Sofia Visa (Mathematical and

Computational Sciences)





© 2022 by Kien Le



iv



Abstract

In this work, we give a comprehensive introduction to the RSA cryptosystem,

implement it in Java, and compare it empirically to three other RSA implementations.

We start by giving an overview of the field of cryptography, from its primitives to

the composite constructs used in the field. Then, the paper presents a basic version

of the RSA algorithm. With this information in mind, we discuss several problems

with this basic conception of RSA, including its speed and some potential attacks

that have been attempted. Then, we discuss possible improvements that can make

RSA runs faster and more secure. On the software side, we implement the RSA

algorithms in Java and compare its performance and security against the other three

implementations.
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CHAPTER 1

Introduction

Secure exchange of messages is important and is the main concern of cryptogra-

phy. Consider the scenario illustrated in Figure 1.1. Alice sends Bob a message that

contains some very important secrets. However, on the way to Bob, the message is

taken and read by Eve, who then proceeds to leak those secrets to the world. If the

content of the message is some mundane secret, such as Alice’s secret recipe for a

cake, there would not be much of a problem. However, suppose that the message

contains important state and military secret. If those are to be revealed, significant

issues would arise.

Figure 1.1: Basic scenario in cryptography. Here, Eve intercepts and reads the message Alice is
sending to Bob.

As have been shown, the consequence of secret messages being revealed to the

unintended recipients can be significant. As a result, many methods have been used

to prevent this from happening, ranging from hiding the messages in a location that

is hard to access[30] and various encryption techniques. Encryption, the method of

1



2 1. Introduction

transforming a message to make it undecipherable, has consistently been the most

important and remains so up till now.

In this project, we present and implement the RSA encryption algorithm. Then,

we test our implementation against existing ones. chapter 2 and 3 introduce the field

of cryptography the RSA algorithm, respectively. Chapter 4 defines the complexity

an algorithm and how it is evaluated. In chapter 5, we point out three weaknesses

of the RSA algorithm presented in chapter 3, and then presenting ways to address

them in chapter 6. In chapter 7, we describe our own Java RSA implementation and

compare it against three existing implementations. Finally, we include concluding

remarks and point out future work in chapter 8.



CHAPTER 2

Introduction to cryptography

In this chapter, we give a brief introduction to encryption and presents one

example algorithm, the Caesar cipher. Afterwards, we introduce the two types of

encryption, public-key and private-key.

2.1 What is encryption?

Cryptography is, at its core, “the study of methods of secure communication between

two parties” [26]. Generally, we call the two parties Alice and Bob. The need for

secure communication comes up due to someone trying to intercept Alice and Bob’s

communication and read it. We call them the eavesdropper, and henceforth, Eve

based on the convention shared by [30] and [26].

In cryptography, we are first concerned with messages (also called plaintexts),

which are the communications between Alice and Bob. These can take many forms,

including characters, words, and numbers. In order to ensure that Eve cannot

read their messages, Alice and Bob will encrypt their message, transforming them

into ciphertexts, which usually have no discernible meaning. These ciphertexts

will be sent in places of the original messages. With the ciphertext in hand, Alice

and Bob can then decrypt it to obtain the messages. In the process of encryption

and decryption, visualized in Figure 2.1, a key, which controls how a message is

encrypted and decrypted, is used [18].

3



4 2. Introduction to cryptography

Figure 2.1: Basic scenario in cryptography when encryption is used. Unlike the scenario presented
in Figure 1.1, Eve cannot decrypt and read the ciphertext she intercepts without the key.

Mathematically, we can describe an encryption algorithm as a function f (m, k),

where m is the message to be encrypted and k is the key used. Then, the correspond-

ing decryption algorithm will be the inverse of the encryption algorithm, f −1(c, k),

with c = f (m, k) being the ciphertext to be decrypted [18].

2.2 Encryption algorithm example: Caesar cipher

One of the simplest and oldest encryption algorithm is the Caesar cipher, so named

because Julius Caesar used it frequently in his communication [35]. The idea behind

this cipher is that shifting each letter in a message to the right by 3 position in the

alphabet is a procedure that

• is easily reversible

• turns a message into a form that cannot be understood

• is easy to reverse by the intended recipient, but presents difficulty for everyone

else.

These three properties make the shifting operation a great candidate for an encryption

algorithm.

Now, we define the encryption function in the Caesar cipher as the action of

shifting each character in the message to the right by three positions in the alphabet
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Figure 2.2: Illustration of encryption process in Caesar cipher [5].

[35], as shown in Figure 2.2. Thus, b becomes e, f becomes i, and so on. This

procedure, however, does not work on x, y, or z. A workaround is to prefix the

alphabet with them, as seen in Figure 2.2. This way, we can move x, y, and z

three characters to the left in the alphabet. Applying this encryption algorithm

to the message m = Helloworld, we obtain the ciphertext c = f (m, k) = Khoorwruog,

where k = 3 is the move right by three as explained above. This ciphertext has no

discernable meaning (in English, at the very least), and so no one would know what

we were trying to say with it.

On the side of the receiver, however, decrypting this ciphertext to obtain the

original message is simple. We only need to move each character in the ciphertext

three positions to the left in the alphabet. We can see that moving right three

positions and then moving left three positions takes us back to our original position,

which means that this operation turns the ciphertext back into the message.

We now define a more general version of the Caesar cipher in formal terms. Let

the key k be a natural number between 0 and 25. Here, k represents the number of

positions to shift each character in the alphabet. If we let k = 3, we get the classical

Caesar cipher. Now, for each character C in the message m, we let p be the position
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of that character in the alphabet. So, we define the encryption function as

f (C, k) = C′ = Letter at position


p + k if p + k ≤ 26

p + k − 26 otherwise

and the decryption function as

f −1(C′, k) = Letter at position


c − k if c − k ≥ 1

c − k + 26 otherwise

2.3 Types of encryption algorithms

Encryption algorithms are divided into two main types based on the mechanism

behind encryption and decryption, private-key (or symmetric) and public-key (or

asymmetric). In a private-key encryption algorithm, the message is encrypted and

decrypted using the same key (Figure 2.3). One example of this type of encryption

is the Caesar cipher we presented above. Because it would be trivial for Eve to

decrypt a ciphertext if she has the key, it is kept private between Alice and Bob.

The main challenge of private-key encryption algorithms is key establishment

[30]. Because Alice and Bob use the same key for both encryption and decryption,

they must first come to an agreement of what key to use. They cannot use a public

channel for this purpose, for Eve can easily intercept the key there. One option is for

Alice and Bob to meet in person to establish the key. While this might be possible

when they are in the same general geographic location, in many cases, such as in

warfare or over the internet, it is infeasible to do so. The issue gets even worse when

more people are involved, seeing as each person needs to exchange (preferably

distinct) keys with the others. As a result, the number of keys increases quickly.

To avoid the problem of key distribution, public-key encryption algorithms were
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invented. As illustrated in Figure 2.4, public-key encryption algorithms use two

sets of keys, public keys and private keys. The public keys are released to a public

channel, where everyone, including Eve, can access it, while the private keys are

only known to the receiver of a message. In order to encrypt a message, the sender

only needs the public key. The receiver can then use the private key to decrypt the

received ciphertext. This method of managing keys is a massive improvement over

the method of private-key encryption, seeing that secure communication are now

possible without Alice and Bob having to agree on a key beforehand.

With that said, it is also important to understand that private-key encryption

algorithms have some important advantages over public-key algorithms. For one,

private-key algorithms are usually faster then public-key algorithms [12]. While

this speed advantage does not matter when only considering the communication

between two people, there are many instances where communication can be between

billions of entities, with the internet being the most prominent example. As a result,

it is preferable to use private-key encryption in those cases. Furthermore, there

are many more private-key than public-key algorithms, owing to the fact that

public-keys encryption were only conceived recently in the 1970s by Diffie and

Hellman [18], while private-key algorithms has been in use for about 2000 years

as indicated by the Caesar cipher 1. Because of this, it is feasible to choose the

algorithms used to best suit an application with private-key encryption, while the

same tasks might be impossible with public-key encryption.

The RSA algorithm explained in details in the next chapter is an example of a

public-key cryptosystem, and is the focus of our study.

1Julius Caesar was alive before the year 1 AD
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Figure 2.3: Illustration of private-key
encryption [25].

Figure 2.4: Illustration of public-key
encryption [13].



CHAPTER 3

The RSA algorithm

The RSA cryptosystem was created in 1977 by Ron Rivest, Adi Shamir, and

Leonard Adleman [30]. It is the culmination of the efforts to create a public-key

cryptosystem, which was first proposed by Difle and Hellman a few years ago

[30]. The core idea behind the RSA algorithm is simple: it is easy to multiply two

numbers, but to take a composite number and find all its prime factors is incredibly

difficult. For example, it is very easy to calculate the product of p = 19, 211 and

q = 35, 291, with most modern computers being able to do it practically instantly.

However, if given the product pq = 677, 975, 401, it can take some time to find p and

q.

In this chapter, we introduce the mathematical concepts used in the RSA and

subsequently a formal description of the algorithm alongside with its pseudocode.

Furthermore, we give a concrete example of the application of the RSA algorithm

and prove its correctness. Finally, we introduce the RSA cryptosystem.

3.1 Background mathematics

3.1.1 Modular arithmetic

One of the central mathematical construct used in RSA is congruence mod n.

9



10 3. The RSA algorithm

Definition 3.1 Congruence: For some integer n, two integers a and b are congruent

modulo n, denoted a ≡n b or a ≡ b (mod n), if they have the same remainder when divided

by n.

In this definition, n is called the modulus. By convention, we abbreviate the

word modulo to mod. For an example of this concept, we have 17 ≡ 5 (mod 3)

because they both have a remainder of 2 when divided by 3.

Sometimes, it is useful to state the definition of congruence using the division

lemma.

Theorem 3.1 (Division Lemma).

For two arbitrary integers a, b, there exists unique integers p, q such that a = qb + r [14].

In Theorem 3.1, q, r are respectively the quotient and remainder of the division

a/b. In the special case where r = 0, we have the concept of a number dividing

another.

Definition 3.2 Divide: Given two integers a, b, we say that b divides a, denoted b | a, if

there exists some integers q such that a = qb [14].

Now, we can construct an alternative definition of congruency. Suppose that

we have two integers a, b such that a ≡ b (mod n) for some integer n. Per the

definition of congruence, we know that a/n and b/n have the same remainder.

Applying the division lemma, we get a = q1n + r and b = q2n + r. We than have

a − b = q1n + r − q2n − r = (q1 − q2)n. Seeing as q1 − q2 is an integer, by Definition 3.2,

we know that a − b | n. So, we have another definition of congruence.

Definition 3.3 Congruence: For some arbitrary integer n, two integers a and b are

congruent mod n if (a − b) | n [14].

The concept of congruence gives rise to a new system of arithmetic, modular

arithmetic. In modular arithmetic, equality is replaced with congruence mod some

value. Visually, this transition is like going from moving on a line to taping the
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two ends of that line together and moving on the resulting circle. An example of

modular arithmetic can be observed in Figure 3.1, where we are working modulo 12.

In this figure, we are moving 4 units away from 9. In normal addition, this would

give us 9 + 4 = 13, but in modular arithmetic, we get 9 + 4 ≡12 13 ≡12 1.

Figure 3.1: Modular arithmetic visualized [33].

As is the case in normal arithmetic, we can solve equations in modular arithmetic.

In our case specifically, we are interested in linear modular equations, which are

equations of the form ax ≡ b (mod n). Here, we will note that an equation in

modular arithmetic is satisfied by any number that has the same remainder as ax

when divided by the modulus. In other words, an equation can have multiple

solutions. The majority of the time, however, only the smallest positive solution is

useful, and so we will usually take that as the solution to the equation.

Before ending this section on modular arithmetic, we would like to introduce

a related concept, the modulo operation, denoted mod. This operation takes in

two natural numbers a,n, with the whole expression taking the form of a mod n,

and returns the remainder of a/n. We can easily see that this operation solves the

problem of finding the smallest number that is congruence to a mod n. Thus, we

can use the modulo operation to solve linear modular equations of the form x ≡ b

(mod n).
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3.1.2 Euler’s totient function

Another important mathematical construct for the RSA algorithm is the Euler’s

totient function

Definition 3.4 Euler’s Totient Function: Euler’s totient function for a natural number

n, denoted ϕ(n), is the number of natural numbers less than n that is coprime to n. Here,

we call two numbers coprime if they share no prime factors.

One important fact about the totient function is that because a prime number

is coprime to every number less than it, ϕ(n) = n − 1 if n is prime. For instance,

ϕ(13) = 13 − 1 = 12, seeing that 13 is the only prime factor of 13, and no number in

the range [1, 12] can have 13 as a factor. Another important property of ϕ is that it is

a multiplicative function, or ϕ(xy) = ϕ(x)ϕ(y) for any two natural numbers x, y. For

example, this property lets us know that ϕ(15) = ϕ(3 ∗ 5) = ϕ(3) ∗ ϕ(5) = 2 ∗ 4 = 8.

This is especially useful when we are calculating the value of ϕ for a product of

primes, seeing that we can easily compute ϕ for the prime factors, and then multiply

them together to get ϕ for the whole product.

With these basic math concepts defined, we are ready to explain the RSA

algorithm.

3.2 The RSA algorithm

The description of the RSA algorithm given below is based on the one in [16].

The first step in the RSA algorithm is generating two distinct prime numbers

p, q, as shown in Listing 3.1. This can be accomplished through many means, such

as generating a large number of primes and picking two. With these numbers in

hand, we proceed to calculating their product N = pq. This number will be released

to the public as part of the public key.
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After this, we calculate a number e that is coprime to ϕ(N). In order to do this,

we first need to calculate ϕ(N). Because p, q are primes, we know that ϕ(p) = p − 1

and ϕ(q) = q − 1. Then, using the fact that ϕ is multiplicative, we obtain

ϕ(N) = ϕ(p)ϕ(q) = (p − 1)(q − 1). (3.1)

With ϕ(N) calculated, we can calculate e, the details of which will be covered

in 5.3.1. After this, we have obtained the set of public keys, the number N and e.

Now, we need to calculate the private key d, which is defined as the multiplicative

inverse of e mod ϕ(N). Borrowing from the definition of multiplicative inverse in

conventional arithmetic, we can write this as

de ≡ 1 (mod ϕ(N)) (3.2)

where d is the private key.

While they are defined in the same way, the notion of multiplicative inverse

in modular arithmetic is different from the one in conventional arithmetic. When

working in conventional arithmetic, the inverse of a number a is the fraction 1
a . In

modular arithmetic, however, taking the inverse this way does not work because

we can only work with integers, which 1
a is not unless a = ±1. Thus, we have to find

some other way to calculate the multiplicative inverse in modular arithmetic. We

will leave this to an upcoming chapter.

With both set of keys having been calculated, we now move on to the encryption

and decryption steps. Let m be the message that we are trying to encrypt. In the

RSA cryptosystem, m is a natural number such that 1 ≤ m < N. If the message

that needs to be sent is not in this form, it is not too difficult to construct a method

to transform it into a natural number. For instance, if our message is composed

solely of the original 127 ASCII characters, we can assign each character in the
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message their ASCII code, which is always a natural number. Then, to calculate the

ciphertext, we solve the modular equation

c ≡ me (mod N) (3.3)

On the other hand, in order to decrypt the ciphertext, we solve the modular

equation

m ≡ cd (mod N) (3.4)

Now, as have been shown in the previous section, we can solve modular equations

with the mod operation. Using this, we can define the encryption function as

f (m, e,N) = me mod N

and the decryption function as

f (c, d,N) = cd mod N

Converting the algorithm described above into pseudocode, using the modulo

operation to solve Equations 3.3 and 3.4, we obtain the code in Listing 3.1.� �
1 GLOBAL_VAR p , q , e , d

2

3 FUNCTION RSA_INIT ( ) :

4 p = GENERATE_PRIME_NUMBER( )

5 q = GENERATE_PRIME_NUMBER( )

6 N = p * q

7 e = MAKE_PUBLIC_KEY(N) / / P u b l i c key

8 d = FIND_INVERSE_MOD_N( e , N) / / P r i v a t e key
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9

10 FUNCTION RSA_ENCRYPT(m) :

11 RETURN me mod N

12

13 FUNCTION RSA_DECRYPT( c ) :

14 RETURN cd mod N
 	
Listing 3.1: Pseudocode for the RSA algorithm. The details of the helper functions used in

RSA_INIT() will be provided in section 5.3.1

3.2.1 A small note on the terminology of RSA

In the above definition of the RSA algorithm, there is no way to refer to any of

the individual key without calling them by their symbolic name. However, this

requires us to have assigned them the symbols to the keys and to remember what

each symbol stands for, which can be tedious and confusing. Thus, we define

plain language terms to describe each key. We call the pair p and q the prime

numbers as this is their main role in the RSA algorithm. We call the public key e

the public exponent and the private key d the private exponent due to their role as

the exponents in the modular exponentiation operations used for encryption and

decryption. Finally, we call N the modulus based on how it acts as the modulus of

the modular equations in the encryption and decryption steps.

3.3 Applying the RSA algorithm

Suppose that we have two prime numbers p = 3, q = 5. Then, their product is

N = pq = 3 ∗ 5 = 15. We choose the public exponent so that it is coprime to

ϕ(N) = (p − 1)(q − 1) = 2 ∗ 4 = 8. In this case, we let the public exponent be e = 7.

Now, we find the private exponent d as the inverse of the public exponent mod
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ϕ(N). In this example, this happens to be 7, same as the public exponent. We can

verifying this by performing the multiplication de = 7 ∗ 7 = 49 ≡ 1 (mod 8).

Now that we have the keys e = 7 and d = 7 in hand, we can proceed to encrypt a

message. We choose the message to be 3. Encrypting the message with RSA, we get

37 = 2187 ≡15 12 (according to Equation 3.3. So, the ciphertext is 12, and in order

to decrypt this to obtain the original message, we compute 127 = 35831808 ≡15 3

(using Equation 3.4).

3.4 Proof of correctness

Proving the correctness of RSA amounts to proving two statements: that we can

always generate a private key from the pair of public keys, and that applying

encryption on a message and decryption on the resulting ciphertext yields the

original message. We will express these statements symbolically in Lemmas 3.1 and

3.2 below and prove them.

Lemma 3.1 (Existence of Private Key).

For all pairs of integers e,N such that e is coprime to ϕ(N), there exists some integer d such

that de ≡ 1 (mod ϕ(N)).

Proof. To prove this lemma, we will use Bezout’s identity.

Theorem 3.2 (Bezout’s Identity).

For all integers a, b, there exists integers s, t such that sa + tb = gcd(a, b) [24].

Seeing that e, ϕ(N) are coprimes, we know that gcd(e, ϕ(N)) = 1. Therefore,

according to Theorem 3.2, there exists integers s, t such that se + tϕ(N) = 1. This

equation is equivalent to se − 1 = −tϕ(N), which by Definition 3.2 implies that

ϕ(N) | (se−1). Then, by applying Definition 3.3, we get se ≡ 1 (mod ϕ(N)). Therefore,

there exists some integer d = s such that de ≡ 1 (mod ϕ(N)). In conclusion, for any
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pairs of integers e,N such that e is coprime to ϕ(N), there exists some integer d such

that de ≡ 1 (mod ϕ(N)). □

Now, we set the public key as e, and the modulus as N. We know, from the

description of the RSA algorithm in Section 3.2, that e is coprime to ϕ(N). So, by

the lemma we just proved, we can always find some d such that de ≡ 1 (mod ϕ(N)).

Now, if we let d be the public key, we have proven that we can always generate a

private key. Next, we prove that the procedure of encrypting a message and then

decrypting the resulting ciphertext gives us the original message.

Lemma 3.2 (Decryption Reverses Encryption).

For a message m, med
≡ m (mod N).

Proof. To prove that the RSA algorithm encrypts and decrypts correctly, we will use

Fermat’s little theorem and its generalization, Euler’s theorem.

Theorem 3.3 (Fermat’s Little Theorem).

Let p be any prime number and suppose that p ∤ a. Then, ap−1
≡ 1 (mod p) [16].

Theorem 3.4 (Euler’s Theorem).

Let n and a be integers such that n > 0 and a is coprime to n. Then, aϕ(n)
≡ 1 (mod n) [16].

We will consider two cases: where m is coprime to N and where m is not.

Case 1: m is coprime to N.

Because m is coprime to N, by Euler’s theorem, mϕ(N)
≡ 1 (mod N). Then, we

have ed ≡ 1 (mod ϕ(N)), and so by Definition 3.3, ϕ(N) | (ed − 1). By applying

Definition 3.2 to the previous expression, we obtain ed − 1 = kϕ(N) for some integer

k, which is equivalent to ed = kϕ(N) + 1. Substituting this value of ed into med, we

get med = m1+kϕ(N)
≡ mmkϕ(N) = m(mϕ(N))k

≡ m ∗ 1k = m (mod N).

Case 2: m is not coprime to N.

The proof of this case is inspired by the proof in [29].

In order to prove the correctness of RSA in this case, we need to use the Chinese

Remainder Theorem.
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Theorem 3.5 (Chinese Remainder Theorem).

Let u, v be coprime. Then the system of equations

x ≡u a

x ≡v b

has a unique solution x modulo uv [22].

One implication of Theorem 3.5 is that if x ≡p a and x ≡q a, then x ≡pq a. This fact

can be shown by noticing that a is a solution to the system of equations

x ≡u a

x ≡v a

Seeing that Theorem 3.5 says that all solutions of this system of equations is

congruent modulo pq, we have x ≡ a (mod pq).

Now, consider the condition that m is not coprime to N = pq. Seeing that m < N,

we then have that p or q divides m. Without loss of generality, suppose that p divides

m. Then, m = px for some x. This gives us

m = px ≡ 0x = 0 (mod p)

By raising both sides of the equality m = px to the power of ed, we get med = (px)ed.

Using this, we then get

med = (px)ed = pedeed
≡ 0edeed = 0 (mod p)
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Seeing as we have m ≡ 0 (mod p) and med
≡ 0 (mod p), we can conclude that

m ≡ med (mod p)

Now, we want to show that m ≡ med (mod q). First, by Theorem 3.3, we know

that mq−1
≡ 1 (mod q) because q is a prime number and q ∤ m. We can raise both

sides of this congruence to the power of k(p − 1) to obtain mk(q−1)(p−1) = mkϕ(n)
≡ 1

(mod q). We have shown in the proof of case 1 that ed − 1 = kϕ(n), and so this

congruence is equivalent to med−1
≡ 1 (mod p). Multiplying both sides of this

congruence by m, we then get

med
≡ m (mod q)

Now that we have proven that med
≡ m (mod p) and med

≡ m (mod q), we apply

Theorem 3.5 to conclude that med
≡ m (mod n). □
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CHAPTER 4

Algorithm complexity analysis - execution time

Before we discuss the issues with the RSA algorithm presented above, it would be

useful to introduce a precise language for discussing execution time of an algorithm.

This language is provided by algorithm analysis, which defines precisely what it

means for one algorithm to be better than another under some metrics.

When defining the constructs of algorithm analysis, it is convenient to have a

simple algorithm to use as an example. For this purpose, we are going to use the

algorithm insertion sort described in Listing 4.2, which we adapted from [8].� �
1 FUNCTION INSERTION_SORT( a r r ) :

2 for j from 1 to a r r . length :

3 key = a r r [ j ]

4 i = j − 1

5 while i > 0 and a r r [ i ] > key :

6 a r r [ i + 1] = a [ i ]

7 i = i − 1

8 a r r [ i + 1] = key
 	
Listing 4.2: Pseudocode for insertion sort

The basic idea behind insertion sort is that if we have a sorted array, we can insert

a new element into the array in such a way that the new array is sorted. So, insertion

sort splits the original array into two subarrays, with the left one being sorted. Then,

for each element in the (right) unsorted portion, insertion sort removes that element

21
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from the unsorted subarray and inserts it into the sorted left subarray in such a way

that it remains sorted. Once the algorithm goes through all the elements, we can be

assured that the array has been sorted, for every element of the original array is in

the sorted subarray.

4.1 Quantifying execution time

When analyzing an algorithm, we can represent its run time as a function of the

number of steps that it executes. Here, a step is defined according to the model of

computation we are working under. For the purpose of this section, we will make

use of the RAM model introduced in [8]. In this model, we consider arithmetic, data,

and control operations to be our primitive operations (i.e. they take a step each).

While there are many problems with this model of computation (as mentioned by

[31]), it provides a simple framework that is accurate enough for this section.

Using the RAM model, we analyze the insertion sort algorithm. First of all, we

consider the while loop in lines 5 to 7 of Listing 4.2 (in the remaining portion of

this analysis, any reference to a line number is assumed to be about this listing).

In the worst case, the element at index j has to be moved j − 1 times. Seeing that

the for loop in line 2 is run for j from 1 to n, where n is the size of arr, the total

number of movements is 0 + 1 + 2 + · · · + n − 1 = n(n−1)
2 . Meanwhile, lines 3, 4, and 8

take 1 step each to run, and seeing as they are run when j goes from 1 to n (i.e. n

times), they take 3n steps in total. So, insertion sort takes n(n−1)
2 + 3n steps to run

in the worst case. If we expand this expression into a polynomial, we get the run

time of insertion sort as 1
2n2 + 5

2n. When n, the size of the array to be sorted, is very

large, the dominant factor in this execution time is n2, as demonstrated in the next

paragraph. So, we can evaluate this algorithm as having complexity of order n2, or

O(n2) as defined below.
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When we work with the run time of an algorithm, we care mostly for its behavior

when the input size becomes large. At this scale, one term in the run time function

tends to make up most of its value. For the sake of demonstration, consider the

function f (n) = n2+1000n+1000000. For a large value of n, n = 1000000 for example,

we have f (n) = 1001001000000 = 1012 + 109 + 106 and n2 = 1000000000000 = 1012. In

this case, the value of terms other than n2 amounts to a bit more than one percent of

the value of n2. As n gets larger, that percentage will become smaller. So, the amount

of information lost when we ignore the smaller terms is negligible, especially when

the input size to the algorithm becomes very large. Thus, we can safely ignore all

but the greatest terms of a function in our analysis. In order to formalize this idea,

we introduce asymptotic notation.

4.1.1 Asymptotic notation and algorithm complexity

When using asymptotic notation, we are not concerned with the exact values of a

function. Instead, we only care about its behavior as its input grows past a certain

point. More specifically, we look at the bounds of the function.

Definition 4.1 Bounded function: A function f : A→ B, where A,B ⊆ R, is said to be

bounded if for all x ∈ A, | f (x) |≤ L for some L ∈ R. Furthermore, f is said to be bounded

above if f (x) ≤ L and bounded below if f (x) ≥ L.

Intuitively, a bounded function is a function whose value can never reach above

or below certain threshold. Some examples of this kind of functions include the

sin and cos functions, which are bounded because |sin(x)| ≤ 1 and |cos(x)| ≤ 1 for

all x ∈ R. If we are to visualize a bounded function, as done in Figure 4.1 with the

sin function, we would see that the function is bounded by two lines, one above it

and one below it. The upper line is called the upper bound, while the lower one is

called the lower bound.
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Figure 4.1: The sin function is bounded by the values 1 and −1. (Made in Desmos)
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Looking at Figure 4.1, we can notice that the sin function looks like it is bounded

by two functions, in this case the constant function u(x) = 1 and l(x) = −1, the

two blue lines in the figure. In fact, this observation is generalized to all bounded

functions. One might then ask if it is possible to generalize this further, with u(x)

and l(x) being any functions instead of constant functions. The θ notation is one

attempt to do just that.

Definition 4.2 For a function f (n), we have

θ( f (n)) = {g(n) : ∃c1, c2,n0 such that 0 ≤ c1 f (n) ≤ g(n) ≤ c2 f (n) for all n ≥ n0} [8]

There is one major difference between the notion of being bounded in Definitions

4.1 and 4.2. In Definition 4.1, the function must be bounded by the value on its

whole domain. On the other hand, in Definition 4.2, a function needs only be

bounded above some value in the domain. This difference reflects our main usage

for the θ-notation, comparing the difference between two algorithms as their input

size gets very large.

One problem with θ-notation is that it can be too restrictive. In order to prove

that a function f (x) is θ(g(x)), we have to prove that g(x) bounds f (x) above and

below. A lot of the time in algorithm analysis, however, we only care about the

upper bound of a function for it indicates the limit of what an algorithm can do. For

this purpose, we define the O notation.

Definition 4.3 For a function f (n), we have

O( f (n)) = {g(n) : ∃c,n0 such that 0 ≤ g(n) ≤ c f (n) for all n ≥ n0} [8]

We can see that the O-notation is very similar to θ-notation, which makes

sense seeing as O-notation is simply θ-notation without a lower bound. There is,
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however, one thing that makes O-notation distinct from θ-notation: O-notation

does not provide an asymptotically tight bound. By this, we mean that we can have

f (x) = O(g(x)) and f (x) = O(k(x)) even if O(g(x)) , O(k(x)).

For an example of this phenomenon, consider the set of functions f (x) = x + 1,

g(x) = x, and k(x) = x2. We can see that for x ≥ 1, f (x) ≤ 2g(x), and so f (x) = O(g(x)).

At the same time, f (x) ≤ 2k(x) for all x ≥ 1, which means that f (x) = O(k(x)).

Now, consider the function a(x) = x2 + 1. We can see that a(x) ≤ 2k(x) for all

x ≥ 1. Meanwhile, for all c, there is some point n where if x ≥ n, a(x) > cg(x). So,

a(x) = O(k(x)) but a(x) , O(g(x)), and thus O(k(x)) , O(g(x)).

In this project, when we say that an algorithm runs in O( f (n)) time or that it

has complexity f (n), we assume that f (n) is a tight bound for the run time of the

algorithm. Otherwise, the O-notation presents a loose bound. The reason we want

to use O-notation, in the first place, is to be able to describe the maximum potential

of an algorithm (the upper bound of its execution time) without needing to describe

its performance guarantee (the lower bound of its execution time) as θ-notation

does. If we allow for asymptotically loose bound when talking about the O-notation

with respect to an algorithm, our discussion can potentially overestimate the run

time of that algorithm, which is undesirable.

4.1.2 Ordering of asymptotic notation

In this section, we assume that the O-notation presents a loose bound. Consider

Figure 4.2, which shows the graphs of most common algorithm complexities. We

can see that, for instance, n is less than 2n for all n. So, by Definition 4.3, we can

say that n = O(2n). In other words, n is bounded above by 2n. Using the same

process, we can also see in the graph that n is bounded above by n2, which is in turn

bounded above by 2n.

Using these observations, we can construct an ordering for the O-notation. For
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notational convenience, we say that for two functions f (n), g(n), O( f (n)) < O(g(n))

if f (n) is bounded above by g(n) but not vice versa. Using this and Figure 4.2, we

have the following ordering of the O-notation.

O(log2 n) < O(n) < O(n log2 n) < O(n2) < O(2n) < O(n!) (4.1)

The most important takeaway from Equation (4.1) is that there are different

classes of execution time, and that there is a strict ordering among these classes. The

most important classes for this project are constant, polynomial, and exponential

time. These correspond to O(1),O(nk),O(2n) respectively. Furthermore, we divide

polynomial time into multiple subclasses, with the most important ones being linear,

quadratic, and cubic time, corresponding to O(n),O(n2), and O(n3). In general, we

aim to create linear time algorithms, seeing as they are the most performant without

needing to require special properties of the input. Failing that, polynomial time

algorithms are acceptable, but exponential algorithms should be avoided as much

as possible.

4.1.3 Asymptotic notation with number-theoretic algorithms

In this section, we have established how asymptotic notation is used to measure and

compare the run time of different algorithms. However, we have only considered

algorithms that work on arrays, which have an intuitive notion of size. Indeed, we

can extend the above discussion to most data structures seeing that we can also

easily assign them a size, namely the number of objects contained in them. However,

we cannot apply this concept of size to number-theoretic algorithms, seeing as the

input to such algorithms are numbers instead of containers.

Before we can discuss what size of input means when it comes to number-

theoretic algorithms, we need a notion of what a number-theoretic algorithm is.
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Figure 4.2: Graphs of some functions whose O-notation is used in algorithm analysis. Here, n is the
size of the input and N is the number of steps executed [7].

For the purpose of this thesis, a number-theoretic algorithm is an algorithm that

takes a number as input and gives out some information about that number using

constructs of number theory. Under this definition, multiplication, division, and

prime factorization algorithms count as number-theoretic algorithm. On the other

hand, algorithms such as those used to find the n-th Fibonacci numbers are not

number-theoretic algorithms, seeing that they do not output information about n.

Now that we have a definition of number-theoretic algorithms, we can proceed

to talk about the computational complexity of such algorithms. Before that, however,

we still need to think about what input size would mean for them. To do this, we

set up an analogy with the concept of size for data structures. A way we can think

of size for a data structure is as the number of discreet memory units needed to

represent that data structure. Applying this notion to numbers, we obtain the notion

of size for a number as the count of digits required to represent that number. So, for

example, the size of 2412414 is 7 because it is represented by 7 digits. In general, the
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size of a number can be obtained by

size(n) = ⌊log10(n)⌋ + 1

There is more than one way to represent a number, however. In the last paragraph,

we are representing a number in base 10. The choice of base here is quite arbitrary,

however. We could represent a number in base 2, and that could have work just as

well for defining the size of that number. In fact, there is a general formula to define

the size of a number in any base x

size(n) = ⌊logx(n)⌋ + 1 (4.2)

We can prove this fact with a modified version of the proof given in [27].

There is a problem with this way of defining size, however. The size of a

number differs between any two representation. For an example, we will use

the number 2, 412, 414 again. As mentioned above, this number has size 7 when

represented in base 10. However, when it is represented in base 2, it has size

⌊log2(2, 412, 414)⌋ + 1 = 22. This can be a problem, for it is possible that different

representation of a number can lead to different analysis of an algorithm. However,

due to the way O-notation and logarithm work, this is not an issue.

Theorem 4.1.

For any real numbers a, b, O(loga(n)) = O(logb(n)).

Proof. Let a, b be arbitrary real numbers. By applying the change of base formula

for logarithm, we have

loga(n) =
logb(n)
logb(a)

Because a, b are constants, logb(a) is also a constant. Seeing as the complexity order
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of a constant is 1, we have

O(loga(n)) = O
(

logb(n)
logb(a)

)
= O

(
logb(n)

1

)
= O(logb(n))

□

The theorem we just proved shows that the base of a logarithm does not matter

when using O-notation. As a result, when working with logarithms in O-notation,

we omit the base.

Now, consider a number-theoretical algorithm with its input being a number n.

We say that this algorithm runs in polynomial time if its run time is polynomial in its

size or, in other words, O(size(n)k) = O(logk(n)) for some number k. Analogously, the

algorithm in question runs in exponential time if its run time is exponential in its size

or O(asize(n)) = O(alog(n)) for some real number a. One interesting thing that we note

here is that a number-theoretical algorithm is exponential if its run time is polynomial

in n. This comes down to the observation that n = eloge(n). So, if the run time is

polynomial in n, we have O(nk) = O((e(loge(n)))k) = O(ek loge(n)) = O(ekeloge(n)) = O(elog(n)),

which is exponential in the size of n.

On a final note, we discuss the arithmetic of large numbers. In the RAM model,

which we have been working in, arithmetic operations are considered primitive,

and so their run time is constant. However, when the scale of the numbers we

work with gets very large, such as with the RSA algorithm, this assumption fails.

Instead, we have to use non-constant-time algorithms to compute basic arithmetic

operations.

For this project, we only concern ourselves with algorithms for subtraction,

multiplication, and modulo operation, seeing that these are the operations used in the

RSA algorithm. In [20], Donald Knuth created a program for subtraction that takes

12N+3 steps, where N is the number of digits in each operand. Using O-notation, we
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then have the complexity of subtraction as )(12N+ 3) = O(N) = O(log(n)), where n is

one of the operands in the subtraction. In [8], the basic algorithm for multiplication is

said to have complexity O(log2(n)). While there are asymptotically faster algorithms

for these two operations, their time complexity is not as straightforward. For the

sake of keeping our analyses simple, we will only consider the basic algorithms.

As for the modulo operation, we can use Lemma 3.1 to obtain the remainder of

a division using one subtraction after we have obtained the integer part of the

division. From [8], we also learn that the complexity of division is O(log2(n)).

Combining these two facts, we have the complexity of the modulo operation as

O(log2(n)) −O(log(n)) = O(log2(n)).
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CHAPTER 5

Problems with basic RSA

In this chapter, we present two main security concerns with the version of RSA

presented in Chapter 3. In addition, we include a complexity analysis of the RSA

algorithm and a analysis of its run time in the context of its usual use case.

5.1 Prime selection

Conceptually, the simplest attack on the RSA is to factor the public key N into its

prime constituents p, q. Once an attacker obtains these two numbers, they can easily

calculate the Euler’s totient of the modulus N. Seeing as the public exponent e

is available to everyone, the attacker can then easily calculate the private key d

through the process described in Section 5.3.1 and use it to decrypt all messages

sent by an individual. Thus, it is imperative to chose p, q such that it is difficult to

factor N.

Currently, the integer factorization algorithm with the best time complexity

is the general number field sieve, which have a subexponential time complexity

(i.e. its runtime grows faster than all polynomials, but slower than all exponential

functions). Even with this algorithm, however, it takes a 2.1 GHz CPU running for

an equivalent of 2700 years to factor a 829-bit (or 250 digits) number [38]. As we

can see, it takes an incredibly large amount of time to factor large numbers.

While generally, it may take a very long time to factor a large integer, there

33
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are cases where a number might have some special structure that an algorithm

can exploit to factor it very quickly. We call factoring algorithms of this kind

special-purpose algorithms.

A problem with the RSA algorithm in Section 3.2 is that we do not place any

constraint on the kind of prime numbers that the algorithm can generate. Thus, the

primes used in the encryption and decryption process might be of a form where

their product possesses the special property required for some special-purpose

factoring algorithm. Below, we list a number of special-purpose integer factorization

algorithms and the kind of numbers they work efficiently on. In order to simplify

the algorithms, we will assume that the number to be factored has only two odd

prime factors.

5.1.1 Trial division

The simplest algorithm for factoring integers is trial division, which is shown in

Listing 5.3. The basic idea behind this algorithm is that the factors of a number n

must lie somewhere between 1 and n. Thus, if for each of these values, we check if

it is a factor of n, we are guaranteed to find all factors of n. It should be noted that

in Listing 5.3, only numbers up to
√

n are checked. This optimization is possible

due to the fact that at least one prime factor of a number n is less than
√

n.

Theorem 5.1.

For all n ∈ N, there exists at least one prime factor p of n such that p ≤
√

n.

Proof. Let n be an arbitrary natural number with prime factors p, q. For the sake of

contradiction, suppose that p, q >
√

n. In that case, we have that pq > n, which is a

contradiction because pq = n due to p, q being prime factors of n. Thus, it is the case

that p ≤
√

n or q ≤
√

n. □

From Theorem 5.1, we know that we only need to check numbers up to
√

n to
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find a prime factor of n. Furthermore, because n only has two prime factors, we

only need to find the smaller one to completely factor n. Thus, it suffices to check

all numbers up to
√

n.� �
1 FUNCTION TRIAL_DIVISION ( n ) :

2 for i from 1 to s q r t ( n ) :

3 i f remainder of n / i i s 0 :

4 return i , n / i
 	
Listing 5.3: Pseudocode for trial division algorithm.

In the worst case scenario, trial division would need to check all numbers from

1 to
√

n. Thus, there are
√

n checks to be done, and so the function has a time

complexity of O(
√

n) = O(n1/2). So, trial division is exponential in the size of n,

which means it is very slow for large n. However, as mentioned above, if n has a

small prime factor, the algorithm only needs to check numbers up to that prime

factor. If that factor is small enough (e.g. it has less than 7 digits), it can be found

instantly. Thus, if one of the primes we generate for RSA is too small, the private

key can be easily obtained using trial division.

5.1.2 Fermat’s algorithm

Another simple algorithm for factoring integers is Fermat’s factorization method,

which is named after the mathematician Pierre de Fermat. The core of this algorithm

is based on the algebraic identity

a2
− b2 = (a + b)(a − b) (5.1)

Based on the above equation, if we are able to write an integer n as a difference of

two squares, we have already obtained its factors. Indeed, for odd n, it is always

possible to obtain such a representation.
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Lemma 5.1.

If an odd number n has a factorization n = pq, then we have n =
(

p+q
2

)2
−

(
p−q

2

)2
[9].

Proof. Let n be an odd number with factorization n = pq. Then, we have

n = pq

=
4pq
4

=
4pq + p2 + q2

− p2
− q2

4

=
p2 + 2pq + q2

− (p2
− 2pq + q2)

4

=
(p + q)2

− (p − q)2

4
((a ± b)2 = a2

± 2ab + b2)

=
(p + q)2

4
−

(p − q)2

4

=
(p + q)2

22 −
(p − q)2

22

=

(
(p + q)

2

)2

−

(
(p − q)

2

)2

□

Fermat’s factorization method, shown in Listing 5.4 finds a number a such that

a2
− n is a square number. Once such an a has been chosen, if we set b2 = a2

− n,

we can get n = a2
− b2, which is a difference of squares. Thus, we have found a

factorization of n. As seen in Listing 5.4, Fermat’s method finds a by trying all

possible positive integers. Here, the algorithm starts with ⌈
√

n⌉ because it is the

smallest number for which a2 > n, which is the requirement for a2
− n to be positive,

and thus possibly a square number [9].
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� �
1 FUNCTION FERMAT_METHOD( n ) :

2 a = ⌈
√
n⌉

3 b2 = a * a − n

4 while b2 i s not a square number

5 a = a + 1

6 b2 = a * a − n

7 b =
√

b2

8 return a − b , a + b
 	
Listing 5.4: Pseudocode for Fermat’s method.

For an example, we will factor the number n = 217. We have ⌈
√

n⌉ = 15, and so

we will start checking from there. Setting a = 15, we get b2 = 8, which is 23 and thus

not a perfect square. Then, if we try a = 16, we get b2 = 39, which is again not a

square number. In fact, b2 = a2
− n is not a square number until a = 19, where its

value is 144 = 122 as shown in Table 5.1. So, with a, b having been found, we can

find the factors of n, which are a + b = 19 + 12 = 31 and a − b = 19 − 12 = 7.

a 15 16 17 18 19

b2 8 39 72 107 144

b 2.828 6.245 8.485 10.344 12

Table 5.1: Calculations made by Fermat’s method with the given example.

In the worst possible scenario, i.e. when n is prime, we have to test all possible a

from ⌈
√

n⌉ to N. In this case, Fermat’s method is the same as a trial division starts

from the halfway point instead of the beginning. So, its run time is exponential in

the size of n, which is very bad.

We can notice, however, that if two factors of n are close together, we know that

a + b and a − b are close together. Seeing that the size of the distance between these
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two numbers, 2b, grows larger as a increases, we can conclude that the closer the

two factors are, the smaller a is. Seeing that a small a indicates that the algorithm

did not run for a lot of steps, we can say that Fermat’s algorithm runs faster the

closer the two factors of n are to each other.

5.1.3 Pollard’s p − 1 algorithm

Let n be the input integer. The first step in Pollard’s p − 1 algorithm is to pick a

number B, called the smoothness bound. Then, we calculate M as the product of all

q⌊logq(B)⌋, where q are primes less than B. After that, we randomly pick a coprime a of

n, and calculate g = gcd(aM
− 1,n). Finally, if 1 < g < n, we return g, otherwise an

error is raised. The pseudocode for this algorithm is shown in Listing 5.5.� �
1 POLLARD−ALGORITHM( n )

2 B = RANDOM−NUMBER( )

3 primesLis t = FIND−ALL−PRIME−LESS−THAN( B )

4 M = 1

5 for i = 1 to pr imesLis t . length

6 q = primesLis t [ i ]

7 M = M * q
⌊logq(B)⌋

8 a = PICK−COPRIME( n )

9 g = GCD(aM − 1 , n )

10 i f 1 < g < n

11 return g

12 e lse

13 e r r o r " Algorithm␣ f a i l e d "
 	
Listing 5.5: Pseudocode for Pollard’s p − 1 algorithm.

The main idea of this algorithm can be found at [37]. There are, however, some

unclear steps in this resource, which we will fill in the following paragraphs. In
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Pollard’s p − 1 algorithm, a was chosen to be coprime to n, and is consequently

also coprime to all factors of n. Let p be a factor of n. Then, by Fermat’s Little

Theorem (Theorem 3.3), we have ap−1
≡ 1 (mod p), which is equivalent to ak(p−1)

≡ 1

(mod p) for some integer k. Then, we set M = k(p − 1). Now, a consequence of

aM
≡ 1 (mod p) is that p | aM

− 1. This means that there is some integer c such that

aM
− 1 = pc, per Definition 3.2.

Consider the value g = gcd(aM
− 1,n). Seeing as p is a multiple of n, there is

some q such that n = pq. So, we have g = gcd(pc, pq). A property of the gcd function

allows us to factor the common factor of its arguments, and so g = p gcd(c, q). Here,

seeing as g is a product of two factors of n1, if 1 < g < n, then g must be a factor of n.

At this point, there is still one issue that needs to be addressed. In the above

paragraph, M is set as a multiple of p − 1, which is impossible to determine without

knowledge of p, the number that is being searched for. This is where B is used. The

algorithm assumes that p − 1 is B-powersmooth.

Definition 5.1 An integer n is called k-powersmooth if, when n is written as a product of

prime powers, all of those prime powers are at most k.

Now, instead of calculating M as a multiple of p − 1, the algorithm calculates M

as the smallest number that is a multiple of all B-powersmooth numbers, which

results in the formula for M used in the algorithm. However, this method is not

guaranteed to work. If there is no factor p of n such that p − 1 is B-powersmooth or

p − 1 is B-powersmooth for all p, the algorithm won’t be able to give a nontrivial

factor, seeing that the former situation results in a factor of 1, while the latter results

in a factor of n.

If it is desired, however, it is possible to modify the algorithm so that a factor is

always given. At the final step, instead of raising an error, consider the value of g.

1gcd(c, q) gives us a factor of q, which is also a factor of n.
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If g = 1, B should be increased. On the other hand, if g = n, B should be decreased.

This way, B should eventually reach a value where 1 < g < n.

The time complexity of Pollard’s p − 1 algorithm is O(B log2 n) [23]. The idea of

the derivation is that there are three main steps in the algorithm: finding all primes

in [1,B], calculating aM
− 1, and computing gcd(aM

− 1,n). In most cases, where B

is not small, the second step would dominate the computation, and thus its time

complexity is the algorithm’s complexity. Here, it should be noted that the value of

M is not calculated directly. Instead, aq⌊logq(B)⌋
is calculated for each q, and then these

values are combined to form aM.

Having said that, we can see that if we choose B to be relatively small, say, 107, the

algorithm runs very quickly. However, it only succeeds if n − 1 is B-powersmooth.

While this might not always be the case, the fact is that there is a condition on the

factor of n under which Pollard’s p − 1 algorithm is efficient.

5.2 Chosen texts attack

In this section, we present a chosen plaintext attack and a chosen ciphertext attack

on the RSA algorithm.

5.2.1 Chosen plaintext attack

Suppose that we are an eavesdropper on a conversation and we intercepted a

ciphertext c. Using some external information, we know what the original message

might be. For example, the message is the answer to the question “What is you

favorite day of the week?”, of which there are seven possibilities. Now, by using

the publicly-available public exponent of the sender, we encrypt all the possible

plaintexts we prepared. If one of those plaintexts encrypt to the sent ciphertext, we

know that that plaintext is the original message.
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This attack relies on the deterministic nature of modular exponentiation. Given

a message and an RSA key, the RSA algorithm will only send that message to one

ciphertext. Thus, if an eavesdropper can limit the message space to a reasonable

size, they can encrypt everything in that limited subspace and obtain the original

message through finding which message encrypts to the intercepted ciphertext.

Now, it might be said that the problem of limiting the message space to a

reasonable size is not always possible to solve. While this might be true, when it is

possible, this is a very powerful attack, especially if the public exponent is small.

Moreover, it is easiest to limit the message space when the messages have a common

pattern. Sometime, the cause for this can be very silly. Simon Singh describes one

such situation, where the Germans in WW2 use two keys to encrypt each message,

one key to encrypt the message, and the other to encrypt the message key. The

message key is a random sequence of three characters and changes between different

messages, while the key used to encrypt the message keys remain the same for the

entire day. Furthermore, the encrypted message key is attached to the top of the

message it was used to encrypt. The problem came when overworked personnel

sometimes cannot bring themselves to care enough to choose complex message

keys, and instead use things such as three consecutive letters [30].

Now, suppose that in the situation above the Germans were using RSA combined

with a symmetric cipher, with RSA being used to encrypt the key for the symmetric

cipher. Normally, a brute force attack would entails checking the whole message

space, the space of all sequence of three letters. Meanwhile, in the scenario where

the operator uses three consecutive letters as the key for the symmetric cipher, we

know that this key is a sequence of three consecutive letters. So, we can limit our

search to the space of sequences of three consecutive letters.
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5.2.2 Chosen ciphertext attack

In the previous subsection, we have covered the chosen plaintext attack, a method

to retrieve a message from a ciphertext without access to the private exponent.

However, that attack only works on cipher for which we have a good guess of

what the original message might be. Furthermore, because the attack does not give

us any information about the private exponent, we can only decrypt ciphertexts

on a case-by-case basis. In this subsection, we introduce a more powerful attack,

presented in [10], that allows us to retrieve the original message from a ciphertext

without needing information about the message. While this attack still can only

decrypt individual ciphertexts instead of giving us access to the private key, it

presents an improvement over the chosen plaintext attack in that it works on any

ciphertext.

The core of the chosen ciphertext attack relies on the fact that modular congruence

is compatible with multiplication, i.e. we can multiply both side of a modular

congruence to get a new modular congruence with the same modulus. Thanks

to this property, we can easily transform a valid ciphertext into another valid

ciphertext. We call this ease of transformation malleability. The attack proceeds as

follow. Suppose we have a ciphertext c where

c ≡ me (mod N)

We choose an integer x and multiply both side of the above congruence by xe to

obtain

cxe = c′ ≡ mexe (mod N)

This is always possible because the public exponent e is known by everyone.
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Then, if we can somehow make the sender decrypts c′, we can get

(c′)d
≡ (mexe)d = medxed ≡ mx (mod N)

At this point, in order to obtain the original message, we simply multiply both

side by the multiplicative inverse of x, which we can efficiently compute as shown

in sections 5.3.1 and 5.3.2 below.

The method outlined above works for all ciphertexts. The roadblock for this

attack, however, lies in the fact that it requires the sender of the message to decrypt

a random ciphertext and send the corresponding plaintext back. While the first

part is not too hard to do, it is the second part that poses a problem. Usually,

decryption is the end of the communication process. So, unless a request is made to

have the result of the decryption, most people will not send the decryption result

back, especially since the process we used causes decryption to usually give out

nonsensical plaintext. If the result of the decryption process is saved, however, even

if the save location is the trash, we can possibly retrieve it and get back the original

message.

5.3 Run time of basic RSA

In this section, we analyze the asymptotic run time of the RSA algorithm presented

in Chapter 3. To do this, we provide a simple implementation of the algorithm.

After obtaining the time complexity of RSA, we then proceed to discuss what the

result means in the context of the actual numbers used in the RSA cryptosystem.
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5.3.1 Implementation

The first step in the RSA algorithm is to generate two primes p, q. When p, q are

large enough, the methods mentioned in Section 3.2 are infeasible. Instead, we

employ the approach of generating an odd number and testing if it is prime. If it

is not, we check all successive odd numbers until a prime number is found. The

algorithm used in this implementation to test whether a number is prime is called

the Miller-Rabin algorithm. The pseudocode for this approach can be found in

Listing 5.6.

By the prime number theorem, the number of prime numbers less than a number

n, denoted π(n), is approximately n
ln(n) for very large n [36]. We denote this as

π(n) ≈ n
ln(n) . Using this fact, Apostol proved that the nth prime pn is approximately

n log(n) [2]. Building from this, Marco Cantarini proved that the average gap

between two primes near a number n is approximately log(n) [4]. So, in order to

find a prime number with the method outlined in Listing 5.6, we only need to check

around log(n) numbers on average, which makes this method fast.� �
1 GLOBAL_VAR p , q , e , d

2

3 FUNCTION GENERATE_PRIME_NUMBER( ) :

4 temp = GENERATE_RANDOM_NUMBER( )

5 i f temp i s equal to 2 :

6 return temp

7 i f temp mod 2 == 0 :

8 temp = temp / 2

9 while temp i s not prime :

10 temp = temp + 2

11 return temp
 	
Listing 5.6: Pseudocode for prime generation algorithm.
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The next step to consider in the algorithm is the method for calculating the public

exponent e. The simplest way to do this, as seen in Listing 5.7, is to generate random

odd numbers 2 and check if they are coprime to ϕ(N). This would entail using

Euclid’s algorithm to calculate the greatest common divisor between the candidate

number and ϕ(N) until we get a value of 1. Unlike the prime number generation

step, however, there is no upper bound on the numbers that must be tested with

this method, and so its execution time might vary a lot between iterations.� �
1 / / n = ϕ(N)

2 FUNCTION MAKE_PUBLIC_KEY( n ) :

3 e = GENERATE_RANDOM_NUMBER( )

4 i f e mod 2 == 0 :

5 e = e / 2

6 while GCD( e , n ) i s not equal to 1 :

7 e = e + 2

8 return e
 	
Listing 5.7: Pseudocode for calculation of public key in RSA algorithm.

With the public exponent and the modulus in hand, we can now calculate

the private exponent d. As noted in Section 3.2, d is the solution to Equation

(3.2). In order to solve this equation, we transform it into an instance of Bezout’s

identity. First, by using Definition 3.3, we get ϕ(N) | (de − 1), which is equivalent to

de− 1 = −tϕ(N) for some integer t per Definition 3.2. By moving the term around in

this equation, we get de + tϕ(N) = 1 = gcd(e, ϕ(N)), which is an instance of Bezout’s

identity. In order to calculate d, we can use the Extended Euclidean Algorithm,

as described in [8]. We include the pseudocode provided below in order to make

analyses of this algorithm easier. One important thing that we assume in Listing

2Because p and q are primes and so necessarily odd, ϕ(N) = (p − 1)(q − 1) will always be even.
Thus, an even e cannot be coprime to ϕ(N).



46 5. Problems with basic RSA

5.8 is that a is greater than b. In our specific use case, awould then be ϕ(n) and b

would be e.� �
1 EXTENDED−EUCLID( a , b )

2 i f b = = 0

3 return ( a , 1 , 0 )

4 e lse

5 ( d′ , x′ , y′ ) = EXTENDED−EUCLID( b , a mod b )

6 ( d , x , y ) = ( d′ , y′ , x′ − ⌊a/b⌋ y′ )

7 return ( d , x , y )
 	
Listing 5.8: Pseudocode for extended Euclidean algorithm [8].

The final two steps in the RSA algorithm is the actual encryption and decryption.

Both of those operations boil down to a problem of modular exponentiation. This

problem is solved using the repeated squaring algorithm, which is shown in Listing

5.9. The basic observation behind the repeated squaring algorithm is that every

positive number can be written as a sum of distinct powers of 2.

Theorem 5.2.

For all positive integer n, n can be written as a sum of distinct powers of 2.

Proof. The proof below was adapted from [6].

For the case where n = 1, we have n = 20. Thus, n can be written as a sum of

distinct powers of 2.

Consider some arbitrary positive integer n. Now, for the sake of strong induction,

suppose that for all k ≤ n ∈ Z, k can be written as a sum of distinct powers of 2. We

will consider two cases, where n + 1 is odd and where n + 1 is even.

In the case where n+ 1 is odd, we know that n can be written as a sum of distinct

powers of 2. Furthermore, because n is even, that sum cannot include 20 because

20 = 1 is an odd number, and it being in the sum would result in n being odd. Now,
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we know that n+ 1 = n+ 20. Seeing that n is a sum of distinct powers of 2 excluding

20, n + 1 is a sum of distinct powers of 2.

In the case that n+1 is even, we know that n+1
2 is an integer less than or equal to n.

Thus, n+1
2 can be written as a sum of distinct powers of 2 by the induction hypothesis.

If we are to multiply this sum by 2, which would yield n + 1, every power of 2 in

the sum would have its exponent increase by 1. So, n + 1 can be written as a sum of

powers of 2. Now, because addition by 1 is injective (a+ 1 = b+ 1 implies a = b), and

the exponents of the powers of 2 in n+1
2 are distinct, the exponents of the powers of

2 in n + 1 is also distinct. Thus, n + 1 can be written as a sum of distinct powers of 2.

In conclusion, by strong induction, all positive integer n can be written as a sum

of distinct powers of 2. □

Suppose we want to calculate ak mod n. There are two steps in the repeated

squaring method. The first one is to calculate a2i mod n where 0 ≤ i < ⌊log2(n)⌋+ 1.

In simpler terms, we need to calculate the powers of a where the exponent is a

power of 2, up to a2⌊log2(n)⌋ mod x. In order to do this, we can use the recurrence

relation

a20
≡x a

a2i
≡x (a2i−1

) ∗ (a2i−1
)

Once this step is done, we proceed to write k as a sum of distinct powers of 2,

k =
∑

pi
2pi . Theorem 5.2 lets us know that this is possible for all k. Then, we can

compute ak as a2p1
· · · a2pu . Now, we can see that the maximum value of 2pi is 2⌊log2(n)⌋.

Because ⌊log2(n)⌋ + 1 is the number of bits required to represent n, we have that

2pi ≤ k for all i. As a result, we have already calculated a2pi mod n in the first step.

Thus, we only have to multiply together the results of the calculations in the first

step. This is justified because if x ≡n y, then xb ≡n yb.
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Having said that, the implementation of this algorithm is a bit different from

the mathematics behind it. The main thing we have to consider is that writing the

exponent n as a sum of powers of 2 is not a trivial task. It would, in fact, require

calculating all powers of 2 less than or equal to n, which is not a simple task. What

is simple, however, is to detect whether the kth bit of n is a 1. This amounts to bit

shifting n by k− 1 positions and performs a logical AND operation between n and 1.

Both of these operations can be done in, at worst, linear time, which is much better

than the quadratic time multiplications required for the other method.� �
1 FUNCTION REPEATED_SQUARING( n , exponent , modulus ) :

2 pows_a = array of s i z e ⌊log2(n)⌋

3 pows_a [ 0 ] = a mod modulus

4 for i from 1 to ⌊log2(n)⌋ i n c l u s i v e

5 pows_a [ i ] = pows_a [ i − 1] * pows_a [ i − 1] mod n

6 an = 0

7 for k from 0 to ⌊log2(n)⌋ i n c l u s i v e

8 i f ( exponent >> k ) & 1 i s 1

9 an = an * pows_a [ k ] mod n

10 return an
 	
Listing 5.9: Pseudocode for modular exponentiation using repeated squaring.

5.3.2 Complexity of RSA

In order to analyze the time complexity of the RSA algorithm, we will separate it

into three steps: primes generation, modular inverse, and modular exponentiation.

Prime generation has complexity O(log4(p)), where p is one of the primes

generated. As mentioned in 5.3.1, we generate a prime number by checking

consecutive odd numbers using the Miller-Rabin algorithm. The Miller-Rabin

algorithm is a probabilistic algorithm to check whether a number is prime. Due
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to it being a probabilistic algorithm, Miller-Rabin cannot determine with certainty

that a number is prime. Indeed, it has a probability of at most 1/4 of declaring a

composite number as a prime [19]. We can, however, reduce this probability by

running the test multiple times. In general, if we run Miller-Rabin k times on a

number, the probability that that number is falsely said to be a prime is at most 2−2k.

So, if we run Miller-Rabin enough time on a number, we can be reasonably sure

that the number is prime.

For the basic RSA algorithm presented in 3.2, we will assume that a probability of

2−100 of Miller-Rabin declaring a composite number to be prime, which corresponds

to 50 tests, is acceptable. Now, suppose that we are trying to generate the prime p.

We know that the complexity of one Miller-Rabin test using classic multiplication

is O(log3(p)) [19]. Seeing that we are doing 50 runs, we have a final run time of

50O(log3(p)), which reduces to O(50)O(log3(p)) = O(50 log3(p)) = O(log3(p)). Thus,

the cost of testing one number for primality is O(log3(p)). Now, we have established

in 5.3.1 that we only need to test ln(p) numbers on average to get a prime number.

Combining this with the complexity of Miller-Rabin and the fact that we need to

generate two prime numbers, we get an overall complexity of

2 ∗ ln(p)O(log3(p)) = 2 ∗O(ln(p))O(log3(p))

= O(log(p))O(log3(p))

= O(log(p) log3(p))

= O(log4(p))

for the prime generation step.

The second step in the RSA algorithm is finding a modular inverse, which

has complexity O(log3(e)), where e is the public exponent. We use the Extended

Euclidean algorithm for this step as shown in Section 5.3.1. The analysis in [8]
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indicates that the number of recursive call in the Euclidean algorithm is O(log(b)) =

O(log(e)). Further down in the same chapter, it is said that the number of recursive

calls in the extended Euclidean algorithm is the same as the Euclidean algorithm.

Seeing as one modulo operation and one subtraction is done every recursive call,

we do O(log(e)) modulo operations and O(log(e)) subtractions in total. So, the final

complexity of this step is

O(log(e))O(log(e)) +O(log(e))O(log2(e)) = O(log2(e))O(log3(e)) = O(log3(e))

The final step in the basic RSA algorithm is modular exponentiation, which has

complexity O(log3(m)), where m is the exponent. The algorithm used for this step

is exponentiation by squaring, which was described in Listing 5.9. In order to

calculate am mod p with this algorithm, we first pre-calculate all a2i mod p where

2i
≤ m. In other words, we are calculating all powers of a where the exponent is

composed of fewer bits then m. Seeing that m is composed of ⌊log2(m)⌋ + 1 bits, we

need to pre-compute ⌊log2(m)⌋ + 1 powers of x. Furthermore, as seen in Listing

5.9, each x2a mod p is calculated by multiplying x2a−1 mod p by itself. So, this

first step takes ⌊log2(m)⌋ multiplication (we do not have to use multiplication to

calculate a20) and ⌊log2(m)⌋ + 1.

For the second step of repeated squaring, we calculate a product of a2i mod p,

where i < ⌊log2(m)⌋ + 1. In the worst case scenario, we need to multiply all such

values, which would yield us ⌊log2(m)⌋+1 multiplications and ⌊log2(m)⌋+1 modulo

operation. So, in the repeated squaring methods, we need to perform 2⌊log2(m)⌋ + 1

multiplications and 2⌊log2(m)⌋+2 modulo operations. So, the complexity of modular
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exponentiation is

(2⌊log2(m)⌋ + 1)O(log2(m)) + (2⌊log2(m)⌋ + 2)O(log2(p))

= 2⌊log2(m)⌋O(log2(m)) +O(log2(m)) + (2O(⌊log(m)⌋) + 2)O(log2(p))

= O(⌊log(m)⌋)O(log2(m)) +O(log2(m)) +O(log(m))O(log2(p))

= O(log(m))O(log2(m)) +O(log2(m)) +O(log(m))O(log2(p))

= O(log3(m)) +O(log2(m)) +O(log(m))O(log2(p))

= O(log3(m)) +O(log(m))O(log2(p))

The RSA cryptosystem is the combination of the steps above. So, to calculate

the time complexity of RSA, we simply add the complexity of all those operations

together. Doing this would give us

O(log4(p)) +O(log3(e)) +O(log(e))O(log2(N)) +O(log3(d)) +O(log(d))O(log2(N))

where p is one of the primes generated, e is the public exponent, d is the private

exponent, and N is the modulus.

This analysis indicates that the RSA algorithm is somewhat slow, seeing that

it’s execution at least of complexity order n3. This complexity, however, is not very

informative, for all we can glean from it is that RSA is polynomial in terms of three

variables. In order to make the RSA algorithm faster, we need to understand its run

time in terms of the numbers it operates on.

5.3.3 Runtime in context

In the above section, we have analyzed the complexity of RSA and received a

function that depends on three variables, which does not offer much insight into

how fast RSA is. In order to obtain more information from this analysis, we consider
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which of the three parts of the RSA algorithm is executed the most. At the same

time, we keep in mind the typical execution time of each part. After all, an operation

that only has to run once a year but takes three whole months to finish would use

up a larger amount of time then an operation that runs for one hour everyday.

In a realistic scenario, we try to generate primes that are at least 256-bit long. If

we let the generated primes be p, q, we have an approximation for the run time of

this step as log4(p) + log4(p) = 2564 + 2564
≈ 8.4 × 109 operations. As for calculating

the private exponent, we need to know the size of the public exponent. While the

method we use to generate it does not give much of guarantee on size, we know

that the public exponent should be at least smaller than the modulus. Because we

have two primes of size 256 bits, the modulus should be around 512 bits. Now, we

assume that the public and private exponents e, d each have half the number of bits

of the modulus, or 256 bits. So, we have the approximation for the run time of the

calculation of the private exponent as log3(e) = 2563
≈ 1.7 ∗ 107 operations.

One important observation here is that we do not need to generate a new key

every time we encrypt a message. In fact, we can reuse a set of keys to encrypt and

decrypt thousands of messages before generating a new one. For this analysis, we

assume that we use a set of keys 10, 000 times before making new ones. So, the

run time of the encryption and decryption step is approximately 10, 000(log3(e) +

log(N) log2(e) + log3(d) + log(N) log2(d)) = 10, 000 ∗ 2(log3(e) + log(N) log2(e)) =

10, 000 ∗ 2(2563 + 512 ∗ 2562) ≈ 1012 operations.

From this brief (and imprecise) analysis, we found that the encryption and

decryption step takes the most time of all, executing around 100 times more

operations than the other two steps combined3.

31012/(8.4 × 109 + 1.7 ∗ 107) ≈ 118



CHAPTER 6

Improving the RSA cryptosystem

In this chapter, we present some ways to make the RSA algorithm less vulner-

able to the attacks presented above. Furthermore, we also include optimization

techniques that will result in faster execution.

6.1 Strong key generation

As covered in section 5.1, the way that the naive RSA algorithm generates keys

might lead to security vulnerabilities. The most important of such vulnerabilities is

that a small modulus can be easily factored. Thus, it is important to ensure that our

modulus is large. Generally, 512 bits is the minimum acceptable size, but due to

advances in factoring algorithms and computing power, 1, 024 bits is accepted as

the minimum size of the modulus where RSA starts to be truly secure.

Another problem with naive RSA prime generation is that it might generate

primes with properties that the algorithms in Section 5.1. So, we must select our

primes such that they do not have these properties. Trial division is easy enough

to deal with. We simply have to choose primes that are not too small. This is not

too hard a task, seeing that we have 512 bits to distribute between two primes.

Generally, a prime above 108 can be considered good, and we need fewer than 32

bits for such a number.

53
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As for Fermat algorithm, we simply have to generate keys that are not too close

to each other. A difference of a few bits is good enough to render factorization

by Fermat’s algorithm infeasible a majority of the time. However, we don’t want

the distance between the factors to be too large either, seeing as trial division will

become feasible due to the smallness of one of the factors. Finally, for Pollard’s p− 1

algorithm, we can do nothing but check and regenerate as needed. Still, this is not a

problem, seeing as most large primes should not have a predecessor composed of

small primes, and prime generation is computationally inexpensive overall.

6.2 Padding

In Chapter 5, we have shown that the deterministic and malleable nature of the

naive RSA algorithm makes it susceptible to chosen texts attack. In order to remove

these properties from RSA, we introduce the concept of padding. Padding is a

technique in which we add some random information to a message. Pure random

information, however, would make it so that we cannot retrieve the unpadded

message. Thus, we add the restriction that the padding must have some structure

that makes it reversible. We will show that padding makes RSA less susceptible to

the two attacks presented in 5.2.

Suppose that an attacker is attempting a chosen plaintext attack on a system

using RSA with 100-bit padding. By the nature of this kind of attack, the attacker

has access to a small number of plaintexts that is likely to be a message. In this

case, suppose that these are days in a month, and so there are 31 of them. Normally,

the attacker only needs to encrypt these 31 plaintexts and compare them with the

ciphertext to complete the attack, but due to padding, they also need to take into

account all padded versions of the plaintext. In total, a sequence of 100 bits has 2100

possible states. Even if we suppose only one percent of these are valid for padding,
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that is still around 1028 valid padding, which is still a massive amount. A successful

chosen plaintext attack will need to encrypt all message-padding combinations,

which would take an incredibly long time.

On the other hand, suppose that the attacker is trying to attempt a chosen

ciphertext attack. The core idea behind this attack is that in naive RSA, multiplying

a ciphertext by any number yields a valid ciphertext. RSA with padding, however,

does not have this property. We have mentioned above that the information used

for padding must have some kind of internal structure. This structure makes it so

that there are fewer valid plaintexts then there are plaintexts, and the same holds for

ciphertexts. A consequence of this is that we can define a padding scheme for RSA

in which multiplying a valid ciphertext by a number yields an invalid ciphertext

most of the time. This makes the chosen ciphertext attack infeasible, seeing as the

attacker would then have to check a large count of integers before finding one that

would allow for an attack. What this entails is that the attacker has to then request

for the sender to decrypt a large number of messages, which might raise red flags.

So, we have shown that padding makes the chosen text attacks in Section 5.2

infeasible. The question now is what are some padding schemes commonly used

for RSA. Generally, the industry standard at the writing of this paper is the Optimal

Asymmetric Encryption Padding (OAEP) standard, explained in details in [? ].

6.3 Improving RSA’s runtime

In this section, we present some methods for increasing the speed at which the RSA

algorithm executes.

In the RSA algorithm, the two most time-consuming steps are encryption and

decryption as shown in 5.3.3. Thus, we focus on these two operations when

improving RSA’s execution time. Each of these operations amount to a modular
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exponentiation. So, there are two things we can influence, the size of the exponent

and the size of the modulus. However, the modulus must be very large for the RSA

algorithm to be secure, as shown in Section 5.1. As a result, we can only make RSA

faster by changing the exponents.

Generally, in order to minimize execution speed, we want to pick the exponent

to be as small as possible. However, we can only choose the exponent for either

encryption or decryption, seeing that their relationship as modular inverse over

a large modulus almost guarantees that one of them has to be large if the other is

small. One problem with choosing a small private exponent is that it is vulnerable

to Weiner’s attack, a linear time method for retrieving a small private exponent

[3]. So, ultimately, the only way by which we can speed up RSA is by choosing a

small public exponent. Doing this would mean that we have to spend more time

generating the prime pair, but that is an acceptable trade-off to speed up the costliest

part of the RSA algorithm.

6.3.1 Choice of public key

In order to choose a good exponent, we need to examine how modular exponen-

tiation is computed. As discussed in Section 5.3.1, one way to calculate modular

exponentiation is to use the repeated squaring method. This is, in fact, the canonical

algorithm for modular exponentiation, with most others being based on it. Thus,

we only need to examine the repeated squaring method in order to choose a good

exponent.

There are two factors that influence the run time of repeated squaring: number

of bits required to express the exponent and the number of 1 bits in the exponent.

We first proceed with optimizing the second quantity. It is easy to see why it

cannot be 0 or 1, seeing as the only numbers that have this many 1 bits in their

binary representation are 0 and 1. If the public exponent is 0, 1 is the only possible
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ciphertext, while if the public exponent is 1, we are encrypting a message to itself,

which is massively insecure. So, the minimum number of 1 bits in the public

exponent is 2. Seeing as the public exponent must be odd, we know that it must be

in the form 2n + 1.

Now, we find the optimal number of bits required to express the public exponent.

First of all, we want the public exponent e to be prime, seeing as it would then

be a lot easier to check that e is coprime to ϕ(N), where N is the modulus. This

stems from how the algorithm used to find the gcd of two numbers, the Euclidean

algorithm, functions. For the sake of demonstration, we include the pseudocode for

this algorithm in Listing 6.10. We can see that this algorithm finishes when b = 0.

The only way for this to happens is if b divides a. So, the only scenario in which the

Euclidean algorithm calculates gcd(ϕ(n), e) in one step is if e divides ϕ(n). Because

the Euclidean algorithm is the best way to check that e is coprime to ϕ(n) if e can be

non-prime, we always have the possibility of performing more than one modulo

operation.� �
1 EUCLID( a , b )

2 i f b = 0

3 return a

4 e lse return EUCLID( b , a mod b )
 	
Listing 6.10: Pseudocode for Euclidean algorithm [8].

If e is a prime, however, there is a method that guarantees one modulo operation.

Seeing that e is prime, if e is not coprime to ϕ(N), e must be a prime factor of

ϕ(N). So, we can check if e and ϕ(N) are coprime by calculating ϕ(N) mod e. This

expression evaluates to 0 only if e is coprime to ϕ(N). So, we can always determine

the coprimeness of e and ϕ(N) in one modulo operation.

Now, we notice that e should be of the form 2n + 1. It has been proven that

if a number of this form is prime, then n = 2k for some k [1]. We call these
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primes Fermat primes, and only 5 of them have been found so far: 3, 5, 17, 257,

and 65537 [32]. We might be tempted, for the sake of maximum performance, to

pick 3. There is an attack that exploits this choice, however. Consider an RSA

key with modulus 27, 371. Suppose we want to encrypt the message 21. We have

213 = 9, 261 ≡ 9, 261 mod 27, 371. Seeing as we did not reduce the ciphertext over

27, 371, an eavesdropper only needs to take the cube root of the ciphertext to obtain

the original message.

As the public exponent gets larger, the distance between the message and the

modulus required to make this attack possible becomes incredibly large. Ideally, in

order to ensure that this attack is infeasible for most practical purpose, we want our

public exponent to be as large as possible. For that reason, we choose the public

exponent to be 65, 537. This choice does not sacrifice too much in terms of run time

(we still need fewer than 20 multiplication and modulo operations) while giving us

a greater degree of security.

6.3.2 Chinese remainder theorem

Due to choosing a relatively small public exponent, the private exponent becomes

large, which results in a long decryption time. One way we can make decryption

faster is through the Chinese Remainder Theorem (Theorem 3.5). The idea is that,

instead of modular exponentiating with a large exponent, we split the calculation

into two modular exponentiations with smaller exponents. Seeing as the run time

of modular exponentiation is cubic in terms of the input size, computing two

exponentiations with smaller exponents is faster than computing a large one.

Suppose that we have p > q, where p, q are the prime pairs in an RSA key. The

first step in this new decryption algorithm is to precompute some values at key



6.3.2 Chinese remainder theorem 59

generation. More specifically, we need to find the solutions of three equations.

dpe ≡ 1 (mod p − 1)

dqe ≡ 1 (mod q − 1)

qinvq ≡1 (mod p)

where p, q are the prime numbers, and e is the public exponent.

Now, let c be the ciphertext we are trying to decrypt. In order to obtain the

original message m, we first calculate m1 = cdp mod p and m2 = cdq mod q. Then,

we calculate the quantity h = qinv(m1−m2) mod p, which finally allows us to obtain

the original message as mm2 + hq [28].

At this point, we have discussed a basic conception of the RSA algorithm,

some security and speed problems with this version of RSA and solutions to the

aforementioned problems. In the next chapter, we present our implementation of

the RSA algorithm and some other implementations, and our test to determine how

our implementation compare to others.
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CHAPTER 7

Implementing and testingMyRSA

In this chapter, we present the the goal of this project, namely, to determine

whether it is a good idea to implement an encryption algorithm instead of using

existing implementations, using the RSA algorithm as a case study. We then discuss

our implementation of RSA and the existing algorithms. Finally, we present our

testing methodology and the results that we obtained.

7.1 Research question

When we browse forums that work with cryptography, there is one advice that is

echoed by everyone, “do not roll your own crypto”. This advice stems from the

fact that cryptography is one of the most important lines of defense a system has

against attacks. Thus, many attempts have been made, with varying success, to

find ways to reverse encryption algorithm without access to the necessary keys.

We have demonstrated several such attacks on the RSA algorithm in Chapters 5

and 6. As a result, implementing a truly secure cryptographic algorithm involves

researching those attacks and implementing countermeasures, which is something

most people lack either the time or skill to do.

Having said that, there has not been any research into empirically testing

this claim of “do not roll your own crypto”. In this project, we aim to provide a

preliminary step for further research on this topic through implementing our own

61
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version of the RSA algorithm and testing it against some existing implementations

in terms of execution speed and vulnerability to attacks.

In this project, we implement the RSA algorithm in Java, with some simple

optimizations and security measures applied. Then, we empirically compare it

against the implementation of RSA provided with the Java Development Kit. In

addition, we test two additional cryptography libraries implemented in Python,

python-rsa and PyCryptodome, in order to compare the cryptographic ecosystem

of different programming languages.

There are two reasons Python is chosen for this project. First of all, Python is

known for having slow execution speed. Thus, it would be enlightening to compare

optimized Python code and relatively unoptimized Java code. The second reason

for our choosing Python is its support for arbitrary precision arithmetic in the core

language. Thanks to this, the number of third-party libraries that has to be installed

is minimal.

7.2 The implementations of RSA

Here, we give some details about the implementations of the RSA algorithm that we

test. More specifically, we give a high level overview of how each implementation

handles key management, encryption, and decryption. Furthermore, we also

give example code to perform these three operations. For the section on our

implementation of the RSA algorithm, we also discuss our design process and the

details of the implementation.

7.2.1 Python-RSA� �
1 import rsa

2 # G e n e r a t e new k e y s
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3 ( pubkey , privkey ) = rsa . newkeys ( 5 1 2 )

4

5 # Load ( p r i v a t e ) key from f i l e . The p r o c e d u r e i s t h e same

f o r p u b l i c key .

6 with open ( ’ p r i v a t e . pem ’ , mode= ’ rb ’ ) as p r i v a t e f i l e :

7 keydata = p r i v a t e f i l e . read ( )

8 privkey = rsa . PrivateKey . load_pkcs1 ( keydata )

9

10 # Load pre−g e n e r a t e d k e y s in number form

11 pubkey = rsa . PublicKey ( n=15 , e=7)

12 privkey = rsa . PrivateKey ( n=15 , e=7 , d=7 , p=3 , q=5)

13

14 # E n c r y p t i o n and d e c r y p t i o n

15 message = ’ Hello␣World ! ’ . encode ( ’UTF−8 ’ )

16 c ipher = rsa . encrypt ( message , pubkey )

17 message = rsa . decrypt ( cipher , privkey )
 	
Listing 7.11: Example usage of Python-RSA.

Python-RSA is, as described in [34], “a pure-Python RSA implementation”. In

this library, key management are handled with the classes rsa.PublicKey and

rsa.PrivateKey. As their names indicate, rsa.PublicKey contains the public keys

and rsa.PrivateKey contains the private keys. There are two ways to obtain these

keys in Python-RSA, generating new ones or loading pre-generated values. The

code used to do so is included in Listing 7.11.

There are two things that we would like to note in this piece of code. First of all,

in line 3, we are creating a new key pair by using the method rsa.newkeys, which

takes an argument called keysize. This argument denotes the size of the modulus.

Generally, if an implementation of RSA provides a method to generate keys, their
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interface will be similar to rsa.newkeys, taking an argument that determines the

size of the modulus. The second point of interest is on lines 11 and 12. In these

two lines, we create a key pair by explicitly defining what the individual keys

should be. We can see that the names Python-RSA uses for each keys are almost

identical to the name we used in Section 3.2, with the sole difference being the use

of a lowercase n instead of an upper case. In fact, Python-RSA share this feature

with PyCryptodome, an implementation of RSA we also test in this project.

Once we have one instance each of rsa.PublicKey and rsa.PrivateKey, we

proceed on to the encryption and decryption steps. First, we process the message

from a string into a byte string, which is the only form of message that Python-RSA

accepts. We can do this by using some common character encodings such as

ASCII and the various Unicode standards. Once we have done this, encryption and

decryption can be accomplished using two methods, rsa.encrypt and rsa.decrypt.

The signatures for these methods, as provided in [34], are as follow

• rsa.encrypt(message: bytes, pub_key: rsa.PublicKey) → bytes

• rsa.decrypt(crypto: bytes, priv_key: rsa.key.PrivateKey) → bytes

7.2.2 PyCryptodome

PyCryptodome is “a self-contained Python package of low-level cryptographic

primitives” [11]. Cryptographic primitives are simple cryptographic algorithms,

such as hash functions, and encryption and decryption algorithms, from which

more sophisticated systems can be built. The unique thing about PyCryptodome,

however, is that it is not a wrapper for other libraries. Instead, PyCryptodome

implements everything from scratch, mostly using Python but deferring to C

extension for performance-critical operations [11]. The point of interest for us is
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that PyCryptodome implements the cryptographic primitives that form the RSA

cryptosystem.

Before exaplaining the usage of PyCryptodome for RSA, we first discuss some

details of the structure of the library. PyCryptodome contains a number of different

modules, each of which implements a different type of cryptographic primitives.

In particular, key management for RSA resides in the module Crypto.PublicKey,

while encryption and decryption resides in Crypto.Cipher. If we include these

modules when discussing an object in the library, it would make the object unwieldy

and unnecessarily confusing. As a result, we will omit these modules’ name in the

paragraphs below, aside from when we first introduce the submodule we work

with.� �
1 from Crypto . PublicKey import RSA

2 # C r e a t e a new ( p r i v a t e ) key .

3 key = RSA . generate ( 2 0 4 8 )

4

5 # Load k e y s from f i l e .

6 f = open ( ’mykey . pem ’ , ’ r ’ )

7 key = RSA . import_key ( f . read ( ) )

8

9 # Load pre−g e n e r a t e d k e y s in number form

10 # The k e y s are , in o r d e r , n , e , d , p , q

11 # d i s on ly r e q u i r e d i f we a r e l o a d i n g a p r i v a t e

key

12 # p , q a r e o p t i o n a l

13 key = rsa . c o n s t r u c t ( ( 1 5 , 7 , 7 , 3 , 5 ) )

14

15 # E n c r y p t i o n and d e c r y p t i o n

16 message = ’ Hello␣World ! ’ . encode ( ’UTF−8 ’ )
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17 c ipher = PKCS1_OAEP . new( key )

18 c i p h e r t e x t = c ipher . encrypt ( message )

19 message = c ipher . decrypt ( c i p h e r t e x t )
 	
Listing 7.12: Example usage of PyCryptodome

In PyCryptodome, key management for RSA is handled by the moduleCrypto.PublicKey.RSA,

and more specifically with the class RSA.RsaKey. Similar to Python-RSA, we can

either generate new keys or loading pre-generated keys. The code used to do so is

included in Listing 7.12. One interesting design choice we want to showcase is that

in PyCryptodome, there is no distinction between public keys and private keys on

the class level, where everything is a RSA.RsaKey. Instead, the two types of keys are

differentiated on the attribute level, where private keys contain the private exponent

d, while public keys do not. In the context of PyCryptodome being a collection of a

large number of cryptographic primitives, this design choice makes logical sense,

seeing that it would help cut down on the number of classes that exists in an already

large library.

Once we obtain a key, we can proceed to encryption and decryption. Like

Python-RSA, PyCryptodome only works on byte strings, so we need to convert

the message into one. Once this is done, we can create an encryption/decryption

engine by passing a key to the function PKCS1_OAEP.new. By default, this engine

can encrypt messages using the method encrypt. Decrypting ciphertexts with the

method decrypt, however, is possible only if we created the engine with a private

key. Otherwise, an error is raised.

7.2.3 JDK
� �

1 # Generate new keys
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2 KeyPairGenerator generator = KeyPairGenerator .

g e t I n s t a n c e ( "RSA" ) ;

3 generator . i n i t i a l i z e ( 2 0 4 8 ) ;

4 KeyPair pa i r = generator . generateKeyPair ( ) ;

5 PrivateKey privateKey = pai r . g e t P r i v a t e ( ) ;

6 PublicKey publicKey = pai r . ge t Pub l i c ( ) ;

7

8 # Load ( private ) key from f i l e . The procedure i s

the same for public key .

9 F i l e publ icKeyFi le = new F i l e ( " publ ic . key " ) ;

10 byte [ ] publicKeyBytes = F i l e s . readAllBytes (

publ icKeyFi le . toPath ( ) ) ;

11 KeyFactory keyFactory = KeyFactory . g e t I n s t a n c e ( "

RSA" ) ;

12 EncodedKeySpec publicKeySpec = new

X509EncodedKeySpec ( publicKeyBytes ) ;

13 keyFactory . genera tePubl i c ( publicKeySpec ) ;

14

15 # Load pre−generated keys in number form

16 RSAPublicKeySpec publicKeySpec = new

RSAPublicKeySpec ( 1 5 , 7 ) ;

17 RSAPrivateKeySpec privateKeySpec = new

RSAPrivateKeySpec ( 1 5 , 7 ) ;

18 PublicKey publicKey = keyFactory . genera tePubl i c (

publicKeySpec ) ;

19 PrivateKey privateKey = keyFactory . g e n e r a t e P r i v a t e

( privateKeySpec ) ;

20

21 # Encryption and decryption
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22 S t r i n g message = " Baeldung␣ s e c r e t ␣message " ;

23 byte [ ] messageBytes = message . getBytes (

StandardCharsets . UTF_8 ) ;

24 Cipher encryptCipher = Cipher . g e t I n s t a n c e ( "RSA" ) ;

25 encryptCipher . i n i t ( Cipher .ENCRYPT_MODE, publicKey )

;

26 byte [ ] encryptedMessageBytes = encryptCipher .

doFinal ( messageBytes ) ;

27 Cipher decryptCipher = Cipher . g e t I n s t a n c e ( "RSA" ) ;

28 decryptCipher . i n i t ( Cipher .DECRYPT_MODE, privateKey

) ;

29 byte [ ] decryptedMessageBytes = decryptCipher .

doFinal ( encryptedMessageBytes ) ;

30 S t r i n g decryptedMessage = new S t r i n g (

decryptedMessageBytes , StandardCharsets . UTF_8 ) ;
 	
Listing 7.13: Example usage of Java’s builtin RSA. Some code was taken from [21].

The main difference between Java’s builtin RSA implementation (which we call

JDK for the sake of brevity) and the Python implementations is that JDK is designed

to handle multiple encryption algorithms under one interface. As a result, the

discussion below can be applied to more than RSA.

In JDK, key management is primarily handled with the classes PublicKey and

PrivateKey. As with the previous two implementations, we can either generate

new keys or load pre-generated keys, and the code to do so is include in Listing

7.13.

Again, like the other two implementations we discuss, JDK only works with

bytes, and so we need to convert the message from a string to a byte array. Then, in

order to encrypt and decrypt in JDK, we create an instance of the Cipher class and
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initialize it with a mode and a key. In particular, we use a Cipher.ENCRYPT_MODE

and a PublicKey for an encryption Cipher object, and a Cipher.DECRYPT_MODE and

a PrivateKey for an decryption Cipher object. Once this is done, encryption and

decryption are both accomplished by calling the doFinal method of the Cipher

class.

7.2.4 Our Java implementation of RSA: MyRSA

We aim for our implementation to be as similar to what an average programmer

under time constraint might come up with. Using this model, we define some

principles that our implementation must follow:

• No reimplementation of any functionality that already exists in the language.

• Search for existing implementations of nontrivial algorithms before trying to

implement them.

• Keep the number of external libraries as low as possible.

For our implementation, we use Java. While the primary reason we choose Java

is us being familiar with it, we also have two other reasons for this. First of all,

Java supports big numbers in its standard library with the class BigInteger. Many

other languages, including C and C++, only have support for numbers with at most

64 bits. This is not enough for our purpose, seeing that we might need to work

with numbers composed of hundreds to thousands of bits. While it is possible to

install external libraries to work with these numbers, that would go against our

third principle.

Support for big numbers, however, is not enough of a reason to choose Java as

our language seeing as Python also bundle this feature with its standard library.

The other reason we choose Java is its performance. While Java is generally not the
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fastest language, it is still faster than Python. In order to confirm this intuition, we

conducted a small test. In 5.3.3, we established that the most significant operation

in the RSA algorithm is encryption and decryption, which boils down to modular

exponentiation. So, in order to compare Java and Python, we run 100, 000 modular

exponentiations in both languages. In total, Java takes less than 3 seconds, while

Python takes up to 9 seconds.

In our implementation, we choose the public key e to be 65, 537, as explained in

section 5.3.3. Seeing that we have the public key, we need to generate the primes p, q

such that gcd(e, ϕ(pq)) = 1. This can be accomplished with the code in Listing 7.14.� �
1 B i g I n t e g e r p , q ;

2 do {

3 p = B i g I n t e g e r . probablePrime ( keySize / 2 , new Random ( )

) ;

4 q = B i g I n t e g e r . probablePrime ( keySize / 2 , new Random ( )

) ;

5 }

6 while ( ! e . gcd ( t o t i e n t ( p , q ) ) . equals ( B i g I n t e g e r .ONE) ) ;
 	
Listing 7.14: Using Java’s BigInteger library to generate the two primes needed for the RSA

algorithm.

Here, the most notable thing is the method BigInteger.probablePrime. The

implementation of this method is similar to the procedure of generating random

prime number in section 5.3.1. The key difference, however, is in its use of a sieve

to eliminate most composite numbers [17, Lines 731-734]. This gives us a good

decrease in execution time, seeing that we do not need to use the Miller-Rabin test

on as many numbers. The remaining portion of the above code is mundane, being

mainly a while loop to generate prime numbers until we get a pair p, q that satisfies

gcd(e, ϕ(pq)) = 1. Now, with e, p, q found, we can find the private key d, which is
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defined as the inverse of e mod ϕ(p, q). There is a method to do just this in Java,

BigInteger.modInverse. This method takes in two arguments, the number to find

the inverse of and the modulus. Using this method, we can easily compute d. At

this point, we have finished generating the keys. The implementation of this portion

of the RSA algorithm is included in Listing 7.1.� �
1 public s t a t i c RSAKey generateKey ( i n t keySize ) {

2 B i g I n t e g e r e = new B i g I n t e g e r ( " 65537 " ) ;

3 B i g I n t e g e r p , q ;

4 do {

5 p = B i g I n t e g e r . probablePrime ( keySize / 2 , new

Random ( ) ) ;

6 q = B i g I n t e g e r . probablePrime ( keySize / 2 , new

Random ( ) ) ;

7 }

8 while ( ! e . gcd ( t o t i e n t ( p , q ) ) . equals ( B i g I n t e g e r .ONE) ) ;

9 B i g I n t e g e r n = p . mult iply ( q ) ;

10 B i g I n t e g e r d = e . modInverse ( t o t i e n t ( p , q ) ) ;

11 return new RSAKey( n , e , d , p , q , keySize ) ;

12 }
 	
Listing 7.1: Function used to generate the keys for the RSA algorithm.

One thing that we would like to note is on line 11 of Listing 7.1, we create a

new object of class RSAKey. This class is the main method by which we handle key

management. RSAKey, however, does not do much by itself, aside from having

a method to verify that the set of keys it represents is a valid RSA key. Instead,

its main purpose is to wrap two other classes, RSAPrivateKey and RSAPublicKey,

which are the classes that actually store the keys. In RSAPublicKey, we store the
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keys e and N, while in RSAPrivateKey, we store the keys d, p, q,N. Furthermore,

RSAPrivateKey also contains the class CRTNumbers, which contains the numbers

required to use the Chinese Remainder Theorem to do decryption. These numbers

are precalculated when an object of type RSAPrivateKey is instantiated.

With the key generation step done, we move on to the encryption and decryption

process. Seeing that RSA encryption is simply a modular exponentiation, we can

easily implement it with the BigInteger.modPowmethod. This method makes use

of a modified form of the repeated squaring algorithm, with one major change. In

this method, a sliding window of size k is introduced over the bits of the exponent.

Furthermore, we keep an exponent b = nkth highest bits of the exponent. Then, as the window

slides over the bits of the exponent, we have a number of patterns that correspond to

a sequence of squarings and multiplying. In essence, the sliding window permutes

the steps in the repeated squaring algorithm. However, it also provides the benefit of

reducing the number of squarings and multiplications needed. Per [17, Lines 2549-

2550], a window of size k removes k − 2 squarings as well as some multiplications.

So, if k is big enough, we can gain a significant speedup for our algorithm.

On the other hand, for decryption, we implement the Chinese Remainder

Theorem optimization. It is relatively trivial to do so, seeing that each step of this

algorithm can be implemented using one method call. So, we are finished with

the implementation of the RSA algorithm. One point that we have not touch on,

but used in the algorithm, is the implementation of OAEP (Optimal Asymmetric

Encryption Padding), a padding standard we mentioned in Section 6.2. Due to

OAEP being complex to implement, following our second principle, we searched

for an implementation of OAEP and found one on GitHub. With this, we now have

the code for encryption and decryption process as shown in Listing 7.15.� �
1 public CRTNumbers ( ) {

2 dP = d .mod( p . s u b t r a c t ( B i g I n t e g e r .ONE) ) ;
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3 dQ = d .mod( q . s u b t r a c t ( B i g I n t e g e r .ONE) ) ;

4 qInv = q . modInverse ( p ) ;

5 }

6

7 public s t a t i c B i g I n t e g e r encrypt ( S t r i n g message ,

RSAPublicKey publicKey ) throws Exception {

8 byte [ ] encodedMessage = message . getBytes (

StandardCharsets . UTF_8 ) ;

9 B i g I n t e g e r messageAsInteger ;

10 while ( t rue ) {

11 encodedMessage = OAEP. pad ( encodedMessage , "SHA−256

␣MGF1" , publicKey . getKeySize ( ) / 8) ;

12 messageAsInteger = new B i g I n t e g e r ( encodedMessage ) ;

13 i f ( messageAsInteger . compareTo ( B i g I n t e g e r .ZERO) >

0) {

14 break ;

15 }

16 e lse {

17 encodedMessage = OAEP. unpad ( encodedMessage , "

SHA−256␣MGF1" ) ;

18 }

19 }

20 return encodedMessage .modPow( publicKey . getE ( ) ,

publicKey . getN ( ) ) ;

21 }

22

23 public s t a t i c S t r i n g decrypt ( B i g I n t e g e r cipher ,

RSAPrivateKey privateKey ) throws Exception {
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24 B i g I n t e g e r m1 = c ipher .modPow( privateKey . crtNumbers . dP

, privateKey . getP ( ) ) ;

25 B i g I n t e g e r m2 = c ipher .modPow( privateKey . crtNumbers . dQ

, privateKey . getQ ( ) ) ;

26 B i g I n t e g e r h = privateKey . crtNumbers . qInv . mult iply (m1.

s u b t r a c t (m2) ) .mod( privateKey . getP ( ) ) ;

27 B i g I n t e g e r decryptedMessage = m2. add ( h . mult iply (

privateKey . getQ ( ) ) ) ;

28 byte [ ] paddedMessage = decryptedMessage . toByteArray ( ) ;

29 byte [ ] unpaddedMessage = OAEP. unpad ( paddedMessage , "

SHA−256␣MGF1" ) ;

30 return new S t r i n g ( unpaddedMessage , StandardCharsets .

UTF_8 ) ;

31 }
 	
Listing 7.15: The complete code for MyRSA

7.3 Testing methodology

The metrics we will be using in this comparison are execution time and vulnerability

against some common attacks, such as brute force and side-channel attacks. Here,

vulnerability against an attack is determined based on whether an implementation

can be defeated by that attack and the duration of a successful attack.

For execution time, we will compare two metrics: encryption time and decryption

time. For both of these tests, we will initialize the cryptosystems by generating the

public and private keys. We will use two key sizes: 1, 024 bits, and 2, 048 bits. Here,

key size refers to the size of the modulus N. For the public exponent e, we will use

the value recommended by all implementations, which is 65, 537.
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Once we have generated the keys, we will test each implementation on two

messages, one with length 13 and the other with length 52. These messages are

pre-generated sentences, created in such a way that they can be encrypted in one

block. In order to turn a message into a form that the RSA algorithm can use, we will

encode each character to UTF-8, form a byte strings from the encoded characters,

and turn that byte string into an integer.

For each message, we will test the encryption process with 100 rounds, with

each round composed of 10, 000 encryptions. For the testing of decryption, we

will do 50 rounds, each round again composed of 10, 000 decryptions. Here, we

test decryption half the number of times of encryption because it tends to be much

slower.

For the vulnerability test, we will be testing two attacks on the RSA algorithm:

brute force factorization of the modulus and timing-based attack. Due to time and

resource constraint, we will not attempt a full factorization of the modulus using

general-purpose algorithms. Doing so would take too long, seeing as it takes 2, 700

years for a decent CPU to factor a 829-bit number [38], which is smaller than the

modulus we use (1, 024 and 2, 048 bits). Instead, we only test the special-purpose

algorithms mentioned in Section 5.1.

The exact testing procedure for brute force factorization attack on RSA goes as

follows. Assume that we have a key k of 1024 bits. We run each of the algorithms

defined in Section 5.1 on k. Each of the three algorithms tests if k possesses a certain

property. Trial division checks if k has a small factor, Fermat’s algorithm checks if

the two factors of k are close together, and Pollard’s p− 1 algorithm checks that k− 1

does not have small factors. Then, for each implementation, we generate 100 such k

and run these algorithms on these ks.

Now, in order to ensure that our test actually fails when k does not have the

property we check for, we set some constraints on each algorithm. For trial division
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and Pollard’s p − 1, we only consider numbers less than 107, which we believe is

a reasonable expectation for small primes. As for Fermat’s algorithm, we place a

limit of 106 iterations before stopping execution. Then, we generate 100 keys using

each implementation and run the factoring algorithms on them.

As for testing vulnerability against timing-based attack, we follow the same

procedure as testing performance. However, instead of two strings with a large

difference in length, we will use five strings whose lengths are 10, 20, 30, 40, and 50

respectively. Then, for each message, we encrypt it and then decrypt the resulting

ciphertext 100, 000 times with each of the four implementations.

7.4 Result

7.4.1 Performance test

Figure 7.1: The results of testing encryption speed.

We can see in Figure 7.1 that both of the Java implementations of RSA outperform

the ones in Python, which was within expectations. Unexpectedly, however, the
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execution time of the PyCryptodome library is much higher than the other three,

averaging around 8 seconds while the other three do not exceed 2 seconds when

encrypting with a 1, 024-bit key. The same holds for when we use a 2, 048-bit key.

We suspect that this difference in speed stems from how PyCryptodome handles

large number. For performance purpose, PyCryptodome implements their own

arbitrary precision numbers. In Unix-based operating system, this resolves to

wrapping GMP (GNU Multi Precision), one of the best arbitrary precision arithmetic

library in terms of performance. However, on Windows systems, which we use

for this test, PyCryptodome uses a custom implementation of arbitrary arithmetic.

While no data on its performance is available, it is a reasonable guess that it would

be slower than BigInteger and Python’s default integer type on the scale we are

working at.

Figure 7.2: The results of testing encryption speed, limited to the Java implementations.

One thing that is difficult to observe in Figure 7.1 is the relative performance of

the two Java implementations. In order to more clearly observe this, we graphed the

data for those two implementations alone in Figure 7.2. Now, we can observe that

our implementations are consistently slower than Java’s builtin implementation.
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Numerically, the difference in median performance looks to be around 0.1 to 0.2

seconds over 10, 000 runs. This is not a significant difference in speed, especially

when compared to the result of decryption.

One thing we would like to note is that there is a larger range in the execution

time of the Java implementations compared to the range observed in the execution

time of the Python implementation. We attribute this phenomenon to Java’s Just-in-

time (JIT) compiler, which dynamically compiles a method’s bytecode into native

machine code as needed. Using JIT, we can also explain the variance present in

the execution time. JIT compilation in Java is not a do-it-once process, seeing that

it takes time to compile bytecode into machine code. Instead, a method can be

JIT compiled multiple time, with the number of optimizations made increasing

each time until the method cannot be optimized any more [15]. Applying this to

our testing process, we can reason that the highest data point is from before JIT

compilation, the data points in the middle are from the intermediate stages of JIT,

and the lowest data points are from the final stage of JIT.

Figure 7.3: The results of testing decryption speed.

As for decryption, we graphed the data we collected in Figure 7.3. We can see at
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a glance that our implementation outperforms every other ones. In fact, it is at least

twice as fast as the second fastest one. We do not have a concrete hypothesis as to

why this might have happened, but based on how each implementation handles the

encryption process, we believe that the reason for the performance difference is that

our implementation only has to undo OAEP padding, the other implementations

have to undo a lot of other things they apply to their message.

7.4.1.1 Vulnerability test

For the factorization security test, no implementation has their modulus factored by

the our testing algorithms. In simple terms, the all four implementations of RSA

create “solid” keys that our algorithms cannot factor. This leads us to conclude that,

in the case of trial division and Pollard’s p− 1 algorithm, all implementations of RSA

produce keys with large enough factors to not be instantly factored by factorization

algorithms that relies on small factors. Furthermore, we conclude that the two

factors of the generated modulus are far enough away from each other that Fermat’s

algorithm will take a very long time to retrieve a factor.

As for the timing attack security test, we have compiled the collected data in

Table 7.1. One interesting thing we would like to point out is the fact that execution

time seems to be the highest when the message length is 10. We hypothesize that

this difference comes down to the random nature of the padding process. The fact

that padding is random means that given two messages a, b with a shorter than b, it

is possible that the encoded value of a is greater than b. Thus, without knowledge

of the encoding scheme, it is impossible to know if, for example, the ciphertext

resulting from the encryption of a message of length 30 is larger than the ciphertext

resulting from the encryption of a message of length 20. So, it is impossible to

perform a timing attack if we only have knowledge of the message.

While we cannot gleam much information about how different message lengths
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lead to a difference in decryption time, the result we got in Table 7.1 still indicates that

aside from PyCryptodome, no other implementation is vulnerable to this specific

type of timing attack. While Java’s builtin implementation and our implementation

is a lot slower on the two shortest messages, we can attribute that to the JIT compiler

not optimizing the compilation to its highest level. For PyCryptodome, however,

there is no such mechanism to explain why there is such a large discrepancy in run

time between the first two and the other messages.
hhhhhhhhhhhhhhhhhhhhMessage length

Implementation
JDK MyRSA Python-RSA PyCryptodome

10 0.00177 0.00066 0.00336 0.00447
20 0.00189 0.00057 0.00335 0.00352
30 0.00088 0.00060 0.00331 0.00222
40 0.00089 0.00062 0.00334 0.00206
50 0.00091 0.00062 0.00331 0.00212

Table 7.1: Results for timing attack test. Each data point is in second per encryption.
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Conclusions and FutureWorks

In this project, we present the RSA algorithm, implement it in Java under the

name MyRSA, and test MyRSA against three other implementations of RSA.

From the tests we conducted, we conclude that our implementation of the

RSA algorithm does no worse than any other algorithm, and might in fact be

better than some. More specifically, our implementation outperform all but one

external implementation in encryption, and even then the performance difference is

not large. The difference is even more pronounced when it comes to decryption,

where our implementation is more than two times faster than the second fastest

implementation. This indicates either that our implementation possesses some

innate superiority in speed, or that our algorithm does not apply as many security

patches as the other algorithms. Currently, we are leaning towards the latter

conclusion.

On the security side, we find no difference between our implementation and

the other implementations in terms of the tests we did. In fact, we found evidence

that PyCryptodome, one of the external implementations, might be vulnerable to

an attack while our implementation is not. However, this does not mean that our

implementation is secure against all attacks. After all, we only test two attacks, and

there are a lot of other attacks that can be tested.

One potential path we can take this project in the future is to improve the

performance of our implementation. At the moment, we are using functions from

81
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Java’s standard library. While they serve their purpose well enough, we suspect that

they might not be the fastest algorithms possible. So, we aim to research different

implementations of the primitive operations in the RSA algorithm, and implement

faster algorithms.

On the security side, we have only tested three special-purpose integer factoring

algorithms, and not even the best ones. For future work, we believe that it

would be interesting to work on the cutting edge algorithms (e.g. elliptic curve

factoring algorithm) and see how they perform when matched against out RSA

implementation.
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