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Abstract

Finite projective planes are finite incidence structures which generalize the concept

of the real projective plane. In this paper, we consider structures of points embedded

in these planes. In particular, we investigate pentagons in general position, meaning

no three vertices are colinear. We are interested in properties of these pentagons that

are preserved by collineation of the plane, and so can be conceived as properties

of the equivalence class of polygons up to collineation as a whole. Amongst these

are the symmetries of a pentagon and the periodicity of the pentagon under the

pentagram map, and a generalization of the concepts of rotational and reflective

symmetry. We are also interested in counting exactly how many such equivalence

classes of pentagons exist on a given projective plane.
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CHAPTER 1

Introduction

Figure 1.1: Parallel lines seem to meet at the horizon in linear perspective art.

In art that uses the technique of one-point perspective, parallel lines seem to

meet at infinity (see fig. 1.1). In the realm of the real projective plane, RP2, this

appearance is reality. Parallel lines are defined to meet at their own point at infinity,

and these points at infinity lie on a line at infinity. Beyond being a realization of a

human perceptual intuition, this change corrects a fundamental asymmetry of the

regular, affine plane R2. Just as every pair of points has a line between them, now

every pair of lines has a point between them.

Of course, we must be more rigorous in our definition of RP2 in order for it to

be a well-defined mathematical object. For every pair of lines ℓ1, ℓ2, we define the

point they share to be their intersection if they aren’t parallel, and a new point m if

they are parallel, where m is their shared slope. Note that this means that every line

1



2 1. Introduction

in each equivalence class under the relation of being parallel meets at a single point.

These ‘slope points’ are our points at infinity, and we add a single line to our plane

which contains exactly these points, which is our line at infinity.

An important difference from our perspective intuition is that parallel lines only

meet at a single point. A person standing on a pair of train tracks might think that

they meet at the horizon in front of them, and then turn around to see the tracks

meeting at the horizon again behind them. While this hypothetical person might

think of these two meetings as two points, they are, in RP2 at least, the same point.

In a very loose sense, the lines ‘wrap around,’ meeting at the same point in either

direction.

The real projective plane is a very important object in its own right, but it opens

up an idea that I find much more interesting. The fundamental structure of RP2

defines a plane, not in the language of vector spaces, topologies, or curvature, but

as an interrelated structure of points and lines called an incidence structure. Lines

are returned to their pre-Cartesian status as prime objects in of themselves, instead

of just a set of points. What this allows us to do is explore a new form of geometry,

abstracted from the concept of spacial position, or even any sense of continuous

space at all, built entirely around the concept of incidence. With this we can explore

the world of finite projective planes.

Within these new spaces, we will examine the geometry of polygons. More

specifically, we will look at pentagons, the smallest polygons that are ‘nontrivial’

with respect to the concepts we’ll be applying. Some of it will take familiar language

and form; for example, much of our time will be spent focused on the symmetries

of these pentagons. In this realm, much of what we deomonstrate reflects our

intuitions about the subject, or at the very least has a direct analogue on the real

plane. We will even encounter many planes’ own version of the golden ratio, that

which famously appears in the study of pentagons on the real plane. However, the
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nature of finite planes also gives rise to very alien realities. Much of this paper will

be focused on counting the similarity classes of polygons on finite planes, a notion

that makes no sense in the continuous, infinite world of the real plane. We’ll also

study an operation on pentagons whose iteration on real pentagons causes them

to shrink to a point, but is periodic on pentagons of the finite plane. The goal of

this paper is to bring these elements of familiarity and unfamiliarity together while

building up our knowledge of the structure of these spaces.
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CHAPTER 2

Finite Projective Planes

2.1 Definition

Projective planes are defined using axioms derived from RP2. Specifically, a

projective plane π is a tuple (P,L,I), where P is defined as a set of points, L is a

set of lines, and I ⊂ (P ×L) ∪ (L × P) is a relation between points and lines, which

satisfy the following axioms [1].

1. For all distinct p1, p2 ∈ P, there is a unique ℓ ∈ L such that p1Iℓ and p2Iℓ.

2. For all distinct ℓ1, ℓ2 ∈ L, there is a unique p ∈ P such that ℓ1Ip and ℓ2Ip.

3. There exists p1, p2, p3, p4 such that, for any three of them pa, pb, pc, there is no

ℓ ∈ L such that paIℓ, pbIℓ, and pcIℓ.

Note that P and L need not correspond to any ‘real’ points or lines in any plane.

They are defined to be these things, and even constructing such an equivalence is

impossible in general.

Of course, these axioms are quite opaque, but they can be clarified by borrowing

more terminology from regular geometry. If pIℓ, we say that p lies on ℓ and ℓ

contains p. Naturally, if a collection of points lies on a line, they are colinear. This

gives us a much more readable set of axioms:

5



6 2. Finite Projective Planes

1. Any two points in π both lie on precisely one shared line in π.

2. Any two lines in π have precisely one shared point that lies on both of them in

π.

3. There exists four points in π such that no three are colinear.

The third axiom is also sometimes written as ‘There exists a quadrangle’ to

clarify its intuition further. While this is clearly true for the real projective plane,

it may seem out of place. It serves to prevent the formation of degenerate planes,

guaranteeing our structure has certain symmetries. As we will see later, it also

allows us to introduce a coordinate system to arbitary projective planes.

A finite projective plane is exactly what its name implies. It is a projective plane

wherein its point and line sets have a finite number of elements. In fact, as we will

see, they must have the same number of elements, in addition to other numerical

symmetries.

For this paper, we will be using the following notation to discuss unique

incidence. For any two distinct points, A and B, we will call the unique line they

both lie on [A · B], and for any two distinct lines M abd N we will call the unique

point that lies on both of them M ∩N.

2.2 A Basic Construction

To understand how we construct a finite projective plane, let’s start with a 3× 3 grid

of points [10]. The size of our starting grid will be what we call the order of our

plane. We need to construct a set of lines on this grid, with some being parallel. We

can construct some as you would expect, horizontally and vertically.



2.2. A Basic Construction 7

Figure 2.1: Horizontal and vertical lines in our
construction.

However, simply choosing all the diagonal lines in this diagram would give us

lines that do not satisfy our axioms. In particular, some would not intersect while

also not being parallel, and thus meeting at infinity. Instead, we must define lines in

terms of a starting point, and a ’direction’ of the form (1, k), with k being greater than

zero and less than the order. Start at a point and add the direction to its position,

wrapping around when necessary, until you return to the original point. This will

give you a line, and two lines with the same direction but different starting points

will either be the same line or parallel.

Figure 2.2: A class of three parallel lines. Sections
of the same color are part of the same
line.

Finally, just as we did with the real projective plane, we add a new point

connecting all classes of parallel lines, and a new line through all of those. You will

note that this procedure works whenever the order we choose is a prime number.
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Otherwise, if it is not, then our manner of generating ‘parallel’ lines will sometimes

create parallel lines that intersect, when the direction is not coprime to the order.

The end result of this process is figure 2.3.

Figure 2.3: The finite projective plane of order 3.

The smallest of these planes is the Fano plane, having order 2 [1]:

Figure 2.4: The classical way of representing the
Fano plane.

In this image, each of the diagonals, sides, and the circle all represent lines. The

Fano plane serves as a useful model object for demonstrating some, although not

all, properties of projective planes.
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2.3 Properties

Fundamental to the structure of finite projective planes are the concepts of order and

duality. Order we have already encountered, but to develop a better understanding

of it we must first consider duality.

Duality for finite projective planes is much like duality for regular polyhedra;

just as faces can be changed to vertices and vice versa in regular polyhedra to form

other regular polyhedra, lines and points in projective planes can be inverted. In

fact, this duality is even stronger here, as any theorem about points and lines holds

true if you swap the words ‘lines’ and ‘points’ [1]. This is fundamentally because the

projective plane axioms treat points and lines symmetrically, such that the categories

of ‘lines’ and ‘points’ are arbitrary namings. This is clear for axioms 1 and 2, which

are transparently duals of each other. However, axiom 3 is also dualistic, as the

existence of a quadrangle also implies the existence of four lines, no three of which

go through a single point, those lines being the sides of the quadrangle.

Figure 2.5: A quadrangle with its 4 distinct sides.

Duality also appears in the quantitative structure of finite projective planes, and

this is where the concept relates to order. In general, we denote finite planes of

order p with πp, although as we will see this notation is ambiguous for some values

of p, without a few qualifications. Nonetheless, we can say with certainty that πp
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has precisely p2 + p + 1 points, and dually, p2 + p + 1 lines. Furthermore, every line

passes through p + 1 points and every point lies on p + 1 lines [1].

While this won’t demonstrate this principle for all planes, let us consider why

this is true for our construction. Consider that there are p2 points in our grid. Beyond

that, there p directions of the form (1,n), and 1 additional direction, that being (0, 1).

As such, there are p + 1 points at infinity. So, there are p2 + p + 1 points.

2.4 Representations of Finite Projective Planes

2.4.1 Over Finite Fields

The construction given in the previous section has a very direct connection to how

we constructed RP2 intuitively. However, because of this, it inherits one of the

misleading aspects of that construction. It seems to differentiate between ‘normal’

points and ‘points at infinity.’ Mathematically, there is no such distinction. There

exist incidence-preserving automorphisms of any plane which take any line to any

other line. In other words, we can rearrange the plane so that anything is the ‘line

at infinity,’ meaning that this concept is a matter of perspective. However, now

that we have the motivation for why we call these incidence structures ‘planes,’ we

can move to a new way of constructing our incidence structures with both a strong

visual intuition and a connection to abstract algebra.

Once again, we will consider the case of RP2, however, in this case we will be

building it starting withR3, considered as a vector space over the field of reals. First,

we remove the zero vector from consideration. Then, for any v⃗, u⃗ ∈ R3, we identify

these vectors with each other if there is some c ∈ R \ {0} such that v⃗ = cu⃗. This

system is a called homogenous coordinates, and it is common in both projective

geometry and computer graphics. By adding an additional Euclidean dimension

to R2, then removing a dimension by reducing the space modulo scaling, we get a
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new two dimensional space with a different structure. To motivate this, imagine a

plane in R3 at z = 1. If the z coordinate of a point (a, b, c) in our space is nonzero, we

can scale it onto that plane by multiplying by the inverse of c, to get ( a
c ,

b
c , 1). So, the

points (x, y, 1) act like ‘normal’ points of the plane.

A

A′

B

B′

Figure 2.6: Projection onto z = 1

Now, consider (a, b, c) as c goes to 0. We can see that ( a
c ,

b
c , 1) has its first two

coordinates rush off to infinity. Indeed, for this reason, (x, y, 0) act as our points at

infinity.

In addition, if we consider only the unit vectors as representatives, we get the

unit sphere with antipodal points identified. This is a standard representation of

RP2 in topology. However, for our purposes, it will be best to think of these classes

of points as the one dimensional subspaces ofR3. Ironically, these subspaces, which

look like lines, will be the points of RP2.
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−A

A

A ∼ −A

Figure 2.7: The real projective plane as a
manifold S2/(x ∼ −x). Like the Klein
bottle, it can’t be represented in
3-dimensional space without holes,
self-intersection, or redundancy. We
see the latter approach here.

Our lines, then, will be planes. In specific, for any pair of one dimensional

subspaces A,B ⊂ R3 with A , B, the ‘line’ connecting them will be their shared

plane1. It is intuitively clear this plane will always exist, as any two distinct lines

that share a point (in this case the origin) will define a plane, and that that plane is

unique. Thus, the first axiom, that any two points sit on one shared line, is satified.

It is also intuitively clear that any two planes that pass through the origin will share

a line, meaning that the second axiom, that every pair of lines intersects at precisely

one point, is satisfied.

1Interestingly, projecting these planes onto our unit sphere representation will give you a great
circle of that sphere connecting our two points. This is one way of thinking about how that
representation works.
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Figure 2.8: 1-dimensional subspaces of
R3.

Figure 2.9: Two distinct 1-dimensional
subspaces define a plane.

Intuition aside, it will be useful for us to justify this with linear algebra. Note

that, by definition, A and B are one-dimensional subspaces of R3. This means that

each is generated by some single vector. Let those vectors be a, b ∈ R, respectively.

We will denote this A = ⟨a⃗⟩ and B = ⟨⃗b⟩. Furthermore, since A and B are distinct, a⃗

and b⃗ must be linearly independent. So, L = ⟨a⃗, b⃗⟩must be a two dimensional linear

subspace of R3, and because of the properties of bases, it must be unique. Thus,

axiom 1 is satisfied.

Now, consider two distinct two-dimensional subspaces ⟨a⃗, b⃗⟩, ⟨c⃗, d⃗⟩. Clearly, their

intersection cannot be two-dimensional, because they are distinct spaces. However,

if it were zero dimensional, the intersection would be the set containing only the

zero vector, which would imply there was only one solution to αa⃗+ β⃗b = γc⃗+δd⃗, that

being α = β = γ = δ = 0. In other words, there would only be the trivial solution

to αa⃗ + β⃗b − γc⃗ − δd⃗ = 0⃗, meaning a⃗, b⃗, c⃗, d⃗ are linearly independent. However, this

cannot be true because R3 is three dimensional, so at most three vectors can be

linearly independent in it. So, the intersection must be one-dimensional. So, axiom

2 is satisfied.

Finally, consider any three basis vectors a⃗, b⃗, c⃗ of R3 and also the vector a⃗ + b⃗ + c⃗.
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By definition, a⃗, b⃗, c⃗ are linearly independent, and therefore not coplanar. Without

loss of generality, we can consider a⃗, b⃗, a⃗+ b⃗+ c⃗ as a representative of any other triple.

Consider the equation 0⃗ = αa⃗+ β⃗b+γ(a⃗+ b⃗+ c⃗) = (α+γ)a⃗+ (β+γ)⃗b+γc⃗. If a⃗, b⃗, a⃗+ b⃗+ c⃗

weren’t linearly independent, this would have a nonzero solution, but if that were

true, then that would imply (α + γ)a⃗ + (β + γ)⃗b + γc⃗ = 0⃗ had a nonzero solution,

which would mean a⃗, b⃗, c⃗ were linearly dependent. This is false by definition, so any

triple in our set is linearly independent. Thus, axiom 3 is satisfied.

Note that the process we used to generate RP2 from R3 can be entirely justified

using its properties as a vector space and the real numbers’ status as a field. So,

even though we have a visual intuition for why this process works, we can safely

extend it to more abstract vector spaces and fields. It comes naturally, then, that one

can build finite projective planes from the finite fields, Fp. Simply repeat the same

process on the vector space F3
p, with the Fp being the scalar field. It is known that Fp

exists precisely when p is a prime or a power of a prime [9].

In fact, this method of construction seems to be deeply connected to the nature

of finite projective planes. Not only can any finite field be used to construct a plane,

but every known finite projective plane can be constructed from some finite field. It

has not been proven that this holds in general, however, it is highly suspected [4].

Now, let’s consider how many points are in the plane constructed from F3
p. There

are p3 objects in F3
p. Since we removed (0, 0, 0), we have p3

− 1. Now, consider some

v⃗ ∈ F3
p \ {⃗0}. Clearly, it has some nonzero coordinate. Without loss of generality,

assume its in the first position, v0. For any c ∈ Fp \ {0}, consider cv⃗. Note that, since

Fp \ {0} is a group under multiplication, cv0 must take on a different value for every

value of c, of which there are p−1 possibilities. Since all these multiples are equivalent

in our system, this means that every unique point is represented p − 1 times in our

collection of p3
− 1 objects. So, the number of points is p3

−1
p−1 =

(p−1)(p2+p+1)
p−1 = p2 + p + 1.

Thus, there are p2 + p + 1 points. But note what this means! It shows that the order
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of our finite field, p, is also precisely the order of our projective plane! Thus, the

bond between finite fields and finite projective planes is strengthened even further.

What’s more, this demonstrates that, for any p which is a prime or a power of a

prime, some finite plane πp exists. If we add the additional condition that a theorem

called Desargues’s theorem holds, πp refers unambiguously to a single plane. There

are sometimes other non-Desarguesian planes of order p, however, we will not be

dealing with those. This is in part because of their additional complexity, and in

part because a plane is a field plane if and only if it is Desarguesian [14]. Since we

will leveraging the algebraic structure of field planes to investigate them, this is a

necessity.

However, we can push the usefulness and elegance of this representation even

further. Consider that, in three dimensions, every 2-dimensional subspace has a

1-dimensional subspace of orthogonal vectors. In other words, every plane through

the origin has a line through the origin orthogonal to it. This means we can uniquely

represent the lines of our projective planes as vectors instead of planes. Now,

consider finding the line ℓ between two points, A and B. We need to find some

vector which is orthogonal to the plane spanned by a⃗ and b⃗, in other words, a vector

orthogonal to both of these vectors. However, we know such an operation exists in

the form of the cross product! So, [A · B] = ℓ = A × B. Furthermore, consider the

1-dimensional subspace shared by two 2-dimensional subspaces must be orthogonal

to both the 2-dimensional subspaces’ orthogonal space. So, given two lines ℓ,m, the

cross product once again defines the incidence relation, with ℓ∩m = A = ℓ×m. With

this, we not only get to represent incidence with a very familiar operation, but we

also get a perfect representation of the complete duality of finite projective planes.

Our set of lines and our set of points are precisely the same set of objects under

different names, with two vectors being incident if they are orthogonal, meaning
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our incidence relation is simply I = {(x, y) : x · y = 0}, with the shared incidence of

two points or lines being the same single operation, the cross product.

This construction of finite projective planes as the linear subspaces of F3
p will

be the main way we approach them. In particular, it gives us very powerful tools

to study the symmetries of these spaces using matrices, and from there derive

combinatorial results. We will also find its characterization of non-colinearity in

terms of linear independence very useful in finding out what kinds of configurations

are ‘valid’ in some sense.

2.4.2 Levi Graphs

For planes of orders greater than 2, it quickly becomes hard to visualize the incidence

structure. For planes larger than the Fano plane, direct depictions become rare as

the resulting image is an incomprehensible net of lines and points. However, while

it will always be hard to visualize projective planes of high enough order, we can at

least get depictions of lower order graphs where some of the structure is at least

vaguely apparent. We achieve this using Levi graphs.

A Levi graph of any incidence structure is a graph where every point and line

is assigned a node, and there is an edge between two nodes if they respectively

represent a point and a line which are incident [11].

Using only this definition and what we know about projective planes, we can

start to make claims about the structure of Levi(πp). For example, it is clear that it

must be (p + 1)-regular, since every point is incident with p + 1 lines and every line

is incident with p + 1 points. It also must be bipartite, since there can’t be an edge

between a line and a line or a point and a point.

The cycles of Levi(πp) are of particular interest. First, there can be no odd cycles,

since Levi(πp) is bipartite. There also cannot be a 4-cycle, as the two lines represented

in the cycle would both be incident with the two points on the cycle. This would
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Figure 2.10: The Levi graph of the Fano plane,
Levi(π2), also called the Heawood
graph. This graph representation is
an excellent tool for studying
projective planes.

mean two lines crossed each other at two points, violating both axiom 1 and axiom

2. However, since axiom 3 guarantees the existence of three non-colinear points,

there must be a 6-cycle in Levi(πp). Thus, the smallest cycle in Levi(πp) will always

have length 6. This is called the girth of the graph.

Finally, consider any two vertices a, c of Levi(πp). If they are of the same type (as

in point or line), there must be some point or line they share in common, c. So, there

is a path of length 2 between them, a → b → c. If they are of different type, let a

be the line. Choose any point on the line, b1, and let the line shared by b1 and c be

called b2. So, there is a path of length 3 between a and c, a→ b1 → b2 → c. Thus, the

furthest distance between any two vertices of Levi(πp) is 3, meaning the diameter of

Levi(πp) is 3 [11].
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CHAPTER 3

Polygons on Finite Projective Planes

3.1 Automorphisms

Like all mathematical structures, projective planes have a naturally defined set of

automorphisms which preserve their inherent structure. For a plane π = (P,L,I),

an automorphism is a bijective function ϕ : P → P with an induced function

ϕ : L → L such that, for p ∈ P and ℓ ∈ L, it is true that pIℓ ⇐⇒ ϕ(p)Iϕ(ℓ). In

practice, it is usually clear enough to let a single symbol ϕ to refer to both ϕ and ϕ.

Since it maps lines to lines, ϕ is also sometimes called a collineation [1].

Thankfully, our representation of πp using F3
p gives us a natural way to think

about the automorphisms of πp. Any invertible linear transformation of the vector

space F3
p defines an automorphism, the vectors representing points being taken to

new points, and remaining on the planes that represent lines. However, GL(3, p),

the group of invertible 3 × 3 matrices on Fp, isn’t isomorphic to the collineation

group of πp. Notice that any pure scaling operation, represented by some scalar

multiple of the identity, is always equivalent to the same automorphism, the identity

automorphism. This is because we consider vectors the same up to scaling, so

any operation that doesn’t knock at least one vector off its own span will be the

identity automorphism. In other words, our group is ‘too large’ insofar as every

19
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collineation has multiple representations in GL(3, p). Thankfully, when p is prime,

this is the only hangup. So, the automorphism group of πp is GL(3, p)/Z(GL(3, p)),

with Z(G) being the center of a group G, the set of all elements that commute with

every other element. In this case, Z(GL(3, p)) is in this case the group of all scalar

transformations. This group is called the projective linear group, PGL(3, p). It

represents all invertible linear transformations, with transformations that are scalar

multiples of each other being considered the same [5].

For non-prime orders, there are additional complications which make the

automorphism group PΓL(3, p), the projective semilinear group on F3
p. Without

going into too much detail, this is because fields of non-prime order have nontrivial

automorphisms. These automorphisms induce a type of collineation called an

automorphic collineation which is not representable by matrices. This is as opposed to

the collineations we will use, which can be, and are called homographies. Thankfully,

due to the Fundemental Theorem of Projective Geometry, we know that every

collineation is a product of a homography and an automorphic collineation, called

a semilinear map [2]. This means that, in the case of fields of prime order, all

collineations are just homographies. Due to its additional complexity, we will be

considering only planes of prime order from now on.

Unlike transformations in the general linear group, transformations in the

projective linear group are not uniquely defined by where three linearly independent

vectors are taken. Consider three such vectors a⃗1, a⃗2, a⃗3 which are taken to vectors

b⃗1, b⃗2, b⃗3 by transformation T1. Now, consider a second transformation T2 which is

different in that it takes a⃗1 to 2⃗b1. It is clear that T1 and T2 aren’t scalar multiples of

each other, and thus aren’t the same transformation, but they are nonetheless the

same with respect to how it moves a⃗1, a⃗2, a⃗3, since we consider b⃗1 and 2⃗b1 to be the

same. A vector it does change by knocking off its span, is a⃗1 + a⃗2 + a⃗3 which T1 maps

to b⃗1 + b⃗2 + b⃗3 and T2 maps to b⃗1 + b⃗2 + 2⃗b3, which are not scalar multiples of each
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other. What this shows us is that we need at least 4 one-dimensional subspaces to

define a transformation in the projective linear group. In more geometric language,

a collineation is defined entirely by where it takes a given quadrangle [6].

3.2 Polygons

It is relatively natural to transfer our idea of polygons from the real plane to finite

planes:

Definition 3.1 An n-gon is a collection of n points, arranged in a cycle such that every

point is adjacent to two others.

This abstracts our euclidean idea of polygons: a polygon is a cycle of points with

a sense of adjacency. This means that when we represent a polygon as a tuple, it

is considered the same polygon when you reverse the order or shift the position.

For example, the polygon P could equally well be represented by (p1, p2, p3, p4),

(p4, p3, p2, p1) or (p4, p1, p2, p3). When we use such ordered pairs, we will call them

representations, and will have to be careful of the fact that any representation is just

one of many1.

There are various possible constraints one can place on these polygons, two

of which are relevant here. The weaker condition, that no three adjacent points

are colinear, has been studied by Lazebnik et al [11]. However, when we speak

of polygons from now on, we will assume a stronger condition, that they are in

general position. Our use of this concept originates with Shwartz’s work on the

pentagram map [12].

Definition 3.2 An n-gon is in general position iff no three points are colinear.

This condition will serve us in particular when we consider the pentagram map

ourselves in Section 4.
1Specifically, it is clear to see that any n-gon with n ≥ 3 has 2n representations.
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Finally, we will consider how automorphisms relate to polygons. For this, we

will borrow language from Euclidean geometry. When we compare shapes going

back to elementary school, we considered them similar if one could be taken to

another by the angle-preserving automorphisms of the plane: scaling, rotation, and

translation. These are, in a sense, the fundamental automorphisms of Euclidean

geometry, as they preserve the relations of angles and relative length which it

usually studies. Analogously, collineations are the fundamental automorphisms

of projective geometry, as they preserve incidence. As such, we will define the

similarity of polygons on a projective plane as such:

Definition 3.3 Two n-gons A,B on a projective plane π are similar iff there exists

an collineation ϕ : π → π such that (a1, a2, . . . , an) is a representation of A and

(ϕa1, ϕa2, . . . , ϕan) is a representation of B. We write this as ϕA = B.

In other words, ϕ maps A to B in a way that preserves the adjacency of the

vertices of B.

By the nature of collineation, on any plane π, all triangles in general position are

similar to each other, and all quadrangles in general position are similar to each

other. Thus, the smallest polygons for which similarity is nontrivial are pentagons.

As such, these will be the focus of our consideration.

Theorem 3.1.

If A is an n-gon in general position and ϕ is an collineation, ϕA is in general position.

Proof. Consider some pentagon A in general position and some collineation ϕ.

Let a, b, c be three vertices of ϕA. Note that ϕ−1a, ϕ−1b, ϕ−1c are vertices of A.

Since A is in general position, ϕ−1a, ϕ−1b, ϕ−1c are noncolinear. So, [ϕ−1a · ϕ−1b] is

not incident with ϕ−1c. Since ϕ is a collineation, ϕ[ϕ−1a · ϕ−1b] = ϕϕ−1[a · b] = [a · b]

is not incident with ϕ(ϕ−1(c)) = c. Since c doesn’t lie on [a, b], we know a, b, c are not

colinear.
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So, any three vertices of ϕA are noncolinear. Thus, ϕA is in general position. □

So, being in general position is a property of an equivalence class of pentagons.

3.3 Classes of Similar Polygons

Let πp = (P,L,I) be any finite projective plane of order p.

Using our finite field representation, consider the following quadrangle:

Q = (⟨1, 0, 0⟩, ⟨0, 1, 0⟩, ⟨0, 0, 1⟩, ⟨1, 1, 1⟩)

This is the quadrangle we proved must exist for any finite projective plane. Let us

denote its elements u1,u2,u3,u4, respectively. We will call this the unit quadrangle

in whatever plane πp in which we encounter it.

Finally, for any pentagon P, let [P] denote the equivalence class of pentagons

similar to P. Most of the rest of this chapter will be moving towards the end of

counting exactly how many of these equivalence classes exist on a given plane πp. In

other words, we will be attempting to count the size of the moduli space of pentagons

on πp. However, in service of this combinatorial end, we will derive other insights,

particularly about the symmetries and general form of these pentagons.

Now, let’s consider a subset of the pentagons in general position, which we’ll

call unitary pentagons.

Definition 3.4 A pentagon is unitary if and only if it is in general position and has a

representation (u1,u2,u3,u4, a), with a ∈ P.
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Theorem 3.2.

In πp, there are (p − 2)(p − 3) unitary pentagons.

Proof. Consider some unitary pentagon P onπp with representation (u1,u2,u3,u4, x).

Since P is in general position, x must not be a linear combination of any two of

u1,u2,u3,u4.

Thus, these (and only these) are the forms that x cannot take:

au1 + bu2 = ⟨a, b, 0⟩

au1 + bu3 = ⟨a, 0, b⟩

au2 + bu3 = ⟨0, a, b⟩

au1 + bu4 = ⟨a + b, b, b⟩

au2 + bu4 = ⟨b, a + b, b⟩

au3 + bu4 = ⟨b, b, a + b⟩

From this, we can see that x cannot have a zero in any of its three positions, and no

two positions can be equal. Having these properties, however, guarantees x is not

in any of the above forms, and so is not a linear combination of any two points of

our unit quadrangle.

We can set x0 = 1 since we consider vectors the same up to scaling. So, let

x = ⟨1, a, b⟩. Since there are p elements of Fp, and we’re not allow to choose 0 or

1, we can choose p − 2 possible values for a. Since a , b, this leaves us with p − 3

possibilities for b, giving us (p − 2)(p − 3) possibilities.

So, since everything else is fixed and there are (p − 2)(p − 3) possible values of x,

there are (p − 2)(p − 3) unitary pentagons on πp. □
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Theorem 3.3.

Any pentagon in general position is similar to some unitary pentagon.

Proof. Consider any pentagon in general position, T on πp. Let (t1, t2, t3, t4, t5) by

a representation of T. Since T is in general position, Q = (t1, t2, t3, t4) is a quadrangle.

Let ϕ be the unique transformation which takes that quadrangle Q to the unit

quadrangle U.

So, ϕT = (u1,u2,u3,u4, ϕt5). By definition, T is similar to ϕT, and ϕT is unitary.

So, for any pentagon is similar to some unitary pentagon. □

For us, unitary pentagons will serve an important purpose as representatives

of their similarity equivalence classes. In particular, as these classes get larger and

larger as the order p of πp grows, we will demonstrate that the number of unitary

pentagons in each class is nonetheless very strictly constrained. In fact, we will

show the only possible numbers of unitary pentagons in an equivalence class [P]

are 10 and its divisors. Establishing this requires accounting for the symmetries

of pentagons. We can leverage these symmetries to give an exact account of how

many pentagon classes exist with nontrivial symmetries.

Definition 3.5 A symmetry of a pentagon P is an collineation ϕ such that ϕP = P.

Theorem 3.4.

For any pentagon P on πp, there is some s such that s|10 and each Q ∈ [P] has s symmetries.

Furthermore, the symmetries of each Q ∈ [P] form a group, and that group is isomorphic

with the symmetry group of every other pentagon in [P].

Proof. Consider some pentagon P on πp. Consider the set of symmetries S of P.

Note that for ϕ1, ϕ2 ∈ S, ϕ1ϕ2P = ϕ1P = P, so ϕ1ϕ2 ∈ S. Furthermore, since ϕ1P = P,

we see that P = ϕ−1
1 P, so ϕ−1

1 ∈ S. So, since S is a closed subset of PGL(3, p), S is a

group.



26 3. Polygons on Finite Projective Planes

Note that each automorphism inS permutes the 5 verticies of P in some way that

preserves their adjacency. Furthermore, this permutation is unique for each unique

symmetry, as each permutation tells us exactly where 4 of the vertices go, which

uniquely defines a collineation. The group of all such permutations is of course the

5th dihedral group, D5. So, there is some injective homomorphism h : S → D5 which

maps each automorphism in S uniquely to the element of D5 which represents how

it permutes the vertices of P. Since h is injective, S � im(h). However, since im(h)

is a subgroup of D5, its size must divide |D5| = 10. So, |im(h)| = |S| divides 10. Let

s = |S|.

Now, consider some symmetry ϕ of Q ∈ [P], which permutes the vertices of

Q some way. For any other pentagon R ∈ [P], we can construct a symmetry that

permutes the vertices of R in the same way. By definition, there exists some γwhich

maps Q to R. Thus, the map γϕγ−1 maps R to Q, permutes the vertices, and then

reverses the mapping, taking Q back to R. Thus, any symmetries Q has, R does as

well. Since this relationship is symmetrical, this means that all members of [P] have

the same number of symmetries. In particular, they have s symmetries.

For any pentagon P, there is some s such that s|10 and each Q ∈ [P] has s

symmetries, and the symmetry group of each Q ∈ [P] is isomorphic to the symmetry

group of every other pentagon in [P]. □

Remark 3.1 Due to this result, we can speak of a given equivalence class as having some

number of symmetries s and some symmetry group (up to isomorphism) S. In other words,

it the symmetries of a polygon are invariant under collineation.

Now, to prove the next result, we will define a new operation on pentagons.

However, its motivation might be unclear if the thought process if left unexplained.

To begin, consider a much easier to imagine space: R2 along with the angle-

preserving transformations: those which are a combination of translations, rotations,
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reflections, and scaling. If we imagine an equilateral triangle in this space, we can

see that any permuation σ of its vertices which preserves adjacency (which in the

case of triangles, is all of them) has a corresponding angle-preserving transformation

τσ which permutes the vertices in that way.

However, what about irregular triangles? You can’t transform R2 in such a way

that it takes one vertex with angle θ to another with angle , θ, since by definition

that would require a transformation that does not preserve angles. For this reason,

angle-preserving transformations cannot in general take any triangle to any other

triangle. It’s this lack of transitivity that makes the concept of similarity in geometry

nontrivial. However, these transformations can take any line segment to any other

line segment, meaning we can permute at least two of the three vertices correctly,

and let the last one go where it may. We will call this forcing.

Take, for example, the triangle ABC in figure 3.1. We will try to force the

permutation ABC→ CAB on it. We’ve chosen A,B can be permuted correctly, so

since the permutation does not correspond to a symmetry of ABC, C is taken to an

entirely new point, C′.

A,B′

B

C,A′

C′

Figure 3.1: Forcing a triangle with the permutation ABC→ CBA.

If we were to fix some standard line segment, like for example the one between

(0, 0) and (1, 0), we can consider only the triangles that contain that segment. From
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there, we can always make sure that whatever segment gets taken to that side of the

triangle by a permutation is the one that is mapped correctly, giving us a comparison

of all possible permutation forcings, as seen in figure 3.2.

A B

( )

(ACB)

(ABC)

(AC)

(AB)

(BC)

Figure 3.2: All possible forcings, with whatever lands on AB always being the
correct part. The resulting third points are labeled with the
permutation that created them.

There is a slight issue with this strategy in that two points don’t contain enough

information about orientation, and so our choice of reflection is arbitrary. I’ve

chosen the orientation which makes whatever is permuted to C as close to C as

possible. However, this is not an issue with more free types of transformations,

which are transitive on larger sets of points. For example, Something analogous

can be done with quadrilaterals and affine transformations, which can take any

triangle to any other triangle. See figure 3.3. Note that in the example chosen, pairs

of permutations land in the same place; we will see that things like this correspond

to there being nontrivial symmetries of our shape. In this case, the symmetry is the

one that permutes the vertices like (AB)(CD).
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AB

C
( )

(AB)(CD)

(AC)(BD)

(AD)(BC)

(AC)

(ABCD)

(BD)

(ADCB)

Figure 3.3: Forcings of affine transformations on a quadrilateral. Note that pairs
of points land in the same place.

Moving up one more level of freedom with our transformations, that’s what

we’re going to do with unitary pentagons. Given some unitary pentagon U and a

permutation of its vertices σ, we want to see which vertices are taken to the unit

quadrangle, ‘reverse engineer’ a collineation which does that, and apply it to the

whole pentagon.

v

u1

u2u3

u4

σ

ϕ

P ϕP

Figure 3.4: Relationships inherent to the forcing operation of collineations on
pentagons.

With that motivation in mind, here is the formal definition:
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Definition 3.6 Let Σ be the set of set of permutations of a cycle of 5 points that preserves

adjacency2, andUp be the set of unitary pentagons on πp. Then, let the forcing operation

⊗ : Σ ×Up →Up be an operation defined as the following:

For some σ ∈ Σ and U ∈ Up, let Q be the quadrangle in U which σ maps to the

unit quadrangle. Let ϕ be the collineation which takes Q to the unit quadrangle. Then,

σ ⊗U = ϕU.

Remark 3.2 It should be clear that if there is a symmetry of U ∈ Up that permutes the

vertices the same way σ does, then σ⊗U = U. Otherwise, σ⊗U will be some other unitary

pentagon similar to U by definition.

Theorem 3.5.

⊗ is a group action of Σ onUp.

Proof. Consider any U ∈ Up. Let ϕσ denote the collineation that is generated as

part of the definition of σ ⊗U.

The identity permutation e takes the unit quadrangle in U to itself, so the

collineation ϕe is the identity, so e⊗U = ϕeU = U. Thus, the identity requirement of

a group action is satisfied.

Now, consider any two permutations α, β ∈ Σ. Consider only the unit quadrangle

in U. By construction, ϕα, ϕβ permute this quadrangle the same way as α, β do,

respectively. So, ϕαβ permutes it the same way αβ does. Since a collineation is

defined by where it takes a given quadrangle,

α ⊗ (β ⊗U) = ϕαϕβU = ϕαβU = (αβ) ⊗U

Thus, the compatibility requirement of group actions is satisfied.

As both requirements are satisfied, ⊗ is a group action of Σ onUp. □

2This is clearly isomorphic to D5, however, it is better to think of them as permutations.
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Theorem 3.6.

For any pentagon P on some πp, [P] contains 10
s unitary pentagons, where s is the number

of symmetries of [P].

Proof. Consider any pentagon P on some finite projective plane. Consider some

unitary pentagon U ∈ [P], which must exist by Theorem 3.3.

Let Σ be the 10 permutations of the vertices of U which preserve adjacency. Now,

consider the subgroup Σ′ of Σ of permutations which correspond to symmetries

of U. We know this is a subgroup because it must be isomorphic to the symmetry

group of U. Obviously, |Σ′| = s.

Now, consider the left cosets of the form αΣ′, where α ∈ Σ. There must be
|Σ|
|Σ′|
= 10

s of these. Now, consider any two σ1, σ2 ∈ αΣ′. By definition, σi = ασ′i , with

σ′i ∈ Σ
′. However, since both σ′1, σ

′

2 are symmetries, they don’t change U, meaning

σ1⊗U = (ασ′1)⊗U = α⊗(σ′1⊗U) = α⊗U, and σ2⊗U = (ασ′2)⊗U = α⊗(σ′2⊗U) = α⊗U.

Therefore, all elements of the same right coset map U to the same pentagon under ⊗.

Now, consider some α, β such that α ⊗U = β ⊗U. So, (α−1β) ⊗U = U, meaning

α−1β ∈ Σ′. Thus, β = α(α−1β) ∈ αΣ′. Thus, two permutations take U to the same

pentagon under ⊗ only if they are in the same right coset of Σ′.

So, the number of distinct pentagons that U is be taken to by Σ under ⊗ is the

number of right cosets of Σ′, which is 10
s .

Now, consider U = {σ ⊗ U | σ ∈ Σ}. This must be the set of all the unitary

pentagons in [P], since if a unitary pentagon is similar to U, then four of U’s vertices

must map to its unitary quadrangle, which would correspond to some permutation.

We’ve seen that there must be 10
s elements inU.

For any pentagon P, [P] contains 10
s unitary pentagons, where s is the number of

symmetries of [P]. □

With this relationship, we gain more leverage over the problem of the number
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of equivalence classes. We will proceed by trying to count the number of classes

that display 2, 5, and 10 symmetries. While these form a very small porportion of

the total number of pentagons, since we know that there are (p − 2)(p − 3) unitary

pentagons, and know exactly how many unitary pentagons should be in each class

as a function of its symmetries, we can solve for the number of pentagons with only

the trivial symmetry. The reason this is attractive is that the presence of nontrivial

symmetries allows us to explore what form those pentagons take in terms of the

solutions to linear equations. We can do this by solving for the collineation matrix

and fifth vertex of a general unitary pentagon. The number of different solutions to

these equations will also tell us how many such pentagons exist.

Definition 3.7 A polygon P has n-fold symmetry if it has a symmetry of order n.

Theorem 3.7.

The unitary pentagons with 2-fold symmetry with a symmetry that fixes u1 are precisely

those of the form (u1,u2,u3,u4, ⟨1, 1
2−b , b⟩) for b < {0, 1, 2}.

Proof. Let p be prime. Consider πp.

Let us consider the most general possible unitary pentagon with 2-fold symmetry.

Let us call the pentagon P and the symmetry σ. Every P has some point r that is fixed

by σ, since it has an odd number of sides. Since we want a unique representative of

P up to automorphism, we can fix four of P’s 5 points such that P is a certain unique

unitary pentagon. Thus, consider the following pentagon, with r = ⟨1, 0, 0⟩:
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⟨1, 0, 0⟩

⟨0, 1, 0⟩

⟨0, 0, 1⟩⟨1, 1, 1⟩

⟨1, a, b⟩ σ

σ

Figure 3.5: Our representative pentagon

We know that the last vertex must be of the form ⟨1, a, b⟩, with a , b and

a, b < {0, 1}, thanks to how Theorem 3.2 was proven. So, we have the following

conditions on σ, up to scaling:

σ⟨1, 0, 0⟩ = ⟨1, 0, 0⟩

σ⟨0, 1, 0⟩ = ⟨1, a, b⟩

σ⟨0, 0, 1⟩ = ⟨1, 1, 1⟩

σ⟨1, 1, 1⟩ = ⟨0, 0, 1⟩

σ⟨1, a, b⟩ = ⟨0, 1, 0⟩

The first three conditions are satisfied in the usual way, by setting the columns of

the matrix to be the desired output:


1 1 1

0 a 1

0 b 1


We can scale each column by s1, s2, s3 respectively, and look for a solution in terms
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of a, b that satisfies the third condition.


s1 s2 s3

0 s2a s3

0 s2b s3




1

1

1

 =

0

0

1


Multiplying this out gives s1 + s2 + s3 = 0, s2a + s3 = 0, and s2b + s3 = 1. The solution

to this linear system of equations is s1 =
1−a
a−b , s2 =

1
b−a , and s3 =

a
a−b . So, we have σ in

terms of a, b:

σ =


1−a
a−b

1
b−a

a
a−b

0 a
b−a

a
a−b

0 b
b−a

a
a−b


Since a , b, we can scale this matrix by a − b to simplify it:

σ =


1 − a −1 a

0 −a a

0 −b a


So, consider the third condition:


1 − a −1 a

0 −a a

0 −b a




1

a

b

 =

1 − 2a + ab

−a2 + ab

0

 =

0

k

0


Thus, 2a − ab − 1 = 0. Manipulating this gives a = 1

2−b .

Since a is expressed in terms of b, we’ve parametrizedσ in terms of b. Furthermore,

this is valid by construction whenever a exists, so b , 2, meaning b < {0, 1, 2} when

we include our previous requirements for b.
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Now, we will demonstrate every pentagon of the form P = (u1,u2,u3,u4, ⟨1, 1
2−b , b⟩)

is a unitary pentagon with 2-fold symmetry and a symmetry that fixes u1.

From our previous computation we get the following matrix. We scale it by 2− b

to simplify it.

σ =


1 − 1

2−b −1 1
2−b

0 −
1

2−b
1

2−b

0 −b 1
2−b

 �

1 − b b − 2 1

0 −1 1

0 b(b − 2) 1


We can show σ reflects P by fixing u1 and exchanging the other two pairs of vertices

by direct computation:

σ⟨1, 0, 0⟩ = ⟨1 − b, 0, 0⟩ � ⟨1, 0, 0⟩

σ⟨0, 1, 0⟩ = ⟨b − 2,−1, b(b − 2)⟩ � ⟨1, 1
2−b , b⟩

σ⟨0, 0, 1⟩ = ⟨1, 1, 1⟩

σ⟨1, 1, 1⟩ = ⟨0, 0, b(b − 2) + 1⟩ � ⟨0, 0, 1⟩

σ⟨1, 1
2−b , b⟩ = ⟨0, b +

1
b−2 , 0⟩ � ⟨0, 1, 0⟩

So, P is a pentagon for which σ is a symmetry of order 2 which fixes u1, meaning P

has 2-fold symmetry, and whose symmetry fixes u1.

So, the unitary pentagons with 2-fold symmetry with a symmetry that fixes u1

are precisely those of the form (u1,u2,u3,u4, ⟨1, 1
2−b , b⟩) for b < {0, 1, 2}. □

Theorem 3.8.

The unitary pentagons with 5-fold symmetry are precisely those of the form (u1,u2,u3,u4, ⟨1,−g, g+

1⟩) where g2
− g − 1 − 0.

Proof. Let p be prime. Consider πp.

Consider any unitary pentagon R with 5-fold symmetry. Just as in the previous

theorem, it must be of the form R = (u1,u2,u3,u4, ⟨1, a, b⟩) with a , b. By definition,



36 3. Polygons on Finite Projective Planes

there is some ρ′ of R that is of order 5. This means that there is some ρ such that:

ρ⟨1, 0, 0⟩ = ⟨0, 1, 0⟩

ρ⟨0, 1, 0⟩ = ⟨0, 0, 1⟩

ρ⟨0, 0, 1⟩ = ⟨1, 1, 1⟩

ρ⟨1, 1, 1⟩ = ⟨1, a, b⟩

ρ⟨1, a, b⟩ = ⟨1, 0, 0⟩

This is because (ρ′)n would have to be ρ for some n, because there are 5 distinct

ways to permute the vertices of R which preserve orientation (of which ρ does one),

and 5 distinct powers of ρ′. ρ′ must preserve orientation, as otherwise its order

world be even.

To satisfy the first three constraints, ρ must be in the following form, with

s1, s2, s3 ∈ Fp:

ρ =


0 0 s3

s1 0 s3

0 s2 s3


From the third constraint, we get:

ρ =


0 0 s3

s1 0 s3

0 s2 s3




1

1

1

 =


s3

s1 + s3

s2 + s3

 =

1

a

b


This means that s3 = 1, s1 = a − 1, and s2 = b − 1. Finally, let’s consider the final
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constraint, with k as some arbitrary constant in Fp:


0 0 1

a − 1 0 1

0 b − 1 1




1

a

b

 =


b

a + b − 1

a(b − 1) + b

 =

k

0

0


So, a + b − 1 = 0, meaning a = 1 − b. So:

a(b − 1) + b = (1 − b)(b − 1) + b = −b2 + 3b − 1 = 0

Thus, b2
− 3b + 1 = 0. Now, let g = b − 1. So, (g − 1)2

− 3(g − 1) + 1 = g2
− t − 1 = 0.

Note that a = 1 − b = 1 − (g + 1) = −g. So, we can parametrize all unitary pentagons

with 5-fold symmetry on πp as the unit quadrangle followed by ⟨1,−g, g + 1⟩, for all

g such that g2
− g − 1 = 0.

We will now demonstrate every such pentagon is a unitary pentagon with 5-fold

symmetry. So, let P = (u1,u2,u3,u4, ⟨1,−g, g + 1⟩) be a pentagon with g2
− g − 1 = 0.

From our previous computation we get the following matrix.

ρ =


0 0 1

−g − 1 0 1

0 g 1


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We can show ρ rotates P by taking u1 to u2, u2 to u3, and so on, by direct computation:

ρ⟨1, 0, 0⟩ = ⟨0,−g − 1, 0⟩ � ⟨0, 1, 0⟩

ρ⟨0, 1, 0⟩ = ⟨0, 0, g⟩ � ⟨0, 0, 1⟩

ρ⟨0, 0, 1⟩ = ⟨1, 1, 1⟩

ρ⟨1, 1, 1⟩ = ⟨1,−g, g + 1⟩

ρ⟨1,−g, g + 1⟩ = ⟨g + 1, 0,−g2 + g + 1⟩ = ⟨g + 1, 0, 0⟩ � ⟨1, 0, 0⟩

So, P is a pentagon for which ρ is a symmetry of order 5, meaning P has 5-fold

symmetry.

So, the unitary pentagons with 5-fold symmetry are precisely those of the form

(u1,u2,u3,u4, ⟨1,−g, g + 1⟩) where g2
− g − 1 − 0. □

Definition 3.8 A regular pentagon P is one for which the symmetry group S of [P] is

isomorphic to D5.

Theorem 3.9.

A pentagon in πp with 5-fold symmetry must be a regular pentagon.

Proof. Consider any pentagon with 5-fold symmetry R. It must be similar to

some unitary pentagon U, and by Theorem 3.8, we know that U is of the form

(u1,u2,u3,u4, ⟨1,−g, g + 1⟩), for some g such that g2
− g − 1 = 0.

Now, let b = g + 1. For 1
2−b =

1
1−g =

1+g
1−g2 . Note that, since g2

− g − 1 = 0,

1 − g2 = −g. So, 1+g
1−g2 =

1+g
−g = −1 − 1

g . Since g2
− g − 1 = 0, g2 = g + 1, meaning

g = 1 + 1
g . So, −1 − 1

g = −g. Thus, 1
2−b = −g. This means that U is of the form

(u1,u2,u3,u4, ⟨1, 1
2−b , b⟩).

Note that g < {−1, 0, 1} because none of those are roots of x2
− x − 1 modulo any
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prime, since (−1)2
− (−1)− 1 = 1, 02

− 0− 1 = −1, and 12
− 1− 1 = −1. So, b < {0, 1, 2}.

These two facts mean that, by Theorem 3.7, U has a 2-fold symmetry.

Since R and U have the same symmetry group by Theorem 3.4, R has a 2-fold

symmetry. However, since R has 2-fold symmetry and 5-fold symmetry, that means

it has a symmetry of order 5 and a symmetry of order 2. Since its symmetry group

is a subgroup of D5, this means its symmetry group must be D5. So, R is a regular

pentagon.

So, a pentagon on πp with 5-fold symmetry must be a regular pentagon. □

What we’ve proven here is a fact that we know is intuitively true in the real plane;

you can’t have a pentagon with rotational symmetry that doesn’t have reflective

symmetry. However, unlike the proofs one might have seen in other types of

geometry, we’ve had to prove this fact without the use of a metric and the derived

concept of angles. This implies that this is a property that is more general than

simply being a property of metric spaces.

Theorem 3.10.

For prime p, πp has a regular pentagon only if p mod 5 is congruent to −1, 0, or 1.

Proof. Since p is prime, the collineation group of πp is PGL(3, p). Since πp is

prime, then there is some regular pentagon R, for which the symmetry group S of R

is isomorphic to D5. Thus, D5 ≤ PGL(3, p). So, |D5| divides |PGL(3, p)|, meaning that

10 divides p3(p3
− 1)(p2

− 1), since that is the order of PGL(3, p) [5].

Since p3(p3
− 1)(p2

− 1) ≡ 0 mod 10, it must also be true that:

p3(p3
− 1)(p2

− 1) ≡ 0 mod 2

p3(p3
− 1)(p2

− 1) ≡ 0 mod 5

The first is always true, as when p3 is odd, p3
− 1 is even and vice versa, so the whole
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expression must always be even. Since 5 is prime, the second implies that one of

the following are true:

p3
≡ 0 mod 5

p3
− 1 ≡ 0 mod 5

p2
− 1 ≡ 0 mod 5

Manipulating, we get:

p3
≡ 0 mod 5

p3
≡ 1 mod 5

p2
≡ 1 mod 5

Finally, taking roots gives us:

p ≡ 0 mod 5

p ≡ 1 mod 5

p ≡ ±1 mod 5

So, p mod 5 is congruent to −1, 0, or 1.

Thus, for prime p, if πp has a regular pentagon, then p mod 5 is congruent to

−1, 0, or 1. □

We now finally can begin to count the equivalence classes of similar pentagons.

We’ll approach this by counting the number of pentagons with 2, 5, and 10

symmetries, and then use that fact, and what we know about unitary pentagons,
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to count the classes of entirely irregular pentagons. After that, counting the total

number is as simple as summing these values up.

Lemma 3.1.

If p is a prime with p ≡ ±1 mod 5, then there exist two g ∈ Fp such that g2
− g − 1 = 0.

Proof. Let p be a prime with p ≡ ±1 mod 5. By the law of quadratic reciprocity,

we know that: (
p
5

)(
5
p

)
= (−1)

5−1
2

p−1
2 = ((−1)2)

p−1
2 = 1

(
r
q

)
is the Legendre symbol, which is 1 when there is some n2

≡ r mod q and −1

otherwise. In the first case, we call r a quadratic residue mod q. Since the only

possible values of
(

p
5

)
and

(
5
p

)
are ±1 and their product is 1, then we can see that:

(
p
5

)
=

(
5
p

)

Now, consider that, since 12
≡ 1 mod 5 and 22 = −1 mod 5, and p ≡ ±1 mod 5, this

means that p is a quadratic residue mod 5. As such,
(

p
5

)
= 1. However, this means

that
(

5
p

)
= 1, meaning there is some n ∈ Z such that n2 = 5 mod p.

So, there is some G ∈ Fp such that G2 = 5. Consider g = 1
2 (G+1). Since G = 2g−1,

(2g − 1)2 = 4g2
− 4g + 1 = 5. Subtracting 5 from both sides and dividing by 4 gives

us g2
− g − 1 = 0.

Now, consider that:

(1 − g)2
− (1 − g) − 1 = 1 − 2g + g2

− 1 + g − 1

= g2
− g − 1

= 0

So, 1 − g is also a root of x2
− x − 1 = 0.

So, if p is a prime with p ≡ ±1 mod 5, then exist two g ∈ Fp such that g2
−g−1 = 0.
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□

Definition 3.9 Let Cn,p be the number of equivalence classes with exactly n symmetries on

πp.

Definition 3.10 Let the indexed constants rp be the following:

rp =


1 p ≡ 0 mod 5

2 p ≡ ±1 mod 5

0 p ≡ ±2 mod 5

Theorem 3.11.

For any prime number p, C10,p = rp.

Proof. Let p be prime.

From Theorem 3.8 and Theorem 3.9, we know that the unitary pentagons are

precisely those of the form (u1,u2,u3,u4, ⟨1,−g, g + 1) with g2
− g − 1 = 0. Since,

by Theorem 3.6, each similarity class with 10 symmetries has only 10
10 = 1 unitary

pentagons, the number of similarity classes is the same as the number of unitary

pentagons, which is the same as the number of roots of x2
− x − 1 in Fp.

When p ≡ 0 mod 5, we can see p = 5, since p is prime. There is only one root

over F5, which is 3. This can be checked directly. So, in this case, C10,p = 1 = rp.

When p ≡ ±1 mod 5, by Lemma 3.1, x2
− x − 1 has two roots over Fp. So,

C10,p = 2 = rp.

Finally, when p ≡ ±2 mod 5, it follows from the contrapositive of Theorem 3.10

that there are no regular pentagons3 on πp. So, C10,p = 0 = rp.

So, C10,p = rp in all cases. □

3This also demonstrates obliquely that there are no roots of x2
− x − 1 on Fp when p ≡ ±2 mod 5.
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This result can also be seen in terms of the quadratic formula. Since g = 1±
√

5
2 ,

there are two roots when
√

5 exists. There is an exception when p = 5, since then
√

5 =
√

0 = 0, meaning there is only one g = 1
2 . Finally,

√
5 doesn’t exist for Fp when

p ≡ ±2 mod 5, so there are no roots.

It might seem strange that there are almost always two classes of regular

pentagons whenever they exist. We’d usually think of all regular pentagons as

being similar; in this case, only π5 matches our intuition. However, the fact that π5

has only one similarity class of regular pentagons is actually the strange thing here.

We usually think of all regular pentagons being similar because it’s common in

euclidean geometry to exclude star polygons, due to their self-intersection. However,

on the real projective plane, the idea of the line segment depends on your particular

perspective; on finite planes it is entirely incoherent, especially without a clear idea

of the ‘inside’ of a polygon. However, if (a, b, c, d, e) is regular then (a, c, e, b, d) has

the same symmetries and so is also regular. It’s pretty clear to see that the two

shapes aren’t similar to each other in RP2; this is also true in most finite planes.

It’s actually a surprising and interesting property of π5 that a regular pentagon is

similar to its own star polygon! One caveat to this language is that, between the

two classes of regular pentagons on πp, there’s no nonarbitrary way two call one

class the ‘normal’ regular pentagons, and the other the ‘star’ regular pentagons.

Being a star polygon is a dual relation within which, without any auxillary concept

of distance, it is impossible to privilege one side over the other.
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Figure 3.6: A pentagon and its star pentagon.

Theorem 3.12.

For any prime number p, C5,p = 0.

Proof. Let p be prime. This follows directly from Theorem 3.9, as any pentagon

with 5 symmetries must be regular and thus have 10 symmetries. So, there are no

pentagons with exactly 5 symmetries, meaning C5,p = 0. □

For the next theorem, we’ll proceed in much the same way as Theorem 3.11,

attempting to parametrize the unitary pentagons of a plane in such a way that we

generate exactly 1 from each equivalence class, and then counting the number of

pentagons generated.

Theorem 3.13.

For any prime number p, C2,p = p − 3 − rp.

Proof. Let p be prime. Consider the number of pentagons with 2-fold symmetry,

which we will call C. Since the only such pentagons are those with 2 symmetries or

with 10, C = C2,p + C10,p. So, C2,p = C − rp, by Theorem 3.11.

By Theorem 3.7, the pentagons that fix u1 under a symmetry of order 2 are

precisely those of the form Pb = (u1,u2,u3,u4, ⟨1, 1
2−b , b⟩) with b < {0, 1, 2}. Since

there are p elements of Fp, there are p − 3 unit pentagons Pb parametrized by b.

Furthermore, by construction, the fixed point of any Pb under reflection is u1. If
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there are 4 other unitary pentagons similar to some Pb, there must be one for each

possible vertex to fix (of u2, u3, u4 and v), as we can transform the fixed point to be

mapped onto any of them. So, it can’t be similar to any other Pb since all Pb fix u1.

Otherwise, the Pb is regular. In either case, each Pb is in a different equivalence class,

since there can be only one per class. Furthermore, any class must have a pentagon

Pb, because we can transform any pentagon so it has the unitary quadrangle where

we had it relative to the fixed point. So, we have parametrized one pentagon for

each equivalence class. Thus, there are p − 3 equivalence classes of pentagons with

2-fold symmetry.

Thus, C = p − 3. So, C2,p = C − rp = p − 3 − rp.

So, for any prime number p, C2,p = p − 3 − rp. □

Theorem 3.14.

For any prime number p, C1,p =
1

10 ((p − 3)(p − 7) + 4rp).

Proof. Let p be prime. Since each equivalence class of unitary pentagons

with s symmetries contains 10
s unitary pentagons (Theorem 3.6), and there are

(p−2)(p−3) unitary pentagons onπp (Theorem 3.2), and because the only symmetries

of possible of a pentagon are 1, 2, 5, and 10 (Theorem 3.4), (p − 2)(p − 3) =

10
1 C1,p +

10
2 C2,p +

10
5 C5,p +

10
10C10,p. We can plug in the values gotten in the previous 3

theorems, (Theorem 3.11, Theorem 3.12, Theorem 3.13), to get:

10
1

C1,p +
10
2

C2,p +
10
5

C5,p +
10
10

C10,p = 10C1,p + 5(p − 3 − rp) + 2(0) + rp

= 10C1,p + 5p − 15 − 4rp
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So, 10C1,p = (p− 2)(p− 3)− (5p− 15− 4rp). We can manipulate this expression like so:

(p − 2)(p − 3) − (5p − 15 − 4rp) = p2
− 5p + 6 − 5p + 15 + 4rp

= p2
− 10p + 21 + 4rp

= (p − 3)(p − 7) + 4rp

Dividing this expression by 10, we get C1,p =
1
10 ((p − 3)(p − 7) + 4rp). □

Theorem 3.15.

For any prime p, the total number of equivalence classes of similar pentagons on πp is

1
10 ((p + 3)(p − 3) + 4rp).

Proof. Let p be prime. Because the only symmetries of possible of a pentagon

are 1, 2, 5, 10 (Theorem 3.4), this can be verified simply by computing the sum

C1,p + C2,p + C5,p + C10,p, the terms of which are given in Theorem 3.11, Theorem 3.12,

Theorem 3.13, and Theorem 3.14, and rearranging. □

With this, we’ve proven all we want to for now about similarity classes of

pentagons on πp. Although our endpoint was an exact count of the number of these

classes, this is not the only understanding we’ve gained. We’ve also characterized

and classified these pentagon classes in terms of their symmetries, and applied the

same combinatorial scrutiny to them as we did similarity classes as a whole. This

in particular will give us the grounds to examine the pentagram map in the next

chapter.
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3.4 Other n-gons

Proving generalizations of the theorems in the previous section for n-gons with

n > 5 is beyond the scope of this paper. However, it seems appropriate to provide

an analysis of how such a generalization should be approached, what I believe is

likely, and what I believe will pose difficulties.

Counting the number of unitary n-gons (and by counting extension equivalence

classes as seen in Theorem 3.15) as we did for pentagons in Theorem 3.2 already

poses certain problems. For one, we can only ever fix 4 points to be our unit

quadrangle. This leaves n − 4 remaining points that can vary. Even for 2 or 3 such

points, finding out which points allow for a polygon in general position is difficult

because now the corresponding vectors need not only to be linearly independent

of the known points that we fixed, but also of each other. Avoiding this kind of

interdependence was precisely why unitary pentagons were employed. Still, as

seen in papers like Lazebnik’s [11], this sort of problem can be approached for fixed

n by splitting the possibilities into cases and counting from there. However, what is

less clear is how to approach the general case, where both the order of the plane p

and the number of vertices n of the polygon are both unknown.

Theorem 3.10, where we proved which planes could contain regular pentagons,

is different. At the very least, it seems that there is the outline of a generalized

proof, at least for n-gons with n prime. The forward direction of the if and only if is

generalizes for any prime; having regular n-gons implies a subgroup of PGL(3, p)

isomorphic to Dn, which in turn implies that 2n divides the order of PGL(3, p). The

rest follows naturally.

The strategy for the other direction is not so quickly derived from the pentagon

case, but there is a clear suggestion of a path forward. Central to the pentagon proof

is the construction of a matrix of order 5 over Fp. This was made possible by the

existence of a root to g2
− g − 1, which was in turn guaranteed by the fact that 5 has
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a square root in Fp. At first, it seemed to me that is was possible that a matrix of

order n can be constructed using some relative of a square root of n (or possibly

−n). However, after further investigation, I think that’s unlikely. I currently suspect

that what would be needed to construct a rotation matrix is the solution to a kind

of polynomial. In RP2, the short diagonal4 of a pentagon with side-length 1 has

length φ = 1+
√

5
2 , which is a root of x2

− x − 1. In fact, this is the minimal polynomial

of φ, meaning it is the polynomial with rational coefficients of lowest degree for

which φ is a root. We can extend this process further, seeing that the short diagonal

of a hexagon has length
√

3, which has minimal polynomial x2
− 3. Unfortunately,

after this we aren’t guaranteed that the length can be written without the use of

transcendental functions, sin in particular. Luckily, however, we can still compute

the minimal polynomials. In general, the short-diagonal-length of an n-gon with

side length 1 is

dn = 2 sin
(

(n − 2)π
2n

)
which can be derived from elementary geometry and trigonometry. I used Wolfra-

mAlpha to compute the minimal polynomials up to n = 18, which can be seen in

figure 3.7. While this minimal-polynomial approach, if it is the correct way, does

mean that we aren’t limited to prime n, it also makes it much harder to characterize

when a plane will have an n-gon with n-fold symmetry. Above 6, the relevant

roots either can’t be expressed as radicals or are expressed with nested radicals. In

either event, quadratic reciprocity can’t be applied so directly. However, if some

root is assumed, for fixed n, I suspect symmetry matrices can be produced in the

way seen in Theorem 3.11 and Theorem 3.13, by solving a system of vector-matrix

multiplications. However, this tactic probably does not effectively generalize to a

polygon with an unknown number of sides.

4The short diagonal is the diagonal that connects two vertices that are one vertex apart. Pentagons
only have short diagonals, but other n-gons have more types.
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n dn if it can be expressed in

terms of arithmetic and rad-

icals.

The minimal polynomial of dn

4
√

2 x2
− 2

5 1
2 (1 +

√
5) x2

− x − 1

6
√

3 x2
− 3

7 x3
− x2
− 2x + 1

8
√

2 +
√

2 x4
− 4x2 + 2

9 x3
− 3x − 1

10
√

1
2 (5 +

√
5) x4

− 5x2 + 5

11 x5
− x4
− 4x3 + 3x2 + 3x − 1

12
√

2 +
√

3 x4
− 4x2 + 1

13 x6
− x5
− 5x4 + 4x3 + 6x2

− 3x − 1

14 x6
− 7x4 + 14x2

− 7

15 1
4

(
−1 +

√
5 +

√
6(5 +

√
5)

)
x4 + x3

− 4x2
− 4x + 1

16

√
2 +

√
2 +
√

2 x8
− 8x6 + 20x4

− 16x2 + 2

17 x8
− x7
− 7x6 + 6x5 + 15x4

− 10x3
− 10x2 + 4x + 1

18 x6
− 6x4 + 9x2

− 3

Figure 3.7: Minimal polynomials of the length of short diagonals of real n-gons with side length 1.
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This sort of problem for composite n is much more unclear. When we can no

longer guarantee that certain terms in our equations are coprime, things get more

difficult to prove. The fact that if something has a 5-cycle it can’t possibly have any

smaller cycles besides a 1-cycle is used so often that it became implicit. Dn also has

more than the 4 possible types of subgroups we are able to limit our scope to when

n is prime. However, none of these issues are irresovable, they simply require more

number-theoretic care to solve.



CHAPTER 4

The PentagramMap

4.1 Introduction to the PentagramMap

The pentagram map was brought into prominence by Richard Shwartz [12] and was

studied by him across a series of papers. The visual intuition is very clear; it maps

any pentagon to the smaller pentagon at the center of the pentagram formed by the

pentagon’s diagonals (see figure 4.1). The pentagram map is usually represented

with T.

P

T(P)

Figure 4.1: The relationship between a pentagon
P and its image under the pentagram
map T(P).

51
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Noting that each corner of the inner pentagon is the intersection of two consecu-

tive diagonals, we can use this definition:

Definition 4.1 Consider a pentagon P in general position represented by (p0, p1, p2, p3, p4).

Let Dn be the diagonal of P given by [pn ·pn+2], with subscript addition done mod 5. Then the

pentagram map T is the map which takes P to (D0∩D1,D1∩D2,D2∩D3,D3∩D4,D4∩D0).

This definition can be extended to more general n-gons by letting the Di be the

shortest diagonals of that polygon. This map has several interesting properties.

One highly relevant aspect to this discussion is that T is the identity map on the

space of equivalence classes of pentagons, called the moduli space. In other words,

[T(P)] = [P]. More generally, T2, the pentagram map iterated twice, is the identity

on the moduli space of hexagons. No similar identity property holds for n-gons

with n > 6 [12]. This fact makes the pentagram map interesting to us in our study

of pentagon equivalence classes.

Theorem 4.1.

(Conway, via Shwartz) For any pentagon P on πp, P is similar to T(P). [12]

The main reason for Shwartz’s study of the pentagram map concern its properties

as a dynamical system. Much of this work is beyond the scope of this paper and

frankly beyond my current level of understanding, but will still be summarized to

the best of my ability. The work of Shwartz, Serge Tabachnikov, and Fedor Soloviev

eventually showed that the pentagram map is a completely integrable system on

the moduli space of polygons. This means, roughly, that iteration of the pentagram

map preserves enough invariants for the system to be in some sense ‘well behaved.’

For reference, the three body problem is not an integrable system. In this case, it

means that a given polygon P stays on a certain higher-dimensional torus no matter

how many times the pentagram map is applied to it, and that these torii fill the

moduli space in layers, or foilate the space [13].
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4.2 Periodicity of the PentagramMap

In the world of discrete and finite geometry, the pentagram map takes on different

properties. One such property is that, since the number of possible pentagons on

any πp is finite, and T is invertible, it is always periodic:

Theorem 4.2.

For any pentagon in general position P on πp, there is some n ∈N such that Tn(P) = P.

Proof. First we must show that T is invertible. Let the sides of a pentagon

P = (p0, p1, p2, p3, p4) be Sn = [pn · pn+1], with subscript addition done mod 5. Let E be

the map with takes P to (S0 ∩ S2,S1 ∩ S3,S2 ∩ S4,S3 ∩ S0,S4 ∩ S2). So long as P is in

general position, we know all Sn are distinct, since otherwise that would mean there

would be three colinear points in P. Thus, this map is well defined. Now, consider

the geometric relationship between P and E(P), shown in figure 4.2.

p0

p1

p2 p3

p4

S0

S1

S2

S3

S4P

E(P)

Figure 4.2: The relationship between a pentagon
P and E(P).

Because all Sn are distinct, these relationships are guaranteed to hold, even if

diagrammed differently. As such, we can see that the sides of P are the diagonals of
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E(P); this means that T(E(P)) = P. Furthermore, if we let W = E(P), we can see that

E(T(W)) = E(P) =W. So, E is T−1. Thus, T is invertible.

Now, choose some pentagon P and define the sequence (xn) = Tn(P). Now,

consider that, since T is a function over a finite set of pentagons, there are only

finitely many values xi can take. Since (xn) is an infinite sequence, this means

there must be some k , j such that xk = x j. Without loss of generality, let k > j.

So, Tk(P) = T j(P). Since T is invertible, we can take T− j(Tk(P)) = T− j(T j(P)), so

Tk− j(P) = P. Since k > j, k − j ∈N.

For any pentagon P on πp, there is some n ∈N such that Tn(P) = P. □

This is in stark contrast to T’s behavior onRP2. T does display quasiperiodicity1

in the moduli space of polygons, it is absolutely not periodic on the space of polygons

themselves; it is proven (and relatively intuitive) that repeated applications of the

pentagram map cause the resulting sequence of pentagons to collapse exponentially

in size [12]. However, in finite projective planes, on which the concept of scale is

incoherent, this is not an issue. It is for this reason that our discussion our exploration

will go in a very different direction that Shwartz’s. While he is concerned with T’s

effect on moduli spaces, T’s behavior is trivial on the moduli space of pentagons,

meaning that we will instead concern T’s behavior on individual pentagons within

a given equivalence class. This will still give us some account of the differences

between equivalence classes, however, because T acts on similar pentagons in

analogus ways for the following reason:

Theorem 4.3.

(Shwartz) For any collineation α and polygon P, αT(P) = T(αP). [12]

Proof. Since T is defined entirely in terms of incidence relations, and collineations

1Quasiperiodicity is the property that a system is the sum of two or more frequencies which are
in irrational ratio to each other. This means that, while it isn’t periodic, it is as close to periodic as
you want it to be if you choose a large enough ‘period.’
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preserve incidence relations, for any collineation α, αT(P) = T(αP). □

This theorem implies that classes of similar pentagons all have the same period

under the iterated pentagram map. In this chapter our main focus will be on this

periodic behavior. However, this is surprisingly complicated. As seen in Appendix

B, figure B.1, different classes of similar pentagons can have very different periods.

Theorem 4.1 shows that a pentagon and its pentagram map image are similar,

so there is some collineation ϕ such that ϕP = T(P). However, we can prove a

stronger result, that it’s the same collineation for that pentagon’s entire orbit when

iterating the pentagram map. This means the period of Tn(P) is just the order of ϕ in

PGL(3, p). A proof of this result was also given by Shwartz, but we will demonstrate

it here [12].

Theorem 4.4.

For any pentagon P, there exists some collineation ϕ such that Tn(P) = ϕnP for n ∈ Z+.

Proof. Consider a pentagon P on some πp. Let ϕ be the collineation that takes P

to T(P), which must exist by Theorem 4.1. We will prodceed by induction.

Let Sk be the proposition that Tk(P) = ϕkP. Clearly S0 and S1 are true, as

T0(P) = P = ϕ0P trivially and ϕP = T(P) by construction.

Now, assume Si is true for some i > 1. So, Ti(P) = ϕiP. Multiply both sides by

ϕ to get ϕTi(P) = ϕi+1P. By theorem Theorem 4.4, we know ϕ and T commute, so

ϕTi(P) = Ti(ϕP) = ϕi+1P. Since ϕP = T(P), Ti(ϕP) = Ti(T(P)) = Ti+1(P) = ϕi+1P. So,

Si+1 is true. Thus, Si =⇒ Si+1.

So, by induction, for all n ∈ Z+, Tn(P) = ϕnP.

For any pentagon P, there exists some collineation ϕ such that Tn(P) = ϕnP for

n ∈ Z+. □

One might think that this implies the period of Tn(P) must be the order of
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ϕ ∈ PGL(3, p). Unfortunately, this is not true. It is possible that there is some k

less than the order of ϕ such that ϕk is a symmetry of P, meaning Tk(P) = ϕkP = P.

However, this does imply that the period of Tn(P) divides the order of ϕ.

As such, this still gives us important information. For example, we know that

the period of Tn(P) divides p3(p3
− 1)(p2

− 1), the order of PGL(3, p). What’s more, if

we can give ϕ as a matrix for some pentagon, then we can algebraically work out

the period of the pentagram map on that pentagon. Thankfully, we can work out

this matrix for most unitary regular pentagons. To help simplify discussion, we will

give this collineation a name:

Definition 4.2 A pentagram collineation τP of a pentagon P is a collineation such that

T(P) = τPP.

The reason we say ‘a’ rather than ‘the’ is because pentagon symmetries mean

that pentagram collineations are not unique.

Lemma 4.1.

Let p > 5 be prime, and U a regular unitary pentagon on πp. Then, a pentagram collineation

of U is given by: 
g + 1 −1 1 − g

0 g 1

g + 1 −1 1


where g ∈ Fp such that g2

− g − 1 = 0.

Proof. Let p > 5 be prime, and U a regular unitary pentagon on πp.

By the construction we used as part of Theorem 3.9, U must be of the form

(u1,u2,u3,u4, ⟨1,−g, g + 1⟩), for some g ∈ Fp such that g2
− g − 1 = 0. We will let

v = ⟨1,−g, g + 1⟩ for brevity.

As we discussed in subsection 2.4.1, intersection and finding colinear points are
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simply the cross product2. As such, we can compute the diagonals of U using the

cross product:

D0 = u2 × v = ⟨−g − 1, 0, 1⟩

D1 = u1 × u3 = ⟨0, 1, 0⟩

D2 = u2 × u4 = ⟨1, 0,−1⟩

D3 = u1 × v = ⟨−g,−1, 0⟩

D4 = u1 × v = ⟨0, 1,−1⟩

And then we compute their intersections using the cross product again:

D4 ×D0 = ⟨1, g + 1, g + 1⟩

D0 ×D1 = ⟨1, 0, g + 1⟩

D1 ×D2 = ⟨1, 0, 1⟩

D2 ×D3 = ⟨1,−g, 1⟩

D3 ×D4 = ⟨1,−g,−g⟩

So, T(U) = (⟨1, g + 1, g + 1⟩, ⟨1, 0, g + 1⟩, ⟨1, 0, 1⟩, ⟨1,−g, 1⟩, ⟨1,−g,−g⟩).

Now, let τ be the matrix given by:

τ =


g + 1 −1 1 − g

0 g 1

g + 1 −1 1


It’s a matter of direct computation to show that τU = T(U). Thus, τ is a pentagram

2More specifically, we are using the cross product w⃗ × z⃗ = ⟨w2z3 − w3z2,w3z1 − w1z3,w1z2 − w2z1⟩.
This gives us the unique vector (up to scaling) that is orthogonal to w⃗ and z⃗, which is what we need.
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collineation of U. □

We can use this to relate the period of regular pentagons P to the order of a much

simpler object: an element from a finite field.

Lemma 4.2.

For some p, all a ∈ Fp such that a2 + 3a + 1 = 0 have the same order in Fp’s multiplicative

group.

Proof. Let a1, a2 ∈ Fp be roots of a2 + 3a + 1. If a1 = a2, then clearly they have the

same order. So, consider the case where a1 , a2.

Clearly, (x− a1)(x− a2) = x2 + 3x+ 1. This means x2
− (a1 + a2)x+ a1a2 = x2 + 3x+ 1.

In particular, a1a2 = 1. So, a1 = a−1
2 . Since they are multiplicative inverses, they must

have the same order in Fp’s multiplicative group.

Thus, all roots of a2 + 3a + 1 have the same order in Fp’s multiplicative group.

□

We have shown it is well-defined to talk about a ∈ Fp having a unique order

when a2 + 3a + 1 = 0. With this, we can make a conjecture.

Conjecture 4.1.

The period of the iterated pentagram map on a regular pentagon on πp with p > 5 is the

same as the order of a in Fp’s multiplicative group, where a2 + 3a + 1 = 0.

I have not been able to prove this statement as of yet. I can, however, discuss

why I believe it to be true, and the difficulties I have had in proving it.

First of all, in Lemma 4.1, we showed that the pentagram collineation τR of any

regular pentagon R could be written in terms of g, where g2
− g − 1 = 0. Now, if we

let a = −1 − g, we see that (−1 − a)2
− (−1 − a) − 1 = a2 + 3a + 1 = 0. So, τR can be

written in terms of a as well. This algebraic relationship makes the conjecture seem



4.2. Periodicity of the Pentagram Map 59

more plausible; if τR could not be written in terms of a, it would be hard to see the

connection between the two objects.

Given this, the main reason is computational. I used a script to check that this

conjecture holds on πp for all primes p < 10, 000. If these quantites are independent,

this initial of correspondence is particularly surprising because the potential period

of Tn(R) is significantly larger than a. As seen in figure B.1, the maximum period

of the iterated pentagram map on some pentagon appears to be on the order of

O(p2). Meanwhile, a’s order must be less than p − 1, as it is a member of F×p . So, the

‘probability,’ loosely speaking, of continued equality between these values drops as

p gets large.

As we discussed, computing the order of τR is not sufficient to computing

the period of the iterated pentagram map; however, even this first step proves

difficult. The matrix we use to represent τR seems to resist analysis. It is not, in

general, diagonalizable. 1 is always a root of its characteristic polynomial, however,

experimentation seems to suggest it only has two other roots when p ≡ 1 mod 5.

In fact, brute force attempts with SymPy to solve for τR = BTB−1, with T being

an upper triangular matrix with powers of a on its diagonal, yielded no results.

Solving this problem seems to either require more advanced algebraic concepts or a

different approach entirely that bypasses the matrix.

There is a final issue of a slightly different type. While I believe this to be

true by virtue of the computed data, I have no clear idea why it might be true.

This conjecture is based on a pattern that I discovered wholly by accident when

experimenting with scripts. As such, my intuitive understanding, and thus my

ability to approach the problem in novel ways, is stymied. This intellectual problem

is in part because this is a case where the behavior on finite planes is qualitatively

different from on the real plane, meaning geometric analogies can only extend so

far.
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0 2000 4000 6000 8000 10000

0

2000

4000

6000

8000

10000

Figure 4.3: The primes p versus the order of a in F×p .

Actually determining the order of a for any field is en even more difficult task,

and was not something I ever expected to be able to solve for this project. Of course,

we know for sure that |a| divides p − 1, since that is the order of Fp’s multiplicative

group. However, beyond that the question becomes difficult to answer in general.

Because a2 = −3a − 1, we can show that an = bna − bn−1, with b0 = 0, b1 = 1, and

bn+1 = −3bn − bn−1. However, this means that finding the order is roughly equivalent

to computing the period modulo p of (bn)n∈N. However, this is the generalized

Pisano period of (bn)n∈N . A closed form for this value is not even known for the

original Pisano periods of the Fibbonacci numbers [8], after which it is named3.

Because of this, I consider computing this period beyond the scope of this paper.

3The man often called Fibonacci was known as Leonardo Bigollo Pisano during his lifetime.
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Barring some number-theoretic technique which works only in this case, this is the

best I can hope to achieve from this approach.
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CHAPTER 5

Computation

A large portion of the results in this project were first encountered or evidenced

by computer exploration. In fact, the very first proof of concept that this line of

examination had nontrivial results was a Python script designed to check the peri-

odicity of the pentagram map on the pentagons of a various finite projective planes.

This section will explore the various scripts used, including their development and

optimization as my theoretical understanding increased.

5.1 Representing Finite Planes

5.1.1 The Original Implementation

My first implementation of finite projective planes was taken from the internet

[10]; this script generated the plane with the same process used in Section 2.2.

Points were single objects, either tuples or singles, and lines were sets of points.

While this sufficed for a preliminary exploration, there were obvious inefficiencies.

Computing the line shared by two points involved iterating over the set of lines

and checking which one both points sat on. This meant that this operation on

a field of order p involved iterating over a list of O(p2) elements and iterating

over a list of O(p) elements for each of those, meaning it was a O(p3) operation

relative to the order of the plane. Finding the intersection of two lines was better,
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but still involved finding the shared elements of two unsorted lists of O(p) size.

There may be a better runtime, but my niave implementation was naturally O(p2).

Eventually, I mitigated these issues by wrapping that previous implementation in a

FiniteProjectivePlane class which generated the original representation, used it

to precompute line intersections and shared lines, and stored them in a matrix. This

made the operation of finding these things constant time.

What could not so easily be done in this representation was collineation. Given

two quadrangles A and B, I needed to compute a collineation that takes A to B

pairwise. In this representation, the best I could do was start with a dictionary

containing the points of A as keys and the points of B as values. From here, I would

let the computer iteratively ‘deduce’ more and more points. This was inefficient,

especially since I was at this point aware that I could represent the plane with F3
p and

use matrices to represent collineation. Because collineations were becoming more

and more important for me to study, I eventually had to reimplement everything

using finite fields.

5.1.2 Finite Fields

After an admittedly cursory search, I could find no Python package which imple-

mented finite fields in a way that suited my needs. As such, I decided to implement

my own, which I called FFelem. Since I only planned to explore fields of prime

order, I did not have to worry about reducing modulo a polynomial as with fields

of higher prime power order. As such, each FFelem need only be instantiated with

a field order p and a numerical value a, the second of which is reduced modulo

p before being stored. This step in the constructor meant I didn’t have to worry

about reducing modulo p in each of the operations. The FFelem class also has an
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internal variable for its inverse, so this didn’t need to be computed more than once1.

The inverse is computed using Fermat’s Little Theorem, specifically by computing

ap−2 mod p. Positive powers are computed by repeated multiplication, and negative

powers are computed using the positive power of the inverse. Division is simply

computed as multiplication by the inverse. All of these operations are overrides of

the normal Python operators +,-,*,/,**, so FFelems can be treated like regular

integers. In addition, FFelems can be used in operations with normal integers, where

those integers will be treated like FFelems of the same order. The implementation

of this class can be seen in section C.1 of Appendix C. Finally, there was a simple

function get_field(n) to get all elements of the field of order n. This had the

advantage that is you stored the field in a list, with f = get_field(n), then f[5],

for example, would get you the element 5 from Fn.

Points and lines were represented by a single object called ProjObj. ProjObj

essentially wraps a NumPy 3-vector of FFelems and normalizes it so that the first

nonzero term of the vector is 1. This wrapper also overrides the bitwise xor operator,

ˆ, so that it returns the shared point between lines or the shared line between points,

using the cross product. The bitwise or operator, |, is used to test for incidence

using the dot product. There is also a transform method which returns the product

of the vector and a 3 × 3 matrix of FFelems; however, this should only be used on

representations of points. In our representation, for a collineation whose action on

the points is given by a matrix A, its action on the lines is given by the inverse of the

transpose of A, (AT)−1. This is due to the fact that we swapped out the 2-dimensional

subspaces that represented our lines for their 1-dimensional tangent space. This

implementation is given in section C.2. Finally, there was a function get_plane(n)

1However, given how FFelem was implemented, this probably was of minimal importance much
of the time, as the addition, multiplication, and exponentiation operations create new instances of
FFelem objects.



66 5. Computation

which returned all the points on πn by simply iterating over all points of the three

possible forms given how they are normalized: (0, 0, 1), (0, 1, a), and (1, a, b).

The advantages of finite field representation were reaped with the collineation

representation. Unfortunately, while numpy could multiply matrices of FFelems, it

was not general enough to solve linear systems or do matrix inversion. As such,

I had to reimplement Gauss-Jordan elimination myself. Admittedly, all that was

required was a relatively ‘lazy’ implementation which only needed to work on 3× n

matrices; if it was given a 3×4 matrix, it returned the last column as a solution, and if

it was a 3× 6 matrix, it returned the rightmost 3× 3 matrix, as I only used this to find

inverses. The base_to_quad( quad ) function generated an automorphism which

took the unit quadrangle (see section 3.3) to the input quadrange, Q = [a⃗, b⃗, c⃗, d⃗].

First it generates a matrix m that takes the first three vertices of the unit quadrangle

to the first three vertices of Q. To get the fourth vertices to correspond, we need

to see how to scale each of the columns relative to each other to get the desired

vector d. This turns out to be the solution w⃗ to the equation mw⃗ = d⃗. Using the

Gauss-Jordan function we wrote, we can solve this equation and multiply each

column of m with its corresponding value from v⃗ to get the solution, M. From here,

the gen_automorphism( quad1, quad2 ) function, which takes an arbitary quad to

another, was relatively easy to implement. It simply calls base_to_quad on both

of our inputs Q1 and Q2, to get two matrices M1 and M2. Since M1 takes the unit

quadrangle to Q1, M−1
1 takes Q1 to the unit quadrangle. Thus, M2M−1

1 takes Q1 to the

unit quadrangle to Q2, and is our solution. The implementation of these functions

is found in Appendix C, section C.3.
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5.2 Iterating Over the Pentagons

When computing periods periods of the pentagram map and equivalence classes

of pentagons under collineation, one needs a way to iterate over the pentagons in

general position of a given planeπp. At first, I took the naive approach, iterating over

every permutation of 5 points on the plane, and testing those in general position.

Obviously, this had many inefficiencies; first of all, it the same pentagon is processed

10 times, once for every possible orientation. This could be fixed by requiring the

first element in the permutation be the first in lexical order, locking it into a certain

rotation, and that the second element comes before the last in lexical order, fixing it

into a certain orientation. However, since most permutations of 5 will be in general

position, this still meant checking O(p2+p+1C5) = O(p10) possibilities.

Once I began to understand collineations, particularly the fact that they are

defined by where they take a quadrangle, I was able to significantly increase the

efficiency of iteration. Since I only ever needed one representative from each

similarity class, I could fix 4 of the 5 vertices, ⟨1, 0, 0⟩, ⟨0, 1, 0⟩, ⟨0, 0, 1⟩, ⟨1, 1, 1⟩, and

only ever iterate over the 5th. This is the origin of my deployment of unitary

pentagons (see section 3.3) This made searching an entire plane O(p2), as that is the

order of the number of points.

However, there were still multiple unitary pentagons from each equivalence

class; for a similarity class with no non-identity symmetries, there would be 10, for

example. The elimination of these redundancy wasn’t an optimization strategy,

however, as there were still O(p2) classes. This was for the sake of getting accurate

counts. It was done by iterating over all possibilities, but applying every possible

mapping of the 4 unitary points of the pentagon to another 4 points, and collecting

them in a list. If a pentagon was already in one of these lists, it was skipped, and at

the end, one representative from each list was taken.
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5.3 Other Scripts

This is not a full list of every script I wrote while working on this project. However,

the tools and methods discussed formed a basis of many smaller scripts, of which

I’ve written over 20. They primarily serve one of two purposes: the gathering of

examples, and checking intuitions. For an example of the former, I computed the

rotational symmetry collineation of each each regular unitary pentagon on each

plane, and used those, along with some algebra, to work out the general form used

in Theorem 3.10. For the latter, it is harder to show specific fruits. It was more a

‘sanity check’ than anything else, making sure things that I was more or less certain

were true held up for real examples. Most of the results in this paper were tested

this way long before I ever proved them.



CHAPTER 6

Conclusion

The pentagram map was what originally inspired this project, even though

my focus on it in the end was much smaller than on pentagon symmetries and

similarity-class counting. Having chanced upon its Wikipedia page one day on a

family outing, I was eventually inspired to apply the process to finite projective

planes, another concept that I had discovered when trawling Wikipedia. The code I

wrote hastily showed me something that surprised me at the time: different starting

pentagons yielded wildly different periods. This was surprising because, with my

limited understanding of projective planes, I saw them as spaces so symmetrical

that I found it strange any pentagon was differentiable from any other. The resulting

desire to gain a handle on how pentagons could be different in these spaces resulted

in an effort to classify and count them which is what inspired much of chapter 3.

Over the course of this project I have at least started this process. I have found

ways of counting classes on pentagons by their symmetries. In doing so, I’ve given

parametrized forms for representatives of each of these classes, shedding some light

on the structure of individual pentagons themselves. In doing so, I’ve also shown

a fundemental connection between a finite field’s equivalents of the golden ratio

and pentagon regularity. This demonstrates that the appearance of ϕ on the short

edges of regular pentagons in R2 is not a fluke within the world of field planes, it

69



70 6. Conclusion

has a fundemental connection to pentagon regularity that transcends the need for a

metric; regular pentagons can only exist if x2
− x − 1 has a root.

This line of exploration is far from complete, of course. Obviously, I’ve only

dealt with pentagons, and have almost entirely ignored n-gons of larger size. But

even for pentagons it is not as if the classification of their properties is complete.

I demonstrated in Theorem 3.15 that there were 1
10((p + 3)(p − 3) + 4rp) different

classes of similar pentagons on πp, however, I’ve only been able to categorize these

classes by a single property with three possibilities: 1 symmetry, 2 symmetries, or

10 symmetries. The pentagram map demonstrates clearly that more classification is

possible; when classified by pentagram-map period, the number of classes that are

qualitatively different from each other increases as the size of the plane increases, as

seen in figure B.1.

Of course, I was not expecting to complete this incredibly broad line of inquiry

in this IS, and I am satisfied with what I have accomplished. The pentagram map

inspired this process, and even though what followed was often very different, I’m

glad I was able to explore what it inspired me to do, and then connect it back to the

map in the end.



APPENDIX A

Proof Addenda

A.1 A regular pentagon on π5

The pentagon on π5 given by R = (⟨1, 2, 4⟩,u1,u2,u3,u4) is regular, with rotation

symmetry given by:

ρ =


4 1 0

3 0 2

1 0 0


It can be checked by direct computation that ρR0 = R1, ρR1 = R2, ρR2 = R3, etc.

Because of the contraints put on the fifth vertex of a unitary pentagon in Theo-

rem 3.2, we know the only other unitary pentagons are those with ⟨1, 2, 3⟩, ⟨1, 3, 2⟩, ⟨1, 4, 2⟩, ⟨1, 4, 3⟩

or ⟨1, 3, 4⟩ as their fifth vertex. Call them P1,P2,P3,P4,P5 respectively.

You can check directly that the following are true, meaning the remaining 5

pentagons are all similar to each other:


0 0 1

2 0 1

0 1 1

 P1 = P2
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72 A. Proof Addenda
0 0 1

3 0 1

0 1 1

 P2 = P3


0 0 1

3 0 1

0 2 1

 P3 = P4


0 0 1

2 0 1

0 3 1

 P4 = P5


0 0 1

1 0 1

0 2 1

 P5 = P1

Since they are all similar, that means that there are 5 unitary pentagons in their

equivalence class, so by Theorem 3.6, they have 10
5 = 2 < 10 symmetries, meaning

they aren’t regular. So, R is the only regular unitary pentagon on π5. Thus, there is

only one equivalence class of regular pentagons on π5.

A.2 Alternative argument that regular pentagons

exist on every plane where p ≡ 0,±1 mod 5

The following is an argument cut from Theorem 3.10 due to its redundancy. It existed when

the thereom needed to be if and only if, rather than just only if. It is preserved here because

it was the theorem that in part originated the matrix techniques that I would use regularly

elsewhere in the paper.



A.2. Alternative argument that regular pentagons exist on every plane where p ≡ 0,±1 mod 573

Now, consider any projective plane πp with prime order p ≡ 0 mod 5 or p ≡ ±1

mod 5. Note that, since p is prime, its collineation group is PGL(3, p).

In the first case, since p is prime, then the only possibility is that p = 5. You can

check directly that π5 has a regular pentagon. An example is given in Appendix A,

section A.1.

Otherwise, p ≡ ±1 mod 5. So, by Lemma 3.1, we have g ∈ Fp such that

g2
− g − 1 = 0. Note that this is the polynomial associated with the golden ratio1. It

is trivial to see that g2 = g + 1 and g2
− g = 1. We will use these in simplifications.

Consider the matrix:

ρ =


1 g − 2 1 − g

1 g − 1 0

1 −1 0


We can compute ρ2 as the following, and simplify using the relations we deduced:

ρ2 =


0 g2

− g − 1 1 − g

g g2
− g − 1 1 − g

0 −1 1 − g

 =

0 0 1 − g

g 0 1 − g

0 −1 1 − g


Then, we can compute ρ4 as (ρ2)2.

ρ4 =


0 g − 1 g2

− 2g + 1

0 g − 1 1 − g

−g g − 1 g2
− g

 =

1It is interesting to consider the fact that regular pentagons in the real plane are also associated
with the golden ratio; thus, it seems fitting (and is probably mathematically meaningful) that regular
pentagons only exist in πp when its underlying field Fp admits a golden ratio equivalent.
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Finally, we compute ρ5 as ρ4ρ:

ρ5 =


1 g2

− g − 1 0

0 g2
− g 0

0 0 g2
− g

 =

1 0 0

0 1 0

0 0 1


So, ρ5 = e, the identity matrix, and thus represents a collineation of order 5 in the

collineation group ofπp. Now, with P0 = [1, 0, 0], one can compute P1 = ρP0 = [1, 1, 1]

and P2 = ρ2P0 = [0, g, 0] = [0, 1, 0]. Note that:

[P0 · P1] = [0, 1,−1] , [1, 0,−1] = [P1 · P2]

So, [P0 · ρP0] , [ρP0 · ρ2P0] = ρ[P0 · ρP0]. This means that there is some point P for

which ρ does not fix the line [P · ρP].

So, there is some point P on πp and some collineation ρ of πp such that ρ has

order 5 and [P · ρP] is not fixed by ρ.

Now, consider the pentagon R = (P, ρP, ρ2P, ρ3P, ρ4P). Since ρ doesn’t fix [P · ρP],

this means that the sides of this pentagon are all distinct lines. Thus, they are in

general position. Note that it has 5 rotational symmetries, as:

ρR = (ρP, ρ2P, ρ3P, ρ4P, ρ5P) = (ρP, ρ2P, ρ3P, ρ4P,P) = R

This means that the set generated by ρ, ⟨ρ⟩, are all symmetries of R. However, since

|⟨ρ⟩| = 5, by Theorem 3.9, this means that R is regular. Thus, πp contains a regular

pentagon.

So, for prime p, πp has a regular pentagon if and only if p mod 5 is congruent to

-1, 0, or 1.
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A.3 Alternate argument that ρ doesn’t fix [P·ρP]when

p ≡ −1 mod 5

The following is an argument cut from theorem above due to its redundancy. It shows that

ρ, a collineation of order 5 on πp, cannot fix every line of the form [P · ρP] when p ≡ −1

mod 5. It is preserved here because it is a mostly geometric argument that the author

believes provides an interesting intuitive insight into the questions at hand.

Case: p ≡ −1 mod 10

Since p ≡ −1 mod 10, thanks to a result by Bloom [3], we know that PSL(2, 5)

is isomorphic to a subgroup of PSL(3, p). Furthermore, it is known that A5 is

isomorphic to PSL(2, 5), and D5 ≤ D10, and D10 is isomorphic to a subgroup of A5.

Thus, D5 is isomorphic to a subgroup of PSL(3, p) ≤ PGL(3, p). So, D5 is isomorphic

to a subgroup of PGL(3, p).

So, in any case, D5 is isomorphic to a subgroup of the collineation group of

πp. Call one such group S and consider generators ρ, σ ∈ S with ρ5 = σ2 = e, the

identity.

Assume that, for all points P ∈ πp, the line [P · ρP] is fixed by ρ. Note that the

fixed points and lines must conform to the first two axioms of projective planes;

thus, those fixed points and lines of ρmust form either a true subplane of πp or a

degenerate plane. It cannot be a true subplane, as p is prime, so πp is a Desarguesian

plane, meaning subplanes correspond to proper subfields of Fp, which do not exist

since p is prime [7].

Since the fixed points of ρ form a degenerate plane, they will be in one of two

configurations [1].

The first configuration is lines L,L1,L2, · · · Ln and points P,P1,P2, · · ·Pm for some

nonnegative integers m,n. All points lie on L and all lines pass through P.

Note that, by our assumption, every point in P ∈ πp lies on a fixed line, since
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L

LnL1 · · ·

P
P1

· · · Pm

Figure A.1: The first possible configuration.

[P · ρP] is fixed. Since there are p2 + p + 1 points and there can be at most p + 1

points on L, that implies there is at least one other fixed line, which we will say

is L1. Note that L1 has only one fixed point P, and so the rest of the points on L1

must be permuted by ρ. However, this is impossible. Since L1 has (p + 1) − 1 = p

unfixed points, and ρ has order 5, that must mean that 5 divides p. However, p ≡ −1

mod 5, so this is impossible. Thus, if our assumption is true, that means that the

fixed points of ρmust be in the other configuration.

The second configuration is lines L,L1,L2, · · · Ln and points P,P1,P2, · · ·Pn for

some nonnegative integer n. All points except P lie on L and all Ln = [Pn · P].

L

P

L1 Ln

P1
· · · Pn

Figure A.2: The second possible configuration.

Once again, since every point lies on a fixed line and there are p2 + p + 1 points

and each line has p + 1 points, there must be at least one other fixed line, L1, besides

L. There are two fixed points (P1 and P) on L1, so ρmust permute the remaining

(p+1)−2 = p−1 remaining points. Since none of these are fixed, and ρ5 = e, 5|(p−1).

So, p ≡ 1 mod 5. However, we are considering the case where p ≡ −1 mod 5, so

this is a contradiction. Thus, our assumption is false, and there is some point P such

that [P · ρP] is not fixed by ρ.



APPENDIX B

Computed Data

The following is a table which contains the period of pentagon equivalence

classes under the pentagram map. The first column contains the order of the plane,

and the second contains each periodicity paired with the number of period with

that period.
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Figure B.1: Computed periods under the
pentagram map.

p Period # of classes
5 3 1

5 1
7 8 2

12 2
11 10 2

15 2
55 2
60 2

133 4
13 6 1

7 1
12 2
28 2
84 4

168 2
183 4

17 8 3
9 1

16 6
18 2
36 2
48 2
96 2

307 10
19 9 6

18 2
60 4

120 4
127 2
171 2
180 2
342 2
360 2
381 10

23 11 2
22 4
44 2
66 2
88 4

132 6
176 4
264 12
528 6
553 10

p Period # of classes
29 7 1

14 5
21 6
28 4
67 4
70 4
84 2

140 10
168 6
203 2
210 4
280 4
406 4
420 8
840 4
871 16

31 15 12
30 10
32 2
60 2
64 4
96 2

120 6
160 4
192 6
240 4
320 10
331 10
465 2
930 4
993 18

37 9 5
18 4
19 1
36 16
38 4
57 2
76 4

114 6
152 12
171 4
342 14
469 12
684 14

1368 8
1407 30

p Period # of classes
41 14 2

20 6
21 10
28 6
30 2
40 16
56 2
60 6

112 8
168 2
280 4
336 4
410 2
560 16
820 6
840 8

1680 24
1723 44

43 7 2
14 8
21 14
42 16
66 2
77 2

132 6
154 8
231 10
308 12
616 16
631 10
924 4

1848 12
1893 62

47 23 16
46 28
92 2

184 10
276 2
368 4
552 14
736 16

1104 30
2208 22
2257 76



APPENDIX C

Code

C.1 Finite field element class implementation.

class FFelem:

def __init__(self, num, order):
self.order = order
self.num = num%order

self._inv = None

def __add__(self, other):

if isinstance(other, FFelem):
if self.order != other.order:

raise ValueError("Field orders don’t match")
return FFelem( self.num + other.num , self.order)

elif isinstance(other, int):
return FFelem( self.num + other , self.order)

else:
raise ValueError("Cannot add objects of this type")

def __radd__(self, other):
return self+other

def __sub__(self, other):

if isinstance(other, FFelem):
if self.order != other.order:

raise ValueError("Field orders don’t match")
return FFelem( self.num - other.num , self.order)

elif isinstance(other, int):
return FFelem( self.num - other , self.order)

else:
raise ValueError("Cannot subtract objects of this type")
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def __mul__(self, other):

if isinstance(other, FFelem):
if self.order != other.order:

raise ValueError("Field orders don’t match")
return FFelem( self.num * other.num , self.order)

elif isinstance(other, int):
return FFelem( self.num * other , self.order)

else:
raise ValueError("Cannot multiply by objects of this type")

def __rmul__(self, other):
return self*other

def __truediv__(self, other):

if isinstance(other, FFelem):
if self.order != other.order:

raise ValueError("Field orders don’t match")
return self*other.inverse()

elif isinstance(other, int):
return self*FFelem(other, self.order).inverse()

else:
raise ValueError("Cannot divide by objects of this type")

def __neg__(self):
return FFelem( -self.num , self.order)

def __pow__(self,power):
if not isinstance(power, int):

raise ValueError("Power not an integer")

if power < 0:
return (self.inverse())**(-power)

return FFelem( self.num ** power, self.order )

def inverse(self):
if self.num == 0:

raise ValueError("Cannot take inverse of zero element")

if self._inv != None:
return self._inv

i = self**(self.order -2)
self._inv = i
return i

def __eq__(self,other):
if isinstance(other, FFelem):

if self.order != other.order:
return False

return self.num == other.num
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if isinstance(other, int):
return self.num == other

return False

def __repr__(self):
return str(self)

def __str__(self):
return str(self.num)
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C.2 Point/line element class implementation, and its

helper function, homogenize.

from finitefield import get_field ,FFelem
import numpy as np

def homogenize(pt):

for i in range(3):
if pt[i] != 0:

return pt * pt[i]**-1

raise ValueError("Zero vector is not homogenous")

class ProjObj:

def __init__(self,a,b,c):
self.vec = homogenize(np.array([a,b,c]))

def __xor__(self,other):
#xor (^) gives the intersection of two
#lines or the line connecting two points
if not isinstance(other,ProjObj):

raise ValueError("Must be two ProjObj elements")
return ProjObj( *np.cross(self.vec,other.vec) )

def __or__(self,other):
#or (|) tests incidence of point and line,
#a, b (or line and point)
if not isinstance(other,ProjObj):

raise ValueError("Must be two ProjObj elements")
return np.dot(self.vec,other.vec) == 0

def transform(self,matrix): #matrix multiplication
v = [matrix[:,i]*self.vec[i] for i in range(3)]
v = v[0]+v[1]+v[2]
return ProjObj(*v)

def __eq__(self,other):
return all(self.vec[i] == other.vec[i] for i in range(3))

def __repr__(self):
return str(self)

def __str__(self):
return str(self.vec)

def __hash__(self): #returns number which allows lex sort
o = self.vec[0].order
a,b,c = [self.vec[k].num for k in range(3)]
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return a*o**2 + b*o + c
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C.3 Implementation of collineation-related func-

tions.

import numpy as np
from proj_plane import ProjObj,get_unit_quadrangle ,get_plane
from finitefield import FFelem

#maps quad1 = [a b c d] to quad2 = [e f g h]
def gen_automorphism( quad1, quad2 ):

t1 = base_to_quad(quad1) #unit_quad -> quad1
t2 = base_to_quad(quad2) #unit_quad -> quad2
return t2@mat_inverse(t1) #quad1 -> unit_quad -> quad2

def mat_inverse(mat):
o = mat[0,0].order
z = FFelem(0,o)
n = FFelem(1,o)

I = np.array([[n,z,z],[z,n,z],[z,z,n]])

return gauss_jordan(np.concatenate((np.copy(mat),I),axis=1))

#maps unit_quad = [001 010 100 111] to quad = [a b c d]
def base_to_quad( quad ):

a,b,c,d = [k.vec for k in quad]
m = np.empty(shape=(3,4)).astype(FFelem)
M = np.empty(shape=(3,3)).astype(FFelem)

for i,v in enumerate([a,b,c,d]):
for j in range(3):

m[j,i] = v[j]
if i < 3:

M[j,i] = v[j]

w = gauss_jordan(m)

for i in range(3):
M[:,i] *= w[i]

return M

def gauss_jordan( mat ): #hard coded for 3x4 matrices

if mat[0,0] == 0:
if mat[1,0] != 0:

mat[[0,1]] = mat[[1,0]]
elif mat[2,0] != 0:

mat[[0,2]] = mat[[2,0]]
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else:
raise ValueError("Matrix not invertible")

mat[0] *= mat[0,0]**-1
mat[1] -= mat[0]*mat[1,0]
mat[2] -= mat[0]*mat[2,0]

if mat[1,1] == 0:
if mat[2,1] != 0:

mat[[1,2]] = mat[[2,1]]
else:

raise ValueError("Matrix not invertible")

mat[1] *= mat[1,1]**-1
mat[2] -= mat[1]*mat[2,1]

mat[2] *= mat[2,2]**-1

#mat is now upper triangular

mat[0] -= mat[1]*mat[0,1]
mat[0] -= mat[2]*mat[0,2]

mat[1] -= mat[2]*mat[1,2]

if mat.shape == (3,4):
return np.array([mat[0,3],mat[1,3],mat[2,3]])

if mat.shape == (3,6):
return mat[:,3:]
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