
The College of Wooster The College of Wooster

Open Works Open Works

Senior Independent Study Theses

2022

Backlog Burner: An Adventure Into Automated Scheduling Backlog Burner: An Adventure Into Automated Scheduling

Anjolaoluwa J. Olubusi
The College of Wooster, aolubusi22@wooster.edu

Follow this and additional works at: https://openworks.wooster.edu/independentstudy

 Part of the Operational Research Commons, and the Other Computer Engineering Commons

Recommended Citation Recommended Citation
Olubusi, Anjolaoluwa J., "Backlog Burner: An Adventure Into Automated Scheduling" (2022). Senior
Independent Study Theses. Paper 9727.

This Senior Independent Study Thesis Exemplar is brought to you by Open Works, a service of The College of
Wooster Libraries. It has been accepted for inclusion in Senior Independent Study Theses by an authorized
administrator of Open Works. For more information, please contact openworks@wooster.edu.

© Copyright 2022 Anjolaoluwa J. Olubusi

https://openworks.wooster.edu/
https://openworks.wooster.edu/independentstudy
https://openworks.wooster.edu/independentstudy?utm_source=openworks.wooster.edu%2Findependentstudy%2F9727&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/308?utm_source=openworks.wooster.edu%2Findependentstudy%2F9727&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=openworks.wooster.edu%2Findependentstudy%2F9727&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openworks.wooster.edu/independentstudy/9727?utm_source=openworks.wooster.edu%2Findependentstudy%2F9727&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:openworks@wooster.edu

Backlog Burner: An
Adventure Into Automated

Scheduling

Independent Study Thesis

Presented in Partial Fulfillment of the Requirements for
the Degree Bachelor of Arts in Computer Science and

Mathematics in the
Department of Mathematics & Computational Sciences at

The College of Wooster

by
Anjolaoluwa Olubusi

The College of Wooster
2022

Advised by:

Dr. Thomas Montelione

© 2022 by Anjolaoluwa Olubusi

Abstract

The focus of this independent study is to explain the nurse scheduling problem

(NSP) and use it as a basis to create an automated scheduling program. The nurse

scheduling problem is an operational research problem that sets to find an optimal

hospital schedule that fulfills the needs of the hospital and the personal requests of

the nurses. The majority of solutions for the nurse scheduling problem are often

designed within a hospital setting. The objective of this independent study is to use

the solutions of the nurse scheduling problem to develop an automated scheduling

program for the College of Wooster student population.

ii

Acknowledgments

I would like to acknowledge Dr. Thomas Montelione and Dr. Colby Long for their

advice. In addition, I would like to extend my gratitude to my family and friends

for the encouragement and wisdom bestowed during the creation of this project.

iii

Contents

Abstract ii

Acknowledgments iii

Contents iv

List of Figures vi

List of Tables vii

List of Listings viii

CHAPTER PAGE

1 Introduction 1

2 Integer Programming Models 5
2.1 What Is Integer Programming? . 5

2.1.1 Definition . 5
2.1.2 Solving Linear Programming Models 8

2.2 The Models . 13
2.2.1 Branch-and-Bound Model . 13
2.2.2 Preference Scheduling . 17

3 Ant Colony Optimization Models 24
3.1 What Is The Ant Colony Optimization Algorithm? 24
3.2 The Models . 27

3.2.1 Sun Yat-sen Ant Colony Optimization Model 27
3.2.2 Hybrid Ant Colony Optimization Model 31

4 Genetic Algorithm Models 36
4.1 What Are Genetic Algorithms? . 36

4.1.1 Definitions . 36
4.1.2 Rubric For Genetic Algorithms 38

4.2 The Models . 39
4.2.1 Cooperative Genetic Algorithm Model 39
4.2.2 Indirect Genetic Algorithm Model 42

5 Creating The Scheduler 46
5.1 Our Model . 47

5.1.1 Genetic Ant Colony Optimization Algorithm (GACO) 47

iv

5.1.2 Definitions . 48
5.1.3 Objective Function . 48
5.1.4 Constraints . 49

Hard Constraints . 49
5.1.5 Genetic Algorithm Portion of GACO 49
5.1.6 Ant Colony Optimization Portion of GACO 50

5.2 The Web App . 52
5.2.1 Anatomy of A VueJS App . 52
5.2.2 Web App Design . 58

5.3 Implementing GACO . 66
5.3.1 Web API . 67
5.3.2 Implementing GACO . 69
5.3.3 Modeling Our Data . 70
5.3.4 Genetic Algorithm . 73
5.3.5 Ant Colony Optimization Algorithm 77

6 Results 81
6.1 Testing Procedure . 81
6.2 The Students . 82
6.3 How Well Does Backlog Burner Organize Hobbies? 83
6.4 Student Thoughts of Backlog Burner Application 84

7 Conclusion 86
7.1 Future Work . 86

APPENDIX PAGE

A Usability Test Permission Form 90

B Usability Test Script 93
B.1 Introductions . 93
B.2 Survey Questions . 93
B.3 Tasks . 94

C Participant Data 95

References 115

v

List of Figures

Figure Page

2.1 Standard format of a linear programming model [5] 6
2.2 Minimized format of an integer programming model [5] 7
2.3 The Simplex Method . 8
2.4 An Example Mathematical Model [5] 9
2.5 Figure 2.5 In The Standard Form [5] . 9
2.6 Graphical Visualization Of The Figure 2.4 Constraints 10
2.7 Yilmaz’s Model For The Nurse Scheduling Problem [23] 15
2.8 The Brad Purnomo Model [2] . 21

3.1 Psuedo Code of Ant Colony Optimization Algorithm [3] 24
3.2 Formula For Pheromone Probability [3] 25
3.3 Formula For Pheromone Value After Evaporation [7] 26
3.4 Quality Function For Sun Yat-sen Model [22] 28
3.5 Visualization of Sun Yat-sen Model Graph [22] 29
3.6 Pheromone Update Rule For Sun Yat-sen Model [22] 30
3.7 Quality Function For The Hybrid Ant Colony Optimization [16] . . . 34

4.1 Fitness Function For Cooperative Genetic Algorithm Model [8] 40
4.2 Objective Function For Cooperative Genetic Algorithm Model [8] . . 41
4.3 Decoder Scoring Formula For The Indirect Genetic Algorithm Model [1] 44
4.4 Fitness Function For The Indirect Genetic Algorithm Model [1] 44

5.1 Objective Function For Backlog Burner’s Model 49
5.2 Visual representation of the ant colony optimization graph 51
5.3 Visual Representation of Backlog Burner’s Structure 58

6.1 Visual Representation of the participant’s class years 83
6.2 Distribution of student schedule ratings 84
6.3 Distribution of student comfortable ratings 85

7.1 Screenshot of the popup that adds in the user’s schedule 88

vi

List of Tables

Table Page

2.1 Figure 2.5 in Tableau Form . 11
2.2 Minimum number of nurses for each shift in the example [23] 16
2.3 Maximum number of nurses for each shift [23] 16
2.4 Indices and sets used in the Brad Purnomo Model [2] 18
2.5 Parameters and user-submitted data used in the Brad Purnomo Model

[2] . 19
2.6 Decision variables used in the Brad Purnomo Model [2] 19
2.7 Hard constraints of the Brad Purnomo model [2] 20
2.8 Summary of results [2] . 22

6.1 Student Class Year with Average Student Busyness Rating 82

vii

List of Listings

Listing Page

5.1 Template main.js . 53
5.2 Template App.vue . 53
5.3 Methods list for App.vue . 54
5.4 Data list for App.vue . 55
5.5 Script section for HelloWorld.vue . 56
5.6 Template section of the root component 56
5.7 Template section for HelloWorld.vue 56
5.8 Style section for HelloWorld.vue . 57
5.9 The main.js for Backlog Burner . 59
5.10 App.Vue for Backlog Burner . 62
5.11 LoginView’s template section . 63
5.12 The Add Event pop form . 64
5.13 Add Hobby Form . 65
5.14 The UserData struct . 70
5.15 The HardConstraint struct . 70
5.16 The RequestedEvent struct . 71
5.17 The ConvertToScheduleData function 72
5.18 Genome Intialization Method . 73
5.19 The run function for the ga crate . 75
5.20 Ant Struct . 77
5.21 Node Struct . 77
5.22 Graph Struct . 78
5.23 Graph Intialization . 78
5.24 Ant Colony Optimization Loop . 79

viii

CHAPTER 1
Introduction

The average layman is plagued with the troubles of poor work-life balance. Due to

this, researchers from all academic fields have attempted to find the most optimal

work schedule that permits a good work-life balance. The problem of finding

the schedule that permits a good work-life balance is best described through the

nurse scheduling problem. The nurse scheduling problem (NSP) is an operational

research problem that sets out to find an optimal hospital schedule that fulfills the

needs of the hospital and the personal requests of the nurses [23].

Most solutions for the nurse scheduling problem are designed within a hospital

setting. The objective of this project is to develop software that can create a schedule

centered on maintaining work-life balance while accounting for hard and soft

constraints. The software of this project is a web application. Currently, automatic

scheduling applications are focused within a corporate climate. The software of

this independent study is designed for use within a college climate. The college

climate was chosen due to the unique scheduling habits of college students. Most

schedules for working people have from morning to late afternoon devoted to their

profession. Due to this, most hobbies start after work.

This isn’t the case with college students. Most college students don’t have a

sizeable amount of commitments within the working day. The commitments are

usually an hour to an hour and thirty minutes long for classes. Furthermore, there

1

1. Introduction 2

is a need for automatic scheduling since these students have not lived on their

own before. Thus, they will fall prey to improper scheduling. Within this project,

hard constraints are defined as occasions that occur at a specified time. These

events could include: class meetings, professor office hours or a campus job. Soft

constraints are events that do not have a specified starting and ending time. These

events could include watching a Netflix movie, reading a book, and working out.

The internal algorithm of the scheduling software will derive from solutions to the

nurse scheduling problem. This document will first review three types of solutions

to the nurse scheduling problem: the integer programming models, the ant colony

optimization models, and the genetic algorithm models.

The integer programming model (IPM) uses integer programming to determine

the most optimal schedule for the hospital. Integer programming is a special class

of mathematical models that solves optimization problems where some or all the

variables of the problem are integers [5]. For instance, the problem of determining

the most optimal package placement in a truck would be solved using an integer

programming model. This is due to the fact that is it impossible to have a fractional

number of items within the truck. The nurse scheduling problem does not have

formalized form. Thus, there are numerous avenues one could go to model and

solve the nurse scheduling problem. A selection of these models are discussed in

Chapter 2.

The ant colony optimization model combines the ant colony optimization

algorithm with another heuristic to calculate its solution to the nurse scheduling

problem. Ant Colony Optimization (ACO) is a class of optimization algorithms

that mimics ant foraging to determine the most optimal approximate solution to

a problem [3]. The Ant Colony Optimization originated in the early 1990s [3].

Specifically, the Ant Colony Optimization was proposed in 1992 as Macro Dorigo’s

PhD thesis. Ant foraging is the food finding process of ants. Ants use pheromones to

1. Introduction 3

denote a path between their home and a food source. Due to their chemical nature,

pheromones evaporate quickly. As the pheromones evaporate, the pheromone

density of that path decreases. Ants prefer a shorter path with denser pheromones.

Therefore, the path an ant, or a collective of ants, follows is generally the shortest

path towards a food source. The ant colony optimization algorithm acts similarly.

The algorithm creates mini agents that move across a graph that represents the

problem being solved. These mini agents are a computerized version of ants. The

ant colony optimization is often combined with a local searching algorithm, like

hill climbing, in order to improve the quality of the solution [1]. The ant colony

optimization model is further elaborated in Chapter 3.

The genetic algorithm model uses genetic algorithms to solve the nurse schedul-

ing problem. Genetic algorithms are a set of algorithms that imitates the evolutionary

process and the idea of the survival of the fittest aspects of evolution [1]. The algo-

rithms begin with an initial population of solutions. These solutions are randomly

generated. First, each of these solutions are tested using a fitness function. Then,

the algorithm combines the solutions to form new solutions. In addition, the genetic

algorithm randomly modifies the older solutions. Some of the best solutions of each

generation are kept whilst the others are replaced by the newly formed solutions.

The process is repeated until stopping criteria are met. Similar to the act colony

optimization algorithm, the genetic algorithm is often combined with a local search

algorithm. Local search algorithms modify the current solution until a more optimal

solution is found, or a specified time limit has been breached [1]. The local search

algorithm purifies the solution produced by the genetic algorithm. The genetic

algorithm model is further elaborated in Chapter 4.

This document will describe the internal algorithm used in the scheduling

software. The scheduling software, named Backlog Burner, combines the ant colony

optimization algorithm and genetic algorithm to derive the user’s new schedule.

1. Introduction 4

The combination of the ant colony optimization algorithm and genetic algorithm is

called the Genetic Ant Colony Optimization Algorithm (GACO) [24]. The GACO

algorithm is further discussed in Chapter 5.

A proportion of the College of Wooster student population were asked to test

Backlog Burner. The results of this testing are discussed in Chapter 6.

CHAPTER 2
Integer ProgrammingModels

Integer programming models are special classes of mathematical models that

solves optimization problems where some or all the variables of the problem are

integers [5]. Specifically, integer programming models are special versions of

linear programming models where the variables are constrained to be integers.

Linear programming models are mathematical models that solve linear optimization

problems. This chapter will examine the concepts of linear programming, integer

programming, analyzing nurse scheduling integer programming models and detail

the applicability of these models in the real world. Section 2.1 details the concepts

of linear programming, integer programming and the methods by which integer

programming models are solved. Section 2.2 explains integer programming models

designed to solve the nurse scheduling problem. Furthermore, section 2.2 details the

applicability of the integer programming models for the nurse scheduling problem.

2.1 What Is Integer Programming?

2.1.1 Definition

The standard form for linear programming models is:

5

2.1.1 Definition 6

maximize z = c1x1 + c2x2 + . . . cnxn (2.1)

subject to a11x1 + a12x2 + . . . a1nxn = b1 (2.2)

a21x1 + a22x2 + · · · + a2nxn = b2 (2.3)

... (2.4)

am1x1 + am2x2 + · · · + amnxn = bm (2.5)

Figure 2.1: Standard format of a linear programming model [5]

x1, . . . , xn are non-negative variables. Each xi represents a variable of the problem.

c1, . . . , cn represents the cost of each particular variable. Specifically, ci represents the

cost of the variable xi. Equation 2.1 represents the objective function. The objective

function is the mathematical form of the problem’s criteria [5]. The objective function

measures the effectiveness of the solution [5]. Using matrix notion, we can represent

the objective function, f (x), as f (x) = cx where

x =



x1

x2

...

xn


and c = (c1, c2, . . . , cn) (2.6)

x is the decision matrix and c is the cost matrix. Equation 2.2 to 2.5 represents the

constraints of the problem. The constraints of the modeled problem are represented

through linear equations. There are situations where the constraints are not simply

linear. For example, x1 ≤ 50 and x2 ≥ 30. When these situations arise, new variables

are added to the constraints so that the inequality becomes a linear equation. There

are two types of added variables, surplus variables and slack variables. Surplus

2.1.1 Definition 7

variables are used to convert a greater than or equal to inequality constraint into a

linear equation [5]. Referring to the example above, x2 ≥ 30 becomes x2 − s1 = 30

where s2 is a surplus variable. Slack variables are used to covert less than or equal to

inequalities into linear constraints. Here, x1 ≤ 50 becomes x1− s2 = 50. The objective

function does not change with the addition of surplus and slack variables since

the surplus and slack variables do not add any value to the objective function. ai j

represent the weight of each variable x j for each constraint i. The coefficient matrix

is:

A =


a11 . . . a1n

. . .

am1 . . . amn

 (2.7)

bi represents the limit of each constraint i. The requirement matrix is:

b =



b1

b2

...

bm


(2.8)

With this, we can rewrite the standard form of integer programming models as:

maximize z = cx (2.9)

subject to Ax = b (2.10)

x ≥ 0 (2.11)

b ≥ 0 (2.12)

Figure 2.2: Minimized format of an integer programming model [5]

2.1.2 Solving Linear Programming Models 8

2.1.2 Solving Linear ProgrammingModels

In the standard form of linear programming models, there are m constraint equations

and n variables to solve. The n variables include the decision variables and any

artificial variables that are added to the model. With this, there are n −m variables

that can be set to any value whilst solving the integer programming model. A

solution to the model is found by setting n − m variables to zero and solving for

the other m variables [5]. The n − m variables which are set to zero are called

non-basic variables. The m variables which are not set to zero are called basic

variables. The solution that arises from solving for the m variables is called a basic

solution. A basic solution does not always have to fulfill the constraints of the

problem. A solution that does not fulfill the requirements of the problem is called

an infeasible solution. A solution that fulfills the requirements of the problem is

called a basic feasible solution. The solution of these model are often found through

the Simplex Method. Developed in 1947 by George B. Dantzig, the Simplex Method

is an iterative algorithm [5]. The inner workings of the Simplex method can be

represented by the following pseudocode:

1. Start with an initial feasible solution

2. While solution is not optimal

3. Adjust Solution

4. Check if solution is optimal

Figure 2.3: The Simplex Method

The initial feasible solution is often the extreme points. The concept of extreme

points can be properly explained through the following example. Suppose there is

a mathematical model described as the following:

2.1.2 Solving Linear Programming Models 9

maximize z = 8x1 + 5x2 (2.13)

subject to x1 ≤ 150 (2.14)

x2 ≤ 250 (2.15)

2x1 + x2 ≤ 500 (2.16)

x1, x2 ≥ 0 (2.17)

Figure 2.4: An Example Mathematical Model [5]

If Figure 2.4 is converted into the standard form, the model becomes:

maximize z = 8x1 + 5x2 + 0s1 + 0s2 + 0s3 (2.18)

subject to x1 + s1 = 150 (2.19)

x2 + s2 = 250 (2.20)

2x1 + x2 + s3 = 500 (2.21)

Figure 2.5: Figure 2.5 In The Standard Form [5]

The constraints of this model describe half planes in the two dimensions [5]. The

intersection of these half planes are the extreme points.

2.1.2 Solving Linear Programming Models 10

Figure 2.6: Graphical Visualization Of The Figure 2.4 Constraints

Using Figure 2.6, the points A, B, C, D, E are the extreme points. With linear

programming problems, the unique solution to the problem, assuming there are no

multiple solution to the problem, occurs at these extreme points.

Using the example from Figure 2.4, there are 3 constraints equations and 5

variables. Thus, there are 2 non-basic variables. Generally, the decision variables

are set to 0. However, there are cases where a combination of decision and surplus

variables are considered to be the non-basic variables. For this example, x1 and

x2 going to be 0. Therefore, our initial feasible solution is: s1 = 150, s2 = 250, and

s3 = 500.

The Simplex Method relies on a simple principle:

Principle. Assume that we have a starting solution. If there is a better solution, that is not

our starting solution, then there is an adjacent solution that is better than our current basic

solution.

2.1.2 Solving Linear Programming Models 11

Given the initial feasible solution, the transition to the adjacent solution is made

through a pivot operation [5]. A pivot operation is a set of row operations applied

to the current form our model. Whilst applying pivot operations, the model is often

represented through the tableau form. The tableau form is a special form of the

model that decreases the difficulty of changing variable coefficients. In the tableau

form, the objective function changes. To recall, the objective function of Figure 2.5

is z = 8x1 + 5x2. To convert a model from the standard form into the tableau form,

the objective function is modified such that all variables are on the same side of the

equation and that the coefficient of z is 1. For Figure 2.5, the converted objective

function is z − 8x1 − 5x2 − 0s1 − 0s2 − 0s3 = 0.

Basis z x1 x2 s1 s2 s3 Solution

Z 1 -8 -5 0 0 0 0

s1 0 1 0 1 0 0 150

s2 0 0 1 0 1 0 250

s3 0 2 1 0 0 1 500

Table 2.1: Figure 2.5 in Tableau Form

The first column shows the current basic variables. The last column shows the

values of the basic variables. With the tableau form, the Simplex Method follows

these steps:

1. First, examine the objective function row. This row is generally the topmost

row in the tableau form. Choose a non-basic variable to enter into the basis

that has the most negative coefficient within the objective function row. The

chosen variable is called the entering variable. For our linear model, the

entering variable is x1 since its coefficient, in the objective function, is -8. The

column of that chosen variable is called the pivot column.

2.1.2 Solving Linear Programming Models 12

2. If all the values of the pivot column are less than or equal to zero, then there is

no solution. Otherwise, transition to step 3.

3. For each element in the solution column, bi, we divide the element by the

corresponding value in the pivot column, aik, if the corresponding value is

larger than zero. This selected row is called the pivot row. Once, the ratio is

calculated, the row with the smallest ratio is selected. Let θi represent the ith

ratio where θi = bi/aik. Thus, the computed ratios are:

θ1 =
150
1
= 150

θ3 =
500
2
= 250

Here we do not calculate the ratio of the second row since the value of the

second row is zero. Given that θ1 is the smallest ratio value, s1 is leaving the

basis section.

4. To determine the adjacent solution, we divide each element in the pivot row

by the pivot element. For Figure 2.5, our tableau becomes:

Basis z x1 x2 s1 s2 s3 Solution

Z 1 -8 -5 0 0 0 0

s1 0 1 0 1 0 0 150

s2 0 0 1 0 1 0 250

s3 0 2 1 0 0 1 500

Use row operations to make sure that all other elements are zero except the

pivot element. At the end our tableau is:

13

Basis z x1 x2 s1 s2 s3 Solution

Z 1 0 -5 8 0 0 1200

x1 0 1 0 1 0 0 150

s2 0 0 1 0 1 0 250

s3 0 0 1 -2 0 1 500

5. If all items within the objective function row are greater than or equal to zero,

then we have reached the most optimal solution. If not, then the algorithm

transitions into step 1. Since there are still negative coefficients in the objective

function, step 1 is repeated. The final form of the tableau is:

Basis z x1 x2 s1 s2 s3 Solution

Z 1 0 0 0 1 4 2250

x1 0 1 0 0 -1/2 1/2 125

s1 0 0 0 1 1/2 -1/2 25

x2 0 0 1 0 1 0 250

2.2 TheModels

2.2.1 Branch-and-BoundModel

Erbu Yilmaz’s branch-and-bound model solves the nurse scheduling problem by

first dividing the nurses’ full schedule into week long chunks [23]. Then, Yilmaz’s

model solves the nurse scheduling problem with this smaller schedule size. Integer

programming models that divide the main problem into smaller sub problems are

called branch-and-bound models.

In this model, each nurse can do 3 types of shifts: 8:00 a.m to 4:00 p.m, 4:00

p.m to 12:00 a.m and 12:00 a.m to 8:00 a.m. Unlike other mathematical solutions

2.2.1 Branch-and-Bound Model 14

for the nurse scheduling problem, this model creates the nurse labor schedule by

minimizing the nurses’ total idle waiting time. Furthermore, this mathematical

model considers: the maximum total weekly working time for each of the nurses,

the re-assignability of nurses, and the total number of possible working hours for

each shift [23]. The maximum total working time a week for a nurse, the total

number of nurses in a hospital, and maximum and minimum numbers of nurses

that worked a shift are specified by the user. The model’s notation uses the following

variables:

Model Definitions

1. Let TN be the total number of nurses in a hospital.

2. Let WH be the maximum total working time in a week for a nurse.

3. Let i be the nurse index where i = 1, · · · ,TN.

4. Let xi j be equal to 1 if nurse i works shift j of a week. xi j equals to 0 otherwise.

5. Let N j(min) be the minimum number of nurses worked shift j.

6. Let N j(max) be the maximum number of nurses worked shift j.

Model Notation

The model is noted as followed:

2.2.1 Branch-and-Bound Model 15

Min (WH ∗ TN) − 8
∑

i

∑
j

xi j (2.22)

subject to 8

∑
j

xi j

 ≤WH ∀i (2.23)

3∑
j=1

xi j ≤ 1,
4∑

j=2

xi j ≤ 1, · · · ,
21∑

j=19

xi j ≤ 1∀ j (2.24)

N j(min) ≤

∑
i

xi j ≤ N j(max)∀ j (2.25)

xi j ∈ {0, 1} ∀i, j (2.26)

Figure 2.7: Yilmaz’s Model For The Nurse Scheduling Problem [23]

Equation 2.22 is the objective function of this model. Yilmaz’ objective function

minimizes nurses’ total idle waiting time during a week planning horizon. (WH∗TN)

represents the maximum total working hours for all nurses within a hospital.

8
∑

i
∑

j xi j represents the amount of allocated working hours for all nurses within a

hospital.
∑

i
∑

j xi j is the total number of shifts for all nurses.

Equation 2.23 constraints this model such that any solution does not exceed the

maximum working hours per week for each nurse.

Equation 2.24 states that each nurse has a minimum of 2 resting shifts before

being assigned to another shifts. For instance: some constraints on nurse i are:

xi1 + xi2 + xi3 ≤ 1

This mean that if shift 1 is assigned to nurse i then shift 2 and shift 3 can not be

assigned to nurse i.

2.2.1 Branch-and-Bound Model 16

Equation 2.25 ensures that the number of nurses working each shift is within a

user specified range for that particular shift.

Equation 2.26 restricts the decision variable such that it can only have the values

of 0 and 1.

Application OfModel

Whilst this model has not been applied into the real-world, it has been tested against

an illustrative example. In the example given in Yilmaz’ paper, there are a total

number of 10 nurses. Each nurse has a maximum total working hours of 40. The

table below shows the weekly labor constraint of the nurses:

Shifts
of
day-1
j=1,2,3

Shifts
of
day-2
j=4,5,6

Shifts
of
day-3
j=7,8,9

Shifts
of
day-4
j=10,11,12

Shifts
of
day-5
j=13,14,15

Shifts
of
day-6
j=16,17,18

Shifts
of
day-7
j=19,20,21

8:00 a.m to
4:00 p.m 3 3 4 4 3 1 1

4:00 p.m to
12:00 a.m 2 3 2 2 2 1 1

12:00 a.m
to 8:00 a.m 1 1 1 1 1 1 1

Table 2.2: Minimum number of nurses for each shift in the example [23]

Shifts
of
day-1
j=1,2,3

Shifts
of
day-2
j=4,5,6

Shifts
of
day-3
j=7,8,9

Shifts
of
day-4
j=10,11,12

Shifts
of
day-5
j=13,14,15

Shifts
of
day-6
j=16,17,18

Shifts
of
day-7
j=19,20,21

8:00 a.m to
4:00 p.m 5 4 5 5 4 2 1

4:00 p.m to
12:00 a.m 3 4 3 3 4 1 1

12:00 a.m
to 8:00 a.m 2 2 2 2 2 1 1

Table 2.3: Maximum number of nurses for each shift [23]

2.2.2 Preference Scheduling 17

Using LINGO, a popular optimization software [23][5], the optimal solution is

calculated within a very short time span. In Yilmaz’ paper, the optimal schedule is

calculated in 112 iterations.

Although this model can quickly create an optimal schedule, it is very limited.

Yilmaz’s model does take full-time nurses and part-time nurses into considera-

tion [23]. Furthermore, this model does not consider the situation that a nurse

unexpectedly can not work a shift [23].

2.2.2 Preference Scheduling

The Brad Purnomo model uses an algorithm, described in "Solving The Model",

to solve the nurse scheduling problem. The unique aspect of this model is that it

incorporates the nurses’ personal preferences in the decision-making [2]. Similar to

Yilmaz’s model, this model divides the entire schedule into chunks, usually 28 or 46

day chunks, and uses user-submitted data [2]. Specifically, the user-submitted data

is: the nurses’ desired schedule and the coverage requirements of the hospital [2].

Instead of having 3 shifts types, the preferences model has 5 shift types. In Brad

Purnomo’s model, these shift types are:

1. Day (7 a.m.–3 p.m.)

2. Evening (3 p.m.–11 p.m.)

3. Night (11:00 p.m.– 7 a.m.)

4. AM (7 a.m.–7 p.m.)

5. PM (7 p.m.–7 a.m.)

To reduce the amount of iterations it would take to calculate a solution, the

working day is divided into a set of continuous working periods [2]. These periods

2.2.2 Preference Scheduling 18

have uneven length so that each shift contains one or more periods. Unlike Yilmaz’s

model, this model uses periods to express demand instead of shifts [2]. This reduces

the amount of rows within the tableau form of the model. The model uses an

algorithm, described in the "Solving The Model" section, to create the optimal nurse

schedule.

Model Definitions

The Brad Purnomo model uses these notations for its indices and sets:

i index for nurses; i ∈ N

j index for schedules; j ∈ N

p scheduling period (portion of a day); p ∈ P

d day of the week; d ∈ D

N set of nurses to be scheduled

Si set of schedules considered for nurse i

D set of days in the planning horizon

P set of periods in a day

Table 2.4: Indices and sets used in the Brad Purnomo Model [2]

The Brad Purnomo model uses these notations for its parameters and user-

submitted data [2]:

2.2.2 Preference Scheduling 19

ci j penalty "cost" of assigning schedule j to nurse i

ai jdp 1 if the schedule j for nurse i contains period p on

day d, 0 otherwise

LDdp lower bound on demand for nurses on day d in

period p

UDdp upper bound on demand for nurses on day d in

period p

M large number representing the cost of either an

outside nurse or under-coverage in a period

Table 2.5: Parameters and user-submitted data used in the Brad Purnomo Model [2]

The Brad Purnomo model uses these notations for the decision variable:

xi j 1 if nurse i is assigned to schedule j, 0 otherwise

ydp number of outside nurses used on day d in period

p

sdp lower bound on demand for nurses on day d in

period p

Table 2.6: Decision variables used in the Brad Purnomo Model [2]

The Brad Purnomo model uses a variety of hard and soft constraints. For the

purposes of this paper, the selection of hard constraints will be shown. These hard

constraints are:

Rule Hard Constraint

Illegal work patterns-there must be an

eight-hour break between shifts

yes

2.2.2 Preference Scheduling 20

Number of different shift types a nurse

can work in 2-week period when contract

calls for single shift type

≤ 2

Consecutive working days ≤ 6 days

Consecutive days off 12-hour shift (5 work-

ing days)

<6

Number of working weekends 2 weekends in 4 weeks

Rotational Schedules: Day and Night Shift Must work hired shift for 50% of assigned

schedule

Number of transitions for rotational nurse

during each stretch of work

≤ 6 in 2 weeks

Personal requests MinReq requests guaranteed over the plan-

ning horizon

Overtime: Full-time/part-time Pattern allowed (8-hour shift) Day→AM,

Night→ PM, Evening→ AM/PM

Overtime: Full-time (12-hour shifts) Pattern allowed (8-hour shift) AM→ Day,

PM→ Night. Maximum working hours

allowed ≤ 88 per week for full-time. Max-

imum working hours allowed ≤ 32 per

week for part-time.

Minimum hours a nurse must work in a

2-week period

yes

Table 2.7: Hard constraints of the Brad Purnomo model [2]

2.2.2 Preference Scheduling 21

Model Formalization

Minimize
∑
i∈N

∑
j∈Si

ci jxi j +M
∑
d∈D

∑
p∈P

ydp (2.27)

subject to − sdp +
∑
i∈N

∑
j∈Si

ai jdpxi j + ydp = LDdp ∀d ∈ D, p ∈ P, (2.28)

∑
j∈Si

xi j = 1 ∀ j (2.29)

xi j = 0 or 1 ∀i ∈ N, j ∈ Si (2.30)

0 ≤ sdp ≤ UDdp − LDdp, ydp ≥ 0 ∀d ∈ D, p ∈ P (2.31)

Figure 2.8: The Brad Purnomo Model [2]

The objective function of this model, equation 2.27, minimizes the cost of matching

providing the right number and type of nurses for all the |P| × |D| periods, and the

cost of using outside nurses to cover schedule gaps.

Equation 2.30 limits the set of feasible solutions such that each solution maintains

a specified number of nurses per period. This number of nurses are between LDdp

and UDdp. This constraint also accounts for nurse shortages. sdp is a surplus variable

for the number of nurses. It is constrained in Equation 2.33.

Equation 2.32 and equation 2.33 constrict the model such that each nurse, within

each unit, can only have one assigned schedule.

Solving TheModel

The model determines the optimal schedule by:

1. The Brad Purnomo model first starts with the user submitted schedule, called

2.2.2 Preference Scheduling 22

the base schedule, and a max iteration number. The model checks whether

the base schedule satisfies demand, violates no hard constraints.

2. It creates a variable named α that stores the iteration number we are in.

3. Then it creates a subset of possible solutions by modifying one or two shifts in

the user submitted schedule.

4. Each solution, within the subset, is added to the model and the Simplex

Method used to solve the model described in Model Formalization.

5. If there is no solution found whilst α was less than the max iteration number,

or the number of nurses that operate outside the hospital is 0 and α is smaller

than the maximum iteration number, then the algorithm transitions to step 5.

Otherwise, the final schedule is reported.

6. We modify the set of solutions we currently have by shifting one or two shifts.

After that process is completed, we transition to step 3.

Application OfModel

When this model is tested against real data, the model solves the nurse scheduling

problem in 5-6 iterations, depending on the number of nurses [2]. Here below is the

summary of the tests against real data:

Number of nurses Number of iterations

20 5

68 6

58 6

Table 2.8: Summary of results [2]

2.2.2 Preference Scheduling 23

In comparison to Yilmaz’s model, this model performs far better in terms of

iterations. To recall, Yilmaz’s model found its solution in 116 iterations for 10 nurses

[23]. Whilst, this model found its solution within 5-6 iterations for 20-58 nurses [2].

CHAPTER 3
Ant Colony OptimizationModels

To recall, the Ant Colony Optimization algorithm mimics an ant’s ability to look

for food by using mini-agents that move across a graph that represents the problem

being solved. This chapter will dwell further on the Ant Colony Optimization

algorithm itself and how it is used to solve the nurse scheduling problem.

3.1 What Is The Ant Colony Optimization Algorithm?

The inner workings of the Ant Colony Optimization can be represented by the

following pseudocode.

1. while has not met ending conditions do:

2. CreateSolutionUsingAnts()

3. UpdatePheromone()

4. OtherActions() {optional}

Figure 3.1: Psuedo Code of Ant Colony Optimization Algorithm [3]

As shown above, the ACO is an iterative algorithm. The number of iterations is

controlled by the amount of time it takes the ACO to reach the ending conditions.

24

25

The ending conditions signify that a solution has been found. Depending on the

problem the Ant Colony Optimization algorithm is solving, the ending conditions

will vary in specification. The next paragraphs will fully describe and analyze the

CreateSolutionUsingAnts(), UpdatePheromone(), OtherActions() methods in detail.

The CreateSolutionUsingAnts() creates possible solutions using mini-agents. The

mini agents, thematically named ants, originally start without any paths formed.

The ants choose a path using the pheromone value of that path. In addition,

the mini-agents can use another factor, called heuristic information, to aid their

path-making decision. The heuristic information is an optional weighting function

that assigns a certain value to each path of the graph [3]. The value the heuristic

information assigns has some relation to the problem the Ant Colony Optimization

is applied to. For example, the heuristic information is the inverse of the distance

between the edges if the ACO is applied to the traveling salesman problem.

The mini agents follow a simple probability rule: "Follow the path with the

higher pheromone probability". The pheromone probability is defined as:

[τi]α ∗ [η(Pi)]β∑
j∈P[τ j]α[η(P j)]β

Figure 3.2: Formula For Pheromone Probability [3]

i is the chosen path, τi is the pheromone value of i, η(Pi) is the heuristic value of

i and P is the set of all possible chosen paths. α and β are weighting variables

that determine the relationship between the pheromone values and the heuristic

information. The larger one variable is, in comparison to the other variable, the

more weight that variable has on deciding the value of the pheromone probability.

Once a path has been chosen, the mini-agent adds the path to its path sequence. At

the beginning of each iteration, this path sequence is empty.

26

The UpdatePheromone() evaporates the pheromones using the pheromone update

rule. The pheromone update rule is the guideline used to change the pheromone

values of all paths in the graph. The pheromone update rule consists of two areas.

The first area is the pheromone evaporation. Pheromone evaporation decreases

the pheromone values of all paths in the graph by a constant factor. This factor is

called the evaporation rate, often denoted by ρ. While the evaporation rate is in the

range of 0 and 1 inclusive, ρ can never be 0. Pheromone evaporation is important to

the Ant Colony Optimization algorithm due to the fact it allows the algorithm to

forget some paths and incentivizes the algorithm to explore new paths. In addition,

it prevents the algorithm from choosing a suboptimal path as its solution[3]. The

second area is changing the pheromone values of a possible solution or solutions.

There is no set of rules to determine which solutions are selected to be updated. The

two most popular solution selection rules are the IB-update rule and the BS-update

rule. The IB-update rule states that the chosen solution must be the best solution

of the iteration [3]. The BS-update rule states that the chosen solution must be the

best solution since the beginning of the algorithm [3]. The pheromone value of the

selected solution becomes:

(1 − ρ) · τi + ρ · ·
∑

wi · F(i) (3.1)

Figure 3.3: Formula For Pheromone Value After Evaporation [7]

i is the selected solution or solutions. ρ is the evaporation rate, τi is the pheromone,

wi is an optional weighting variable very similar to the heuristic information and

F(s) is the quality function. The quality function, F(i), is a function that determines

how optimal a solution is. The more optimal the solution, the higher the value of

F(i) is.

OtherActions() are the set of actions that can not be performed by a single mini

27

agent. These actions may include, local search methods or the collection of certain

information to determine if pheromone should be deposited to a certain path [3].

3.2 TheModels

3.2.1 Sun Yat-sen Ant Colony OptimizationModel

Similar to the Preference Scheduling, the Sun Yat-sen model uses user defined

parameters and the nurses’ preference to determine the best solution to the nurse

scheduling problem [22]. In Sun Yat-sen’s paper, the user defined parameters are:

pheromone weights, evaporation rate, weighting variables, node switch probability

and penalty coefficient. The Sun Yat-sen model first reads in the user parameters

and scheduling data. Then, the model creates the graph the ant colony optimization

algorithm will be applied on. Each node on the graph represents each shift pattern.

Soon after, the ant colony optimization algorithm is applied to the constructed

graph. The solution to the Sun Yat-sen model is the sequences of nodes derived by

the ant colony optimization algorithm. This model has the following constraints:

1. Every nurse works exactly one shift pattern

2. The demand for nurse is fulfilled for every type of nurse and time of day.

Notation

The Sun Yat-sen model uses the following notations for its decision variable and

parameters [22]:

3.2.1 Sun Yat-sen Ant Colony Optimization Model 28

xi j 1 if nurse i works shift pattern j, 0 otherwise

m Number of possible shift patterns

n Number of nurses

p Number of nurses types

a jk 1 if shift pattern j covers day/night k, 0 otherwise

qig 1 if nurse i is of grade g or higher, 0 otherwise

ci j Preference cost of nurse i working shift pattern j

Rkg Demand of nurses with grade g on day/night k

Fi The set of feasible shift patterns for nurse i

Quality Function

The quality function for this model is:

n∑
i=1

m∑
j=1

ci jxi j + λ

 14∑
k=1

3∑
g=1

{max{0,Rkg −

∑
i∈Gg

∑
j∈Fi

a jkxi j}}


Figure 3.4: Quality Function For Sun Yat-sen Model [22]

This quality function combines a simple objective function with a penalty

function.

The simple objective function is
∑n

i=1
∑m

j=1 ci jxi j. This function measures the total

preference cost of all nurses.

Penalty functions penalize the quality function if the possible solution, rep-

resented by xi j, violates the model’s constraint. These functions transforms con-

strained optimization functions to unconstrained optimization function with the

introduction of a penalty term. For the Sun Yat-sen model, this penalty func-

tion is λ
(∑14

k=1
∑3

g=1{max{0,Rkg −
∑

i∈Gg

∑
j∈Fi

a jkxi j}}
)
. λ is the penalty coefficient and

3.2.1 Sun Yat-sen Ant Colony Optimization Model 29∑14
k=1
∑3

g=1{max{0,Rkg −
∑

i∈Gg

∑
j∈Fi

a jkxi j}} is a function that measures the harshness

of not fulfilling demand.

Creating The Graph

Each element of Fi, where i = 1, 2, · · · ,n, is a node in the constructed graph [22]. Let

there be an extra node, noted by v0, that represent the starting position of the ant

colony optimization algorithm. An edge u is defined as the pair (vi, vi+1) where i = 0

or vi ∈ Fi; i = 1, 2, · · · ,n − 1.

Figure 3.5: Visualization of Sun Yat-sen Model Graph [22]

Getting Our Solution

The Sun Yat-sen model uses the ant colony optimization algorithm to calculate

the solution to the nurse scheduling problem. However, this model changes how

the pheromones are managed and modifies how the pheromone probability is

calculated.

Before the pheromone probability is calculated, the heuristic value each node is

calculated. For this model, the heuristic value is ηs
i j · η

d
ij for each pair of nodes (vi, v j).

ηs
i j is the cost of the nurse i working within schedule vi j. This variable is calculated

at the beginning of the ant Colony optimization algorithm. ηs
i j is formulated as

3.2.1 Sun Yat-sen Ant Colony Optimization Model 30

(1 + ci j)−1. ηd
ij is the cost all the nurses, that are not nurse i, fulfilling the uncovered

shifts in schedule vi j. ηd
ij is formulated as

∑3
g=1 wgqig(

∑14
k=1 a jkdkg). qig is the number

representing the shortage of nurses, of grade g, during period k. wg is a weighting

parameter for the demand of higher grade nurses.

At the beginning of the ant colony optimization algorithm, the pheromone

value, for all edges on the graph, is set to (ϕ0 + 1)−1. ϕ0 is the fitness of a solution

created using the heuristic information. A local pheromone updating rule applied

so that each pheromone arc, τxi−1,xi , of the solution x is updated to be equal to

(1 − ϵ)τxi−1,xi + ϵτ0 where ϵ ∈ (0, 1). After all the ants creating their solution, a global

pheromone rule is applied so that all the pheromones are updated to:

(1 − ρ)τ + ρ(1 + ϕbs f)−1, i f (vw, vl) ∈ xbs f (3.2)

τ, otherwise (3.3)

Figure 3.6: Pheromone Update Rule For Sun Yat-sen Model [22]

ρ is a parameter and ϕbs f is the fitness of the best-so-far solution.

Application In The RealWorld

The Yat-Sen Model was tested against an integer programming model, an indirect

genetic algorithm model, and a hill-climbing algorithm model [22]. When tested

on 52 instances on benchmark data, the Sun Yat-sen model generally performs

as well as or better than the integer models and genetic algorithms. In 47 out of

52 instances of the benchmark data, the Sun Yat-sen model performs as well as a

simple integer model. The Sun Yat-sen model performs better than the hill-climbing

genetic algorithm model in 51 out of 52 instances of the benchmark data. For 38

3.2.2 Hybrid Ant Colony Optimization Model 31

instances of the 52 instances of benchmark data, the Sun Yat-sen model performs

better than indirect genetic algorithm model. In the remaining 14 instances, the

Yat-sen model performs slightly better than the indirect genetic algorithm model.

There are only 2 instances where the indirect genetic algorithm slightly performs

better than the Yat-Sen model.

3.2.2 Hybrid Ant Colony OptimizationModel

The Hybrid Ant Colony Optimization (HACO) model combines the ant colony

optimization algorithm with the hill climbing technique to solve the nurse scheduling

problem [16]. The hill climbing method is a local search technique used to find

any better solutions near the currently best solution. Despite the differences

between the ant colony optimization algorithm and the Simplex Method, this model

applies a similar process of handling constraints. Within this model, the ant colony

optimization algorithm is constrained by a set of hard constraints. Hard constraints

are the set of constraints that must be obeyed for a solution to be considered valid.

Furthermore, the solution derived through the ant colony optimization algorithm is

evaluated through a set of soft constraints. Soft constraints are a set of constraints

that are useful to fulfill but do not necessarily have to be obeyed. These constraints

are further detailed in the "Constraints" subsection. This model was specifically

developed for a Special Care Nursery ward in a Malaysian hospital [16]. Thus, the

constraints of the nurses and the model are designed to suit the Malaysian Special

Care Nursery ward. Similar to the integer programming models, each model can

do 3 types of shifts. In Hybrid Ant Colony Optimization paper, these shift types are

described to be:

Shift Type Duration Notation
Morning 07:00-14:00 M
Evening 14:00-21:00 E

Night 21:00 - 07:00 N

3.2.2 Hybrid Ant Colony Optimization Model 32

In addition, the nurses are given off days and holidays. These breaks are noted as:

Off-days Notation
Weekly off day WO
Public off day PO
Annual leave AO
Night off day NO

Constraints

As previously mentioned, hard constraints are the set of constraints that must be

obeyed for a solution to be considered valid. The hard constraints are [16]:

1. Nurses are to work six days a week with one day off each week. This is the

Mandatory Working Days Constraint.

2. Each nurse must have consecutive working days between two and six. Thus,

split off days or single working day are disallowed. This is the Work Stretch

Constraint.

3. At least three nurses, of differing skill level, must be allocated for each shift.

This is the Covering Constraint.

4. Each nurse must be assigned one shift per 24 hour-day. This is the Work

Requirement Constraint.

5. N shifts are assigned in blocks of three shifts as directed by turns and rotations.

This is the Pre-assigned Constraint.

6. There has to be two days off after the third N shift of the working block. This

is the Pre- assigned Constraint.

7. For each nurse, a night shift can not be followed by a day shift. This is the

Ordering Constraint.

3.2.2 Hybrid Ant Colony Optimization Model 33

8. For all the nurses: A morning shift should be followed by an evening shift. An

evening shift should be followed a night shift. This is the Ordering Constraint.

Soft constraints are a set of constraints that are useful to fulfill but do not

necessarily have to be obeyed. Here are the soft constraints [16]:

1. The schedule should have consecutive off days. This is the Days Off Arrange-

ment Constraint.

2. The number of morning shifts should between two and four. The number of

evening shifts should be between two and four. This is included within the

Shift Arrangement Constraint.

3. Similarly, for a 5-day work stretch, the number of morning shifts should be

between two and three. Furthermore, the number of evening shifts should

be between two and three. This is included within the Shift Arrangement

Constraint.

4. For a 4-day stretch, there should be two morning shifts and two evening shifts.

5. For 2-day and 3-day work stretches, there should be two morning shifts or two

evening shifts and three morning shifts or three evening shifts respectively.

Each soft constraint has a value attached to it that represents the severity of

violating that constraint. This value is called the penalty value.

Quality Function

The quality function of this model uses the following sets [16]:

1. Z - Total value of penalties

2. T - Total number of days on shift timetable

3.2.2 Hybrid Ant Colony Optimization Model 34

3. J - Total number of nurses in the ward

4. I - Day index

5. P - Shift arrangement

6. S - Stretch of working day

7. O - Shift Type

In addition, the quality function uses the following parameters [16]:

1. ϵ jo is the penalty value for nurses j=1,. . . ,39 of nurse type o

2. ρ jp is the penalty value for nurse j for shift arrangement p

3. φ js is the penalty value for nurse j for working stretch s

4. ψ jl is the penalty value for nurse j for non-working stretch l

Furthermore, the function uses the following decision variable [16]:

1. Ai jo is the assignment of nurse type o (0 = not assigned or 1 = assigned)

2. Cptj is the number of shift arrangement for nurse j

3. Dst j is the number of working stretch for nurse j

4. E jv is the number of non-working stretch v

The quality function for the Hybrid Ant Colony Optimization model is:

Min Z =
I∑

i=1

J∑
j=1

Ai joϵ jo +

J∑
j=1

ρ jpCptjd +

J∑
j=1

φ jsDst jd +

J∑
j=1

Ψ jlE jv (3.4)

Figure 3.7: Quality Function For The Hybrid Ant Colony Optimization [16]

The quality function returns the smallest combinations of penalties.

3.2.2 Hybrid Ant Colony Optimization Model 35

Deriving A Solution

The model derives a solution by [16]:

1. Gathering the number of staff in the roster, the length of roster and the number

of public off days. These parameters are user inputted.

2. The evaporation value of pheromone (noted by ρ), number of one group of

ants (m), the weights of the pheromone and heuristic information α and β

respectively, and the number of iterations are set.

3. The initial set of schedules are created.

4. Hill climbing is used to improve the initial schedule.

5. The ants move across the graph as instructed through the ant colony optimiza-

tion algorithm.

6. Once the ants have completed their tour, all pheromone values are updated.

7. Update currently the best solution. Then, evaluate whether the stop condition

has been reached.

Application In The RealWorld

When the Hybrid Ant Colony Optimization Model was applied to a hospital in

Malaysia, the model performed better than the memetic model and can satisfy

most of the nurses’ personal preferences [16]. Referring to the Hybrid Ant Colony

Optimization Model paper, it takes about 1 minute to create a schedule for the entire

Special Nursery Ward using the hybrid ant colony model. In comparison, it takes 12

minutes to create a schedule for the entire Special Nursery Ward using the memetic

model.

CHAPTER 4
Genetic AlgorithmModels

4.1 What Are Genetic Algorithms?

To recall, genetic algorithms are a set of algorithms that imitates the evolutionary

process and the idea of the survival of the fittest aspects of evolution [1]. Genetic

algorithms have existed since the 1960s. Rather than solving a specific problem,

genetic algorithms are designed to study how solutions are formed. Genetic algo-

rithms were originally invented by John Holland [17]. They were further developed

by Holland’s colleagues and students. Holland’s version of genetic algorithms

described a method where populations of "chromosomes" would transition through

several forms by a process similar to natural selection [17]. John Holland combined

this method with the genetic operations of crossover, mutation and selection.

4.1.1 Definitions

These definitions come from the book Introduction to Genetic Algorithms by S. N.

Sivanandam [17].

• Chromosomes represent possible solutions to the currently solved problems.

The chromosomes are often bit strings. Each chromosome contain genes.

36

4.1.1 Definitions 37

• Genes, within the context of genetic algorithm, is a single value or set of values

of the language used to describe the chromosome. Genes encode a unique

aspect of the solution. Within the context of bit string chromosomes, the genes

will be a singular bit or a set of bits.

• Alleles are all possible values of genes. In the context of bit string chromosomes,

the values of alleles are 0 or 1. Within each gene was an allele with the value

of 0 or 1.

• The crossover operator switches genetic material between two chromosome

parents. This operator begins by choosing a random gene, called the locus,

within the chromosome parents. Once selected the crossover operator ex-

changes the genes before and after the locus to create two new offsprings.

These offsprings will have aspects of both parents. The chromosome parents

often have one chromosome. This operation has a probability pc of occurring

between two selected chromosomes. pc is called the crossover rate.

• The mutation operation modifies the allele of a random gene within the

selected chromosome. The probability that a random gene is mutated is pm.

pm is called the mutation rate.

• The selection operation chooses the chromosomes that are allowed to reproduce.

During the selection operation, a fitness function is used to determine which

chromosomes are allowed to reproduce. Each chromosome has a probability

ps of being selected. The higher the fitness value of a particular chromosome

the larger the value of ps is. ps is called the selection rate.

• The fitness function is a function that evaluates how well the chromosome

solves the current problem. Fitness functions produce a value that signifies

4.1.2 Rubric For Genetic Algorithms 38

the effectiveness of the tested chromosome. This value is called the fitness

value.

4.1.2 Rubric For Genetic Algorithms

Borrowing from Introduction to Genetic Algorithms, here below is a simple rubric that

most genetic algorithms follow:

1. First, the genetic algorithm begins to create a set of n chromosomes. The n

chromosomes are randomly generated.

2. The following steps are repeated until a stopping critea is reached:

3. The fitness value for the entire chromosome population is determined.

4. Repeat until there are n new offsprings:

5. Select a pair of parent chromosomes.

6. With the crossover rate of pc, apply the crossover operation to form two

offsprings. If there is no crossover, create two new offsprings that are exactly

copies of their parents.

7. With the mutation rate of pm, apply the mutation operator to the new offsprings.

Place the newly mutated offsprings into the new population.

8. If the total number of new offsprings is odd, randomly remove one of the

newly created chromosomes.

9. Replace the old chromosomes with the newly created offsprings.

10. Go to step 3

Each iteration of step 4 is called a generation. Each iteration of step 2 is called a run.

39

4.2 TheModels

4.2.1 Cooperative Genetic AlgorithmModel

Similar to the Yilmaz’s model, the Cooperative Genetic Algorithm Model has three

shifts types [8]. Referring the Cooperative Genetic Algorithm Model paper, these

shift types are defined as:

Shift Type Notation
d day shift (8:00 - 16:00)
n night shift (16:00 - 00:00)
l late-night shift (0:00 - 08:00)

A nurse’s day off are denoted by h. Each day off and shift is a byte within the bit

string chromosome [8].

Hard and Soft Constraints

Within this model, the maximum number of nurses for of nurses is denoted by

MAXN. The maximum number of days is denoted by MAXD. When applying

this model within a simulation, MAXN is 15 and MAXD is 30 [8]. Referencing the

Cooperative Genetic Algorithm Model paper, the hard constraints of this model are:

1. Each nurse can work only one shift in a day

2. The number of day shift nurses must be larger than the required number of

nurses for day shifts

3. The number of night shift nurses must be equal to the required number of

nurses for night shifts

4. The number of late shift nurses must be equal to the required number of nurses

for late shifts

The soft constraints are the individual schedule preferences of each nurse.

4.2.1 Cooperative Genetic Algorithm Model 40

Fitness Function

The fitness function of this model, denoted by Fi for nurse i, is compromised of

three components [8]. Using the Cooperative Genetic Algorithm Model paper as a

reference, these components are:

Notation Description
Fip Fitness of the night shift pattern in respect to its order and length
Fic The number of consecutive night shifts in respect to its length
Fid The interval between night shifts

Each component of the fitness function quantifies the soft constraints. If the soft

constraints are violated, then the corresponding fitness factor is penalized.

Fi is formally defined as:

Fi = αFip + βFic + γFid (4.1)

Figure 4.1: Fitness Function For Cooperative Genetic Algorithm Model [8]

α, β, γ are weights that quantify the specific critea for the hospital. These variables

are user specified parameters.

Objective Function

The objective function for the entire genome population is:

4.2.1 Cooperative Genetic Algorithm Model 41

Maximize avg =
1
N

MAXN∑
i=1

Fi (4.2)

Maximize dev =

√√√
1

MAXN

MAXN∑
i=1

F2
i −

1
MAXN2

MAXN∑
i=1

Fi


2

(4.3)

Subject To The Hard Constraints (4.4)

Figure 4.2: Objective Function For Cooperative Genetic Algorithm Model [8]

The most desirable solution is the solution where avg = 0, dev = 0 and Fi = 0.

Thus, the closer avg, dev and Fi are to 0 the more desirable the solution is.

Finding A Solution

Referring to the Cooperative Genetic Algorithm Model paper, the Cooperative

Genetic Algorithm Model finds a solution to the nurse scheduling problem as

follows:

1. The working history of the last 15 days and the weight parameters are

submitted.

2. The initial feasible schedule is created. When creating the initial feasible

schedule, each chromosome in the population represents a nurse’s schedule.

Each allele is either a shift type or a day off.

3. To create a schedule, two chromosomes are randomly selected. Two position

within their bit strings are selected. The crossover operator is applied to

produce two new child bit strings.

4. The average fitness and standard deviation of the population, with the new

children, is calculated. If the average fitness of the newer population is larger

4.2.2 Indirect Genetic Algorithm Model 42

than the average fitness of the older population and the standard deviation of

the newer population’s fitness is less than the older population’s fitness, then

the new solutions will not be removed.

5. We repeat Step 3 and 4 until one generation has been created.

6. Steps 3 to 5 is repeated until each the nurse’s fitness is 0 or the time spent

iterating exceeds MAXTIME.

Application In The RealWorld

The Cooperative Genetic Algorithm Model is not tested against real world data.

However, the model is tested in a simulated environment. With the parameters of:

1. MAXD is 30

2. The working history of the previous 15 days

3. MAXN is 15

4. MAXTIME is 15 minutes

5. α = β = γ = 1.0

With these parameters, the model derived a solution in 10 trials [8].

4.2.2 Indirect Genetic AlgorithmModel

The Indirect Genetic Algorithm Model solves the nurse scheduling problem through

the use of a two-step process [1]. The first step is using the genetic algorithm to

create a set of lists. Each item in these lists are nurses. The chromosomes, within the

Indirect Genetic Algorithm Model, are a list of nurses whose schedules need to be

created. The second step is passing that ordering of nurses to a decoder. Within the

4.2.2 Indirect Genetic Algorithm Model 43

genetic algorithm space, decoders translate chromosomes into a different format.

Whilst translating, decoders can still modify the selected chromosome. There are no

specific guidelines on the limitations of decoders. Referring to the Indirect Genetic

Algorithm paper, all genetic decoders follow the following rubric:

1. Each decoded solution must have a corresponding chromosome solution.

2. Each chromosome solution must have a corresponding decoded solution.

3. All decoded solutions should be represented by the same number of chromo-

some solutions.

4. The transformation between chromosome solution and decoded solution

should be fast.

5. Small changes in the chromosome solution should result in small changes in

the decoded solution.

The Indirect Genetic Algorithm Model violates rubric rule 1 & 3. These specific

rubrics are violated so that the decoder does not tend to lower quality solutions

[1]. The genetic algorithm does not directly influence what solution will be chosen.

It indirectly solves the nurse scheduling problem by providing the foundation on

which the solutions are created. The decoder chooses the schedule with the highest

score [1].

Notations

Referencing the Indirect Genetic Algorithm Model paper, this model uses the

following variable notations:

• dks = 1 if there are still nurses needed on day k of grade s otherwise dks = 0

• a jk = 1 if shift pattern j covers day k otherwise a jk = 0

4.2.2 Indirect Genetic Algorithm Model 44

• ws is the weight of covering an uncovered shift of grade s

• wp is the weight of the nurse’s pi j value for the shift pattern

• pi j is the preference cost for nurse i using schedule j

• wdemand is the demand for nurses.

The Decoder

For each nurse, the decoder first iterates over each possible schedule. It assigns

each schedule with a specific score. This score is determined by the equation below:

wp(100 − pi j) +
3∑

s=1

wsqis

 14∑
k=1

a jkdks

 (4.5)

Figure 4.3: Decoder Scoring Formula For The Indirect Genetic Algorithm Model [1]

This equation measures how well the schedule fulfills the nurse’s preferences

and allocates nursing resources to uncovered shifts [1].

Fitness Function

The Indirect Genetic Algorithm Model uses the following equation as its fitness

function:

Minimize
n∑

i=1

m∑
j=1

pi jxi j + wdemand

14∑
k=1

p∑
s=1

max

Rks −

n∑
i=1

m∑
j=1

qisa jkxi j; 0

 (4.6)

Figure 4.4: Fitness Function For The Indirect Genetic Algorithm Model [1]

The fitness function is used to determine the fitness of the decoded solutions.

4.2.2 Indirect Genetic Algorithm Model 45

Crossover Operators

The crossover operator for the Indirect Genetic Algorithm model acts similarly to

the crossover operator explained in 4.1. However, the Indirect Genetic Algorithm

model modifies the crossover operator. Referring to the Indirect Genetic Algorithm’s

academic paper, it first adds a binary layer mask. Each position in the binary layer

mask represents a position in the parent chromosomes. If the ith position in the

binary layer mask is 1, then the first child inherits the ith bit of the first parent

whilst the second child inherits the ith bit from the second parent. The operator

acts contrary to this rule when the ith value of the binary layer mask is 0. If the ith

position in the binary layer mask is 0, then the first child inherits the ith bit of the

second parent whilst the second child inherits the ith bit from the first parent. In this

crossover rate, the selection rate is the probability of a position in the layer mask

has the value of 1 [1].

Application In The RealWord

Referring to Uwe and Dowsland’s paper, the Indirect Genetic Algorithm model was

applied to 52 sets of real hospital data. Each set of data contained the requirements

of all shifts and nurse type combinations for one week, the list of nurses that are

available for that week, and the preference cost and qualifications for each nurse [1].

The data was gathered from three wards over a period of several months [1]. Thus,

the gathered data contains a variety of hospital situations. The Indirect Genetic

Algorithm model was tested using a Pentium II PC [1]. The Pentium II PCs are very

similar to the computers the average hospital used in 2004. The model found an

optimal or near-optimal schedule in 51 out of the 52 data sets [1].

CHAPTER 5
Creating The Scheduler

The previous three chapters of this paper explained three groups of models for the

nurse scheduling problem. Each of these groups has its own set of advantages and

disadvantages.

The integer programming models, for the nurse scheduling problem, are incred-

ibly simplistic. Furthermore, the methods used in the integer programming models

derive an exact solution as opposed to finding an approximate solution [6]. Despite

the stated advantages, integer programming models contain some disadvantages.

Integer programming models are simplistic in order to reduce the complexity the

solutions [4]. The simplistic nature of integer programming models reduces how

applicable the model is to the real world. The solution created by these models are

often too simple and specific to be applied [4].

Unlike integer programming models, genetic algorithms can be applied to a

variety of use cases. Genetic algorithms generally derive their solutions within

a small amount of iterations. However, the solution, generated by the genetic

algorithm, can not be guaranteed to be the best solution possible.

Similar to genetic algorithms, the any colony optimization algorithm can be

used to solve a wide array of problems. Unlike genetic algorithms, the ant colony

optimization algorithm derives a solution that is globally optimal. However, this

46

47

solution, created by the ant colony optimization algorithm, requires many iterations

to form.

It would be advantageous to combine the advantages of the ant colony opti-

mization algorithm models, genetic algorithm models and integer programming

models. Despite the advantageous nature of combining these models, the integer

programming model can not be combined with the other models due to its use

of the Simplex Method. While the features of the integer programming models

can not be used, the advantages of these models can be gained. Using a similar

structure to the Hybrid Ant Colony Optimization model, the genetic algorithm can

be combined with the ant colony optimization algorithm. The combination of the

genetic algorithm and the ant colony optimization algorithm is called the Genetic

Ant Colony Optimization Algorithm (GACO) [24].

5.1 OurModel

5.1.1 Genetic Ant Colony Optimization Algorithm (GACO)

To recall, the genetic ant colony optimization algorithm combines the genetic algo-

rithm and the ant colony optimization algorithm. Citing Wei-guo and Lu’s Genetic

Ant Colony Algorithm paper, the Genetic Ant Colony Optimization Algorithm is as

follows [24]:

1. The genetic algorithm is used to generate a set of initial solutions.

2. Whilst the genetic algorithm iterates through its generations, the genetic

algorithm checks if the newest generation has increased its fitness.

3. If the average fitness of the current generation divided by the average fitness of

the previous generation is less than or equal to 3%, then the genetic algorithm

is stopped.

5.1.2 Definitions 48

4. The set of solutions generated by the genetic algorithm is passed into the ant

colony optimization algorithm.

5. The ant colony optimization algorithm creates the ants with a bias to the initial

solutions generated by the genetic algorithm.

6. Using the ant colony optimization algorithm, a globally optimum solution is

found.

5.1.2 Definitions

The model used in Backlog Burner has the following notations:

• Within this model, the user’s schedule is divided into n time slices. These time

slices are 5 minutes in length.

• Let ti represents the ith time slice. The value of ti is 1 if it belongs to an event.

The value of ti is 0 otherwise.

• Let the collection of sequential time chunks be called an event. Let event e be

defined as: ea,b = {ta, ta+1, · · · , tb|a < b}. |ea,b| = 5(b − a).

• Let fi, j represent a set of non-allocated sequential time chunks between two

events. | fi, j| = 5(j − i).

• Let F represent the set of all non-allocated chunks.

• Let FT contain the cardinality of all elements of F.

5.1.3 Objective Function

For the automated scheduling software, the genetic ant colony optimization algo-

rithm is used with the following objective function:

5.1.4 Constraints 49

Maximize inf FT (5.1)

Figure 5.1: Objective Function For Backlog Burner’s Model

5.1.4 Constraints

Hard Constraints

The Backlog Burner model uses the following hard constraints:

• Let the user’s schedule be noted by s and the timings of a new event be noted

by t. t must not collide with any of the events in s.

5.1.5 Genetic Algorithm Portion of GACO

Chromosomes

Within this model, the chromosomes are encoded as intervals of time slices. If an

event is set to start from 00:00 to 00:30, then it will be encoded as (0, 6).

Genes

The genes are the values of the chromosome’s interval. Referring to the example in

the chromosome section, the gene for that particular chromosome is 0 and 6.

Alleles

The alleles are the possible values of genes. Within this model, the alleles are all the

non-allocated time slices.

Fitness Function

The fitness function is equivalent to the objective function descried in 5.1.

5.1.6 Ant Colony Optimization Portion of GACO 50

Crossover Operation

The crossover operation takes a weighted average of the parents’ starting element

of their chromosomes. The weight of the first parent is chosen randomly and is

between 0 and 1. The weight of the second parent is the complement of the weight

of the first parent. Once the new starting element has been determined, the finishing

element is calculated by adding the event’s length to the new calculated starting

element. The new interval is tested to see if it violates any of the hard constraints

of the model. If the new interval violates the hard constraints, then the crossover

operation is repeated. If the new interval does not violate the hard constraints, the

new child is passed into the new stages of GACO.

Mutation

The mutation operation changes the interval of the chromosome by a random factor.

The new interval will be within 2 hours of the original chromosome.

Selection

The parent chromosomes, used in the crossover operation, are selected by their

fitness value. A chromosome is selected if its fitness value is larger than or equal to

the average fitness of the population.

5.1.6 Ant Colony Optimization Portion of GACO

Graph

The graph used in the ant colony optimization portion of GACO is the set of all

possible intervals for all the new events. Each node in the graph represents a

particular interval. The graph is designed in layers. Each layer i of the graph

5.1.6 Ant Colony Optimization Portion of GACO 51

represents all possible intervals for new event i. The nodes in one layer is connected

to the nodes in the next layer that does not violate the hard constraints of the model.

The start node is connected to all the nodes of the first layer. The end node is

connected to all the nodes of the last layer.

Figure 5.2: Visual representation of the ant colony optimization graph

When the GACO algorithm switches to the ant colony optimization portion,

the pheromone values of the nodes used in the schedules created by the genetic

algorithm are increased. This allows the ants to initially know the schedules created

by the genetic algorithm.

Global Updates

The paths of the ants are the list of time intervals for the new events. These paths

are evaluated by the objective function of this model. The pheromone values for the

nodes of the paths with the higher objective function value are increased.

52

Weights

The ant colony optimization weights in this implementation of GACO are equal.

5.2 TheWeb App

The automated scheduling software being developed is a web app built in VueJS.

VueJS is a frontend JavaScript framework designed to develop single page appli-

cations [18]. Frontend JavaScript frameworks are software designed to aid web

development through the use of pre-written JavaScript code. JavaScript is a pro-

gramming language commonly used in web development. Single page applications

are web applications which use a single page to display all aspects of their web

application [12]. The body of the single page application is updated when there is

new information to display [12]. Single page applications are heavily preferred since

the web server only has to send one page to the client rather than sending multiple

pages to the client [12]. For this project, Vue.js was chosen due to its flexibility and

ease of use.

5.2.1 Anatomy of A VueJS App

A basic VueJS app currently has these files:

• App.vue

• main.js

• HelloWorld.vue

The next three sections will discuss the contents and functions of these files.

main.js

5.2.1 Anatomy of A VueJS App 53

Listing 5.1: Template main.js� �
1 import { createApp } from ’ vue ’
2 import App from ’ . /App . vue ’
3

4 createApp (App) . mount (’ # app ’)
 	
All Vue applications begin with an application instance. This application instance

is created using the createApp function [19]. Application instances are used to tie

global variables [19]. This connection of global variables to VueJS applications

allows the global variables to be used within VueJS applications [18]. The createApp

function is a function created within VueJS [19]. Thus, the first line of Listing 5.1

imports the function from VueJS. Then, the fourth line, specifically the createApp(App)

section, creates the application instance. The option passed into the createApp

function sets the root component.

VueJS components are reusable pieces of JavaScript code [20]. The root compo-

nent is the first component that is shown on the website [20]. Application instances

are also used to mount root components. In Listing 5.1, the VueJS mounts the root

component App.vue [20]. The second line of the code snippet imports the root

component from the App.vue file. The fourth line of the code snippet, specifically

the .mount(′#app′) section, mounts the root component.

App.vue

Listing 5.2: Template App.vue� �
1 <template>
2
3 <HelloWorld msg="Welcome␣ to ␣Your␣Vue . j s ␣App" />
4 </ template>
5

6 <s c r i p t>
7 import HelloWorld from ’ . / components /HelloWorld . vue ’
8

9 export d e f a u l t {
10 name : ’App’ ,
11 components : {

5.2.1 Anatomy of A VueJS App 54

12 HelloWorld
13 }
14 }
15 </ s c r i p t>
16

17 <s t y l e>
18 #app {
19 font−family : Avenir , Helvet ica , Arial , sans− s e r i f ;
20 −webkit−font−smoothing : a n t i a l i a s e d ;
21 −moz−osx−font−smoothing : g ra ys ca le ;
22 t e x t −a l i g n : c e n t e r ;
23 c o l o r : #2 c3e50 ;
24 margin−top : 60px ;
25 }
26 </ s t y l e>
 	
App.vue is the root component of the VueJS application. VueJS components are

structured with a template section, script section and style section.

Template section Written in HTML, the template section provides a blueprint

on how the component appears in the web application. In addition to HTML, VueJs

provides additional tags to integrate VueJS features with standard HTML. In Listing

5.2, lines 1-4 provide a sample template section. Line 2 shows the VueJS logo that

appears on the top of the page. Line 3 inserts the HelloWorld component. The

HelloWorld component will be further discussed in the following subsection.

Script section The script section details how the component functions. In Listing

5.2 line 7, the HelloWorld component is imported into the root component. Lines

9-14 define the root component. Line 10 sets the name of the root component. Line

11 lists any components that are used in the root component. Currently, the App

component does not have extra JavaScript functions. If it contained extra JavaScript

script functions it would be contained in the methods list. The methods list is

declared by:

Listing 5.3: Methods list for App.vue� �
1 export d e f a u l t {

5.2.1 Anatomy of A VueJS App 55

2 name : ’App’ ,
3 components : {
4 HelloWorld
5 } ,
6 methods : {
7 / / I n s e r t Functions Here
8 GetName () {
9 re turn " John "

10 }
11 }
12 }
 	
In addition to functions, variables can also be attached to VueJS components.

The attached variables are declared in the data list. The data list is declared by:

Listing 5.4: Data list for App.vue� �
1 export d e f a u l t {
2 name : ’App’ ,
3 components : {
4 HelloWorld
5 } ,
6 data : {
7 / / I n s e r t Var iab les Here
8 username : " Person McName"
9 }

10 }
 	
Style section The style section informs VueJS how the component will visually

look. The style section uses CSS (Cascading Style Sheets) [13]. CSS is the language

used to customize the look of web pages [13]. In Listing 5.2, Line 18 attaches the

configurations, determined in line 19 to line 24, to the #app tag. Line 19 determines

what font the component will use. The text are aligned to the center in line 22. In

line 23, the color of the text displayed is set to a shade of gray. Line 24 adds a 60

pixel margin to the top. Given that App.vue is the root component, this style section

will be applied to all components within the VueJS application.

HelloWorld.vue

5.2.1 Anatomy of A VueJS App 56

Listing 5.5: Script section for HelloWorld.vue� �
1 <s c r i p t >
2 export d e f a u l t {
3 name : ’ HelloWorld ’ ,
4 props : {
5 msg : S t r i n g
6 }
7 }
8 </ s c r i p t >
 	
In the HelloWorld component, the script section is structured similarly to the

root component. The only main difference is the props variable that is declared in

line 4 [20]. Props are special attributes that you can attach to components [20]. The

value of a prop variable can be set in the same line where the component is declared.

For HelloWorld.vue, we only have one prop variable named msg.

Listing 5.6: Template section of the root component� �
1 <template>
2
3 <HelloWorld msg="Welcome␣ to ␣Your␣Vue . j s ␣App" />
4 </ template>
 	

Referring to the template of the root component, the value of msg is set to be

"Welcome to Your Vue.js App".

Listing 5.7: Template section for HelloWorld.vue� �
1 <template>
2 <div c l a s s=" h e l l o ">
3 <h1> { { msg } }</ h1>
4 <p>
5 For a guide and r e c i p e s on how to conf igure / customize

t h i s p r o j e c t ,

6 check out the
7 <a href=" h t tps : / / c l i . vue js . org " t a r g e t=" _blank " r e l="

noopener ">vue− c l i documentation</ a> .
8 </p>
9 <h3> I n s t a l l e d CLI Plugins</ h3>

10
11 < l i><a href=" h t tps : / / github . com / vue js / vue− c l i / t r e e / dev /

packages /%40vue / c l i −plugin−babel " t a r g e t=" _blank " r e l=
" noopener ">babel</ a></ l i>

5.2.1 Anatomy of A VueJS App 57

12 < l i><a href=" h t tps : / / github . com / vue js / vue− c l i / t r e e / dev /
packages /%40vue / c l i −plugin−e s l i n t " t a r g e t=" _blank " r e l
=" noopener "> e s l i n t</ a></ l i>

13 </ ul>
14 <h3>E s s e n t i a l Links</ h3>
15
16 < l i><a href=" h t tps : / / vue js . org " t a r g e t=" _blank " r e l="

noopener ">Core Docs</ a></ l i>
17 < l i><a href=" h t tps : / / forum . vue js . org " t a r g e t=" _blank " r e l

=" noopener ">Forum</ a></ l i>
18 < l i><a href=" h t tps : / / chat . vue js . org " t a r g e t=" _blank " r e l=

" noopener ">Community Chat</ a></ l i>
19 < l i><a href=" h t tps : / / t w i t t e r . com / vue js " t a r g e t=" _blank "

r e l=" noopener ">Twit ter</ a></ l i>
20 < l i><a href=" h t tps : / / news . vue js . org " t a r g e t=" _blank " r e l=

" noopener ">News</ a></ l i>
21 </ ul>
22 <h3>Ecosystem</ h3>
23
24 < l i><a href=" h t tps : / / router . vue js . org " t a r g e t=" _blank "

r e l=" noopener ">vue−router</ a></ l i>
25 < l i><a href=" h t tps : / / vuex . vue js . org " t a r g e t=" _blank " r e l=

" noopener ">vuex</ a></ l i>
26 < l i><a href=" h t tps : / / github . com / vue js / vue−devtools #vue−

devtools " t a r g e t=" _blank " r e l=" noopener ">vue−devtools<
/ a></ l i>

27 < l i><a href=" h t tps : / / vue−loader . vue js . org " t a r g e t=" _blank
" r e l=" noopener ">vue−loader</ a></ l i>

28 < l i><a href=" h t tps : / / github . com / vue js / awesome−vue " t a r g e t
=" _blank " r e l=" noopener ">awesome−vue</ a></ l i>

29 </ ul>
30 </ div>
31 </ template>
 	
This template is similar to normal HTML except for line 3. Line 3 dynamically

inserts the value of msg as a header of size 1.

Listing 5.8: Style section for HelloWorld.vue� �
1 <s t y l e scoped>
2 h3 {
3 margin : 40px 0 0 ;
4 }
5 ul {
6 l i s t −s t y l e −type : none ;
7 padding : 0 ;
8 }
9 l i {

10 display : i n l i n e −block ;
11 margin : 0 10px ;
12 }

5.2.2 Web App Design 58

13 a {
14 c o l o r : #42 b983 ;
15 }
16 </ s t y l e>
 	
The style section for HelloWorld is scoped [18]. Thus, the configurations in this

section is only applied to the HelloWorld component and not other components.

5.2.2 Web App Design

Figure 5.3: Visual Representation of Backlog Burner’s Structure

Referring to Figure 5.2, the structure of the automated scheduler contains 3 areas:

the app, the calendar source and the calendar algorithm.

The App

The App area of the diagram represents the VueJS area of Backlog Burner. This

area directly interacts with the user. The primary function of this area to provide a

simple interface for the user that can interact with the GACO algorithm and their

calendar. To use the application, the user must:

1. Login with their Google account or their Outlook account

5.2.2 Web App Design 59

2. Add their list of hobbies

3. Click the submit button

4. Once the new schedule is received, the user must click the finalize button

Step 1 and steps 2-4 are encapsulated within two pages: the Login page and the

Schedule page.

The app section achieves its goal through the use of a web application pro-

gramming interface (API). A web API is a web program built to run complex code

without having the user to implement the complex code [14]. The GACO algorithm

is encased in a web API. Web APIs have a link where a web application can access

the web API. This link is called an endpoint. To use a web API, an HTTP Request is

sent to the specific endpoint of the web API. HTTP Requests are web requests for a

certain action to be applied to a web resource [15]. These requests are often sent

to web servers and APIs [15]. There are several types of HTTP requests [15]. This

project only uses two categories of HTTP requests: GET and POST. GET requests

ask for data from the web server or APIs [15]. POST requests send data to the web

server or APIs [15].

The VueJS application is programmed differently from the VueJS application

described in 5.2.2.

main.js The main.js file for Backlog Burner is:

Listing 5.9: The main.js for Backlog Burner� �
1 import { createApp } from ’ vue ’
2 import App from ’ . /App . vue ’
3 import router from ’ . / router ’
4 import GAuth from ’ vue3−google−oauth2 ’
5 import VueCookies from ’ vue3−cookies ’
6 import * as msal from ’ @azure /msal−browser ’
7

8 const app = createApp (App) ;
9

5.2.2 Web App Design 60

10 var msalConfigTemp = {
11 auth : {
12 c l i e n t I d : "CLIENT ID " ,
13 a u t h o r i t y : " h t tps : / / log in . m i c r o s o f t o n l i n e . com /common" ,
14 r e d i r e c t U r i : process . env . VUE_APP_REDIRECT_URL,
15 postLogoutRedirectUri : process . env . VUE_APP_REDIRECT_URL

,
16 mainWindowRedirectUri : " l o c a l h o s t : 8 0 8 0 / log in "
17 }
18 }
19

20 const gAuthOptions = { c l i e n t I d : ’CLIENTID ’ , scope : ’ p r o f i l e
h t tps : / /www. googleapis . com / auth / calendar ht tps : / /www.
googleapis . com / auth / calendar . events ’ , prompt : ’ consent ’ ,
f e t c h _ b a s i c _ p r o f i l e : f a l s e }

21 app . conf ig . g l o b a l P r o p e r t i e s . $msalCl ient = new msal .
P u b l i c C l i e n t A p p l i c a t i o n (msalConfigTemp) ;

22 app
23 . use (router)
24 . use (GAuth , gAuthOptions)
25 . use (VueCookies)
26 . mount (’ # app ’)
 	
In comparison to 5.2.2, the main.js file has massively expanded. Lines 4 - 6

import router, GAuth, VueCookies and msal. router is a VueJS object that helps link

web pages between a VueJS application. GAuth is a JavaScript library that allows

our VueJS application to interact with Google Authentication. Similarly, msal is a

JavaScript library that allows our VueJS application to interact with Microsoft’s

authentication system. The details of these interactions will be further discussed in

the Calendar Source section. VueCookies is a JavaScript library that allows VueJS to

store information within a user’s cookies.

Lines 10-18 describe the configurations needed to interact with Microsoft’s

authentication system. This configuration is wrapped within an auth object. This

auth object has a clientId, authority, redirectUri, postLogoutRedirectUri, and

mainWindowRedirectUri variables. The clientId is the ID given to Backlog Burner

when registering the application with Microsoft’s Azure service. The authority

variable tells Microsoft what type of user is asking for access. Referring to the

5.2.2 Web App Design 61

Microsoft authorization documentation, there are four general values for the

authority variable:

• https://login.microsoftonline.com/common/ - This authority indicates that the

user is either using a work/school account or personal account

• https://login.microsoftonline.com/organizations/ - This authority indicates that

the user is solely using their work or school account

• https://login.microsoftonline.com/consumers/ - This authority indicates that

the user is solely using their personal account

• https://login.microsoftonline.com/<tenant>/ - This authority indicates that the

user is using their account of a specific organization. This organization is

indicated by the tenant ID. This tenant ID replaces <tenant> in the url listed

In a similar function to Lines 10-18, Line 20 declares all the necessary information

needed to authenticate a user with Google. To authenticate with Google, the

application needs to provide the clientId, the resources requested and the type of

sign in needed. The clientId is inserted in the clientId variable in gAuthOptions.

The resources requested is stated in the scope variable. This application requests

access to the profile information and the calendar data. The type of sign in is stated

in the prompt variable. The consent value indicates that a pop-up window will

appear that ask the user’s consent to provide Backlog Burner with the user’s data.

Line 21 creates a global msal object using the configuration set in lines 10 to 18.

Msal object handle authenticating with Microsoft without forcing the user to deal

with the intricacies of web authentication.

Lines 22-26 mount the App component to the application whilst setting the

router, GAuth and VueCookies as globally accessible packages.

5.2.2 Web App Design 62

App.Vue Secondly, the App.Vue is less verbose. The HelloWorld component is

not inserted. Instead, the Header component is inserted along with the router

view component. The Header component is a simple component that displays

the title "Backlog Burner" and the logout button. The router view tag shows the

accompanying page to the specific link clicked.

Listing 5.10: App.Vue for Backlog Burner� �
1 <template>
2 <div c l a s s=" c on ta in er ">
3 <Header />
4 <router−view></ router−view>
5 </ div>
6 </ template>
7

8 <s c r i p t>
9 import Header from ’ . / components /Header . vue ’

10 import ’ . / a s s e t s / c s s /main . css ’
11 export d e f a u l t {
12 name : ’App’ ,
13 components : {
14 Header
15 } ,
16 data () {
17 re turn {
18

19 }
20 } ,
21 methods : {
22

23 } ,
24 crea ted () {
25 } ,
26 provide : {
27

28 } ,
29 g l o b a l s : {
30 }
31 }
32 </ s c r i p t>
 	

Pages In VueJS, pages are created with views. Views, within VueJS, acts similarly

to VueJS components but are intended to be used to display information to the

screen. This project has three VueJS views: LoginView, ScheduleView, LogoutView.

5.2.2 Web App Design 63

LoginView handles logging and authenticating the user. Before LoginView

is shown to the screen, the VueJS application checks to see if the user has been

previously logged in. If the user has logged in before, the VueJS transitions to the

Schedule View. Else, LoginView is shown to the user.

LoginView’s template section is:

Listing 5.11: LoginView’s template section� �
1 <template>
2 <h3>Login</ h3>
3 <button @cl ick=" LoginMicrosoft ">Login With Your Work / School

Account</ button>
4 <button @cl ick=" LoginGoogle " : disabled=" ! Vue3GoogleOauth . i s I n i t

␣ | | ␣ t h i s . $cookies . isKey (’ accessToken ’) ">Login With Your
Gmail</ button>

5 </ template>
 	
The LoginView contains two buttons for logging in the user. The disabled area of line

4 disables the Google login button if the user has already logged in or the GAuth

object is not initialized yet. Currently, Backlog Burner only accepts users with a

Google account or an Outlook account. Microsoft and Google use the bearer token

authentication system. The bearer token system uses the following steps:

1. The web application sends an HTTP GET request for a request token [10].

This HTTP GET request includes the web application’s ID, the user’s log in

information and any extra destination specific information.

2. Once the HTTP GET request has been received and processed, an authentica-

tion token is produced and sent to the web application [10]. This authentication

token allows the web application to receive the user’s data that is stored at the

authenticator [10].

In Backlog Burner, the bearer token authentication is handled through the $msal-

Client and $GAuth global variables that were created in main.js.

5.2.2 Web App Design 64

The LogoutView handles logging out the user. A POST request is sent to the

authenticator’s logout endpoint. Once the POST request is received and processed,

the web application removes any stored login information and transitions to the

LoginView.

The ScheduleView handles displaying the user’s current schedule and showing

their new schedules. Before LoginView is shown to the screen, the VueJS application

checks to see if the user has been previously logged in. If the user is not logged in,

the web application redirects to LoginView. When the page has loaded, the web

application sends a GET Request to web server of the account’s calendar. If the user

logged in with their Google account, then the web application sends a GET request

to Google asking for the user’s calendar data. The same process is applied for those

who log in with their Microsoft accounts.

New Components Secondly, the HelloWorld component is removed. Instead of

using the HelloWorld component, the AddCalendarEvent component is added. At-

tached to the ScheduleView, the AddCalendarEvent component handles modifying

the calendar shown on the Schedule screen through the use of two pop up forms.

AddCalendarEvent’s template section is split into two divisions: the Add Event

pop up form and the Add Hobby pop up form. The Add Event pop up form is used

to add any missing hard constraints. The Add Hobby pop up form is used to the

user’s hobby into the VueJS application. In AddCalendarEvent’s template, the Add

Event form is declared as:

Listing 5.12: The Add Event pop form� �
1 <form @submit=" onSubmit " c l a s s=" add−form ">
2 <div c l a s s=" form−c o n t r o l ">
3 <label>Name: </ label>
4 <input type=" t e x t " v−model=" nameOfMedia " name="name"

placeholder=" Enter ␣name" />
5 </ div>
6

5.2.2 Web App Design 65

7 <vue−c a l
8 c l a s s=" vuecal−−date−picker "
9 xsmall

10 hide−view−s e l e c t o r
11 : time=" f a l s e "
12 : t r a n s i t i o n s=" f a l s e "
13 ac t ive −view=" month "
14 : d isable−views=" [’ week ’] "
15 @cel l−focus=" s t a r t D a t e ␣=␣$event "
16 >
17 </ vue−c a l>
18

19 <vue−c a l
20 c l a s s=" vuecal−−date−picker "
21 xsmall
22 hide−view−s e l e c t o r
23 : time=" f a l s e "
24 : t r a n s i t i o n s=" f a l s e "
25 ac t ive −view=" month "
26 : d isable−views=" [’ week ’] "
27 @cel l−focus=" endDate␣=␣$event "
28 >
29 </ vue−c a l>
30 <input type=" submit " value=" Sumbit␣Task " />
31 </ form>
 	
The vue-cal tag creates a calendar in the form. The calendar serves to allow the

user to pick the start and ends date of the task. AddCalendarEvent stores the values

of the information entered into the form and adds then to the calendar once "Submit

Task" is pressed. In AddCalendarEvent’s template, the Add Hobby form is declared

as:

Listing 5.13: Add Hobby Form� �
1 <form @submit=" pushSC " c l a s s=" add−form ">
2 <div c l a s s=" form−c o n t r o l ">
3 <label>Name: </ label>
4 <input type=" t e x t " v−model=" eventName " name="name"

placeholder=" Enter ␣name" />
5 </ div>
6

7 <div>
8 <label>Length of Event : </ label>
9 <input type=" number " v−model=" lengthOfSC " name="

lengthOfSC " />
10 </ div>
11

12 <vue−c a l

66

13 c l a s s=" vuecal−−date−picker "
14 xsmall
15 hide−view−s e l e c t o r
16 : time=" f a l s e "
17 : t r a n s i t i o n s=" f a l s e "
18 ac t ive −view=" month "
19 : d isable−views=" [’ week ’ , ␣ ’ year ’ , ␣ ’ day ’] "
20 @cel l−focus=" selectedSCDate ␣=␣$event "
21 >
22 </ vue−c a l>
23

24 <input type=" submit " value=" Sumbit␣Hobby" />
25 </ form>
 	
Similar to the Add Task form, AddCalendarEvent stores the values of the

information entered into the form and adds them to the list of hobbies once "Submit

Hobby" is pressed.

Using The GACO Algorithm

The specific details on how the GACO algorithm is implemented are discussed in

Section 5.3. The Genetic Ant Colony Optimization algorithm is encapsulated by an

HTTP API. This allows the user side of the software to use the GACO algorithm

without being involved with the implementation of GACO. The VueJS application

similarly sends a POST request to the HTTP API. This POST request contains a slice

of the user’s current schedule and some information about the tasks the user has

submitted. Once this POST request is received and processed, the API returns a list

of timings for the tasks the user has submitted.

5.3 Implementing GACO

As previously stated, the GACO algorithm is encapsulated within an HTTP API. This

HTTP API and the implementation of GACO are written in the Rust programming

language. This section is divided into five subsections. The first subsection explains

the process of creating an HTTP API in Rust. The last four subsections are devoted to

5.3.1 Web API 67

describing how the GACO algorithm is implemented in Rust. Rust is a programming

language designed for performance and memory safety [9].

5.3.1 Web API

This project uses Actix Web to handle HTTP requests and responses. Actix Web is a

Rust web framework [21]. To attach Actix Web to a Rust project, Actix Web must be

installed first. For the sake of brevity, this paper will not go through the process of

installing external libraries. Given that Actix Web is installed, an Actix Web API is

declared with: [21]:� �
1 use actix_web : : { App, HttpServer } ;
2

3 #[a c t i x _ w e b : : main]
4 async fn main () −> std : : io : : Result < ()> {
5 HttpServer : : new (| | {
6 App : : new ()
7 })
8 . bind (" 1 2 7 . 0 . 0 . 1 : 8 0 8 0 ") ?
9 . run ()

10 . await
11 }
 	
Lines 5-7 creates a HttpServer object. The HttpServer object represents an HTTP

Server as a Rust struct. Line 8 tells Actix Web the desired IP address and port of the

web API. Line 9 activates the Web Server. The web API is hosted at 127.0.0.1:8080.

However, this web API can not be used. To add a Rust function to the web API, the

Actix Web service function is used. Let us assume we want to add a function named

echo that returns any value that was sent to the web API. echo is declared by [21]:� �
1 use actix_web : : { post , HttpResponse , Responder } ;
2 1
3 #[p o s t (" / e c h o ")]
4 async fn echo (req_body : String) −> impl Responder {
5 HttpResponse : : Ok() . body (req_body)
6 }
 	
Line 3 binds the echo function to the "/echo" endpoint. Web endpoints are strings

5.3.1 Web API 68

used to identify specific functions within an API. These strings are attached to the

end of the API’s URL. Thus, information must be sent towards "127.0.0.1:8080/echo"

to activate echo. Line 5 sends out an HTTP OK response with the response body

containing the original request body. To attach the function to the API, the service

function is applied to the HttpServer object [21]. The service function only takes the

function object as a parameter. Thus, the API is: [21]:� �
1 use actix_web : : { App, HttpServer } ;
2 use actix_web : : { post , HttpResponse , Responder } ;
3

4 #[p o s t (" / e c h o ")]
5 async fn echo (req_body : String) −> impl Responder {
6 p r i n t l n ! (" { : ? } " , req_body) ;
7 HttpResponse : : Ok() . body (req_body)
8 }
9

10 #[a c t i x _ w e b : : main]
11 async fn main () −> std : : io : : Result < ()> {
12 HttpServer : : new (| | {
13 App : : new ()
14 })
15 . s e r v i c e (echo)
16 . bind (" 1 2 7 . 0 . 0 . 1 : 8 0 8 0 ") ?
17 . run ()
18 . await
19 }
 	
For this project, the API is declared using:� �
1 use actix_web : : { App, HttpServer } ;
2 use a c t i x _ c o r s : : Cors ;
3 mod model ;
4 mod ga ;
5 mod aco ;
6 extern c r a t e chrono ;
7

8 #[a c t i x _ w e b : : main]
9 async fn main () −> std : : io : : Result < () >{

10 l e t u r l = match c f g ! (debug_assert ions) {
11 t rue => " 1 2 7 . 0 . 0 . 1 " ,
12 f a l s e => " backlogburner . com"
13 } ;
14 p r i n t l n ! (" Hosting␣URL: ␣ { } " , u r l) ;
15 HttpServer : : new (| | {
16 l e t cors = Cors : : permissive () ;
17 App : : new ()
18 . wrap (cors)

5.3.2 Implementing GACO 69

19 . s e r v i c e (model : : getNewSchedule)
20 })
21 . bind ((url , 5000)) ?
22 . run ()
23 . await
24 }
 	
Lines 3-5 import the genetic algorithm and the ant colony optimization algo-

rithm. Lines 10-13 determines which URL the API should be hosted on. If the

API is run under a development environment, then the API will be hosted on

"127.0.0.1". Otherwise, it will be hosted on backlogburner.com. In this project, the

getNewSchedule function implements the GACO algorithm. Thus, line 19 attaches

the getNewSchedule function to the web API.

5.3.2 Implementing GACO

The GACO algorithm is implemented below:� �
1 #[p o s t (" / model ")]
2 async fn getNewSchedule (user_data : Json<UserData>) −>

HttpResponse {
3 l e t model_data : Vec<(i128 , i128)> = user_data .

ConvertUserData () ;
4 l e t endValue : i128 = (user_data . EndOfCycle . timestamp () −

user_data . monday . timestamp ()) as i128 / 3 0 0 ;
5 l e t f r e e I n t e r v a l s = ga : : getListOfFreeTime (&model_data ,

endValue as f32) ;
6 l e t pool = ga : : run (1 0 0 , &model_data , &user_data . newEvent ,

endValue as f32) ;
7 l e t s e l e c t e d S o l u t i o n = aco : : run (1 0 0 , &user_data . newEvent , &

f r e e I n t e r v a l s , &pool , &model_data) ;
8 l e t newEvents = ConvertToScheduleData(& s e l e c t e d S o l u t i o n , &

user_data) ;
9 HttpResponse : : Ok()

10 . content_type (" a p p l i c a t i o n / j son ")
11 . j son (newEvents)
12 }
 	
The getNewSchedule function uses the JSON form of the VueJS application data

as a parameter variable. The function is designed to expect a HttpResponse object

to be returned. Thus, lines 13-15 returns an OK HTTP response with the new events

5.3.3 Modeling Our Data 70

attached to the response. The new events are converted into a JSON format. Line 3

converts the user data into a form that is more accessible to the GACO algorithm.

The implementation details are discussed in 5.3.4. Line 5 calculates all the time

blocks, within the ranges of the user data, that are not being used by any event.

Line 6 employs the genetic algorithm. The details of this function and the genetic

algorithm implementation are discussed in 5.3.5. The ga::run function returns a set

of possible solutions. Line 7 applies the ant colony algorithm optimization section

of the GACO algorithm. This line returns a single solution. Line 8 coverts the

single solution from the model space into a more human-readable format. The

implementation of this function is explained in 5.3.4.

5.3.3 Modeling Our Data

Whilst the Rust HTTP API implements the GACO algorithm, it also handles

transforming the data from the VueJS application into information that the model

can use. The user data is abstracted to the UserData struct.

Listing 5.14: The UserData struct� �
1 #[d e r i v e (Debug , S e r i a l i z e , D e s e r i a l i z e , Clone)]
2 pub s t r u c t UserData {
3 pub l i s t O f E v e n t s : Vec<HardConstraint > ,
4 pub monday : DateTime<Utc> ,
5 pub EndOfCycle : DateTime<Utc> ,
6 pub newEvent : Vec<RequestedEvent>
7 }
 	
The UserData struct contains a list of events from the user’s schedule. This list is

named listO f Events. The monday variable represents the starting time of this slice.

The EndO f Cycle variable represents the ending time of this slice.

Each element in listO f Events is abstracted into a HardConstraint struct.

Listing 5.15: The HardConstraint struct

5.3.3 Modeling Our Data 71

� �
1 #[d e r i v e (Debug , S e r i a l i z e , D e s e r i a l i z e , Clone)]
2 pub s t r u c t HardConstraint {
3 pub c l a s s : String ,
4 pub end : DateTime<Utc> ,
5 pub source : String ,
6 pub s t a r t : DateTime<Utc> ,
7 pub t i t l e : String
8 }
 	
The class variable represents the types of the event. The start and end variables

represent the start and end times of the event. The source variable represents the

origin of the event. The title variable represents the name of the event.

In the UserData struct, the newEvent variable represents the list of new events

requested by the user. Each new event is abstracted into a RequestedEvent struct.

Listing 5.16: The RequestedEvent struct� �
1 #[d e r i v e (Debug , D e s e r i a l i z e , S e r i a l i z e , Clone)]
2 pub s t r u c t RequestedEvent {
3 pub c l a s s : String ,
4 pub length : f32 ,
5 pub se lec tedDate : DateTime<Utc> ,
6 pub source : String ,
7 pub t i t l e : String
8 }
 	
The class variable represents the types of the newly requested event. The source

variable represents the origin of the newly requested event. The title variable

represents the name of the newly requested event. The length variable represents

the length of the newly requested event. The selectedDate variable represents the

intended time slice of the user data.

The user data is transformed into the model data through the ConvertUserData

function.� �
1 pub fn ConvertUserData(& s e l f) −> Vec<(i128 , i128) >{
2 l e t mut newVec = Vec : : < (i128 , i128) > : :new () ;
3 for x in &s e l f . l i s t O f E v e n t s {
4 newVec . push ((
5 (x . s t a r t . timestamp () − s e l f . monday . timestamp ())

as i128 /3 0 0 ,

5.3.3 Modeling Our Data 72

6 (x . end . timestamp () − s e l f . monday . timestamp ())
as i128 /300

7)) ;
8 }
9 return newVec ;

10 }
 	
Lines 5-6 calculates the number of seconds between the beginning of the slice

to the starting and ending times of the event and divides this number by 300. The

number that comes from this conversion is the number of 5 minute time blocks

from the beginning of the schedule slice. The ConvertUserData function stores

these number in a list and exports this list. The converted user data is stored in the

variable called model_data.

When the GACO algorithm is finished, the solution created must be converted

from the model space into a more accessible format for the VueJS application. This

conversion is handled in the ConvertToScheduleData function.

Listing 5.17: The ConvertToScheduleData function� �
1 pub fn ConvertToScheduleData (newEventModelData : &Vec<Vec<(i128 ,

i128)>>, userData : &UserData) −> Vec<Vec<HardConstraint>>{
2 l e t mut scheduleData = Vec : : <Vec<HardConstraint >> : :new () ;
3 for newEvents in newEventModelData {
4 l e t mut e v e n t L i s t = Vec : : <HardConstraint > : : new () ;
5 for i in 0 . . userData . newEvent . len () {
6 l e t mut new_hc = HardConstraint : : new () ;
7 new_hc . s t a r t = DateTime : : <Utc > : : from_utc (
8 NaiveDateTime : : from_timestamp (
9 ((newEvents [i] . 0 * 300) as f32 + (userData .

monday . timestamp () as f32)) as i64 , 0 as
u32)

10 , Utc) ;
11 new_hc . end = DateTime : : <Utc > : : from_utc (
12 NaiveDateTime : : from_timestamp (
13 ((newEvents [i] . 1 * 300) as f32 + (userData .

monday . timestamp () as f32)) as i64 , 0 as
u32)

14 , Utc) ;
15 new_hc . c l a s s = " hc " . t o _ s t r i n g () ;
16 new_hc . t i t l e = userData . newEvent [i] . t i t l e . c lone () ;
17 new_hc . source = "A" . t o _ s t r i n g () ;
18 e v e n t L i s t . push (new_hc) ;
19 }
20 scheduleData . push (e v e n t L i s t) ;

5.3.4 Genetic Algorithm 73

21 }
22 return scheduleData ;
23 }
 	
Lines 7-14 multiplies the model space numbers by 300 and adds this number to

the starting time of the slice. Lines 15-17 attaches necessary qualitative data to the

newly converted event.

5.3.4 Genetic Algorithm

The Genome

Within the Rust API backend, each genome is abstracted to the following struct:� �
1 #[d e r i v e (Debug , Clone)]
2 pub s t r u c t GAPath {
3 pub f i t n e s s : f32 ,
4 pub schedule : Vec<(i128 , i128) > ,
5 pub newEventsIndex : Vec<usize > ,
6 pub EndOfCycle : f32
7 }
 	
The fitness variable describes the fitness of the genome. The schedule variable

represents a possible new schedule for the user within the model space. The

newEventsIndex variable represents a list of indices, for the schedule variable, that

access the timings of the user submitted hobbies. EndO f Cycle represents the model

space value of the end of the user’s schedule splice. This variable is used in

calculating fitness.

Each genome is initialized by the following method:

Listing 5.18: Genome Intialization Method� �
1 pub fn i n i t (&mut sel f , hardConstra ints : &Vec<(i128 , i128) > ,

l i s tOfRequestedEvents : &Vec<model : : RequestedEvent > ,
EndOfCycle : f32) {

2 l e t mut temp : MyPheno = MyPheno{
3 EndOfCycle : EndOfCycle ,
4 schedule : hardConstra ints . c lone () ,
5 model_data : hardConstra ints . c lone () ,

5.3.4 Genetic Algorithm 74

6 newEventsIndex : Vec : : < usize > : : new ()
7 } ;
8 l e t ListOfFreeTime = ga : : getListOfFreeTime (hardConstraints ,

EndOfCycle) ;
9 l e t mut rng = thread_rng () ;

10 l e t mut l istOfNewEvents = Vec : : < (i128 , i128) > : :new () ;
11 for x in l i s tOfRequestedEvents {
12 l e t mut freeTime = ListOfFreeTime . choose(&mut rand : :

thread_rng ()) . unwrap () ;
13 while freeTime . 1 − freeTime . 0 < (x . length / 5 . 0) as i128 {
14 freeTime = ListOfFreeTime . choose(&mut rand : :

thread_rng ()) . unwrap () ;
15 }
16 l e t mut f r e e t i m e _ l e n g t h = freeTime . 1 − freeTime . 0 ;
17 l e t mut mult iple : i128 = rng . gen_range (0 . . (

f r e e t i m e _ l e n g t h as f32 / (x . length / 5 . 0)) as i128) ;
18 l e t mut s t a r t = freeTime . 0 + (mult ip le * (x . length / 5 . 0)

as i128) ;
19 l e t mut sample_schedule : (i128 , i128) = (s t a r t , s t a r t +

(x . length / 5 . 0) as i128) ;
20 while ga : : checkVio la t ions (&sample_schedule ,

hardConstra ints) {
21 freeTime = ListOfFreeTime . choose(&mut rand : :

thread_rng ()) . unwrap () ;
22 while freeTime . 1 − freeTime . 0 < (x . length / 5 . 0) as

i128 {
23 freeTime = ListOfFreeTime . choose(&mut rand : :

thread_rng ()) . unwrap () ;
24 }
25 f r e e t i m e _ l e n g t h = freeTime . 1 − freeTime . 0 ;
26 mult iple = rng . gen_range (0 . . (f r e e t i m e _ l e n g t h as

f32 / (x . length / 5 . 0)) as i128) ;
27 s t a r t = freeTime . 0 + (mult ip le * (x . length / 5 . 0) as

i128) ;
28 sample_schedule = (s t a r t , s t a r t + (x . length / 5 . 0) as

i128) ;
29 }
30 temp . schedule . push (sample_schedule) ;
31 l istOfNewEvents . push (sample_schedule) ;
32 }
33 temp . schedule . sort_by (| a , b | a . part ial_cmp (b) . unwrap ()) ;
34 for x in l istOfNewEvents {
35 l e t index = temp . schedule . i t e r () . p o s i t i o n (|& r | r == x) .

unwrap () ;
36 temp . newEventsIndex . push (index) ;
37 }
38 return temp . clone () ;
39 }
 	
Lines 11-32 goes through each user submitted hobby and randomly selects a tim-

ing for each user submitted hobby. Let h represent a user hobby in listO f RequestedEvents.

5.3.4 Genetic Algorithm 75

Line 12 chooses a random range of non-allocated time blocks. Lines 13-15 check if

the chosen range of non-allocated time blocks can contain hobby h. If the chosen

range can not contain h, then a new range of non-allocated time blocks is chosen. Let

the range of non-allocated time blocks be denoted by r. This process is continued

until a range of time blocks that can contain the hobby h is chosen. Lines 16-19 finds

a time for h within r. Lines 20-29 checks if the new timings for hobby h conflict

with the user’s schedule. If there is a conflict, new timings are determined for h.

Otherwise, the timings are added to the schedule variable of the genome. Line 34-37

find the position of hobby h in the genome’s schedule and store that index in a list.

Implementing The Genetic Algorithm

The genetic algorithm is implemented in the run function.

Listing 5.19: The run function for the ga crate� �
1 pub fn run (population : i32 , hardConstra ints : &Vec<(i128 , i128)

> , l i s tOfRequestedEvents : &Vec<model : : RequestedEvent > ,
EndOfCycle : f32) −> (Vec<MyPheno> , f32) {

2 l e t mut pop : Vec<MyPheno> = (0 . . population) . map (| i | ga : :
i n i t 2 (hardConstraints , l i s tOfRequestedEvents , EndOfCycle
)) . c o l l e c t () ;

3 l e t mut s = Simulator : : bu i lder (&mut pop)
4 . s e t _ s e l e c t o r (Box : : new(UnstableMaximizeSelector : : new

(1 0)))
5 . s e t _ ma x_ i t e r s (5 0)
6 . bui ld () ;
7 l e t mut temp = StepResul t : : Success ;
8 l e t mut counter = 0 ;
9 l e t mut f i t n e s s T u p l e = (0 . 0 , 0 . 0) ;

10 l e t mut f i tnessSum = 0 . 0 ;
11 l e t mut popCopy = s . population () ;
12 f i tnessSum = ga : : ca l cu la teSumFi tness (&popCopy) ;
13 f i t n e s s T u p l e . 0 = f i tnessSum / (popCopy . len () as f32) ;
14 loop {
15 temp = s . checked_step () ;
16 f i t n e s s T u p l e . 1 = f i t n e s s T u p l e . 0 ;
17 match temp {
18 StepResul t : : Fai lure => {
19 p r i n t l n ! (" F a i l u r e ") ;
20 break ;
21 } ,

5.3.4 Genetic Algorithm 76

22 StepResul t : : Done => {
23 break ;
24 } ,
25 _ => {
26 f i tnessSum = ga : : ca l cu la teSumFi tness (&popCopy) ;
27 f i t n e s s T u p l e . 0 = f i tnessSum / (popCopy . len () as

f32) ;
28 i f f i t n e s s T u p l e . 1 / (f i t n e s s T u p l e . 0 . powf (3 . 0)) <

0 . 0 3 {
29 counter += 1
30 } e lse {
31 counter = 0 ;
32 }
33 i f (counter == 3) {
34 break ;
35 }
36 }
37 }
38 }
39 popCopy = s . population () ;
40 popCopy . sort_by (| a , b | (a . f i t n e s s ()) . part ial_cmp (&b . f i t n e s s

()) . unwrap ()) ;
41 l e t mut s e l e c t e d S o l u t i o n s : Vec<MyPheno> = Vec : : new () ;
42 for i in 0 . . ((population * 10) / 100) as usize {
43 s e l e c t e d S o l u t i o n s . push (popCopy [i] . c lone ()) ;
44 }
45 l e t mut a v g _ f i t n e s s = 0 . 0 ;
46 for x in &s e l e c t e d S o l u t i o n s {
47 a v g _ f i t n e s s += x . f i t n e s s () as f32 ;
48 }
49 a v g _ f i t n e s s = a v g _ f i t n e s s / (s e l e c t e d S o l u t i o n s . len () as f32)

;
50 return (s e l e c t e d S o l u t i o n s , a v g _ f i t n e s s) ;
51 }
 	
The run function takes the population size, the user’s schedule slice, and the list

of user submitted hobbies as input. The run function returns a list of genomes and

the average fitness value as output. The fitness value is determined by calculating

the smallest interval between events. Once calculated, the length of this interval is

recorded and stored as the fitness value. Line 2 initializes the genome pool. Lines

12-13 calculates the average fitness of the initialized pool. Lines 15-39 are repeated

until the ratio of the two-most recent generations’ average fitness are less than

0.3 or until lines 11-29 have been repeated for 50 generations. Line 15 creates a

new genome generation. Lines 18-21 prints "Failure" when there is an error whilst

5.3.5 Ant Colony Optimization Algorithm 77

creating the new generation of the genome pool. Lines 22-24 stops simulating the

genetic algorithm. Lines 26-35 checks if the ratio of the average fitness of the newest

generation to the average fitness of the older generation raised to the power of 3 is

less than 0.03. Lines 39-44 collects 10 of the fittest genomes of the latest genome

pool. Lines 47-49 calculates the average fitness of the selected genomes from lines

39-44.

5.3.5 Ant Colony Optimization Algorithm

Within the Ant Colony Optimization area of the API, the ant is described by the

following struct:

Listing 5.20: Ant Struct� �
1 #[d e r i v e (Debug , Clone)]
2 pub s t r u c t Ant {
3 pub path : Vec<(i128 , i128) > ,
4 pub curr_node : (i128 , i128) ,
5 pub EndOfCycle : f32
6 }
 	
The path variable represents the path the ants travel on the graph. The cur_node

variable represent the current node of the ant. The EndO f Cycle variable is the value

of the last time block of the user’s schedule time slice.

Each node on the graph is described by the following struct:

Listing 5.21: Node Struct� �
1 #[d e r i v e (Debug , Clone , Copy)]
2 pub s t r u c t Node{
3 pub i n t e r v a l : (i128 , i128) ,
4 pub pheromone : f32
5 }
 	
The interval variable represents the range of time blocks associated with the

node. The pheromone variable represents the pheromone value of the node.

5.3.5 Ant Colony Optimization Algorithm 78

The graph for the ant colony Optimization algorithm is described by the following

code snippet:

Listing 5.22: Graph Struct� �
1 #[d e r i v e (Debug , Clone)]
2 pub s t r u c t Graph {
3 pub nodes : Vec<Vec<Node>>
4 }
 	
The nodes variable is a list of node lists.

The graph struct is initialized by the following code snippet:

Listing 5.23: Graph Intialization� �
1 pub fn i n i t (&mut sel f , l i s t_o f_new_events : &Vec<model : :

RequestedEvent > , l i s t _ o f _ f r e e _ i n t e r v a l s : &Vec<(i128 , i128) >)
{

2 l e t mut nodes = Vec : : <Vec<Node>> : :new () ;
3 for new_event in l i s t_o f_new_events {
4 l e t mut n o d e _ l i s t = Vec : : <Node> : : new () ;
5 for i n t e r v a l in l i s t _ o f _ f r e e _ i n t e r v a l s {
6 for i in 1 . . ((i n t e r v a l . 1 − i n t e r v a l . 0) as f32 / (

new_event . length * 1 2 . 0)) as i128 + 1{
7 l e t mut node : Node = Node{
8 i n t e r v a l : (0 , 0) ,
9 pheromone : 0 . 0

10 } ;
11 node . i n t e r v a l = (i n t e r v a l . 0 + ((i −1) as f32

* new_event . length * 1 2 . 0) as i128 ,
i n t e r v a l . 0 + (i as f32 * new_event .
length * 1 2 . 0) as i128) ;

12 node . pheromone = 0 . 0 ;
13 n o d e _ l i s t . push (node) ;
14 }
15 }
16 nodes . push (n o d e _ l i s t) ;
17 }
18 s e l f . nodes = nodes ;
19 }
 	
This function inputs a list of user submitted hobbies and a list of all non-allocated

time blocks. Line 2 creates a temporary form of the graph variable named nodes.

Lines 6-16 calculates each possible interval for each user submitted hobby. Once

5.3.5 Ant Colony Optimization Algorithm 79

these intervals are calculated, they are added to the nodes variable. At the end of the

function, the nodes variable is outputted.

Before the ant colony optimization algorithm is run, the ants are initialized and

the graph is updated. The solutions from the genetic algorithm step are applied

to the ant colony optimization graph. For each interval mentioned in the genetic

algorithm solutions, the pheromone value of the corresponding node is increased

by 10.

With the graph updated, and the ants initialized, the ant colony optimization

algorithm can begin. The steps of the ant colony optimization algorithm is described

in the following snippet:

Listing 5.24: Ant Colony Optimization Loop� �
1 l e t mut counter = 0 ;
2 while ! i s _ o v e r (&aco_graph , counter) {
3 for i in 0 . . aco_graph . nodes . len () {
4 aco_graph . nodes [i] . r e t a i n (|& x | x . pheromone != 0 . 0) ;
5 }
6 r e i n i t a l i z e _ a n t s (&mut ants , population) ;
7 move_ants(&aco_graph , &mut ants , &pheromone_sum , model_data

) ;
8 update_pheromone(&mut aco_graph , &mut ants , chromosones [0] .

EndOfCycle , model_data) ;
9 pheromone_sum = get_pheromone_sum(&aco_graph) ;

10 counter += 1 ;
11 }
 	
Line 1 creates a counter variable named counter. This variable counts the amount

of times lines 3-12 are run. Line 2 checks if the ending conditions are met. The

ending conditions are: if all the ants follow a single path or that counter exceed

50. Lines 3-5 remove any nodes with a pheromone value of 0. Line 6 reinitializes

the ants by clearing their paths and setting their position to the start node. Line 7

moves the ants to the end node using the pheromone principal described in Section

3.1. The heuristic information here is the fitness value of the combination of the

current path of the ant, the user’s schedule slice and the node being evaluated.

5.3.5 Ant Colony Optimization Algorithm 80

Once all the ants are at the end node, the ant colony optimization graph is updated.

For the paths the ants travelled, the pheromone value of each node within those

paths are increased by 20. Then, the pheromone value for each node in the ant

colony optimization graph is reduced by 10. This update happens in Line 8. Line 8

calculates the pheromone_sum. This value is used when the ants move from node to

node.

CHAPTER 6
Results

To evaluate the accuracy of the application, Backlog Burner was used by 21 College

of Wooster students. This chapter is devoted to detailing the results of this testing.

The students’ responses for each question are available in Appendix C.

6.1 Testing Procedure

The experiment of this study is split into 3 stages:

1. Before the student uses the application

2. Whilst the student uses the application

3. After the student uses the application

Each stage of the experiment consists of the student using a feature of the software

and responding to questions about that feature.

Before the student uses the application

The experiment begins by explaining the software being tested. Once the applica-

tion has been explained, the student is asked a few preliminary questions about

themselves. These questions are in Appendix B.2 under the "Before The User Uses

The App" subsection. Then the student logs in into the application.

81

82

Whilst the student uses the application

The student then proceeds to add their current schedule and hobbies. Whilst the

student is using the application, questions about the participant’s experience are

asked. The specific questions are detailed in Appendix B.2 under the "At The End

of The Session" subsection.

After the student uses the application

Once the new schedule is received, the student is asked about their thoughts on the

application and their new schedule. The specific questions asked are in Appendix

B.2 under the "Whilst The User Is Using The Application" subsection.

6.2 The Students

These students are from the College of Wooster, classes of 2022, 2023, and 2024.

Referring to Figure 6.1, the sample population has a biased towards the class of

2022. The majority of the students are Computer Science or Mathematics majors.

From 1-10, with 10 being the busiest and 1 being the least busy, the student gave a

rating of 7.57 on average. In qualitative terms, the students surveyed are busy but

not overwhelmed. Interestingly, each class year reported similar numbers except

for the class of 2023.

Class Year Average Busyness Rating
2022 7.40
2023 8.20
2024 7.33

Table 6.1: Student Class Year with Average Student Busyness Rating

All these students have a variety extracurricular activities. The most common

extracurricular activities are: Wooster Clubs, reading and video games.

83

Figure 6.1: Visual Representation of the participant’s class years

6.3 HowWellDoes Backlog BurnerOrganizeHobbies?

From 1-10, with 10 being good and 1 being bad, participants rated 7.05 on average

on how they liked the schedule given by Backlog Burner. In qualitative terms, the

students found their new schedule decently favorable. Most of the students gave a

rating of 7 when asked about their new schedule.

84

Figure 6.2: Distribution of student schedule ratings

Using the distribution figure above, about 76% of the rating are in the 7-10 range.

The rating of 7 serve as both the median and mode.

6.4 Student Thoughts of Backlog Burner Application

Generally, the participants found the website easy to use. On average, the student

rated 7.81 on how comfortable they were with the website.

85

Figure 6.3: Distribution of student comfortable ratings

67% of the student participant rated between 8-10. A few students found the

visual layout of the website to be confusing. Furthermore, the descriptions of the

displayed options confused some participants. There was also confusions with

selecting the hobby times that were given by the GACO algorithm. Some students

wished there was more color coding for events as well. Despite these issues, 86% of

the participants said they would use Backlog Burner in the future.

CHAPTER 7
Conclusion

The goal of this project was to create an automated scheduling program designed

for the College of Wooster student population. This program uses the user’s current

schedule and a list of hobbies and outputs a proposed the user’s schedule where

the hobbies are organized not to conflict with the user’s classes or commitments.

The integer programming, ant colony optimization and genetic algorithm models

designed to solve the nurse scheduling problem were discussed and analyzed.

Combing properties from these models, an algorithm was purposed that could

schedule a user’s hobbies. The software developed in this project was used by 21

College of Wooster students. On average, the students found their new schedule

decently favorable. In a numerical sense, the students broadly rated their new

schedule 7.05. Whilst the software achieves its purpose, there are areas where

Backlog Burner can be improved upon.

7.1 FutureWork

Fitness Function

The fitness function for the GACO algorithm does not account the user’s inclination

for when a hobby should be organized. For instance, a user might want to read

for three hours and play poker for three hours with friends in the evening. From

86

87

the perspective of the GACO algorithm, reading for three hours is equivalent to

playing poker for three hours. Thus, the algorithm organizes these hobbies in the

same manner despite their differences. A good next step is to improve the fitness

function so that it accounts for the user’s inclination for specific time frame.

Visual Interface

The current visual layout of the application confused a selection of the student

participants. This is due to how there is no visual indicator towards how the

application should be used. Thus, a good extension for this project will be redesign-

ing the visual layout of Backlog Burner. The visual interface can be improved to

accommodate people’s disabilities. This can be achieved by using a color scheme

more accommodating to those with color blindness. The entire application should

be accessible for screen readers. Backlog Burner’s layout should be responsive to

how zoomed in or out the web browser in. This feature will help users differing

levels of vision.

Entering Schedules and Hobbies

The process of entering hobbies and schedules can be improved. Currently, the user

presses a button and a pop-up appears with a variety of options to add the user’s

schedule.

88

Figure 7.1: Screenshot of the popup that adds in the user’s schedule

The current process of entering a user’s schedule relies on the user’s ability to

perfectly understand the options given to them. These options are explained by

the text to the left of the input areas. A portion of the student participants were

confused on the meaning of each input field in the pop-up forms. One avenue of

future work is to improve how the application is communicated to the user. This

feature can be achieved through reducing the reliance of text and using icons to

explain each options. A video or document explaining the use of option should

reduce the amount of confusion.

New Platforms

Currently, Backlog Burner is designed for desktop use. However, a majority of

college students primarily use mobile phones. Hence, Backlog Burner should be

89

adaptable for phone use. This could be accomplished by making the application

visually fit within a phone screen or by creating a phone app.

Connecting to other schedules

As of writing, Backlog Burner only incorporates the user’s current schedule. One

avenue of future work is the ability to incorporate other schedules with the user’s

current schedule. These other schedule could be a facility’s operating hours or other

student schedules. Furthermore, Backlog Burner should be able to save the current

schedule to other scheduling applications.

Connecting to other application

Backlog Burner solely relies on the user creating hobbies for the application to

schedule. One area of future work is connecting Backlog Burner to other applications

like Netflix to show a selection of movies based on the availability of the user.

Furthermore, the application can be connected to applications similar to Slack or

Microsoft Teams in order to schedule leisure activities at work.

New Survey

The survey explained in Chapter 6 was very limited. The participant population

did not represent the student body of the College of Wooster. Thus, Backlog

Burner should be tested with a larger population of student body. The new set

of participants should from each class year at the College of Wooster. However,

no class year should be a majority of the population. In addition, Backlog Burner

should ve tested against students that do not study at the College of Wooster. This

insures that Backlog Burner can handle a variety of schedules since the College of

Wooster students’ have similar schedule structures.

APPENDIX A
Usability Test Permission Form

Purpose

You are being asked to participate in a research study. We are investigating the

effectiveness of a scheduling program designed for College of Wooster students.

Procedures

If you decide to volunteer, you will be asked to answer several questions about

yourself, and your experience with the scheduling program. The experiment will

take approximately 15 minutes to complete.

Risks

There are no risks associated with the experiment

Benefits

You may receive an improved schedule.

90

A. Usability Test Permission Form 91

Compensation

There is no compensation with this experiment.

Confidentiality

Any information you give will be held confidential. Unique number codes will be

stored on a Microsoft Word file. This file will be destroyed once all data is collected.

Thus, all data will become anonymous at the conclusion of the study.

Costs

There is no cost to you beyond the time and effort required to complete the procedure

described above.

Right to Refuse orWithdraw

You may refuse to participate in the study. If you decide to participate, you may

change your mind about being in the study and withdraw at any point during the

experiment.

Questions

If you have any questions, please ask me. If you have additional questions later,

you can contact me by email at aolubusi22@wooster.edu. You may also contact my

advisor, Thomas Montelione, at tmontelione@wooster.edu.

A. Usability Test Permission Form 92

Consent

Your signature below will indicate that you have decided to volunteer as a research

subject, that you have read and understand the information provided above, and

that you are at least 18 years of age.

Signature of participant:

Date:

APPENDIX B
Usability Test Script

B.1 Introductions

Hello, USER. My name is Anjololuwa Olubusi. Thank you for joining this session.

Before we test the software, I believe it is best we go over the purpose of this session

before diving into the website. This testing session is meant to assess the usability

of this website. While you are using the website, I am going to ask some questions

about your experience.

B.2 Survey Questions

Before The User Uses The App

1. What is your major/majors?

2. From 1-10, with 10 being the busiest and 1 being the least busy, how busy

would you say you are?

3. Do you do any extracurricular activities?

4. What are your hobbies?

93

94

Whilst The User Is Using The Application

5. Just from glancing at the screen, does the website seem easy to use?

6. (When the user is adding a new event) Are the presented options sufficient?

7. If not, what options should be added?

8. Does there seem to be anything confusing about the application?

At The End of The Session

9. From 1-10, with 10 being the absolutely perfect and 1 being god awful, how

what rating do you give your new schedule?

10. From 1-10, how comfortable are you with this application?

11. Were there features you excepted that were not there?

12. If so, please list them?

13. Do you believe that the application properly handled any errors that may

have occurred?

14. Do you imagine yourself using this application in the future?

B.3 Tasks

1. Login

2. Add New Event/Events

3. Receive New Schedule

4. Engage Satisfaction Of User

APPENDIX C
Participant Data

Participants 4 - 6

ID 4 5 6

What is your class

year?

2022 2022 2023

What is your major/-

majors?

Urban Studies Chemistry History/Philosophy

Double Major

From 1-10, with 10

being the busiest and

1 being the least busy,

how busy would you

say you are?

5 6 7

Do you do any ex-

tracurricular activi-

ties?

Yes Yes Yes

95

C. Participant Data 96

If so, what are your

hobbies?

Photography, people

watching, listening

to music

Playing guitar, play-

ing piano, learning

music theory, cook-

ing, baking, and play-

ing video games.

Poker, reading, clubs,

games, puzzles.

Just from glancing at

the screen, does the

website seem easy to

use?

No Yes Yes

What difficulties do

you see with the web-

site?

Visual hiearchy of

more importatn and

less important infor-

mation.

(After you have en-

tered in your sched-

ule) Are the pre-

sented options suffi-

cient?

Yes Yes Yes

If not, what options

should be added?

Does there seem to

be anything confus-

ing about the appli-

cation?

Yes Yes Yes

C. Participant Data 97

If so, what are those

confusions?

hiearchy structure

and form

For the hobby there

was an extra spot

for how long the

hobby would go for

which seemed repet-

itive since before fill-

ing that out the start

and end date were al-

ready determined.

Some of the language

around recurring

events, timeframes

(the text boxes for

’when does this

event start, when

does this event end’

when creating new

events aren’t imme-

diately intuitive in

meaning). When

creating a hobby,

"within which days

do you want to

derive the time for

this hobby" was a bit

confusing, especially

as you already can

give ranges of days

for it to occur on).

From 1-10, with 10

being good and 1 be-

ing bad, what rat-

ing do you give your

new schedule?

7 7 7

From 1-10, how com-

fortable are you with

this application?

7 8 8

C. Participant Data 98

Were there features

you excepted that

were not there?

No No No

If so, please list

them?

Do you believe that

the application prop-

erly handled any er-

rors that may have

occurred?

Yes No No

Do you imagine

yourself using this

application in the

future?

Yes Yes Yes

Participants 7 - 9

ID 7 8 9

What is your class

year?

2022 2022 2022

What is your major/-

majors?

Computer Science,

Mathematics

Computer Science

& Economics

Communication

Studies

From 1-10, with 10

being the busiest and

1 being the least busy,

how busy would you

say you are?

10 7 8

C. Participant Data 99

Do you do any ex-

tracurricular activi-

ties?

Yes Yes Yes

If so, what are your

hobbies?

Gym, Ballroom Watching basketball

and working out

Writing, Music,

Cooking/Baking,

Gaming

Just from glancing at

the screen, does the

website seem easy to

use?

Yes Yes Yes

What difficulties do

you see with the web-

site?

(After you have en-

tered in your sched-

ule) Are the pre-

sented options suffi-

cient?

Yes Yes Yes

If not, what options

should be added?

Does there seem to

be anything confus-

ing about the appli-

cation?

Yes Yes No

C. Participant Data 100

If so, what are those

confusions?

Not sure how to re-

move an event after

adding it. Easy to re-

move hobby. Maybe

you can add some-

thing like that for

events as well.

The how many

weeks does this

activity repeat (but

also I’m dumb

and it made sense

immediately when

explained).

From 1-10, with 10

being good and 1 be-

ing bad, what rat-

ing do you give your

new schedule?

7 1 7

From 1-10, how com-

fortable are you with

this application?

8 8 8

Were there features

you excepted that

were not there?

No No No

If so, please list

them?

Do you believe that

the application prop-

erly handled any er-

rors that may have

occurred?

Yes No Yes

C. Participant Data 101

Do you imagine

yourself using this

application in the

future?

Yes No Yes

Participants 10 - 12

ID 10 11 12

What is your class

year?

2022 2022 2022

What is your major/-

majors?

Education and Soci-

ology

Political Science, In-

ternational Relations

Computer Science

From 1-10, with 10

being the busiest and

1 being the least busy,

how busy are you

generally?

9 7 7

Do you do any ex-

tracurricular activi-

ties?

Yes Yes Yes

C. Participant Data 102

If so, what are your

hobbies?

Member of the fol-

lowing clubs: Asia

Supporters in Ac-

tion, Let’s Taco Bout

Food Club, College

of Wooster PC Gam-

ing Club, Student As-

sistant at Campus Ac-

cess

ASIA club member,

JCA member, read-

ing, playing video

games, hanging out

with friends, and go-

ing to events with

said friends.

Drawing, painting,

occasionally playing

video games

Just from glancing at

the screen, does the

website seem easy to

use?

Yes No Yes

What difficulties do

you see with the web-

site?

It is very wordy, clut-

tered, and complex,

the rules can be sim-

plified for anyone to

understand

(After you have en-

tered in your sched-

ule) Are the pre-

sented options suffi-

cient?

Yes Yes Yes

If not, what options

should be added?

Color code each in-

dividual task so it’s

eyecatching

Minor entertainment

hobbies like reading

and games and work

like homework

C. Participant Data 103

Does there seem to

be anything confus-

ing about the appli-

cation?

No No Yes

If so, what are those

confusions?

Depending on what

was chosen, the op-

tions that appear un-

der recurrence de-

tails can be repetitive

(e.g: Selecting daily

then having to fill out

repeat every __days)

From 1-10, with 10

being good and 1 be-

ing bad, what rat-

ing do you give your

new schedule?

8 9 7

From 1-10, how com-

fortable are you with

this application?

8 8 7

Were there features

you expected that

were not there?

No No No

If so, please list

them?

C. Participant Data 104

Do you believe that

the application prop-

erly handled any er-

rors that may have

occurred?

Yes Yes Yes

Do you imagine

yourself using this

application in the

future?

Yes Yes Yes

Participants 13 - 15

ID 13 14 15

What is your class

year?

2022 2023 2022

What is your major/-

majors?

Music Performance -

Voice

Environmental Stud-

ies

Mathematics

From 1-10, with 10

being the busiest and

1 being the least busy,

how busy are you

generally?

8 9 7

Do you do any ex-

tracurricular activi-

ties?

Yes Yes No

C. Participant Data 105

If so, what are your

hobbies?

COWBelles, A

Round of Monkeys,

Dukes, The Goliard,

Hillel, Jewish Life,

Wooster Chorus,

Music composition

Reading, photogra-

phy, electric bass,

working out, hiking

Just from glancing at

the screen, does the

website seem easy to

use?

Yes Yes Yes

What difficulties do

you see with the web-

site?

(After you have en-

tered in your sched-

ule) Are the pre-

sented options suffi-

cient?

Yes No Yes

If not, what options

should be added?

Does there seem to

be anything confus-

ing about the appli-

cation?

No No Yes

If so, what are those

confusions?

It doesn’t automati-

cally add hobbies to

schedule.

C. Participant Data 106

From 1-10, with 10

being good and 1 be-

ing bad, what rat-

ing do you give your

new schedule?

7 5 4

From 1-10, how com-

fortable are you with

this application?

10 7 8

Were there features

you expected that

were not there?

No Yes No

If so, please list

them?

Color coding you’re

schedule

Do you believe that

the application prop-

erly handled any er-

rors that may have

occurred?

No No No

Do you imagine

yourself using this

application in the

future?

Yes Yes No

Participants 16 - 18

ID 16 17 18

C. Participant Data 107

What is your class

year?

2024 2024 2024

What is your major/-

majors?

BCMB CS major econ minor Statistical &

Data Sciences and

Business Economics

From 1-10, with 10

being the busiest and

1 being the least busy,

how busy are you

generally?

7 5 9

Do you do any ex-

tracurricular activi-

ties?

Yes Yes Yes

If so, what are your

hobbies?

ASUKEZWRITING

CENTER JOBSTEM

ZONE OFFICE

HOURS

gym, movies, read-

ing

Watching movies

and hiking

Just from glancing at

the screen, does the

website seem easy to

use?

Yes Yes Yes

What difficulties do

you see with the web-

site?

C. Participant Data 108

(After you have en-

tered in your sched-

ule) Are the pre-

sented options suffi-

cient?

Yes Yes Yes

If not, what options

should be added?

Does there seem to

be anything confus-

ing about the appli-

cation?

Yes No No

If so, what are those

confusions?

Add in a prompt to

tell user to select the

checkbox to add their

hobby time

From 1-10, with 10

being good and 1 be-

ing bad, what rat-

ing do you give your

new schedule?

9 8 9

From 1-10, how com-

fortable are you with

this application?

8 9 10

Were there features

you expected that

were not there?

No No No

If so, please list

them?

C. Participant Data 109

Do you believe that

the application prop-

erly handled any er-

rors that may have

occurred?

Yes Yes Yes

Do you imagine

yourself using this

application in the

future?

Yes Yes Yes

Participants 19 - 21

ID 19 20 21

What is your class

year?

2024 2024 2024

What is your major/-

majors?

Mathematics and

Computer Science

Computer Science

and Arts

Computer Science

major and French

minor

From 1-10, with 10

being the busiest and

1 being the least busy,

how busy are you

generally?

6 9 8

Do you do any ex-

tracurricular activi-

ties?

Yes Yes Yes

C. Participant Data 110

If so, what are your

hobbies?

Chess, Gaming,

Comics, Sports

Singing, dancing,

reading, analyzing,

drawing

I am on the Ball-

room Dance Club

and Equestrian Club

on campus.

Just from glancing at

the screen, does the

website seem easy to

use?

Yes Yes Yes

What difficulties do

you see with the web-

site?

(After you have en-

tered in your sched-

ule) Are the pre-

sented options suffi-

cient?

Yes Yes Yes

If not, what options

should be added?

Description box for

events and hobbies

Does there seem to

be anything confus-

ing about the appli-

cation?

No Yes No

If so, what are those

confusions?

The hobby does not

show on the calendar

C. Participant Data 111

From 1-10, with 10

being good and 1 be-

ing bad, what rat-

ing do you give your

new schedule?

10 6 9

From 1-10, how com-

fortable are you with

this application?

10 7 8

Were there features

you expected that

were not there?

No Yes No

If so, please list

them?

Hobby to show on

the calendar

Do you believe that

the application prop-

erly handled any er-

rors that may have

occurred?

No Yes No

Do you imagine

yourself using this

application in the

future?

Yes No Yes

Participants 22 - 24

ID 22 23 24

C. Participant Data 112

What is your class

year?

2023 2023 2023

What is your major/-

majors?

Computer Science Neurobiology BCMB

From 1-10, with 10

being the busiest and

1 being the least busy,

how busy are you

generally?

9 8 8

Do you do any ex-

tracurricular activi-

ties?

Yes Yes Yes

If so, what are your

hobbies?

Track and Field, art Watching YouTube

videos / Drawing /

painting Exercising

Walking

Art, watching

movies, reading

books. being in-

volved with the

south asian commu-

nity

Just from glancing at

the screen, does the

website seem easy to

use?

Yes Yes Yes

What difficulties do

you see with the web-

site?

C. Participant Data 113

(After you have en-

tered in your sched-

ule) Are the pre-

sented options suffi-

cient?

Yes Yes Yes

If not, what options

should be added?

N/A /na

Does there seem to

be anything confus-

ing about the appli-

cation?

Yes Yes No

If so, what are those

confusions?

A lot of wording

describing the thing

you are doing

Not being able to se-

lect the time for the

hobby and had to se-

lect the itinerary that

best corresponds to

the hobby

From 1-10, with 10

being good and 1 be-

ing bad, what rat-

ing do you give your

new schedule?

7 6 8

From 1-10, how com-

fortable are you with

this application?

7 4 6

Were there features

you expected that

were not there?

Yes Yes No

C. Participant Data 114

If so, please list

them?

color coding the

events

I think it would have

been more conve-

nient if I could se-

lect the time from the

big calendar by click-

ing the box and then

choose its occurrence

Do you believe that

the application prop-

erly handled any er-

rors that may have

occurred?

Yes Yes Yes

Do you imagine

yourself using this

application in the

future?

Yes Yes Yes

References

1. Aickelin, Uwe, and Kathryn A. Dowsland. “An indirect Genetic Algorithm
for a nurse-scheduling problem.” Computers & Operations Research 31, 5:
(2004) 761–778. https://www.sciencedirect.com/science/article/pii/
S0305054803000340. vi, 3, 36, 42, 43, 44, 45

2. Bard, Jonathan F., and Hadi W. Purnomo. “Preference scheduling for nurses
using column generation.” European Journal of Operational Research 164, 2: (2005)
510–534. vi, vii, 17, 18, 19, 20, 21, 22, 23

3. Blum, Christian. “Ant colony optimization: Introduction and recent trends.”
Physics of Life Reviews 2, 4: (2005) 353 – 373. http://www.sciencedirect.com/
science/article/pii/S1571064505000333. vi, 2, 24, 25, 26, 27

4. Burke, Edmund K., Patrick De Causmaecker, Greet Van den Berghe, and
Hendrik Van Landeghem. “The State of the Art of Nurse Rostering.” Journal of
Scheduling . 46

5. Carter, Michael, Camille C. Price, and Ghaith Rabadi. Operations Research: A
Practical Introduction. CRC Press, 2018. vi, 2, 5, 6, 7, 8, 9, 11, 17

6. Cheang, B, H Li, A Lim, and B Rodrigues. “Nurse rostering problems––a
bibliographic survey.” European Journal of Operational Research 151, 3:
(2003) 447–460. https://www.sciencedirect.com/science/article/pii/
S0377221703000213. 46

7. Dorigo, Marco, and Christian Blum. “Ant colony optimization theory: A
survey.” Theoretical Computer Science 344, 2: (2005) 243 – 278. http://www.
sciencedirect.com/science/article/pii/S0304397505003798. vi, 26

8. Jan, Ahmad, Masahito Yamamoto, and Azuma Ohuchi. Search Algorithms For
Nurse Scheduling With Genetic Algorithms, 2002. vi, 39, 40, 41, 42

9. Klabnik, Steve, and Carol Nichols. The Rust Programming Language: Covers rust
2018. No Starch Press, 2019. 67

10. Kumar, Rajesh. “What is Bearer token and How it works?
- DevOpsSchool.com.”, 2022. https://www.devopsschool.com/blog/
what-is-bearer-token-and-how-it-works/. 63

115

https://www.sciencedirect.com/science/article/pii/S0305054803000340
https://www.sciencedirect.com/science/article/pii/S0305054803000340
http://www.sciencedirect.com/science/article/pii/S1571064505000333
http://www.sciencedirect.com/science/article/pii/S1571064505000333
https://www.sciencedirect.com/science/article/pii/S0377221703000213
https://www.sciencedirect.com/science/article/pii/S0377221703000213
http://www.sciencedirect.com/science/article/pii/S0304397505003798
http://www.sciencedirect.com/science/article/pii/S0304397505003798
https://www.devopsschool.com/blog/what-is-bearer-token-and-how-it-works/
https://www.devopsschool.com/blog/what-is-bearer-token-and-how-it-works/

References 116

11. Macy, Marsh, Alex Buck, Ryan Wike, Eunice Waweru, Celeste
de Guzman, Mauricio de los Santos, and Jean-Marc Prieur, 2022.
https://docs.microsoft.com/en-us/azure/active-directory/develop/
msal-client-application-configuration.

12. Mozilla, 2022. https://developer.mozilla.org/en-US/docs/Glossary/SPA.
52

13. , 2022. https://developer.mozilla.org/en-US/docs/Web/CSS. 55

14. , 2022. https://developer.mozilla.org/en-US/docs/Learn/
JavaScript/Client-side_web_APIs/Introduction. 59

15. , 2022. https://developer.mozilla.org/en-US/docs/Web/HTTP/
Methods. 59

16. Ramli, Razamin, Rosshairy Abd Rahman, and Nurdalila Rohim. “A HYBRID
ANT COLONY OPTIMIZATION ALGORITHM FOR SOLVING A HIGHLY
CONSTRAINED NURSE ROSTERING PROBLEM.” Journal of Information &
Communication Technology 18, 3: (2019) 305 – 326. https://search.ebscohost.
com/login.aspx?direct=true&db=iih&AN=140226377&site=ehost-live. vi,
31, 32, 33, 34, 35

17. Sivanandam, S.N., and S. N. Deepa. Introduction to Genetic Algorithms. Springer,
2008. 36

18. VueJS, 2022. https://v3.vuejs.org/guide/introduction.html. 52, 53, 58

19. , 2022. https://v3.vuejs.org/guide/instance.html. 53

20. , 2022. https://v3.vuejs.org/guide/component-basics.html. 53, 56

21. Web, Actix, 2022. https://actix.rs/docs/getting-started/. 67, 68

22. Wu, Jie-jun, Ying Lin, Zhi-hui Zhan, Wei-neng Chen, Ying-biao Lin, and Jian-
yong Chen. “An Ant Colony Optimization Approach for Nurse Rostering
Problem.” In 2013 IEEE International Conference on Systems, Man, and Cybernetics.
IEEE, 2013. http://dx.doi.org/10.1109/smc.2013.288. vi, 27, 28, 29, 30

23. Yilmaz, Ebru. “A Mathematical Programming Model for Scheduling of Nurses’
Labor Shifts.” Journal of medical systems 36: (2010) 491–6. vi, vii, 1, 13, 14, 15, 16,
17, 23

24. Zhang, Wei-guo, and Tian-yu Lu. “The Research of Genetic Ant Colony
Algorithm and Its Application.” Procedia Engineering 37: (2012) 101–106. 4, 47

https://docs.microsoft.com/en-us/azure/active-directory/develop/msal-client-application-configuration
https://docs.microsoft.com/en-us/azure/active-directory/develop/msal-client-application-configuration
https://developer.mozilla.org/en-US/docs/Glossary/SPA
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Client-side_web_APIs/Introduction
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Client-side_web_APIs/Introduction
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods
https://search.ebscohost.com/login.aspx?direct=true&db=iih&AN=140226377&site=ehost-live
https://search.ebscohost.com/login.aspx?direct=true&db=iih&AN=140226377&site=ehost-live
https://v3.vuejs.org/guide/introduction.html
https://v3.vuejs.org/guide/instance.html
https://v3.vuejs.org/guide/component-basics.html
https://actix.rs/docs/getting-started/
http://dx.doi.org/10.1109/smc.2013.288

	Backlog Burner: An Adventure Into Automated Scheduling
	Recommended Citation

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Integer Programming Models
	What Is Integer Programming?
	Definition
	Solving Linear Programming Models

	The Models
	Branch-and-Bound Model
	Preference Scheduling

	Ant Colony Optimization Models
	What Is The Ant Colony Optimization Algorithm?
	The Models
	Sun Yat-sen Ant Colony Optimization Model
	Hybrid Ant Colony Optimization Model

	Genetic Algorithm Models
	What Are Genetic Algorithms?
	Definitions
	Rubric For Genetic Algorithms

	The Models
	Cooperative Genetic Algorithm Model
	Indirect Genetic Algorithm Model

	Creating The Scheduler
	Our Model
	Genetic Ant Colony Optimization Algorithm (GACO)
	Definitions
	Objective Function
	Constraints
	Genetic Algorithm Portion of GACO
	Ant Colony Optimization Portion of GACO

	The Web App
	Anatomy of A VueJS App
	Web App Design

	Implementing GACO
	Web API
	Implementing GACO
	Modeling Our Data
	Genetic Algorithm
	Ant Colony Optimization Algorithm

	Results
	Testing Procedure
	The Students
	How Well Does Backlog Burner Organize Hobbies?
	Student Thoughts of Backlog Burner Application

	Conclusion
	Future Work

	Usability Test Permission Form
	Usability Test Script
	Introductions
	Survey Questions
	Tasks

	Participant Data
	References

