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Abstract

Modular synthesis involves the alteration and modification of digital sound signals.

Thus, this modular synthesizer allows a user the option of supplying their own

MIDI-compatible controller to serve as an input source, or to use the built-in pure

sound waves instead. Either input will be fed into the domain-specific language

SuperCollider and altered, with specific sound modifications dependent on the input

source used. Using theoretical knowledge of the physics behind the motion of sound

waves, various modules and functionalities are created. Then, with SuperCollider,

these modules are implemented into a synthesizer which accepts either pure sound

waves or MIDI as inputs, in a clean and easy-to-use interface. This modular

synthesizer also has the potential to be continually expanded and improved upon

beyond this initial version, with the option of adding other functionalities and

sound modification options to augment the features currently available.
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CHAPTER 1

Introduction

Within the world of digital signal processing (DSP), digital audio, and physical

instruments, there are almost limitless possibilities available now to create sounds

through computers, whether through synthesis, production, or mixing. Ultimately,

the products which result from explorations between computer science and music

are dependent on the creator’s familiarity with both fields. Current applications

for music synthesis are sufficient in usability, with Helm, an open-source modular

synthesizer, as one example. One is easily able to find Helm through an Internet

search, download the application, and begin altering an input’s sound to their liking,

provided they have a MIDI controller on hand to serve as the input device. Thus,

the primary goal of this thesis is to create a modular synthesizer with two options

for inputs: MIDI and pure sound waveforms, such as sine waves.

There are three goals that must be accomplished in order to provide a modular

synthesizer which utilizes both MIDI and pure sound waveforms: synthesizing

(creating) pure sound waveforms through our language of choice SuperCollider,

accepting MIDI as an input option, and altering either input properly so the sound

modification is obvious. So, this project relies on knowledge of both digital signals

(the detectable digital impulses through which messages or other information can be

transmitted [38]), for MIDI input, as well as waveforms types, and mathematically,

the ways in which we are able to alter these signals. Creating a virtual modular

1



2 1. Introduction

synthesizer requires a significant amount of programming in the domain-specific

language SuperCollider, which connects the input from a physical MIDI controller

and pure sound waveforms to the desired sound modifications. Thus, there will

be a front-end graphical user interface, as well as a back-end which is connected

to the signal modification modules. The front-end will provide users with a way

to easily interpret and understand the modules of this synthesizer, and the back-

end will process the desired sound changes the user has input, and output these

alterations. The back-end includes modules typically found in open-source and

commercial modular synthesizers, including, but not limited to: volume control,

pitch bend, harmonics layering, delay, legato and staccato, distortion, and manual

MIDI adjustments. This virtual modular synthesizer successfully completes each of

these goals, and will serve as the primary product of this thesis.

Several of these modules, or functionalities which are able to act independently

from each other, are self-explanatory; the pitch bend will alter the perceived pitch

(frequency) of the input note, and the volume control will adjust the sound’s

loudness. The other modules mentioned are less intuitive. Harmonics layering

involves layering various frequencies, whether the same or slightly different, over

one another. Delay affects how early or late a note is perceived to be played. Legato,

as defined in music, is the playback of notes in a connected manner, and staccato is

the opposite, the playback of notes in a detached and separated way. Distortion

typically is a destructive effect, in which the sound to be distorted cannot be reverted

back to its previous state. For this modular synthesizer, distortion will act as another

version of harmonics layering, adding unneeded and unpleasant sounds to a user’s

input. For MIDI input, there is also an option to manually adjust the sound output

a user receives, through adjusting an ADSR envelope, or the Attack, Decay, Sustain,

and Release of a MIDI note.

First, we will provide an introduction to the field of DSP, sound synthesis, and
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MIDI, and SuperCollider, the domain-specific programming language used for this

project. This discussion will include context on previous developments on modular

synthesizers and define the difference between modular sound synthesis and other

types of synthesis. The modular synthesizer, specifically, is a type of synthesizer, or

electronic instrument, which is able to produce a wide variety of sounds, through

sound modifications, in a single unit with a unified control system. Then, we

discuss the important mathematical details which are relevant to the creation of this

modular synthesizer. Specifically, this will include the various types of waveforms,

and the ways in which the waves can be manipulated. After, we go into detail of the

process of developing the modular synthesizer, and the step-by-step description of

the ways in which each module was developed. Some modules proved to be more

challenging to implement than others, and so we also provide context as to how

a particular module is developed. Finally, we finish with a conclusion discussing

the challenges of implementing this synthesizer, the ways in which this synthesizer

could be expanded or improved, and suggestions for future work.
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CHAPTER 2

Background

2.1 RelatedWorks

The 1950s was a turning point within the field of electronic music and communica-

tional technologies. This marked the creation of electronic music, with the use of

physical components. Electronic music was rare, with synthesizers and electronic

Figure 2.1: The Minimoog Model D
[8]

5



6 2. Background

Figure 2.2: The Bode Audio System Synthesizer
[22]

instruments (examples of which include the electric guitar, electric keyboard, electric

bass guitar, and more) being less common. Modular synthesizers were also rare, at

that point they contained fewer modules than found in modular synthesizers today.

These modular synthesizers were large, taking up significant space, as evidenced

by Bode’s Audio System Synthesizer (Figure 2.2) [8] [40] and Moog’s Minimoog

Model D (Figure 2.1 [22]) [33] [35], two influential analog modular synthesizers.

The first module, or functionality, created was the positive feedback oscillator,

sometime between 1912 and 1914 [15], a module now commonly found in modular

synthesizers, both in analog (physical) and digital (virtual) synthesizers. A positive

feedback oscillator–or as it is known today, the oscillator–produces sound in which

the output varies up and down (it oscillates) in a repeating pattern [29]. This is

where the oscillator module gets its name, producing a sound which rises and falls,

or oscillates. The resulting sound an oscillator produces will typically be one of

four fundamental waveforms: the sine wave, triangle wave, sawtooth wave, square

wave, or less commonly, the pulse wave. The creation of this positive feedback

module is attributed to Austrian engineer and physicist Alexander Meissner. Unlike
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the oscillator module found today, the early version was only able to last a few

minutes. Instead of continuously able to produce an audio waveform, this version

produced only a small output of power [12]. 1912 introduced the communicational

technologies field as something more than niche. Products from proper physics

laboratories were rare to find, and so were machines capable of producing audio

waveforms with high frequencies after several minutes. Meissner created a new

type of machine: a high-frequency generator from an amplifier, with a vacuum tube

as a substitute for a high-frequency receiver machine [12]. Previous to Meissner’s

creation, it was impossible to establish a connection between a high-frequency

machine with a receiver. The output frequency of such a machine was not the

same as the user’s desired output frequency, a synchronous and superimposed

frequency. Meissner’s product was easier to handle than these machines, and much

more useful. In addition, Meissner’s machine was much less noisy as well. This

machine could change the output frequency given to the receiver, and tune the

receiver machine to a range of wavelengths that were previously not possible [12].

This development changed the process of receiving wavelengths, and resulted in

the un-dampened wave. An un-dampened audio wave is the typical audio wave

which oscillates without any force or opposing motion to prevent it from oscillating.

This differs from a dampened wave, which is an audio wave which oscillates, yet

there is some force or opposing motion which slows the wave, or stops it completely.

Eventually, the dampened wave will lose energy, such that it will stop oscillating,

unless there is an external force or motion to cause the wave to continue to oscillate.

This un-dampened audio wave which resulted allowed for a user to fine-tune the

frequency, while also suppressing any atmospheric distractions or sounds. With

Meissner’s work, the field’s knowledge of constant sound generation and high
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Figure 2.3: Harold Bode demonstrating the Bode Audio System Synthesizer

frequencies was expanded, and paved the way for future work on the short-wave

band.1

Then, sometime between 1959 and 1960, Harold Bode (1909-1987), a German

engineer, created the modular synthesizer which we are familiar with today. Bode

was a German engineer and designer of audio tools. He foresaw that transistor

technology (a semiconductor device which is used to amplify, control, and generate

electrical signals) would become a key change in creating and designing synthesizers,

especially modular synthesizers [15]. Transistors would link the audio signal

through cables, through where each component, or “module” could be connected

in any order, according to the user’s preferences. Multiple modules–including

modulators, filters, reverberation generators, and more–could then be connected in

any order, either to modify or generate sounds. With transistor technology, Bode

created his Audio System Synthesizer (Figure 2.3 [9]), which allowed for a larger

1Though not discussed in this paper, the short-wave band is typically used in maritime com-
munications, international, and radio broadcasting. More reading on Alexander Meissner and his
patented solution can be found in the Engineer and Technology History Wiki’s page on Alexander
Meissner here: https://ethw.org/Alexander_Meissner

https://ethw.org/Alexander_Meissner
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number of sound creation possibilities than before. The system itself contained

inputs for various sound sources, and the input signals could be modified by filter

modules and a modulator [4]. As the system was modular, there were independently

working modules for sound modification. These modules could be combined with

each other in several ways, according to the user’s desired order. This Audio System

Synthesizer also made an impression on Robert Moog, who would take Bode’s idea

and further develop it [15].

Robert Moog (1934-2005) was an American engineer inspired by Harold Bode’s

Audio System Synthesizer. As the inventor of the first commercial synthesizer,

dubbed the Moog synthesizer, Moog created the first integrated synthesizer (a

synthesizer in which the modules are integrated into the system itself, rather than

needing to be connected through cables). The Moog synthesizer was built in

1964, and contained several of the fundamental synthesizer concepts found today

[35]. These modules on the Moog synthesizer included the voltage-controlled

oscillator, voltage-controlled filter (a module which reduces or outright removes

certain frequencies and harmonics from sound that is passed through [29]), envelope

generators (a module which is used to shape the volume, or dynamics of a note

when connected to an amplifier module, as well as alter the frequency or timbre

of a note if connected to a filter module [29]), and the pitch wheel. With the

Moog synthesizer, synthesizers were brought to a wider audience, influencing the

development of popular music [35]. What followed the Moog synthesizer was the

Minimoog Model D (Figure 2.1 [22]), a portable 1970 creation. The Minimoog Model

D is acknowledged to be the most “influence synthesizer of all time” [15] due to its

playability and compactness. Similar to the Moog synthesizer, it included modules

to both generate and alter sounds [34].

The 1960s also saw the introduction of Donald “Don” Buchla, and his Buchla

100 Series Modular Electric Music System. Don Buchla (1937-2016) was another
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American inventor, working in the field of sound synthesis independently of Robert

Moog. The Buchla 100 Series (otherwise known as the “Buchla Series 100” or “Buchla

Box”), is a keyboard-less modular synthesizer. Unlike Moog’s Moog synthesizer

and Minimoog Model D, the Buchla 100 Series used a more manual control [33].

Instead of a keyboard for user input, the user would control the synthesizer’s

modules directly. It contained a logical layout, with an intuitive, user-facing front

panel, which allows the user to directly patch and route modules together, using

patch cords. With the various knobs and triggers on the synthesizer itself, a user

could manipulate sound according to multiple parameters. Along with user input

differences, there were other important distinctions between the Buchla and Moog

synthesizers. These changes include Buchla’s use of voltage-controlled oscillators

with multiple complex modulation options, and a decrease in emphasis on using

filters. This methodology would lead to a division in school of thought: the East

Coast school of thought, and the West Coast school of thought [15]. The West Coast

method, which was led by Buchla, put greater emphasis on the experimental side

of electronic music, and so designed their synthesizers according to this.

Both the East Coast and West Coast methods of audio synthesis are important, as

they eventually become the two general methods for synthesis: additive synthesis

and subtractive synthesis (two other types of audio synthesis, to be explained in sec-

tion 2.2). In a general overview, the East Coast approach embodies a straightforward

and practical approach, with efficiency and reliability as important concepts, while

West Coast synthesis focuses on experimentation and the inclusion of non-tradition

modular controllers such as the touchpad [29]. For East Coast audio synthesis, its

patches and way of forming modules fall under the category of “subtractive synthe-

sis”. Subtractive synthesis involves starting with a complex audio waveform, with

multiple harmonics (i.e. pitches, or notes) [47]. Then, a low-pass filter (or in analog

synthesizers, a voltage-controlled low-pass filter, or VCF) slowly removes selected
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frequencies from the complex wave. The sound produced by West Coast synthesis

is less known that East Coast synthesis. In place of aspiring towards a sense of

musical efficiency, the West Coast method evolved out of the desire to replicate the

acoustically-generated tones through manipulating previously recorded sounds

[31]. Thus, the West Coast method is not centered around a singular principle. It

combines elements of additive synthesis (the addition of multiple, simple audio

waveforms together to create a complex, composite waveform–often sine waves)

[31] and frequency modulation to create many sounds of complex timbres. Both

additive and subtractive synthesis will be discussed further in the next section.

2.2 Modular Synthesis: What Is It?

A modular synthesizer is a type of synthesizer which is composed of separate

modules for different functions. These modules, in a physical hardware synthesizer,

would be connected by the user to create a “patch.” The output from these modules

would then be audio signals, voltages, or digital signals for various logical or timing

conditions. Typically, these modules would include voltage-controlled oscillators,

voltage-controlled filters, voltage-controlled amplifiers, and envelope generators.

There was a need for voltage-controlled modules, such that the module would

not receive sufficient power otherwise in order to properly function. Within a

virtual modular synthesizer, we have no need for these voltage-controlled modules.

However, we still must “patch” these modules together in a linear sort of way, and

decide the order in which the modules are applied to a digital signal.

To do so, there is no set order. Virtual modules, unlike their physical counterparts,

can easily be patched together in any order. Based on the order that the user changes

the values of each module, the synthesizer itself will then change the audio output

to align. It is user dependent on which module is triggered first.
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Various types of modules are used within synthesizers, such as oscillators, filters,

amplifiers, mixers, envelope generators, sequencers, and much more. The basic

modular functions involve effects to an audio wave’s signal itself, the control of

an audio wave, or the logic–or timing–of the audio signal [15]. These modular

functions can be categorized into one of two groups: a source module, or a processor

module. A source module can be characterized by a certain out, but has no signal

input value. There are multiple types of source modules, the main one being the

oscillator (with the primary ones being either a voltage-controlled oscillator–VCO–or

a low-frequency oscillator–LFO) which impact the sound that is generated from a

synthesizer. The oscillator itself is a type of module which generates a repeating

signal [15]. The rise and fall of the signal is what gives the module its name, as the

signal will oscillate between its trough and its peak [38]. The speed with which

the wave rises and falls, or reaches its peaks and troughs, is known as the wave’s

frequency. If the frequency is not too low or too high, then the human ear will

be able to hear it. The generally accepted range of human hearing is between 20

Hz and 20 kHz, and so the frequency of audio waves will fall between these two

values. The VCO will output a signal, where the signal’s frequency is a function of

the oscillator. In its most basic form, a VCO will be a simple waveform, usually a

square or a sawtooth wave, which can be changed dynamically through a control

such as frequency modulation. The LFO will be operated using a period with a

length of anywhere from a fortieth of a second up to several minutes. Generally,

the LFO will be used as a control for a different module; with an oscillator, the

LFO will produce a modulation to the signal’s frequency, and with an amplifier, the

LFO will produce a change in the signal’s amplitude. Certain changes to a signal’s

frequency may produce an effect known as vibrato. Vibrato is a musical effect in

which there is a small, regular, and pulsating change to a signal’s pitch. It is most

used to add expression and phrasing to both vocal and instrumental music, and is
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characterized by two factors: the first, the amount the pitch is varied (the “extent

of vibrato”), and the second, the speed at which the pitch is varied (or the “rate

of vibrato”). Modulations to the signal’s amplitude are different. These changes

may produce tremolo, or a trembling effect in music. There are two distinct types

of tremolo: rapid reiteration, and one based on a variation in a signal’s amplitude.

Rapid reiteration will occur due to either a single note, two notes, two chords, or as

a roll on a percussive instrument. As a single note, it is particularly noticeable on a

bowed string instrument, such as the violin or viola. On these instruments, a single

note may be played by rapidly moving the bow back and forth. On a non-bowed

instrument, such as the guitar, tremolo can be produced by plucking a single note

repeatedly. As tremolo between notes or chords, these will be played in alternation,

switching between note or chord one, then quickly playing note or chord two, and

back again. At times, the terms for tremolo and vibrato in non-classical music are

used incorrectly or interchangeably. In the world of classical music, they are both

properly defined as separate musical effects. Vibrato is defined as the periodic

variation in a note or signals’ pitch (frequency), while tremolo is defined as the fast

repetition or the same note or signal to produce the effect of a longer note being

sounded. In practice, however, it is difficult for a performer to achieve pure vibrato

or pure tremolo, as only a note’s pitch (frequency) or volume (amplitude) would be

allowed to be varied. So, variations to both pitch and volume will often be made at

the same time. In the world of popular music, this means that the definitions for

both terms will be modified slightly; vibrato will retain its same meaning as it does

in classical music, with a periodic variation in a note or signal’s pitch, but tremolo

will instead refer to a periodic variation in volume, achieved by other electric effects.

Processor modules are different, and characterized by having both a signal

input and an output. These modules include the filter, amplifier, low-pass gate,

mixers, limiters, and more. The first type, the filter, in its most basic sense will
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remove (or filter out) frequencies from an audio signal, as desired by the user.

The most common types of filters are the low-pass filter (LP) and high-pass filter

(HP). Both, as evidenced by their name, will filter out frequencies of a certain band,

and let other frequencies pass. Low-pass filters will filter out high frequencies,

allowing low frequencies to pass, while high-pass frequencies will filter out low

frequencies, letting high frequencies pass [47]. Other less common filter types

include the bandpass (BP) filter, and all-pass filters, on certain synthesizers. The

bandpass filter will attenuate both low and high frequencies, allowing only a certain

range of frequencies around a specified cutoff point to pass through. The point at

which a filter will begin working is known as the cutoff point, which is set by the

module’s cutoff knob itself. Filters will be used to alter the timbre, or the tone of the

signal’s sound. Another type of processor module is the amplifier. An amplifier is

a component of a modular synthesizer which will change the amount of a signal

which passes through the module.

There are four types of synthesis: modular synthesis, what this paper will focus

on, wavetable synthesis, additive synthesis, and subtractive synthesis. A wavetable

is a collection of single-cycle waveforms, or samples of audio, which are played

on a loop to produce a periodic waveform, such as a sine wave. Then, wavetable

synthesis will use a table, which contains the values of several frequencies played in

a certain order (the wavetable). When a note is pressed, or a MIDI note on command

is given, the signal will move through the table in the order specified, smoothly

changing the shape of the signal into the various waves specified on the table. This

produces an output which can evolve both quickly and smoothly, as it will follow

the table of waveforms to modify the input signal. It will typically offer the widest

range of sound that could be created or modified, in comparison to other techniques

of sound synthesis [15].

Subtractive synthesis begins with a complex, composite audio wave. The input
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signal is stripped of its extra sounds and layers, as it goes through a chain of

modules. Some harmonics present in the input signal will be reduced into harmonic

structures which mimic the harmonics of actual instruments, or will be reduced to a

fundamental harmonic sound, into its base waveform [15]. The modules associated

with subtractive synthesis involve filters and envelop adjustments. The filter’s

“cutoff frequency” or “cutoff point” changes depending on the type of filter being

used. The main filter types used in subtractive synthesis include the low-pass

filter, the high-pass filter, the band-pass filter, and the notch, or band-reject filter.

The two new filter types to us are the band-pass filter, and the notch filter. The

band-pass filter will only let a select range of frequencies pass through it, with

its cutoff frequency as the center point for this range. The notch filter will do the

opposite, removing a select range of frequencies around a certain cutoff point [15].

Additive synthesis is the opposite of subtractive synthesis. We begin with

a rudimentary audio wave or waveform, typically a sine wave. Then, sounds,

frequencies, or harmonics are added on top of this fundamental audio waveform,

creating a new timbre [47]. It attempts to achieve the same goal as subtractive

synthesis, only through constructive measures, rather than destructive.

This project will focus on including several distinct modules for this prototyped

modular synthesizer: a pitch bender, volume control, harmonics layering, legato

and staccato buttons, distortion, and manual adjustments. Each of these modules

will be a processor-type module. They will contain a signal input (the MIDI note

a user plays, or pure sound waves), and output modulations to this note, based

on the module selected. The order in which these modules are used is entirely

user-dependent, and does not need to fall into a set linear order.
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2.3 MIDI

2.3.1 What isMIDI?

The Musical Instrument Digital Interface (more commonly known as MIDI) is a

digital communications protocol which allows for multiple hardware and software

electronic instruments, controllers, computers, and related devices to communicate

over a connected network [18]. It is used most to translate performance “events” (or

musical notes) into its equivalent digital message, and then transmit these messages

to other MIDI devices. These devices (MIDI receivers) can control sound generators

or performance generators to create or modify music. Any MIDI-compatible

device can send or receive MIDI messages from a MIDI controller (or the device

sending the MIDI messages), and this will include all types of synthesizers. As

an “interface,” MIDI is composed of a data communications link, and a system of

hardware and software connected through this MIDI network. With MIDI, any

electronic instruments and devices which are within a network can be worked with,

through the transmission of a real-time performance and MIDI messages. These

transmissions of performances and messages can then be put through the system

to various instruments and devices through one singular data line, rather than

multiple data streams, as this system can be chained from one device to another. A

single data cable used with MIDI is capable of transmitting a real-time performance

and MIDI-control message over 16 distinct channels, numbered appropriately one

through sixteen. The musician working with the system will determine which of

these channels to send information through, depending on which MIDI devices are

being used [37].

However, there are several limitations to the MIDI protocol. The first and most

important limitation of MIDI is that it does not support sound. It is unable to

communicate audio itself, or create sounds [18]. Instead, as a digital language, it
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Figure 2.4: The MIDI system, with audio connections

instructs a compatible device or program to create, playback, or modify sounds.

It will communicate an on/off status of a sound trigger, along with a range of

parameters which instructs a MIDI receiver to control specified audio-related

functions [21]. So, the data pathways for MIDI and audio routing will be different,

even if they share a physical transmission cable, as in Figure 2.4 [18].

Additionally, much of MIDI is built around the concept of keyboard notes and

pitches. MIDI messages are primarily transmitted through the use of an electronic

keyboard. So, for other types of MIDI instruments (such as a violin, or clarinet),

there is a restriction to how a note may sound using MIDI. Certain characteristics of

non-keyboard instruments (such as the ability of playing discrete semitone pitches2)

are more easily lost. For players of acoustic instruments, these issues are even

more clear. Within MIDI, the velocity is considered to be a single note-on velocity,

defining the dynamic response of the note to one value. For players of acoustic

instruments, the velocity, or dynamic response, of a singular note is shaped by the

player, along with the note’s timbre and pitch when played [21].

2A discrete semitone pitch is another way of describing one pitch of the twelve-octave equal
temperament tuning system.
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Figure 2.5: MIDI sockets using an electronic keyboard

2.3.2 How doesMIDI work?

From a hardware perspective, the MIDI protocol will determine which types of

plugs can be used for MIDI connections. There are three possible “sockets” that can

be used on any MIDI-compatible device:

1. MIDI OUT: this will send data to other devices (MIDI receivers). An example

of this will include an electronic keyboard which plays a note, and then “note

messages” are sent out from the MIDI OUT socket.

2. MIDI IN: this socket will receive the MIDI information from other devices.

Using the previous example, if a keyboard’s MIDI OUT socket is connected

with a MIDI cable to another sound module’s IN socket, then the sound

module will be able to produce sound on behalf of the keyboard.

3. MIDI THRU: this socket will relay the messages received at the MIDI IN

socket, so more devices will be able to be chained together.

Typically, this will result in the flow in Figure 2.5, as it is normal for a keyboard’s

OUT port to be connected to a sound module’s IN port. This IN socket will then be

connected to another sound module, through the THRU IN port of the first sound

module, into the IN port of the second sound module. Thus, both modules are now

driven by the keyboard [21].
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In a software view of the protocol, there are two basic types of messages MIDI can

send: a channel message, and a system message. Channel messages are much more

common. As previously mentioned, MIDI allows for the use of up to 16 different

sounds to be controlled at the same time, through the use of its 16 different channels.

So, each sound that must be played concurrently will be placed into a different

MIDI channel. Within the channel, there are seven distinct messages, each of which

contain a specific meaning and role. The first is the “Note on” message. This is the

most common MIDI message used, and is sent whenever a note on a MIDI controller

is played or pressed down, most common as pressing a key on a keyboard. The

data contained in this message will tell a sound module how hard and fast a note

was played (the velocity of a note), as well as which channel the note was played on

[37]. The pitch of the message represents which key was pressed, and is defined as

the number for each semitone on a keyboard. The semitone is the smallest interval

of the modern Western tonal system. In equal temperament3–a tuning of the scale,

based on a cycle of 12 identical fifths, and with the octave divided into 12 equal

semitones–a semitone is the 1
12 part of an octave. The notational system (i.e. sheet

music) allows for three types of semitones to be distinguished: the diatonic, or the

minor second (e.g. E-F, or C\-D), the chromatic, the difference between a major

second and a minor second (e.g. F-F\, or DZ-D), and the enharmonic, the doubly

diminished third (e.g. GZZ-E) [11]. Middle C (C4) is number 60 on the keyboard,

and each semitone above and below Middle C is incremented or decremented

accordingly [21].

The second is the “Note off” message, which turns off a note, or notes when

a note is stopped. Like with Note on, Note off also contains values for channel,

pitch, and velocity. For this message, only velocity’s definition is changed, referring

3Equal temperament is regarded to be the normal tuning of the West, a 12-note chromatic scale.
This is also known as A440, in which the note A4 is tuned relative to the standard pitch of 440 Hz,
and other notes are tuned as a specific number of semitones from this pitch.
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instead to the speed at which a note is released. The final common type of channel

MIDI message is the “Pitch-bend,” which for electronic keyboard appears in the

form of a physical wheel or sideways-moving handle of some type. Like its name

implies, users will use this wheel or module to bend the pitch of notes currently

being played. If the module is a physical wheel, it will return to its default position

of zero (not bending a note) when the player lets go of the wheel. The pitch-bend

will contain two pieces of data: the channel, and the pitch bend value. This value

ranges from 0-127, with a value of 0 representing that the pitch has a full downwards

bend to it, while a value of 127 represents the opposite, with a full upwards bend

[21]. For this module, the value 64 will roughly indicate the center position on the

wheel, and represent that a pitch has no bend applied to it.

MIDI also contains “system” messages, sent to all devices within the MIDI

system [37]. These messages are not limited to a specified number of channels, and

allow for a greater variety of data to be sent. There are three basic types of system

messages [21]:

1. real-time: this type of message allows the devices within the MIDI system to

synchronize together.

2. common: this message allows the devices to agree on some type of common

musical issues, with tuning and song selection as two examples.

3. exclusive: this message will exclusively send data to one device type. For

manufacturers, these messages are used to send data to only one type of

synthesizer or device type, serving as “add-ons” to MIDI.

System messages are much harder to understand than channel messages, and so

will not be discussed in great detail within the scope of this project.
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2.3.3 ConstructingMIDI Messages

MIDI messages are composed of three bytes, with a byte defined as a fundamental

computation building block which consists of eight binary digits (or bits), either zero

or one. Bytes which begin with a zero will be a “data byte” and bytes which begin

with a one are “status bytes.” The most significant bit (the MSB, or the leftmost

binary bit within a MIDI message) identifies the byte type. As mentioned, bytes

which have an MSB of 0 (or which begin with a 0) are data bytes, while bytes with

an MSB of 1 are status bytes.

a status byte: 1xxx nnnn

a data byte: 0nnn nnnn

A status byte determines the type of MIDI function that will be performed, and

encodes channel data, allowing the instruction to be received by a device that is set

to respond to the selected channel. A data byte is used to associate a certain value

to the event that is given by the accompanying status byte. This will determine

the type of message that is sent (as they are normally channel messages) between

note on, note off, pitch bend, or another type of message. Within a status byte, the

MSB begins the MIDI message, then the next three bits actively determine the type

of MIDI message that is being sent. There are eight possible combinations which

determine the type of MIDI message:

000, 001, 010, 100, 101, 110, 111

Finally, the last four bits of a MIDI message determine which channel the MIDI

message is delivered through. There are 16 possibilities, for each of the 16 channels
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Channel number (0-15) Note number (0-127) Attack velocity (0-127)
(1001 CCCC) (0NNN NNNN) (0VVV VVVV)

Table 2.1: The structure of a note on and note off MIDI message

available in MIDI. It is through this combination of bits and bytes which creates

each of the six major types of MIDI messages.

2.3.3.1 Note OnMessages

The note on message indicates the beginning of a MIDI note. Typically, one note

on message is generated each time a note is triggered on a MIDI device, such as a

keyboard, controller, or other MIDI instrument4. A note on message will contain

three bytes of information: the MIDI channel number, the pitch number, and the

attack velocity value. As in Table 2.1, the first byte specifies that this MIDI message

is a note on message, and the MIDI channel that this message will go through. The

second byte determines the specific note, of the possible 128 notes numbered 0-127,

which will be sounded by the MIDI instrument. The third and final byte of a note on

message is the note’s velocity, also ranged from 0-127. This will denote the loudness

of the sounding note, increasing in volume the higher this value goes. For MIDI

instruments which do not interpret the entire 128-numbered range of velocity values,

we will instead see an attack velocity value of 64 used, regardless of how loud or soft

the note itself may be played. This value of 64 gives the note a dynamic/loudness

of mezzo forte, or moderately loud. Additionally, a note on message with an attack

velocity of 0 will generally be equivalent to a note off message, discussed in the next

section. In a note on message with an attack velocity value of 0, the MIDI receiver

will generally silence the currently sounding note, by playing it with a velocity (or

volume) value of 0 [18].

4This includes, pressing down a key, hitting a MIDI drum pad, or playing a MIDI sequence.
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2.3.3.2 Note OffMessages

A note off message is similar to that of a note on message, except that it is a

command used to stop playing a MIDI note. A MIDI note on message will play

until a corresponding note off message for that note is received by the MIDI receiver.

So, a musical composition can, in its most basic form, be written as various MIDI

note on and note off messages. There are also three bytes in a MIDI note off message

(refer to Table 2.1), except that the third byte instead is a release velocity value. This

value, also ranging from 0-127, will indicate the velocity in which a key or controller

is released. A lower value indicates that the key was released slowly, and a higher

value shows the key was released quickly. For MIDI devices which are able to

respond to receiving a release velocity value, these are able to be programmed to

vary the note’s speed of decay, reducing the note’s decay time as the release velocity

value increases [21]. Decay is defined as the overall level of a sound dropping from

the high point after the Attack stage of an ADSR envelope. Typically, this refers

to what happens after striking a drum or plucking the string of a guitar or violin,

in which the peak volume of this strike decays in loudness from its initial level.

Eventually, this level will decay down to silence [29].

2.3.3.3 Pressure/AftertouchMessages

Channel number (0-15) Note number (0-127) Release velocity (0-127)
(1000 CCCC) (0NNN NNNN) (0VVV VVVV)

Table 2.2: The structure of an aftertouch MIDI message

Pressure messages, also known as “Aftertouch” messages, happen after a key is

pressed, and the user decides to press down on the key harder. For compatible MIDI

devices, aftertouch can generally be assigned to parameters which include vibrato

(the pulsating or vibrating element of some sounds, produced by a very slight
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fluctuation of the pitch of a note), volume (loudness), filter cutoff (the frequency

range which will not pass through the filter), and pitch (frequency). As defined

by MIDI, and the byte structure of an aftertouch message in Table 2.2, there are

two types of aftertouch messages: channel pressure messages and polyphonic key

pressure messages [18].

Channel number (0-15) Note number (0-127) Pressure value (0-127)
(1101 CCCC) (0NNN NNNN) (0VVV VVVV)

Table 2.3: The structure of a channel pressure MIDI message

Channel pressure messages are messages commonly transmitted by instruments

which only respond to a singular overall pressure, regardless of the total number

of keys played. These messages also contain three bytes of information: the MIDI

channel number, the note number, and the pressure value, as in Table 2.3 [18].

Polyphonic key pressure messages are similar to channel pressure messages, but

respond to the pressure changes that are applied to the individual keys of a MIDI

keyboard. A MIDI device compatible with this type of MIDI message is able to

respond or transmit the individual key pressure messages of each key that is pressed

down. A MIDI device may not always be compatible with polyphonic key pressure

messages, so availability of this message type will vary. However, typically, a

MIDI device will contain bindings for other performance parameters which include

vibrato, volume, timbre (the quality of a sound, which is the component which

causes different instruments to sound differently from each other while playing the

same note [6]), and pitch [28].

2.3.3.4 Program ChangeMessages

Program Change messages are used to change the active program or preset number

of a MIDI device. This preset number is a user- or factory-defined number to select
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Channel number (0-15) Program ID number (0-127)
(1100 CCCC) (0PPP PPPP)

Table 2.4: The structure of a program change message

a specific sound patch or system setup, to alter the output sound. With this message,

up to 128 presets (in accordance to the established 0-127 numbered range available

in MIDI) can be selected as a preset [18]. Commonly used to switch between presets

on a digitally controlled mixing console, change loaded sounds, and more, this

message consists of two bytes of information: the MIDI channel number, and the

program ID number (0-127), like in Table 2.4.

2.3.3.5 Pitch BendMessages

The pitch wheel is a common module found on most electronic keyboards and MIDI

keyboards. The sensitivity of a pitch bend message refers to the responsiveness level

(in semitones) of a pitch bend wheel or other pitch bend controller. This message

is encoded in two bytes [28], and yields a total of 16,384 distinct semitone steps to

pitch bend. Thus, the range of this message extends from its bottom end of -8192

to +8192, with 0 at the center serving as the instrument’s true unaltered pitch [18].

This gives the physical pitch bend wheel values between 0 and 127, with 64 as the

middle true pitch, as possible value ranges.

2.3.3.6 Control ChangeMessages

The control change type of MIDI message is typically referred to as a performance

controller, as it is capable of communicating with the many knobs and sliders on

MIDI controllers. These messages relate the real-time control over these performance

parameters. There are three main types of control change messages:

1. continuous controllers: controllers which relay a full range (0-127) of variable

control settings.
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2. switch controllers: controllers which have an “off” and “on” state, with no

intermediate settings.

3. channel mode message controllers: controllers which range from the controller

numbers 120 and 127, used to set the note’s sounding status, the instrument

reset, the local control’s on/off, all notes off message, and the MIDI mode status

of a device.

Channel number (0-15) Controller ID number (0-127) Corresponding controller value (0-127)
(1011 CCCC) (0CCC CCCC) (0VVV VVVV)

Table 2.5: The structure of a control change message

A control change message will be transmitted whenever the corresponding

controllers are varied in real time [18], and consist of three bytes: the MIDI channel

number, controller ID number (0-127), and the corresponding controller value

(0-127), as in Table 2.5. The second byte of a control change message, which dictates

the controller ID number, is used to specify which of the device’s program or

performance parameters are to be referenced.

The third byte of the control change message, the controller value, describes

the controller itself’s actual data value. This is used to specify the position, depth,

and/or level of a particular parameter [18].

2.4 SuperCollider: A Domain-Specific Language

SuperCollider is a domain-specific programming language (DSL) and environment

created in 1996 by James McCartney [25]. A domain-specific language is a pro-

gramming language with a higher level of abstraction, and optimized to solve a

specific class of problems. It will use the concepts from the specific field of expertise

it is built and designed for. A domain-specific language will differ from a ”normal”



2.4. SuperCollider: A Domain-Specific Language 27

programming language in that it is usually less complex than a general-purpose

language such as Java. Most often, these are built to be used by non-developers who

are familiar with, and experts in, the domain that the DSL addresses.5 SuperCollider

was built for real-time audio synthesis and algorithmic composition.6 Since 1996,

SuperCollider has evolved into an environment that is actively used and developed

upon by both scientists and artists working with sound. In 2002, it was released as

open-source software under the GNU General Public License.

The SuperCollider environment itself is made up of two parts: the server (scsynth)

and the client (sclang) [25]. The SyuperCollider server, scsynth, is a real-time audio

server which forms the core of the SuperCollider platform [27]. The client, sclang,

itself is unable to perform sound synthesis, so it will send the commands for

synthesis to the scsynth server, where scsynth performs the sound synthesis and

audio output.

The server scsynth renders audio, and works similarly to an analog modular

synthesizer, where the audio output of a chain of various modules can be routed

into another module. Audio in scsynth is created through graphs called Synth

Definitions (SynthDefs) [25], which are definitions of synths (synths create a singular

sound producing unit), but also able to do anything audio-related within Super-

Collider. Before exploring SynthDefs, we first must understand Unit Generators.

In SuperCollider, Unit Generators (UGens), as in Listing 2.1, are the key building

blocks for digital synthesis. Just like black boxes in coding, UGens contain complex

calculations, and move them into a simple black box which outputs the synth

builders. These are modular, and so the output of one UGen can serve as the input

for another.

5More information can be found in JetBrains’ article about DSLs https://www.jetbrains.com/
mps/concepts/domain-specific-languages

6This project does not focus on algorithmic composition, which put most simply is a method of
composing music using an algorithm or multiple algorithms.

https://www.jetbrains.com/mps/concepts/domain-specific-languages
https://www.jetbrains.com/mps/concepts/domain-specific-languages
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1 // A sine wave Unit Generator , playing at a frequency of

↪→ 440 Hz

2 {SinOsc.ar(440, 0, 1)}.play;

Listing 2.1: A simple sine wave unit generator

A SynthDef is a pre-compiled graph of UGens. To turn a Unit Generator into a

SynthDef, we start with a simple synth, and place it into a UGen. As in Listing 2.2,

we begin with a simple synth, this time a sawtooth wave. Then, we give a name,

mysaw, to the function which will call the UGen. The sawtooth wave is wrapped in

a UGen called “Out.” We then create a Synth, or a child (instantiation) of a SynthDef,

which can be controlled by referencing it with a variable, as in Listing 2.3 [27].

1 // This is a simple synth, a sawtooth wave

2 {Saw.ar(440)}.play

3

4 // This will become this synth definition

5 SynthDef(\mysaw, {

6 Out.ar(0, Saw.ar(440)));

7 }).add;

Listing 2.2: A simple synth, wrapped into a UGen

1 // We create a synth using the \mysaw function , and place it

↪→ into variable ’a’

2 a = Synth(\mysaw);

3

4 // We create a second synth with \mysaw, and place it into

↪→ variable ’b’

5 b = Synth(\mysaw);

6
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7 a.free;

8 b.free; // frees both synths a and b, to free the resources

↪→ associated with them before the program closes

Listing 2.3: Instantiating a SynthDef to create a Synth

The client, sclang, is an interpreted programming language. It controls scsynth

using Open Sound Control (OSC).7 It is a dynamically typed, garbage-collected,

single-inheritance object-oriented and functional language [27]. With syntax similar

to the C programming language, for a developer, the architecture of the language

strikes the balance between the needs of realtime computations and the flexibility

and simplicity of an abstract language. With the similarity between sclang and

languages such as Lisp and the C language family, the semicolon and brackets are

important to running a SuperCollider program. Brackets in SuperCollider help

create a scope within the program for the interpreter. So, as in Listing 2.4, the

following will not run all at once, unless each individual line is highlighted then set

to run.

1 var freq = 440;

2 var amp = 0.5;

3

4 {SinOsc.ar(freq, 0, amp)}.play;

Listing 2.4: A basic example of SuperCollider code

Brackets make a program’s compilation and runtime much easier to handle.

When we run code that is inside brackets, the code will be run all at once, as in

Listing 2.5.

1 (

2 var freq = 440;

7Like MIDI, OSC is a communication protocol used for audio.
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3 var amp = 0.5;

4 {SinOsc.ar(freq, 0, amp)}.play;

5 )

Listing 2.5: Using brackets in SuperCollider



CHAPTER 3

Physics of SoundWaves

3.1 Mathematical Background

According to Joseph Fourier, the creator of the Fourier Transform, any periodic

signal or sound can be reduced into their individual sine waves, or other waveform

types [5]. There are five basic periodic waveform types: a sine wave, square wave,

sawtooth wave, triangle wave, and pulse wave [47]. Each of these waveforms,

except for the pulse wave, are sinusoidal waveforms which repeat in a pattern of

motion known as a cycle. From this, we calculate the period to be the time length

between a cycle. The pulse wave is a special type of waveform, with its own

individual characteristics, different from the other four periodic waveform types.

As a non-sinusoidal waveform, or a wave which does not oscillate similar to the

repetitive oscillation of a sine wave, it may assist in the creation of square waves, a

waveform which is periodic and sinusoidal in nature. However, for the purposes of

this work, the pulse wave will not be discussed within the scope of this project, due

to its nature as a non-periodic and non-sinusoidal waveform, two waveform types

which are not included in this synthesizer. The remaining four periodic waveforms

each also have an individual sound and characteristics, and thus will be used for

different types of sound synthesis and applications.

31
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In its most basic form, there are three general types of waves [16].

1. Mechanical waves.

2. Electromagnetic waves.

3. Matter waves.

Mechanical waves are the most familiar to many, due to its ubiquity; mechanical

waves are found in water waves, sound waves, and sonic waves. These waves

are identified by two key features: a governance by Newton’s three laws, and

an existence that occurs only within a material medium, such as air or water.

Additionally, these waves follow the idea of simple harmonic motion, in which the

wave oscillates in a specific path, and varies sinusoidally in time, following a sine

or cosine function.

Electromagnetic waves (also defined as “light” or “light rays”) are the second

most familiar type of wave, found in visible and ultraviolet light, x-rays, and radar

waves. Unlike mechanical waves, electromagnetic waves do not require any material

medium to exist, able to travel through both the vacuum of space, and mediums

such as air or glass. Albert Einstein (1879-1955), a German theoretical-physicist,

introduced the Theory of relativity sometime between 1905-1915, which discussed

the theories of the structure of spacetime and of gravitation [16], and would later

include the special characteristics of electromagnetic waves. As light was discovered

to contain the same speed regardless of the frame of reference from which it was

measured, its speed was measured to be the exact value of c = 299, 792, 458 m/s in a

vacuum [16].

Finally, matter waves are the least frequently recognized type of wave. These

waves work with the fundamental types of particles, including protons, electrons,

atoms, and molecules.
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Figure 3.1: A sine wave, with the peaks and troughs of the amplitude marked blue

The speed with which each wave rises and falls is its frequency f . If the frequency

is too low (less than 20 cycles per second, or 20 Hertz, abbreviated as Hz), little to

no noise will be audible by the human ear. If the frequency is too high (generally

above 20,000 cycles per second, or 20 kilohertz, abbreviated kHz), again, few noises

besides high-pitched and shrill noises will be audible. The range of human hearing

is generally stated as being from 20 cycles per second, with 20 Hertz at the low end,

to 20,000 cycles per second (20 kHz) at the high end. As people age, they generally

lose the ability to hear the higher frequencies.

For any sine wave, like one seen in Figure 3.1, one method of notating the wave

function is in Equation 3.1 [16], describing a sine wave which oscillates parallel

to the y-axis at time t, with the displacement of y (the level of the wave’s peaks

and troughs, marked in blue of Figure 3.1) at position x, variables which will be

consistent across all other waves presented, and seen in Appendix B.

y(x, t) = ym sin(k(x + λ) − ωt) (3.1)

The amplitude of a wave (ym) is the magnitude of the maximum displacement of

the wave’s crest (peak, above 0, or trough, below 0) from its equilibrium position of

0 on the x-axis. As this value is a magnitude, the quantity of amplitude will always

be positive, even if it measures the trough of a wave (a negative value, with the

amplitude of the wave below 0) instead of the peak (a positive value, above 0). The
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phase of the wave (defined as the position of a point in time t in a waveform cycle,

and in Equation 3.1 notated as kx−ωt) will change linearly with a time t, dependent

on the oscillation of the wave. Arbitrarily, as a sine wave oscillates between values

of −1 and +1, the wave’s amplitude is at value −ym and +ym respectively. Thus, the

time-dependent nature of the wave’s phase will correspond to the oscillation of the

wave, with the amplitude determining the extremeness of the displacement of the

wave’s crest. The wavelength λ of a wave is the distance between repetitions of

peaks or troughs, and is parallel to the direction of the wave’s travel. Finally, the

period of a wave T is the time to move through one full oscillation [16]. Due to the

nature of a sine wave to follow the unit circle counterclockwise (discussed further in

Subsection 3.1.1), the sine wave will begin to repeat when its angle θ (or argument

k) is increased by 2π. Thus, we have that Equation 3.7 is equivalent to Equation 3.2.

k =
2π
λ

(3.2)

It is important to note that there are two types of frequency within sound waves:

ω (angular frequency) and f (temporal frequency). The temporal frequency f of a

wave is defined relative to angular frequencyω, as in Equation 3.3. Frequency f is the

number of oscillations per unit time, usually measured in Hertz or kilohertz. Angular

frequency ω is the frequency of an arbitrary sine wave as it moves counterclockwise

around the unit circle.

f =
1
T

=
ω
2π

(3.3)

The final notable property of waves is the wave forms (the shape of the waves, and

different from the term “waveform”) as the waves move left to right. Alternatively,

we could also monitor the wave as it oscillates up and down, but the result is the

same: either the displacement of the peaks and troughs of an oscillating wave is
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perpendicular to the direction of travel of the wave (defined as a transverse wave), or

the direction of travel of an oscillating wave is parallel to the displacement of the

peak of the wave (defined as a longitudinal wave) [16], as in Figure 3.2. Both wave

shapes are also known as traveling waves, as they travel from one defined point to

another. The sinusoidal, periodic waveforms mentioned in Section 3.1 (and further

discussed in Subsections 3.1.1 through 3.1.4) are transverse waves; as in Figure

3.2, the black vertical arrows demonstrate the displacement of the sinusoidal wave

along the y-axis, while the pink arrow (labeled ~v) shows the movement of the wave

along the x-axis.

Figure 3.2: A sinusoidal wave is sent along the string. A typical string element moves up and down
continuously as the wave passes. This too is a transverse wave.

[16]

Simple tones, such as sine waves and cosine waves, are transverse periodic

waves–waves in which the displacement of the wave is perpendicular to the direction

of travel of the wave, and which also repeats in a continuous pattern, known as

a cycle–that are singular in frequency. These waveforms, as mentioned, are the

simple waveforms which compose the building blocks of more complex sounds

(waveforms). To demonstrate this concept, we choose the sine wave to serve as

an example of the principle of superposition, defined as the situation in which two

or more waves pass simultaneously through the same region [16], and several

effects (sound alterations) may occur simultaneously, as the net effect is the sum of

each wave’s individual effects. Suppose we have two waves which are traveling
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simultaneously through the same stretched string, and let y1(x, t) and y2(x, t) be the

displacements the string will experience if each wave were to travel alone the wave

alone. The total displacement of the string when the waves overlap will then be

y′(x, t) = y1(x, t) + y2(x, t) (3.4)

Occasionally, multiple sinusoidal waves of the same wavelength and amplitude

moving in the same direction may interfere with each other, as the superposition

principle applies. The resultant wave of this interference depends on the extent to

which the waves are in phase/in step with respect to each other. If the phase of both

waves are the same (“in phase,” in which the peaks and troughs of each wave are

the same) then the total displacement is doubled from the displacement of each

individual wave, resulting in a sound that sounds twice as loud as either of the

waves would individually. On the other hand, if both waves are exactly “out of

phase” (the peaks of one wave is the same as the troughs of the other) then the total

interference will result in the cancellation of noise, as each wave will fully cancel

the other [16]. This is how much of the “noise-cancelling” technology works in

headphones and speakers, in which the phases of multiple waveforms combine

to cancel each other, resulting in the perception of no noise. As in Equation 3.5,

suppose y1(x, t) is the displacement of y of one wave, and y2(x, t) be the displacement

of another wave.

y1(x, t) = ym sin(kx − ωt)

y2(x, t) = ym sin(kx − ωt + ϕ)
(3.5)

Waves y1(x, t) and y2(x, t) have the same angular frequency ω (and thus also the

same temporal frequency f , the same angular wave number k (and thus also the

same wavelength λ), and amplitude ym. Both waves travel in the positive direction

of the x-axis, at the same speed. The only difference between the two waves is the
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phase shift ϕ, resulting in the two waves being out of phase, and cancelling the

noise of the resultant wave. In situations other than perfect “in phase” or “out of

phase” waves, the composite sound will be some sum or difference of the amplitude,

wavelength and phase of each of the individual waves.

3.1.1 SineWaves

The first of the basic periodic waves is the sine wave, and is the most common

type of periodic wave. The sine wave is a signal with only one frequency, and

represents the unidimensional motion for any signal with a phase angle that rotates

at a constant rate, using both the unit circle in Figure 3.4, and the trigonometric

sine function of Equation 3.6. On the unit circle, the trigonometric sine function

of a phase angle θ is defined as the ratio of the length of the opposite side and

the hypotenuse of a right triangle, like in Figure 3.4 in which the right triangle is

outlined in red. The unit circle, with a radius of 1, results in the sine function sinθ

being equal to the y-value in Cartesian coordinates, where the hypotenuse of the

right triangle that is formed meets the circle, like in Figure 3.3 and Figure 3.4. Here,

when y = 1 for angle θ = π
2 in the unit circle (Figure 3.4), the y-value of the wave

in Figure 3.3 corresponds to this y-value, at 1. We can then use this trigonometric

sine wave to synthesize a sine wave audio signal. As a sine wave is a continuous

periodic wave, in which the wave continues to move until stopped, we must use the

sine wave function on the unit circle continuously. Thus, we use the sine function

continuously around the unit circle, going counterclockwise. We notice that in

the correlation between Figures 3.3 and 3.4 moving counterclockwise through the

unit circle results in the appropriate rise and fall of the sine wave. π
2 is the highest

y-value within the Cartesian plane, and so denotes a peak in the sine wave, while

3π
2 is the lowest, denoting a trough.
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Figure 3.3: A basic sine wave

y = Asin(B(x + C)) + D (3.6)

Like with the other periodic waves, sine waves have three important properties:

frequency, amplitude, and phase. From the generic function for a sine wave, as

in Equation 3.6, we are able to compute the various properties. First, A is the sine

wave’s amplitude. This is defined as the height from the x-axis of the wave to its

peak or trough. For our unit sine wave, this value will be 1. Second is the variable

B, which helps to define the period of the wave, or the distance between one peak

and the next, or one trough and the next. With Equation 3.7, we see the period is

equivalent to taking the total circumference of the unit circle, and dividing it by B.

Third, the phase shift of a sine wave is denoted by C. If the expression is (x + C), then

the phase of the sine wave will shift to the left with respect to the value x + 0 (with

C = 0), as the x-value of the wave becomes positive C. Otherwise, if the expression

is (x − C), then the wave will shift right with respect to the value x − 0 (C = 0), as

x becomes negative C. Finally, the variable D is equivalent to the vertical shift of

the wave. This notates the distance that the wave will shift vertically from its unit

circle position. As sine waves are only composed of a fundamental frequency (the

lowest frequency found in a wave, for sine waves this will be the frequency of the

wave), these waves are most used as pure sound tones. Sine waves are at the center
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Figure 3.4: The unit circle

of audio synthesis and sound analysis. Other, more complex, periodic waves can be

built using some combination of sine waves.

2π
B

(3.7)

3.1.2 SquareWaves

The square wave is a certain type of pulse wave, which we can represent as a

summation of an infinite set of sine waves, similar to how sawtooth waves and

triangle waves can also be a summation of sine waves. Additive sythesis1 is one

method we can use to create square waves, sawtooth waves, and triangle waves,

and so we notice that the functions for these waves have similar periodic equations.

Through additive synthesis, we layer multiple sine waves, such that the composite

wave is typically a square wave, sawtooth wave, or triangle wave. In the equation

for a square wave, we have variables f (frequency), A (amplitude), and n number of

harmonics, let f (x) be an arbitrary square wave as a function of time t in Equation

1Further defined in section 2.1.
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3.8. Like with triangle waves, odd harmonics (or waves in which only odd values

are valid) are the only valid values for this type of periodic waveform. This causes

a non-smooth waveform, as unlike the smooth oscillations of a sine wave, odd

waveforms ramp upwards to the peak amplitude height, and downwards to the

lowest amplitude trough. This results in a sharper sound. Then, positive i, in

Equation 3.8, will always be odd, such that these harmonics create the square wave

of Figure 3.5.

Figure 3.5: A basic square wave

f (x) = A
∞∑

i=1

sin(2πn f t)
n

(3.8)

There are three properties of the square wave which we can manipulate: the

frequency f , amplitude A, and phase (altering 2πn f t from Equation 3.8), from the

summation equation for square waves (Equation 3.8). First, the amplitude value A

(similar to variable A of Equation 3.6) will alter the height (displacement of y) of the

wave’s peak and trough from the x-axis. This will change the volume we perceive

the square wave to be at. In Figure 3.5, the square wave pictured is a unit square

wave, in which the amplitude will be 1. Second, is frequency f , which defines the

period of the wave. A larger f (like with variable B of Equation 3.6) value will

cause the value of the period also becoming larger, thus resulting in a sound with a
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higher pitch. Third, the phase shift of the square wave will be denoted by changes

to the expression 2πn f t (similar to the usage of variable C of Equation 3.6). Like

with changes to C of the sine wave equation, alterations to a square wave’s phase

involves adding or subtracting a value to time t [41]. For instance, to adjust the

phase of a square wave to sound 0.5 seconds delayed, we would alter 2πn f t by

doing the following

f (x) = A
∞∑

i=1

sin(2πn f t − 0.5)
n

As the value of this modification to time t is negative (−0.5), the wave will shift

right, and sound delayed. This is similar to the negative C value of the sine wave

function, since a positive value will result in the square wave to shift to the left (in

respect to a phase shift value of 0) and sound early.

The sound produced by a square wave is one that is harsh and bright, that is, a

sound which has many frequencies in the higher frequency ranges (bright), and

lacks much of the lower end of the frequency ranges (harsh). In combination, this

results in a sound that becomes grating to hear after some time, and introduces

listening fatigue. These waves also only contain odd harmonics, so are most used

to simulate the sounds of woodwinds and reeds [10].

3.1.3 SawtoothWaves

Like with the square wave, one notable characteristic of the sawtooth waveform

is that is it a non-sinusoidal wave, and resembles the teeth of a plain-toothed

saw. Additionally, as in Figure 3.6, a sawtooth wave will ramp upwards to a

peak amplitude height as the amplitude increases linearly, reaches a set maximum

volume, then sharply drop to its trough, or the set minimum value (typically 0). This

sudden drop (the non-linear component of sawtooth waves) to the set minimum
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value for amplitude results in the wave beginning a new period, or new cycle. This

is defined by Equation 3.9, in which multiple sine waves create a sawtooth wave

[44]. We notice that this equation is similar to that of the square wave function, with

a small difference: the expression 2π f nt is no longer a fraction over n to create a

sawtooth wave. This difference is seen in both Figure 3.5 and Figure 3.6, in the ways

in which each wave descends from its peak to its trough, and the value of time t

which the wave spends at its peak or trough.

Figure 3.6: A basic sawtooth wave

f (x) =

∞∑
n=1

A
n

sin(2π f nt) (3.9)

In a sawtooth wave, we again have three properties we can easily manipulate:

amplitude (A), frequency f , and phase shift (the expression 2π f nt). Each of these

variables have their sine wave function equivalent from Equation 3.6. Amplitude

A equals the sine wave function variable A, frequency f is equivalent to variable

B, and phase shift 2π f nt is the same as variable C. The amplitude A will alter the

sawtooth wave’s amplitude, adjusting the distance from a peak or trough to the

x-axis, and thus also the perceived volume. Frequency f defines the period of the

sawtooth wave, in which a higher value f will cause a higher number of cycles to

occur, and the perceived pitch to rise. Finally, the phase shift 2π f nt works similarly
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to how it does in the square wave function, in which an addition or subtraction to

time t affects how early or delayed the resulting sound will be.

Within physical musical instruments, sawtooth waves are most often found

within the playing of a string instrument, such as the violin, viola, or cello. As a

bowed string oscillates, the bow alternates, in an up-down motion, sticking to the

string. The bow will drag the string along as it plays, then slips to allow the string

to return to its neutral position [20] Thus, the nature of the sawtooth wave gives it a

bright and energetic sound, and contains both even and odd harmonics, creating a

relatively smooth oscillating sound. Due to this, sawtooth waves will be used for a

variety of instruments, such as strings, brass, pads, and basses [10].

3.1.4 TriangleWave

A triangle wave is also a non-sinusoidal waveform, named for its triangular shape.

Like with square waves, this type of wave only contains odd harmonics, creating a

sound which is not smooth in its oscillation from peak to trough and back again.

It also shares similarities to the sawtooth wave with the amplitude of the wave

increasing linearly to a set maximum value from 0, reaching this maximum value,

then decreasing back to 0. However, there is a small difference in the two waves.

While a sawtooth wave will decrease in amplitude from its set maximum value

back to 0 immediately (in a non-linear way, as seen in Figure 3.6) the amplitude of a

triangle wave will decrease linearly upon achieving the set maximum amplitude

value, as in Figure 3.7, until the minimum value is reached [44].

As with the other waveforms mentioned, triangle waves can be written as the

summation of sine waves. Let f (x) be any triangle wave as a function of time t in

seconds, with frequency f , n number of harmonics (which can simply be thought

of as cycles) and amplitude A. Thus, Equation 3.10 will indicate the cycles of a

triangle wave. The equation for the triangle wave is similar to those for the other



44 3. Physics of Sound Waves

Figure 3.7: A basic triangle wave
[41]

two waveforms (square waves and sawtooth waves), with the primary differences

being the multiplication of (−1)i and the amplitude A being divided by n
2 . So trough

adjustments to variables f , A and 2π f nt, various sound output changes can be

achieved. First, the amplitude A will be divided by n
2 (the square of the number of

harmonics n), and is similar to the variable A of Equation 3.6. This value determines

the amplitude of the triangle wave, and thus also the perceived volume of the

wave. Second, frequency f defines the period of the wave, similarly to variable B of

Equation 3.6, affecting the number of cycles which appear and also the perceived

pitch of the wave. Finally, the phase shift of 2π f nt acts similarly as it does in the

square wave and sawtooth wave functions. A value added to 2π f nt results in the

wave sounding early, while a subtraction from 2π f nt causes the wave to sound

delayed.

f (x) =

∞∑
i=1

(−1)i A
n2 sin(2π f nt) (3.10)

Triangle waves are also “soft” sounding waveforms, which decrease in sound

faster than some other types of waves. This results in triangle waves being used to

simulate piano and flute sounds, as well as other instruments which rely on the

quick decay of a note [10].



3.2. Representing Sound Digitally 45

3.2 Representing Sound Digitally

We now understand the physics and mathematics behind sound waves. However,

sounds in real life are not composed of simple pure waveforms; sounds in the

world around us are made up of multiple harmonics and frequencies layered on

top of one another to produce the composite sound which we hear. Sound, like

electricity and light, is a form of energy in which molecules in air vibrate and move

in a wave pattern. This wave pattern produces the sound waves [2]. Air is able

to support multiple sound waves simultaneously, explaining our ability to hear

different sounds at the same time. This sound energy is dispersed outwards from

the sound source, and will continue to move until the molecules run out of energy,

as the energy weakens the further it moves away from the sound source (or the

sound attenuates). The sound energy is transferred between molecules, as each

molecule moves from an original resting point, transfers energy to another molecule

as they collide, then returns to its resting point, as in Figure 3.8. This molecule

movement is the oscillation of sound. Molecules become closer together when

vibrating, and crowd together in certain places, and thus there are fewer molecules

in other places. This visualization of crowds of molecules can be done as a wave,

with the peak of a sound wave indicating that there are more molecules together in

space (compression of air molecules), and the trough of a sound wave indicating

there are fewer molecules (rarefaction) [45]. Typically, sound is visualized in a

graphical format, with peaks and troughs to a wave rather than drawings showing

the compression and rarefaction of air molecules.

Through this periodic nature of waves, the repetitions create what we will

recognize to be musical sound, but lacking the specific tonality and timbral qualities

of specific instruments. Musical instruments generate a composite set of frequencies,

arranged as a layered set of harmonics above the fundamental frequency (the lowest

frequency which is played). Thus, the fundamental frequency will be the pitch of
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Figure 3.8: A graphical representation of sound, vs its physical phenomenon
[45]

the note, and the additional harmonics (also known as overtones) will lie above this

pitch and add the tonality or timbre of the note [45]. This is what differentiates pure

sound waveforms from notes generated from musical instruments, as pure sound

waveforms all have pitch, but lack specific timbral quality.2 Another factor which

dictates what a sound wave will be perceived as is the amplitude of a wave, which

will be further discussed in Section 3.3.

To get from an analog sound wave to a digital sound signal, we must sample

the continuous analog wave into its digital representation. Current technology

is incapable of working with a complete, continuous analog sound wave, as it is

made up of infinite points. To counter this, we must sample the analog sound wave

to convert it into a digital signal, which produces a finite set of discrete points.

Together, these points will allow us to visualize an analog sound wave in the digital

domain. To sample an analog audio signal is to measure the signal at different

points in time, while recording the physical property of that signal as a number.

Typically, voltage is measured, which can be transmitted into a stream of numbers

[1]. While an audio signal or sound is a continuous set of values, which are able

to be displayed on an oscilloscope (a tool to show oscillations) as a waveform, the

2This is what gives pure sound waveforms their name, “pure tones,” as each of these waveforms
has pitch but no timbre.
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digital “signal” is a series of numbers, representing various discrete values from

the continuous wave. These numbers will represent the values of an audio signal

at specific points in time, and are known as samples [39]. The sampling process to

convert from analog (physical) waves to a digital signal involves two steps:

1. The audio signal is “sampled” in which data is captured at defined intervals

from one continuous audio signal.

2. The sample values are converted into discrete numbers.

Once the sampling stage is complete, this sampled data will be digitally scaled

down to a target data rate and bandwidth for further processing and storage.

The process of sampling will typically produce numbers which are an incomplete

representation of the original audio sound, but through careful sampling, this

amount of incompleteness can be made insignificant. This same process can be

reversed to convert from a digital signal to an analog one, and is known as “sample

replay.” Sample replay also has three stages and serves as the basis for digital

synthesizers, as the conversion from digital signal to analog wave produces the

sound that is heard.

Analog sound exists in two dimensions: time (a period of each wavelength)

and space (the displacement of each waveform from the atmospheric pressure). So

it makes sense that to convert from analog audio to digital signals, we use these

two dimensions: time (to convert a continuously moving analog audio wave to the

digital domain, through the use of a sample rate) and space (in the digital domain,

this will be in terms of the bit depth).

Sample rate, or sample frequency, is the number of samples which are captured per

period (which is commonly measured in Hertz). Typically, digital audio samples of

analog audio waves are taken at 8,000 times per second, or more [48]. Occasionally,

a sound will be sampled that is at a frequency rate higher than 8,000 and the system
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doing the sampling is unable to identify two points on the waveform to understand

the period. Harry Nyquist (1879-1976), a Swedish physicist and electrical engineer,

solved this problem through the Nyquist frequency [48] (or folding frequency). Nyquist

discovered that in order for an analog audio wave to be accurately represented

by a digital signal, and thus also the system which is sampling the audio wave,

the wave must be sampled at least twice per wavelength, known as the Nyquist

Theorem (or Nyquist-Shannon theorem) [48] and visualized in Figure 3.9. Within the

first part of Figure 3.9, the signal is sampled perfectly at 2x the Nyquist Frequency.

This allows the relevant discrete numbers to be captured, to fully represent the

wave. The second image of Figure 3.9 is sampled at a rate which is less than 2x the

Nyquist Frequency (1.5x for the middle image), managing to capture less than half

the needed discrete values to fully represent the wave. Thus, for a given sample rate,

the highest frequency within a system cannot exceed half this sample rate. In other

words, the Nyquist frequency is the frequency at 50% of the sample rate. Otherwise,

for a frequency which does not satisfy the requirements for the Nyquist Theorem, a

phenomenon called “aliasing” would occur. Aliasing is the phenomenon in which

signals that exceed half the sample rate are misrepresented as “alias signals” leading

to the wave to be indistinguishable, and incorrect frequency and amplitude values

to be obtained. The middle image of Figure 3.9 describes the concept of aliasing, in

which the wave is sampled at only 1.5x the Nyquist Frequency, and alias discrete

points are introduced. These alias points, which make up an “alias signal,” are not a

true representation of the original signal. An “anti-aliasing” filter, or Nyquist filter,

would then typically be applied to the signal before sampling occurs, to act as a

low-pass filter with a cut-off at the Nyquist frequency.
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Figure 3.9: The Nyquist sampling theorem visualized. Upper: Signal sampled at 2x Nyquist
frequency, Middle: Signal sampled at 1.5x Nyquist frequency (and thus aliasing and not
a true representation of the original signal), Bottom: Signal containing both accurate and
aliasing components

[48]

This sampling process using the Nyquist frequency and anti-aliasing filter is

commonly used in digital audio systems (both for professional and consumer usage).

Another tool that is commonly used to improve the anti-aliasing filter is oversampling

[19]. Oversampling can increase the effective sample rate between 12 and 128 times

the original rate, with three primary reasons for this process.

1. Physical anti-aliasing filters–like those found in analog-to-digital converters
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(ADC)–can be expensive, and difficult to design properly. So by increasing

the effective sample rate, and the ceiling for this sample rate, a simpler and

less-costly filter can be used.

2. Oversampling typically results in a higher-quality conversion, for both analog-

to-digital (A/D) and digital-to-analog (D/A) conversion.

3. Multiple samples are usually taken of a single sample rate, and so the average

noise level will be lower.

Bit depth is defined as the discrete values which are available within the digital

system, representing the magnitude of a continuous electrical signal [48], in the

form log2x. These levels can become exponentially large, and so quantization is

used to process data from a broad range into values within a smaller range. It will

convert the levels of a continuous analog signal, as the signal after sampling is still

in the analog domain, into binary digits (bits). Using bits will allow us to be able

to manipulate and store audio data digitally. After sampling the amplitude of an

analog audio wave at various precise intervals, we are able to output this amplitude

level in its equivalent in bits, which represent the originally sampled amplitude

level, known as bit rates. The bit “rate” can then be defined as the amount of data

stored or transmitted per second of time, or in Equation 3.11, measured in kbps

[48]. In general, the higher the value of the bit rate, the higher the quality of the

audio data that is stored, since there is more data to represent the captured sound

available.

bit rate (bits per second) = sample rate (Hz) x bit depth x number of channels

(3.11)

Increasing the number of channels will increase the stereo width of a sound, or how
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“wide” it is. Stereophonic sound (or stereo) is a method of sound reproduction which

recreates a multi-directional, 3-dimensional audible perspective. Typically, this is

achieved by using two independent audio channels fed through a configuration of

two loudspeakers (or stereo headphones) to create the impression of sound heard

from various directions, similar to how we naturally hear [2]. Different sounds

will play from the left speaker or headphone than from the right, thus creating the

illusion that the audio is coming from multiple directions. Stereo sound will be used

most often in film and music, where there is a combination of music, vocals, and

other sounds. Monophonic sound (mono) occurs when two loudspeakers, or stereo

headphones, play the same sound equally [2]. Both the left and right speaker or

headphone will play identical audio. Mono sound will typically be used for radio

talk shows, telephone calls, or other times when there is a focus on vocals.

From our original three stages of converting analog sound to digital signals, we

can now specify the processes which occur in each stage [19].

1. Sampling analog audio wave amplitude levels at precise intervals in time.

2. Converting these samples into the digital bit value (typically a 16-bit length),

which most accurately represents the amplitude levels.

3. Storing these sample equivalents (the bit values) within digital memory.

Upon playback, the bits are then converted back into analog amplitude values,

at precise intervals in time, allowing for the originally recorded amplitude values to

be re-created, processed, and played back [19].

3.3 Manipulating SoundWaves

As previously mentioned in Section 2.2, modular synthesis involves sending an

audio signal through patches or modules in a linear format to achieve the desired
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sound output changes. To explain how these changes occur to a sound wave, we

arbitrarily choose the simple sine wave as an example, as in Appendix C.

Figure 3.10: A basic sine wave, with period demarcated in blue, and amplitude in purple

y(t) = A sin(2π f t + ϕ) (3.12)

Sine waves are a waveform which is a function of time t with variables A, ϕ.

A is the wave’s amplitude, which determines the peak deviation from zero. The

frequency is f , and ϕ is the wave’s phase, which specifies (in radians) where in its

cycle the wave’s oscillation is at time t [21]. When ϕ is not equal to zero, the wave

itself will appear to be shifted by the value equal to ϕ, which is known as a wave’s

“phase shift.” A negative value will represent a delay in sound, while a positive

value will represent an advance in the heard sound.

Thus, there are three primary parameters when manipulating audio (or a simple

waveform); amplitude, frequency, and phase can all be modified at various points

to affect the audio output. The first, amplitude, will determine the volume of the

wave’s sound. The larger the distance between zero and the wave’s peak, the louder

the human ear will perceive the sound to be [48]. In Figure 3.10, amplitude is

colored purple, and we see it has a value of 1 (the default value of amplitude of a

sine wave from the unit circle), as A does in Equation 3.12. By changing the value
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of A to either 1
2 , or 2, the peak of the wave will change accordingly, becoming larger

or smaller depending on the set value of A. This change is reflected in the sound we

can hear, as like in Figure 3.11 and Equation 3.13, the volume of this sine wave is

halved. Thus, volume ranges can be between soft (at a barely audible pianissimo)

with an amplitude A = 1
2 , or loud (fortissimo), with A = 4, for instance.

y(t) =
1
2

sin(ωt + ϕ) (3.13)

Figure 3.11: A sine wave, with an amplitude of 1
2

The second option commonly used to manipulate audio is to change an audio

signal or wave’s frequency. For sound and audio manipulations, the frequency

component determines a sound’s “color,” or “timbre.” It is the property of a

waveform which determines the output sound’s pitch. (Refer to Appendix A for a

review of the range of audible frequencies.) Thus, with Equation 3.12, we change

the value of w, which increases the rate of change of the sine wave, increasing the

perceived pitch. With the period of the sine wave in Figure 3.10 marked blue, it is

this blue section that will increase with an increase in ω. As ω increases, there are

more repetitions of the sine wave’s phase, so the audio output’s pitch will increase.

Pitch is how high or low a sound is perceived to be, and will be determined by the

frequency of the vibrations [45]. Frequency is the number of wave cycles which pass

through a given point per second. A higher frequency will result in a higher pitch,

and a lower frequency will result in a lower pitch. For instance, with a frequency of

261 Hz, we perceive the note Middle C to be played.



54 3. Physics of Sound Waves

Finally, a modification to a wave’s phase will determine if the audio signal

output is on-time, delayed, or early. The numeric value of ϕ depends on the start

of the wave’s period. Similar to the changes made to amplitude and frequency, by

modifying the value of ϕ, we change the phase of the waveform. This will be most

noticeable with multiple harmonics or simple waveforms stacked on top of each

other, in which each signal will have a phase at a slightly different time, as in Figure

3.12. The period of the blue sine wave has a length of π
2 , but otherwise is a normal

unit circle sine wave. The red sine wave is phase shifted, with an ϕ value of positive

2, which shifts the wave negative and to the left, causing the output audio to sound

early in comparison to the blue wave.

Figure 3.12: The phase shift in a sine wave

This type of sound modulation is done through a synthesizer’s “delay” effect

(sometimes known as “echo” effect). It is an effect which records an input signal,

stores it, then plays it back after a defined time. Typically, the delayed audio is

mixed with the live audio input creating an echo effect, where we first hear the

original audio, followed by the delayed audio. The value of D in Equation 3.6

determines the shift of the wave, and thus also the sound. A positive value (such as
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π
2 ) will shift the sine wave to the left on the Cartesian plane, resulting in a sine wave

which sounds early. The same applies to a negative D value, in which a value such

as −π6 shifts the sine wave to the right, creating a sine wave which sounds “late” or

delayed.

Other modules can be created through similar logic. To create legato and staccato,

we either connect the waves of different frequencies together, or separate the waves

to the point there is a clear distinction between the notes. Musically, these two

concepts are total opposites; staccato is defined as the style of playing notes in a

detached and separated manner, in which each note is clearly distinct from one

another. It is typically indicated by a dot directly above or below the notehead,

depending on if the stem of the note goes upwards (a dot is placed below the

notehead), or goes downwards (a dot is placed above the notehead) [6]. An example

of staccato is in Figure 3.13, in which there are dots clearly above and below some

of the notes, and the location of the dot is dependent on whether the stems of the

notes face upwards or downwards. Legato is the directive which defines notes to

be played in a smooth and connected manner, with notes that are no longer clearly

distinctive from one another, as each note will flow gracefully into the next.

Figure 3.13: Béla Bartók, Romanian Folk Dances, Poarga Românească, mm. 16-19

We will also create a module meant to layer two specific harmonics over a base

frequency: the major third interval, and the perfect fifth interval, which together

will form a major chord (refer to Appendix C). Most chords are triadic in nature

(that is, containing only three notes), with the interval of a major third or minor
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third between each of the three notes. The major third interval can be defined as

the interval which spans four degrees of the diatonic scale in the Western twelve-

semitone tuning system (refer to subsection 2.3.2), or four semitones [30].3 The

minor third interval contains one fewer degrees than the major third interval, thus

having only three degrees of the diatonic scale, and so only three semitones.

For instance, with a base frequency of the note A, the interval between A and the

note C\ is a major third interval. This interval spans the distance of four semitones.

The distance between the note A and the note C is shorter than the distance between

A and C\, resulting in few semitones between the notes. This interval is the minor

third interval, as the note C is only three semitones away from the note A. A major

interval will usually sound “happier” and brighter than a minor interval. The major

third can give music a happy and playful tonality, while the minor third can result

in music which sounds sad, dark, or spooky. It is important to understand the

differences in the major and minor intervals–especially the major and minor thirds.

These intervals can alter the timbre and quality of the sound (refer to Appendix C)

and the feeling of the music.

Songs which contain prominent examples of the major third interval include

“When the Saints Go Marching In,” Ludwig van Beethoven’s Fifth Symphony, and

the spiritual song and Christian hymn “Swing Low, Sweet Chariot.” In Figure 3.14,

the notes must be read from the top of the sheet music down to the bottom–to

understand the composite sound each instrument brings to the symphony–before

being read from left-to-right. The first two measures of the symphony (before

the blue line) show one major third interval, and the last two measures (after the

blue line) show a different major third interval. These intervals do not sound as

happy or bright as the major third interval may typically be, but the distinction

between the major and minor third becomes easier to understand in comparison to

3The major third interval is also enharmonically equivalent to the diminished fourth interval.
The enharmonic interval describes notes which sonically are the same, yet notated differently.
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a well-known piece which begins with the minor third interval: the English folk

song “Greensleeves.”

Figure 3.14: Ludwig van Beethoven, Symphony No. 5 in C Minor, Allegro con brio, mm. 1-4

[3]

Songs which contain the minor third interval include “Greensleeves” (the first

two notes), Christmas tune “What Child Is This,” and The Beatles’ “Hey, Jude.”

In Figure 3.15, the notes must also be read from top-down, before being read

left-to-right. The first two notes of the piece (as bracketed in blue) demonstrate

the minor third interval. In this piece, the notes played in the two clefs (the top:
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treble, the middle: alto, refer to Appendix C for more details) are different pitches,

but are still minor third intervals. For instance, the two notes played in the treble

clef are A and C. These notes create a sad, dark, and slightly ominous tonality to

the song, a quality specific to the minor third interval. In comparison to the major

third interval from Ludwig van Beethoven’s Fifth Symphony, it is clear that there is

a difference in sound quality and tone between the two interval types. The major

third interval, and thus the frequency difference between a base frequency and

its corresponding major third interval, will sound brighter than the minor third

interval. The frequency difference between a base frequency and its corresponding

minor third interval results in a sad and dark sound quality.

Figure 3.15: “Greensleeves”, mm. 1

[23]

The interval of the third is important to distinguish major chords, and minor

chords, as major chords will have a root note (the tonic note, typically the first note

played of a chord), major third interval, and another minor third interval (or perfect

fifth interval above the tonic) stacked on top of one another, while a minor chord

will have the tonic, minor third, and perfect fifth. Either multiple waveforms (of

the specified major third and perfect fifth intervals) can be stacked to produce the
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major chord sound, or MIDI inputs (through the use of a MIDI device such as a

MIDI keyboard) can trigger a major chord.

Another manipulation possible is to add the distortion alteration (as opposed to

the specific distortion effect) to a sound is simply to add desired textures (additional

layers, refer to Appendix C). to a sound, through changing and deforming an audio

signal’s waveform. For many, a prime example is seen with the use of an electric

guitar, as the pedals used with an electric guitar allow for added harmonics, and

other changes made to the guitar’s sound. One of the most used types of distortion

is known as clipping, in which the level of a signal (typically amplitude) goes beyond

the maximum that a system is able to handle, leading to clipping, as the maximum

of the waveforms gets abruptly cut off at the system’s maximum. At its best form,

distortion can be a gentle audio effect, which can add many types of sounds to a

signal, including saturating the sound, and adding overdrive and fuzz–two types of

distortion effects–through adding gain (defined as an increase in some type of value).

With respect to distortion effects, gain is referred to as transmission gain, in which

there is an increase in the power of a signal, expressed in decibels (dB), usually done

through an arbitrary combination of increasing the amplitude and frequency of a

sound wave. This arbitrary combination of changes in frequency and amplitude

can be done in all situations. The two most common, and most subtle, types of

distortion are saturation and clipping. The result of these two types of clipping

is “soft clipping” in which the peaks of the signal’s waveform are softly rounded,

and not abruptly cut off [44]. The signal will be pushed only slightly over the 0 dB

threshold.

The concept of the 0 dB threshold is important for distortion effects, as it is a

fundamental aspect to effectively create distortion within a modular synthesizer.

Both digital and analog meters for volume, as in Figure 3.16, have ranges between

negative infinity (or silence), up to 0 dB (the absolute loudest). In SuperCollider, this
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range will be between -80 and 0, as in Figure 3.16. These decibels are different than

the standard decibels used to describe the loudness of everyday sounds. Standard

decibels allow us to compare the relative loudness of sounds to each other; a jet

taking off sounds at 140 dB, a firecracker is 140-165 dB, and a whisper may be 30

dB [14]. These decibels act as a unit measurement for sound, and the National

Institute of Occupational Safety (NIOSH) [14] states that while exposure to noise

at 85 decibels or above will cause hearing loss, the exposure dangers for higher

levels become exponentially more damaging. While at a noise level of 70 dB would

take over 24 hours to cause hearing damage, sound at a level of 115 dB would

cause hearing damage at only 28 seconds. The 115 dB volume of a rock concert and

symphonic orchestra concert is much more noticeable, especially when comparing

to the volume of listening to music on personal devices at maximum volume (105

dB).

The type of decibels used for music production are “Decibels Full Scale” (dBFS)

when discussing digital music, or “Sound Pressure Level” (dB SPL) in the real

world. This is the measurement of decibels as it pertains to the levels in an audio

recording. Unlike the scale for dB, in which 0 dB is absolute silence, and higher

numbers indicate a louder perceived volume, the scale for dBFS is reversed. With

the dBFS scale, 0 dB is the maximum level of audio a system can process before it

“clips” the signal. The lowest detectable level of sound in the system, the “noise

floor,” can be as low as -150 dB, but is typically between -80 dB and -90 dB. In

general, the common range for volume lies between -10 and -18 dB.

So, keeping the noise level somewhere between -80 dB and -10 dB will help

in introducing distortion to pure sound waveforms. If a signal is “softly clipped”

(boosted slightly over the 0 dB threshold), the output sound may contain subtle

harmonics (other frequencies overlaid on top of the original frequency) or other

overtones.
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Figure 3.16: The server meter in SuperCollider

Overdrive, and fuzz–as previously mentioned–are two common types of dis-

tortion. In addition, the distortion effect itself (different from the class of sound

alterations known as distortion), is another type of distortion. These three types of

distortion effects tend to be synonymous with electric guitar rigs, pedals, and other

similar hardware. Overdrive tends to be the most subtle of the three, with higher

gain levels. Distortion and fuzz are more intense, with distortion allowing for large

amounts of sustain, harmonics, and a mostly altered sound from the original input,

noticeable in heavy rock music and guitar solos. Fuzz is similar to distortion in

gain level, but will produce a sound similar to that of a square wave. Distortion

using the fuzz effect produces a traditional synth-like effect, with digital artifacts, or

overly processed sounds.
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CHAPTER 4

Building aModular Synthesizer

In the work done on creating a virtual synthesizer, the result is two input options:

pure sound tones (such as the sine waves, square waves, and other waveforms

previously mentioned in Section 3.1), and MIDI. Due to the continuous movement

of pure sound waves, modules built for pure tones will be somewhat different from

the modules which are built for MIDI input. The following section focuses on the

pure sound tones, and the modules built to manipulate these waves. Then, we

discuss the ways in which a user can interact with this project’s synthesizer through

the use of MIDI, and the various sound alterations that result.

4.1 TheModules: PureWaveforms

The waveforms created through SuperCollider are through Unit Generators (UGens)

such as the “SinOsc” Unit Generator. As in Listing 4.6, a simple sine wave is

created, with a frequency of 440 Hz (A4, defined as the A in the fourth octave of the

keyboard, or Concert A), and a volume of 50. The SinOsc UGen defines the specific

properties (frequency, amplitude) of the sine wave, as well as the wave itself. Thus,

as previously seen in both Figure 3.3 and Equation 3.6, a continuous sine wave has

been created.

63
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1 SynthDef("sinewave", {arg freq=440, vol=50; Out.ar(0,

↪→ SinOsc.ar(freq, 0, vol))}).add;

Listing 4.6: Creating a sine wave SynthDef in SuperCollider

4.1.1 Volume Slider

Volume is simply how loud or soft the human ear hears at a particular frequency. The

sine wave SynthDef created in Listing 4.6 contains a variable value for volume. In

the SynthDef, the volume is initialized at the number 50, which generally correlates

to a medium-loud volume of mezzo forte. The variable A of the generic sine wave

equation in Equation 3.6 is equivalent to this change in volume.

As the sine wave Synth Def contains two variables, one for frequency, and

one for volume, creating modules for both a volume slider and a pitch knob is

straightforward. To create the volume slider, a SuperCollider class called EZSlider

creates the outline of the volume slider itself, as in Figure 4.1. For the slider’s

functionality, there are three important parts: the “controlSpec,” “action,” and

“initVal.” The “controlSpec” defines the “control spec,” or the range of values

allowed for the specified module. Negative volume does not exist, so this simple

volume module will contain valid values for 0 volume (soft, or pianissimo) up to

100 volume (loud, or fortissimo). Then, the “action” argument of the EZSlider class

determines the function that runs when the value of the volume slider is changed.

Figure 4.1: The basic volume slider, with a volume of 50, or mezzo forte
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1 volumeSlider = EZSlider(awindow, label:"Volume",

↪→ controlSpec:[0,100], action:{|volumeSliderValue|

↪→ x.set("vol", volumeSliderValue.value)}, initVal:50);

Listing 4.7: Creating the volume slider in SuperCollider

1 x = Synth("sinewave");

Listing 4.8: Putting the sine wave SynthDef into a Synth, for sound output

In Listing 4.7, the action that is set involves changing the volume of the Synth

created in Listing 4.8. In this code example, the SynthDef from Listing 4.6 that is

assigned to the variable name “sinewave” is now put into a Synth. This Synth,

as previously described in Section 2.4, allows SuperCollider to deal with audio

output, as it pushes the created sine wave into the SuperCollider server scsynth

for immediate playback. So, the SynthDef “sinewave” is put into a Synth, known

as “x.” Within the action, while the sine wave is wrapped in a Synth, x can be

manipulated. That is, the sine wave which is in the Synth can be manipulated,

resulting in an altered sound. The action itself begins with a reference to the volume

slider, volumeSliderValue. The Synth, x, then references the volume argument from

the SynthDef, “vol,” which sets the volume for both the SynthDef and the Synth,

and uses the set function to set the volume of the Synth equal to the volume

that the volume slider contains. The volume of the Synth x will update as the

value of the volume slider does, setting the value of x.vol to be equivalent to

volumeSliderValue.value. Finally, “initVal” simply initializes the starting value of

the slider to volume 50 (mezzo forte).
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Figure 4.2: The basic pitch wheel, with a pitch of 440 Hz, or A5

4.1.2 Pitch Knob: The Pitch Bend

Pitch, as previously mentioned, is simply a functionality which dictates the frequency

of a note that the human ear perceives. Standard Western tuning currently dictates

notes to be tuned around the starting pitch of the note A above Middle C (or A5),

which is equivalent to 440 Hz. We reference Listing 4.6 again, as a sine wave with

both frequency and volume arguments was created here. The frequency of this sine

wave is equivalent to the variable B in the generic sine wave equation (Equation

3.6).

To create the pitch knob, similar logic to that of the volume slider above is used.

In SuperCollider a native class, EZKnob, is used. This class will create the knob, as

in Figure 4.2, to adjust the frequency of the pure tones. This knob class has three

arguments: the “controlSpec,” “action,” and “initVal.” In Listing 4.9, we see that

the controlSpec for the pitch knob is freq, denoting the span of audible frequencies

to the human ear, with negative frequencies invalid. The “action” argument works

similarly to its functionality in the volume slider. It will set the value of freq

argument of the SynthDef “sinewave” equal to the frequency value of the pitch

knob. The final argument of the EZKnob class is “initVal,” in which the initial value

of the pitch knob is set to 440 Hz.
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1 pitchKnob = EZKnob(awindow, label:"Pitch", controlSpec:\freq,

↪→ action:{|pitchKnobValue| x.set("freq",

↪→ pitchKnobValue.value, currentFreq)}, initVal:440);

Listing 4.9: Creating the pitch knob in SuperCollider

4.1.3 Legato Switch: A Sustain Button

The legato switch for this synthesizer is meant to emulate the legato notation found

in classical music. Legato is a directive, typically found in its full form in classical

music, which indicates the performance of a specific passage to be played in a

smooth, graceful, and connected style (opposed to the staccato notation) [47]. It will

often be indicated by a slur over the notes, or an accent mark with a line over the

notes to be affected, as in Figure 4.3 [17], marked in blue. Here, notes of differing

pitches are to be played in a connected manner.

On a physical electronic keyboard, this module is most often seen with a

sustain button, in which the notes played are extended, and slurred into each other.

However, it is important to note that not all slur lines in written sheet music will

be meant to be played legato. Notes which are of the same pitch cannot be played

legato, as notes meant to be played legato must be of different pitches. If notes

meant to be played in a connected manner are of the same pitch, a tie is added to

these notes, as in Figure 4.4 [24] (refer to Appendix C), which connect notes that are

the same pitch. Within Figure 4.4, two notes of the same pitch (circled in blue) have

a line, which denotes that these notes should be played smoothly. It is important

to note that these notes are of the same pitch, and so are tied notes, rather than

notes that should be played legato. So, the durations of these notes which are tied

together are combined, and played at that new longer note duration instead.

In this synthesizer, a pure sound wave was created through the SynthDef, and
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later put into a Synth for sound output. There is no need to develop a functionality

which would connect the waveforms of one frequency to another smoothly, as pure

tones will sound in a smooth transition between frequencies naturally. Thus, to

develop such a module for pure sound waves is not needed. Through the nature of

pure tones, the waves will move continuously unless stopped by an external force.

Figure 4.3: Béla Bartók, Six Romanian Folk Dances, Buciumeana, mm. 13-15

Figure 4.4: Johann Sebastian Bach, The Well-Tempered Clavier Book I, Prelude in C Minor, mm. 34-35

4.1.4 Major Chord Generator

The Major Chord Generator within this modular synthesizer involve two pieces:

calculating the proper frequencies of the major third and perfect fifth intervals–as

they are subject to change from the user’s input on the pitch knob–and adding these

two intervals to play simultaneously with the original waveform sound. First, to

calculate the proper intervals of tonic note (the base frequency, otherwise known
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as the “root note”) to major third, and tonic note to perfect fifth, interval ratios (the

widths of semitones, and the calculation of frequencies relative to a base frequency,

typically A440) are used (refer to Appendix C for further definitions for each of these

terms). As mentioned within Subsection 2.3.2, the commonly used tuning system in

the Western world is the twelve-tone equal temperament system, which divides the

octave into 12 parts. Each of these parts are equally tempered (or equally spaced)

on a logarithmic scale, such that each ratio is equal to 2
1
12 , or 12√2 ≈ 1.05946 (the 12th

square root of 2, and a in Equation 4.1 [42]). This tuning system is normally tuned

relative to the standard pitch of 440 Hz, known as A440, signifying that the note A

(typically A4, or Concert A) is tuned to 440 Hertz, and all other notes are defined

relative to this pitch, as some multiple of semitones away from it, either higher

or lower in frequency. Thus, the modular synthesizer created also begins with a

starting pitch of A440, every other pitch is defined relative to it ( f0 in Equation 4.1).

To calculate an interval from our base frequency of 440 Hz, we must multiply

by some value n
12 , with n the distance, in semitones, from the base frequency to the

interval we want to find. We want to calculate the frequency value of the major

third interval and the perfect interval, based on the base frequency value of 440 Hz.

We know that the major third interval is four semitones away from the root note,

and the perfect fifth is seven semitones away from the root note. To calculate the

major third interval, like in Listing 4.1.4 in which we define the values of variables

thirdFreq and fifthFreq, we multiply our base frequency by some multiple of
n
12
√

2. As the major third interval has a distance of four semitones away from the

root note, we set n = 4, to calculate fn = 440 ∗ 2
4
12 . We do the same thing to calculate

the perfect fifth interval. This interval has a distance of seven semitones from the

root note, so we multiply our base frequency by
7
12
√

2, resulting in fn = 440 ∗ 2
7

12 .

Through these two calculations, we understand that with a base frequency value of

440 Hz, the values of thirdFreq and fifthFreq of Listing 4.1.4 to be:
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thirdFreq = 554.37;

fifthFreq = 659.25;

fn = f0 ∗ (2)
n
12 (4.1)

After calculating the ratio of frequencies, the work on the second part of the

module begins. Similar to the work done to create the initial waveform, two

additional pure waveforms, and their Synth counterparts, are created (Listing 4.1.4).

Then, the only step which remains involve adding the Synths y and z into a variable

to play simultaneously (Listing 4.1.4) using an array called “majChord.”

1 var baseFrequency = 440;

2 var thirdFreq = baseFrequency * (2**(4/12));

3 var fifthFreq = baseFrequency * (2**(7/12));

4 ...

5 SynthDef("sinewave_third", {arg vol=50; Out.ar(0,

↪→ SinOsc.ar(thirdFreq , 0, vol))}).add;

6 SynthDef("sinewave_fifth", {arg vol=50; Out.ar(0,

↪→ SinOsc.ar(fifthFreq , 0, vol))}).add;

7 y = Synth("sinewave_third");

8 z = Synth("sinewave_fifth");

9 ...

10 majChord = ["sinewave", "sinewave_third", "sinewave_fifth"];

Listing 4.10: Creating the major third and perfect fifth intervals, and placing the three notes into an
array, for playback on the SuperCollider server. The ellipses describe code which is not
relevant to show for demonstration purposes.

To create the button for a clean and easy-to-use user interface, we use the native

SuperCollider class, Button, and assign the value of this button to the variable

“majorChord.” This button has two states, on and off, and the variable majChord of
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Listing 4.1.4 is triggered when this button’s state is on. Once majChord is triggered,

all three pure tones sound at once. For demonstrative purposes, we show that two

sine waves are layered on top of the sine wave SynthDef which we began with, to

create a major chord.

1 majorChord = Button(awindow, Rect(20, 20, 150,

↪→ 25)).states_([["Turn Major Chord Off", Color.black,

↪→ Color.gray], ["Turn Major Chord On", Color.black,

↪→ Color.yellow]]);

Listing 4.11: Implementing the major chord module using the Button class

4.1.5 Delay Slider

Adding delay to a pure tone involves affecting when a waveform will move. Also

known as an “echo” effect, this effect results in a sound being perceived as earlier or

later than it “should“ have been played. For this module, we create a slider, using

the native SuperCollider class EZSlider. This module will determine the time the

waveform is delayed. Like with the volume slider, we are using the same three

arguments: controlSpec, action, and initVal. For the control spec of the delay slider,

we must make sure these values match those available in the unit circle, so that

the valid range of values is between π
6 to 11π

6 , as in Listing 4.12. While it is possible

to use values greater than 11π
6 , or less than π

6 in theory, in practice it will sound

equivalent to values within this range, as the sine wave will be overlaid directly on

top of the possible values in this range.

In SuperCollider the time values for delay are calculated in radians, so using

the values from the unit circle works well. For the “action” argument, similarly to

previous modules, the phase of Synth “x” is set to be equivalent to the value of the

delay slider. The slider itself is initialized to 0, where there is no early or late arrival

of the sound.
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1 delaySlider = EZSlider(awindow, label:"Delay Time",

↪→ labelHeight:50, labelWidth:100, controlSpec:[(-pi)/6,

↪→ pi/6], action: {|md| x.set("phase", md.value)},

↪→ initVal:0);

Listing 4.12: Creating a delay slider in SuperCollider

4.1.6 Adding Distortion

Pink noise is a type of noise which contains all the possible frequencies which a

human can hear. Unlike other types of colored noise, pink noise is much less intense.

There are multiple types of colored noise, including black, red, blue, brown, and

white. However, for music production, the two most popular types of colored

noise are white noise and pink noise. White noise operates similarly to white

light, encompassing the entire frequency of audible sound from low pitches to high

pitches equally. Different frequencies are played randomly across the entire audible

range, and normally sounds like radio static [46], as in Figure 4.5. When mixing

white noise into a pre-existing music mix, white noise fills sonic space similar to how

low bass notes fill sonic space in the very low end (refer to Table A.1). Pink noise is

very similar to white noise, but constructed differently. It creates equal amplitudes

based on the octaves, getting softer and less abrasive-sounding as the pitch rises, as

in Figure 4.5. Thus, lower frequencies are louder, and higher frequencies are easier

to listen to and are softer [46]. As it technically has a fundamental frequency, it will

sound much more natural than white noise, as natural sounds all have a specific

fundamental frequency (defined as the lowest harmonic played).
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Figure 4.5: Pink vs White Noise

[13]

Due to its more natural sound than white noise, pink noise is the preferred type

of colored noise to use for this synthesizer. In addition, as higher frequencies are

lower in volume, and lower frequencies higher in volume, the entire frequency

range of pink noise will have the same acoustic energy, since it takes a wave much

less energy to play a pitch in the lower range of frequencies than in the higher range

of frequencies. Then, the sound of a pure tone can be altered to be rougher, with the

baseFrequency variable of Listing 4.13 as our starting frequency.

The distortion of a simple, pure audio signal involves a SuperCollider class

known as InsideOut. For this module, both clipping and fuzz are used. As in Listing

4.13, there are two aspects which create the clipping and fuzz effects: a sine wave

Unit Generator (UGen), and a Pink Noise UGen. The sine wave UGen allows for

the clipping of the sound wave. The Pink Noise UGen is added through the fuzz

effect, and allows us to add pink noise.

1 // PinkNoise function , with a sine wave UGen at the frequency

↪→ from pitchKnob

2 dist = {InsideOut.ar(SinOsc.ar(baseFrequency) +

↪→ PinkNoise.ar(0.9, 0), 30, 50)}.scope;

Listing 4.13: Creating a distortion module
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4.2 MIDI Input

Input with MIDI in SuperCollider is more complex than creating pure sound

waveforms for modular changes; however there are some similarities, we must

create three aspects for modular sound synthesis. The first, the Synth, must be added,

so sound can be sent to the SuperCollider server scsynth for eventual playback. This

is different than sending a pure tone to scsynth, as sending a pure sound wave will

result in the immediate playback of that wave. In working with MIDI, we do not

have the issue of a MIDI note playing immediately if we were to send a Synth to the

server, since MIDI relies on the user input through a MIDI controller. The second

part, the SynthDef, is the way in which we define how a user-controlled MIDI input

note will sound. We are using a MIDI keyboard to control this synthesizer, and so

as in Listing 4.15, create a SynthDef to sound similar to a piano. Finally, we must

also create the MIDI note on and note off functions for MIDI to function correctly.

1 MIDIClient.init;

2 MIDIIn.connect;

Listing 4.14: Initializing the MIDI Client

Before any of this, however, the MIDI inputs and the MIDI client must be

initialized, as in Listing 4.14. These are the two key steps to using MIDI in

SuperCollider: initializing the MIDI client (with the MIDIClient.init command)

and connecting to the specific MIDI controller that will be used (through the

MIDIIn.connect command). Once this is done, we can move on to creating the

MIDI functionality itself.

The first step to creating MIDI functionality within SuperCollider will be to create

the SynthDef, which will hold the instructions for how MIDI input is supposed to

sound. Listing 4.15 describes the necessary aspect in the creation of a SynthDef

that will be compatible with MIDI commands. The ADSR envelope, or “envelope
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generator” (a term which refers to the “shape” of a sound, or the contour by which

a sound gets louder and softer) is described by its stages: Attack, Decay, Sustain,

Release, as in Figure 4.6 [36]. Some of this was discussed in the Note On and Note

Off messages subsections of Section 2.3.3. The order in which sound goes through

an envelope generator is important, as sound must travel through the attack, decay,

sustain, and release stages in that order, and is unable to go back to any other stage

once it comes to a stage. An ADSR envelope generator will first receive a gate input,

or an input signal. The gate is one of the main signal input types of a modular

synthesizer, and the level of the gate input will change as it is processed through

the ASDR envelope. Starting in the Attack stage, the gate input, and in Listing 4.15

will be called gate, is increased from its starting level (typically 0) to the level set

by the Attack stage (the maximum volume the gate input will become, and the

maximum volume the envelope generator is able to output). This occurs when a

new note is meant to start, such as when a user presses down on a MIDI keyboard,

or another transition is meant to happen, such as when the next stage of the ADSR

envelope is meant to start. When a user presses down on a MIDI keyboard, the

gate will typically stay at the level it was given for the duration of that note, and

then suddenly drop to its baseline level once the key is released. Thus, when the

gate variable is sent through a typical envelope generator like the ADSR envelope

generator, the beginning of the gate increases to its maximum volume as it tells the

envelope to go through the Attack and Decay stages. As the gate remains at this

high level, the envelope may go into the Sustain stage, and then when the gate’s

volume returns to its baseline level, the envelope will move into the Release stage.

1 SynthDef("piano", {arg freq = 440, amp = 0.1, gate = 1;

2 var snd, env;

3 env = Env.adsr(aLevel, dLevel, sLevel, rTime, amp).kr(2, gate);

4 snd = Saw.ar(freq: [freq, freq*1.5], mul: env);
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5 Out.ar(0, snd)

6 }).add;

Listing 4.15: Creating a MIDI SynthDef with an ADSR envelope

Figure 4.6: ADSR envelope output: (a) with “on" and “off" triggers separated; (b) and (c) with early
“off" trigger; (d), (e) re-attacked.

[36]

Once the sound reaches this defined high level of the Attack stage, the Decay

control will cause the sound to begin dropping in volume, until it reaches the volume

set by the Sustain control. If the gate variable is still active (and has a value other

than 0), the level set by the Sustain control is maintained until the value of gate

returns to 0–which typically signifies the user has released the key on a compatible

keyboard or controller. When gate is no longer active, the output volume begins

to drop back to a volume of 0, in which the rate of this drop is determined by the

Release control.
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A key concept to understanding the ADSR envelope is that there is a difference

in behavior when the ADSR envelope is not able to finish the entire four-stage cycle.

If the user were to release the key before the Attack or Decay stages finish, then the

envelope may skip to the Release stage, passing over the Sustain control entirely,

and continuing to the Release control with the current volume level. However,

if the user were to re-trigger the envelope by sending a new gate through to the

synthesizer, a digital envelope generator will return the volume level back to 0, and

restart the envelope cycle.

1 on = MIDIdef.noteOn(\keyDown, {arg vel, note, vol;

2 notesArray[note] = Synth("piano", [\freq, note.midicps,

↪→ \amp, vel.linlin(aLevel, dLevel, sLevel, rTime)]);

3 });

4

5 off = MIDIdef.noteOff(\keyUp, {arg vel, note;

6 notesArray[note].set(\gate, 0);

7 });

Listing 4.16: Creating MIDI note on and MIDI note off messages

Other arguments within the SynthDef of Listing 4.15 include freq, and amp,

which will help in modifying the input MIDI key presses. Creating the Synth

and MIDI functions for proper MIDI functionality are much more difficult. When

creating the waveform modules, there was no need to develop functionality for

the waveforms, as they were a native aspect of SuperCollider. Within the MIDI

modules, creating the Synth and MIDI functions must be done simultaneously. As

in Listing 4.16, the two primary MIDI messages that will be used are note on and

note off. To create a Synth using the “piano” SynthDef from Listing 2.3, it will be

wrapped within the SuperCollider MIDI function for note on: MIDIdef.noteOn.
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With the proper MIDI functionality created, similar modules to those developed for

pure waveforms can be made.

4.3 TheModules: InMidi

Each of the modules built for MIDI input rely on the usage of the ASDR envelope

created in Listing 4.15. Within SuperCollider, the Env class supports the creation

of an ADSR envelope, which will allow us to create the modules for the MIDI

controller. As in Listing 4.17, SuperCollider has native functionality for an ADSR

envelope [27]. The first four arguments of the ADSR envelope are consistent as we

create the maximum levels for the Attack, Decay, Sustain, and Release stages. The

other variable which we are interested in is peakLevel, which in this project is

known as amp. This variable is different from gate, as seen in Listing 4.15. The gate

variable helps determine the current active stage of the ADSR envelope, helping

sound move through it one stage at a time. The amp variable on the other hand

defines the peak level of each of the stages itself. It is the defining high level of

the Attack Stage. Through changing the levels of the Attack, Decay, Sustain, and

Release stages, we can modify the input sound from a MIDI controller.

1 Env.adsr(attackTime: 0.01, decayTime: 0.3, sustainLevel: 0.5,

↪→ releaseTime: 1.0, peakLevel: 1.0, curve: -4.0, bias: 0.0)

Listing 4.17: Template for creating an ADSR envelope in SuperCollider

4.3.1 Volume Slider

The first module of the MIDI synthesizer, the “volume” slider, is a misnomer. While

the result is the same, and the output sound from the MIDI controller has a different

dynamic level, the logic of the module is different from that of the volume slider
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within the waveform synthesizer. The variable amp determines the peak level of the

MIDI note within the ADSR envelope, or the maximum level of the amplitude of

the MIDI input. Thus, the manipulation of amp is important to adjusting the output

volume heard by the user. To then create this amp slider, the SuperCollider class

EZSlider creates the amp slider, with three arguments: “controlSpec,” “action,” and

“initVal.” The control spec for this slider is the same as the volume slider for the

waveforms, and cannot be negative, as both negative volume and thus a negative

amp value does not exist. Valid values of the control spec is thus between 0.1 and 1,

the typical range for an amp value. Then the “action” of the slider will determine

the volume output of the MIDI input.

1 ampSlider = EZSlider(awindow, label:"Amp Volume", labelHeight:

↪→ 100, labelWidth: 150, controlSpec: ControlSpec(0.1, 1,

↪→ \lin), action:{|ampSliderValue| note.set(\amp,

↪→ ampSliderValue.value)}, initVal:0.3);

Listing 4.18: Creating the amp slider for MIDI

In Listing 4.18, the “action” involves altering the input signal from a MIDI

controller. The note which holds the information for each note on message is

accessed, and the value of the note’s amp is set to be equivalent to the slider’s value.

The amp value will not continuously update itself, a difference from the volume

slider. This difference in functionality is due to the nature of both pure sound

waveforms and MIDI signal inputs. Within pure sound waveforms, the signal is

continuous, and continues to sound until an external force stops the signal. MIDI

signals, on the other hand, rely primarily on the usage of note on and note off

messages to send sound to a tool which can properly output it. Thus, the amp of the

MIDI note on message of Listing 4.16 will only update when a new MIDI note on

message is sent. Finally, the initial value of the slider is at a mezzo forte value of 0.3.
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4.3.2 Major Chord Generator

A major chord generator for MIDI will create a major chord, by sounding two

additional frequencies on top of a MIDI note which a user plays. This will create a

triadic chord–or a chord with three frequencies in total–made up of the user-input

MIDI note and two intervals above the base MIDI note: the major third, and the

perfect fifth. The major third interval spans four degrees of the diatonic scale within

equal temperament, and the perfect fifth spans seven. As with the major chord

generator which was built for pure sound waveforms, the major chord generator

for MIDI involves the same two aspects: calculating the proper interval frequencies

for the major third and perfect fifth interval, and pushing these two intervals to the

SuperCollider server scsynth. Using Equation 4.1, we understand that the interval

of a major third will have a frequency of 440 ∗ 2
4
12 and the perfect fifth a frequency of

440 ∗ 2
7
12 .

One key difference between creating a major chord generator for pure tones and

a major chord generator for MIDI input is the way in which we must push the major

third interval and perfect fifth interval to the SuperCollider synth scsynth. When

we created this module for pure sound waveforms, we created the major third and

perfect fifth intervals, then put our base frequency and these two intervals into

an array for playback. However, for MIDI input, the process of putting all three

frequencies into an array will not be necessary. This is due to slight differences in

the way in which we created the SynthDefs for the pure tones and the MIDI input.

For pure sound waveforms, as we put UGens (such as SinOsc) into a SynthDef, then

pushed it to scsynth, the result was that each wave was totally independent. Each

pure tone did not interact with another unless an external tool (such as the array)

was used to place the waves into one structure. This structure would then allow for

the layered playback of each of the frequencies, and would sound a major chord.

For a MIDI input, we no longer need to place each of the three frequencies (the base
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frequency, the major third interval, and the perfect fifth interval) into an array for

playback. The SynthDef for MIDI input is contained within an ADSR envelope,

and allows for each note input through MIDI to have its own independence and

modularity, while also offering the option for these MIDI notes to interact natively.

The ability of notes input with MIDI to interact with its predecessors and successors

allow for more independence and cross-functionality between adjacent notes.

Thus, having already created the proper intervals for the module, we then must

push the intervals to play on scsynth. This is different from creating this module

for pure waveforms in that we no longer must put the major third and perfect

fifth intervals into an array for playback. The SynthDef for MIDI is contained

within an ADSR envelope, which has more modularity and independence than pure

sound waveforms. Thus, we wrap both the variable for the major third interval

(thirdInterval) and the perfect fifth interval (fifthInterval) into variables titled

thirdIntervalSynth and fifthIntervalSynth respectively. These variables utilize

similar logic to the implementation of MIDIdef.noteOn, layering the intervals on top

of the user input. Both the major third interval and perfect fifth intervals will then

sound once the user pressed down a key to signify the start of a note on message.

With this message, the user-input note will begin going through the stages of an

ADSR envelope, and the thirdIntervalSynth and fifthIntervalSynth are tied to

the start of the note on message, or the state of the keypress of a MIDI controller.

1 thirdIntervalSynth = Synth("piano", [\freq, thirdInterval ,

↪→ \amp, vel.linlin(0, 127, 0, 1)]);

2 fifthIntervalSynth = Synth("piano", [\freq, fifthInterval ,

↪→ \amp, vel.linlin(0, 127, 0, 1)]);

Listing 4.19: Creating a major chord in MIDI
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4.3.3 Adding Staccato

For the staccato button module, we rely heavily on two aspects of the ADSR

envelope, the Attack level, and the Decay level. In combination, a shorter attack

time and a shorter decay time will create a sudden perceived drop in the volume

level of a MIDI input signal. As in Listing 4.16, we have created four variables

which contain the values for each of the four stages of the ADSR envelope: aLevel

for Attack, dLevel for Decay, sLevel for Sustain, and rTime for Release. For this

module, the values for aLevel and dLevel are set to 0. With Attack set to 0, the

sound of the MIDI input will hit immediately after the signal is begun. Decay set to

0 results in no time for the sound’s level to fall from its peak of amp to the dLevel.

4.3.4 Adding Legato

The legato button emulates the musical concept of legato. On a physical MIDI

keyboard, a legato button will more often be referenced as a sustain button, in which

the lengths of notes are extended, and flow into one another. For the concept of

legato, it is imperative that each note meant to be played legato are of different

pitches (refer to Appendix C). Only notes which are of different pitches can be

played legato. Otherwise, as the notes would be of the same pitch, the notes would

be tied notes, with the composite duration of the tied notes equal to the sum of each

individual note. Two other aspects of the ADSR envelope are important to extend the

sounding of a MIDI note, and to connect it to another MIDI note: Attack and Release.

As mentioned, increasing the level of the Attack stage will result in the sound of a

MIDI input signal lengthening. This results in more time needing to pass before the

gate will move onto the second stage of the ADSR envelope. Extending the time the

gate is in the Release stage is also important. For proper legato within MIDI, the

Release stage will need to be extended, as the ADSR envelope is only within the
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note on MIDI message. The note within the MIDI note on message will continue to

sound, even after the MIDI note off message is sent through SuperCollider.

4.3.5 Distortion

Distortion, the altering and deforming of an audio signal’s waveform, is done to

add specific textures and harmonic over what an instrumentalist would play. For

this module, we add regular distortion to the input MIDI signal, to add additional

harmonics. Regular distortion is the easiest type of distortion to implement for

MIDI, as it is similar to how distortion would be added in rock music, and guitar

solos, with Jimi Hendrix songs as one example. Distortion in this module will be a

kind of gentle distortion in which two pure sound waveforms are added on top of

the MIDI signal, when a note on message is sent.

This module is built differently than the distortion module for pure sound

waveforms. With pure sound waveforms, we used simple unit waves–such as sine

waves and sawtooth waves–and altered the sound through a native SuperCollider

class known as InsideOut. The pure sound waves were only ever able to output one

frequency at a time, a limitation which does not hold true with MIDI. MIDI can

output multiple frequencies at once, through the use of multiple note on messages.

However, for the purposes of adding distortion, it is much easier to do with pure

tones, as adding pink noise to a pure sound waveform results in a grating sound.

With MIDI, though we are also adding an additional harmonic over an input MIDI

signal, we are not adding colored noise.

As seen in Listing 4.20, we use the tritone interval to add distortion. The tritone

interval is used, as instead of the pleasant sounding major third and perfect fifth

intervals used in the major chord generator, the tritone sounds very unpleasant

and dissonant (a sound which is not harmonious). The tritone is the interval of an
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augmented fourth,1 and is made up of six semitones. For instance, if C is the base

frequency, then the tritone interval away from C is F\.
Distortion for MIDI is not meant to sound as pleasing as adding additional

harmonics to an electric guitar signal through an amplifier may be. Instead, for

the purposes of this module, the tritone interval is used, to give the distortion

an unpleasing effect. The distortion effect is also used for this module, albeit in

the simple way of adding two pure sound waveforms over the input MIDI signal.

As the tritone interval is six semitones away from a root note, we first calculate

the tritone interval to be fn = baseFrequency ∗ 2
6
12 , using Concert A as the base

frequency. Then, as in Listing 4.20, the tritone frequency is added to two waveform

UGens, SinOsc and Saw, which will add the necessary unpleasant sounds to the

MIDI input note’s frequency.

1 tritone = baseFrequency * (2**(6/12));

2

3 SynthDef("distortionSynthDef", {arg out = 0;

4 Out.ar(out, SinOsc.ar(tritone, 0, 50), Saw.ar(tritone, 0, 50))

5 }).add;

Listing 4.20: Adding distortion in MIDI

4.3.6 Manually Adjusting the ADSR Envelope

The final module for the MIDI synthesizer is a method of manually adjusting the

values for the four pieces of the ADSR envelope. The first five modules of the MIDI

synthesizer are “presets,” (also known as a “patch”) or pre-defined modules which

are pre-programmed into the synthesizer. These presets, which are also found as

all five modules in the pure sound waveform version of the synthesizer, allow a

1Enharmonically equivalent to the diminished fifth, both the augmented fourth interval and the
diminished fifth interval will sound the same to a listener, but are notated differently.
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user to understand how an output sound may be changed, without requiring a

more in-depth understanding of waveforms or ADSR envelopes. Presets found

within a synthesizer are typically modules built to function in a particular way, such

that a certain effect can be used to a specified degree. Each synthesizer contains

“parameters” (like with this modular synthesizer in its ADSR envelope) which allow

a user to shape a sound, altering the sound depending on how a user may press,

hold, and release keys of a controller. Thus, presets are best understood to be a

“snapshot” of these parameters (the level of Attack, Decay, Sustain, and Release) at

specified values.

Figure 4.7: The ADSR knobs

The easiest method used to alter the levels of Attack, Decay, Sustain, and Release

will be through the SuperCollider class EZKnob. This knob class allows for small

changes in the value of a variable, and for more flexibility than a simple button may

allow. This results in the ability of a user to change the sound of an ADSR envelope

to their liking, and can even manually replicate the results of the five other modules,

as in Figure 4.7. To create the four knobs of Figure 4.7, we use the EZKnob class

four times, once per each knob. Each knob will have the same logic, only affecting

different aspects of the ADSR envelope, and with a different initial value to the

knob, as in Listing 4.21. The knob which controls Release will have a larger control

spec than the three other stages of the envelope, as we have set the value of Release

to be larger within the legato module, to make the legato of MIDI inputs clear.
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1 attackKnob = EZKnob(awindow, label: "Attack", controlSpec: [0,

↪→ 1], action:{|attackKnobValue| aLevel =

↪→ attackKnobValue.value}, initVal: 0.01);

2

3 decayKnob = EZKnob(awindow, label: "Decay", controlSpec: [0,

↪→ 1], action:{|decayKnobValue| dLevel =

↪→ decayKnobValue.value}, initVal: 0.1);

4

5 sustainKnob = EZKnob(awindow, label: "Sustain", controlSpec:

↪→ [0, 1], action:{|sustainKnobValue| sLevel =

↪→ sustainKnobValue.value}, initVal: 0.3);

6

7 releaseKnob = EZKnob(awindow, label: "Release", controlSpec:

↪→ [0, 5], action:{|releaseKnobValue| rTime =

↪→ releaseKnobValue.value}, initVal: 2);

Listing 4.21: Manually adjusting the values of an ADSR envelope

As stated, the ability to manually adjust the values for the four stages of the ADSR

envelope will allow for greater flexibility, over the pre-programmed values within

the other modules of the synthesizer. The combinations of increasing or decreasing

the four values will result in different sounds, such that different instruments will

appear to have resulted from the alterations. The values for the ADSR envelope

which we create in the beginning, in Listing 4.17, create a sound similar to that of a

piano. A piano has a low Attack value, a short Decay time, a relatively medium

length but low amp level Sustain, and a short Release time. Other instrument and

sound examples, like in Figure 4.8 [43], are also possible. By setting the Attack and

Decay values to be in the middle of the control spec, and Sustain and Release close

to 0, a sound similar to that of a kick drum and snare drum is achieved. To create
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Figure 4.8: Other examples of ADSR values
[43]

a sound similar to that of a bass guitar or upright bass, set the Decay and Sustain

values to be in the middle of the control spec or high, and Attack and Release values

to be low. Increasing the level of Attack also will emphasize the initial “hit” of the

MIDI note on message, causing the sound to appear to be closer. Within music

production, this sound would appear to have emphasized the highs and mids (a

frequency range of roughly 500 Hz to 4 kHz), and it would become more prominent

in a mix. The same is true on the flip side, in which turning down the Attack will

make the sound seem to be further away, and give the overall sound more “space”

and a bigger soundstage. This is best seen in rhythm guitars and bass guitars and

upright bass, in which the sound is needed, but should not be a prominent part of a

mix. The other method of creating a larger soundstage within the ADSR envelope

and a mix is to increase the level of Sustain, as if the microphone used to record the

instrument was placed further away.
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CHAPTER 5

Conclusion and FutureWork

This project resulted in the successful implementation of a modular synthesizer,

in which both pure sound waveforms and MIDI signals are used as inputs. Within

the timeframe available, we accomplished a set of minimal goals necessary for

success. While this thesis project ends with a positive result, there are also multiple

ways in which this synthesizer can be improved upon, or extended. To conclude,

we review the challenges of implementing this application, the necessary goals

of this project, which we accomplished, in addition to the areas in which further

research and development can be pursued.

5.1 Challenges

The development of this virtual modular synthesizer has achieved its goals, but

limitations in the process of implementation still exist. The most noticeable in the

development of this synthesizer, involves the scope of functions in SuperCollider.

SuperCollider has two types of scope for functions and variables: local, and

environmental (similar to how many other languages function). If a variable is

declared within a certain scope, like a function, the variable will thus have a local

value only within that scope, as variable a does in Listing 2.5. This code lies

between parenthetical brackets (simply known as “brackets” in SuperCollider)
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which determine the scope of a variable. However, lowercase letters (a-z, with the

exception of ‘s’ which by default is used as a reference to the scsynth server) are

able to be used with declaration, as are “environmental” variables, with contain

the ˜ symbol [26]. While good that some variables are able to be accessed outside

a particular scope, this is not good software development. Only single lowercase

letters can be global, and if we were to use longer variable names, we would use

environmental variables, declared with the ˜ symbol, and are seen as global variables

within SuperCollider. So for the purposes of developing a modular synthesizer,

we avoid the usage of global variables to store the necessary information for each

module. This requires us to place each module into the same scope, nested into only

one set of parenthetical brackets, rather than multiple. We lose the ability to create

different functions in different files or classes of code, as the modules must maintain

their modularity, or their ability to function in any order, and affect each other.

5.2 Completed Goals

There were several goals that we needed to accomplish in order to build a fully

functional modular synthesizer in SuperCollider:

1. The application is capable of creating pure sound waveforms and altering

these waves.

2. The application is capable of accepting and altering MIDI input.

3. The user interface is clean and simple, and makes the interactions the user has

with the application easy.

It is clear that the ability of this modular synthesizer to accept and alter either

type of input is a minimal requirement of this application, as it is the purpose

behind the development of this synthesizer. However, that does not mean that
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having a clean user interface is a less-important goal. If the functionalities (modules)

of this module synthesizer are not implemented with a clean user interface, then

the synthesizer may be useless. It necessitates the inclusion of a high-quality and

easy-to-use interface, so a user is able to understand each module within this

synthesizer, as well as the ways in which each module is meant to alter an output

sound.

5.3 FutureWork

The current iteration of this modular synthesizer is easily able to alter input sounds

and signals, and output a modification. However, this does not mean that all

available features for a modular synthesizer are included in the scope of this project;

there are still many ways in which additional features can be added or expanded,

including:

• Implementing a pitch oscillator for MIDI, which would adjust the frequency

of the input signal up or down an octave.

• Layering additional sounds and harmonics over both pure sound waveforms

and a MIDI input signal, rather than solely harmonics which make up a major

chord.

• Implementing various fades and filters, to clean up and remove certain

frequencies from an output sound.

• Adding multichannel support.

• Increasing or decreasing the soundstage of an output sound, determining

whether sounds are heard to be very close to the user, or far away.
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• Adding compression, to “glue” sounds together, to make it appear that the

sounds belong together, and are not simply layered over one another.

Pitch is an important aspect of both music and modular synthesizers. To obtain

the correct sound for the instrument of choice, the pitch will need to be altered. For

instance, if a user would like to use a bass guitar sound or a bass synth, then the

sound will need to be in a lower octave, and the pitch cannot always be Concert A.

The ability to layer various sounds over top of each other is an aspect of synthesis

which is not fully explored in this project. Layering sounds will allow a user to

create a fuller tone and sound, of which the frequencies may or may not be the same.

In this synthesizer, we have layered two sounds over a user defined base frequency:

a major third interval, and the perfect fifth interval. Additional frequencies which

are either the same as the defined base frequency, or within a small difference of the

base frequency will result in a bigger sound.

Filters are a fundamental aspect of modular frequencies, especially with the

high-pass, low-pass, and band-pass filters. Each of these filter types allow a specific

range of frequencies to be removed from the output sound, i.e. high-pass filters

allow higher frequencies through, low-pass filters allow lower frequencies, and

band-pass filters allow a band, or a certain range, of frequencies. Through the ability

to filter out various frequencies, a user’s desired sound output can be more easily

fulfilled.

Stereo audio, or multichannel audio, is another aspect of music which is fre-

quently used, but less often within DSP. Creating stereo sound for a modular

synthesizer involves increasing the width of the sound. Most noticeable if a user

uses headphones while using a synthesizer, stereo audio will feed audio into both

the left and right channels, into the left and right ears separately, with slightly

different sounds fed into each channel. Thus, sound can be placed as if it were to

the left or right of the user, widening the sound output. Adding space to sound
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output from a modular synthesizer will also allow individual harmonics the room

to be heard, and for a user to “locate” where the sound is coming from in space.

This could also be achieved through the use of heavy reverb and delay effects.

Compression would be a useful module to add as well. Using a compressor such as

the bus compressor would compress every layer of the sound output together into

one. This will make the aggregate output sound as if it were one layer, instead of

multiple harmonics.

Overall, these features are not essential to create a functioning synthesizer and

thus have not yet been implemented. However, these features do add additional ben-

efits and sound modification options to the user, and would be worth implementing

in the future.
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APPENDIX A

The Frequency RangesWithin the Human

Range of Hearing

General Frequency Range Description of Range

<20Hz - 60Hz

The lowest threshold of human hearing.

This includes many frequencies that

are felt and not heard, and

provides the “rumble” feeling in

music. This range gives

much of music its power,

and is typically known as

“sub-bass.”

60Hz - 250Hz

This range determines the amount

of “warmth” and how full the sound

is perceived to be. The

notes fundamental to rhythm

lives in this range, and

and too much sound in

this frequency range will result

in the overall sound being
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“boomy,” or muddy-sounding

and messy. It is

otherwise known as the “bass”

frequency.

250Hz - 500Hz

The lower harmonics of many

instruments are in this range.

It is generally known as

the “lower midrange” of frequencies,

and can introduce listening

fatigue and a telephone-quality

to the sound if this range is

emphasized too much.

500Hz - 2 kHz

This range is considered the

middle of the midrange. It

gives many instruments a sense of

prominence in a mix, and

determines how audible one instrument

or vocalist is in comparison

to another. If this range is

emphasized, audio output may

sound tinny and small, which

could lead to listening

and ear fatigue, as the

human ear is sensitive to

the human voice, and the

frequencies it covers.

2 kHz - 4 kHz The “upper midrange” is
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responsible for much of the

attack sounds on percussive

and rhythmic instruments. This range

may add presence to the

mix if boosted, but if

it is emphasized too

much, it may mask some

speech recognition sounds.

Listening fatigue may also

set in if this range

is emphasized too much,

as the slightest boost in

this range will result in a

noticeable change in the

sound’s timbre.

4 kHz - 6 kHz

This range is known as the

“presence” range. It defines a sound’s

clarity and the definition of voices

and instruments that are present.

If this range is boosted,

instruments and voices may

sound physically closer to the

listener, and vice versa, with

reducing this range, causing

instruments and voices to sound

further away. However, if this range is

emphasized too much, a harsh,
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irritating sound may occur.

6 kHz - 20 kHz

This range controls the “brilliance”

and clarity of sounds within the

mix. Instead of pitches, this range is

composed entirely of harmonics, and brings

“sparkle” to the sound. This range also may

easily cause ear fatigue, as an

over-emphasis can increase the

hiss heard, and produce sibilance, or

an unpleasant tonal harshness, which

can happen with consonant syllables

(most noticeably: S, T, and Z),

especially on vocals.

Table A.1: The general frequency range, within the range of human hearing

[42][48]



APPENDIX B

Variables Used

The following table is the variables which are commonly used through this paper.

Variable Definition

f temporal frequency (measured in Hertz):
the number of oscillations per unit time

t time
T period of a wave

ω
angular frequency: frequency of a sine or
cosine wave as it moves counterclockwise around the unit circle

x position of a wave along the x-axis
y displacement of a wave laterally
ym amplitude
λ wavelength

Table B.1: Variables used in this paper
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APPENDIX C

Music Theory Terms

The following list contains the definitions of frequently used musical terms in this

paper. Additionally, terms which may augment the understanding of the changes

made musically are included.

• Frequency: the perceived pitch of a sound.

• Volume: the perceived loudness of a sound.

• Timbre: the quality of a sound, which helps to differentiate between instru-

ments.

• Staccato: a directive for notes to be played detached and separated.

• Legato: a directive for notes to be played smoothly and connected.

• Tie/tied notes: for this directive, a curved line is drawn over or under the

heads of notes of the same pitch. This indicates that there should be no break

in the playing of these notes, and should be played as one singular note.

• Chord: the simultaneous sounding of two or more notes. Typically, a chord

will be composed of three notes in total, created a triad.

• Major chord: a chord composed of a root note (the tonic note), a major third

interval above the tonic note, and a perfect fifth interval above the tonic note.
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• Tonic note: the root note of a chord or a song, which determines the key

signature.

• Key signature: a set of sharp (\), or flat (Z) symbols placed on the staff at the

beginning of sheet music or a section of music.

• Major third interval: the interval that spans four semitones. For example, the

interval between C and E is a major third.

• Minor third interval: the interval that spans three semitones. For instance,

the interval between A and C is a minor third.

• Texture: how a sound is organized, and the number of layers within a sound.

• Treble clef: a type of musical notation to indicate the pitches represented by

the lines and spaces on sheet music. Also known as the “G-clef,” the second

line from the bottom represents the note G above Middle C. This clef is the

most common clef seen. Typically, the treble clef will contain the note Middle

C, as well as notes above Middle C.

• Alto clef: a type of musical notation to indicate the pitches represented by the

lines and spaces on sheet music. This clef is also known as the “C-clef” or the

“Viola clef,” as only certain instruments, which include the viola, use this clef.

The middle line of this clef represents the note Middle C.

• Pianissimo: a directive to perform an indicated passage of a composition or

piece very softly. Abbreviated as pp.

• Fortissimo: a directive to perform an indicated passage of a composition or

piece very loudly. Abbreviated as ff.

• Interval ratio: the ratios of the frequencies of pitches in a musical interval. As

an interval is the “distance” between two pitches, the ratio assists musicians
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to work with relative pitch measures applicable to a range of instruments

intuitively, rather than a set of memorized frequency values. A simpler ratio

will sound more pleasing to the ear, and thus more consonant, than complex

ratios.

For instance, suppose we have a guitar as in Figure C.1. The interval ratio

will then be inverse to the length of the string. The total length of the string

in red has a 1:1 ratio, and the remaining pitches can be described as some

ratio to this total string length. On the E string of this guitar (the top string of

Figure C.1), the note an octave above the note E is still E. Then, this note E one

octave above the root note E is 12 frets above the root. As noted in the Figure,

pressing down on fret 12 of the E string (or any string) results in the length of

the string being halved, and an interval ratio of 1
2 . This produces the note one

octave above the starting note.

• Equal temperament: a system of tuning the scale, in which the octave is

evenly divided into 12 equal semitones. It is based on the cycle of 12 identical

fifths, or the “circle of fifths” [7].

Figure C.1: Pythagoras Ratios for Guitar Frets

[32]
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• Tritone interval: the most dissonant interval in the diatonic scale. This interval

spans six semitones. For instance, the interval between C and F\ is a tritone.

In the Medieval era of music, the tritone was said to be the “devil’s interval”

because it was the most dissonant (unpleasant) interval in the diatonic scale.

Its unpleasant sound to the human ear can be traced back to a phenomenon

found within the human brain. The human brain is hardwired to find harmony

and symmetry within music, and so enjoys consonant, pleasing sounds, and

is resistant towards the less-pleasing dissonant sounds.

Intervals which sound pleasing to the human ear are those in which there is a

simple ratio between intervals (and thus also frequencies). As described in

the definition of interval ratio, certain interval ratios are designed to sound

more pleasing than others. Each note of the scale, from a root note, contains

a particular frequency interval ratio. This frequency ratio, as we ascend the

scale, oscillates between consonant and dissonant intervals. The tritone, as the

most dissonant of all intervals on the diatonic scale, contains a large frequency

interval ratio of 45:32 (or 64:45, depending on the tuning method).

• Diatonic scale: the scale which we have frequently discussed in this paper. It

is the scale which contains, from a root tonic note, five whole tones and two

semitones. Both the typically used major and natural minor scales are diatonic,

with the two semitones falling between the third and fourth tones, as well

as the seventh and eighth tones in the major scale. The natural minor scale

is slightly different, as the semitones will fall between the third and fourth

tones, and the fifth and sixth tones. From a root tonic note, each of these tones

a whole tone and a semitone above can also be described in “scale degrees”

(which has the same meaning as whole tone and semitone). Both the major
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and natural minor scales help to create the key signature, which is part of the

foundation of music.

For example, in the key of C Major, the two semitone intervals will fall between

the third and fourth scale degree, as well as the seventh and eighth scale

degree. This results in a semitone difference between the notes E and F, and B

and C. In the key of A Minor, the semitone intervals fall between the third and

fourth scale degrees (C and D), and the fifth and sixth scale degrees (E and F).
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