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Abstract

According to the National Institutes of Mental Health (NIMH), depressive disorders (or major

depression) are considered one of the most common and serious health risks in the United States.

Our study focuses on extracting non-medical factors of depressive disorders diagnosis, such as

overall health states, health risk behaviors, demography, and healthcare access, using the Behavioral

Risk Factor Surveillance System (BRFSS) data set collected by the Center of Disease Control and

Prevention (CDC) in 2018.

We set the two objectives of our study about depressive disorders in the United States as follows.

First, we aim to utilize machine learning algorithms and statistical methods to build models that

will discover the factors of depressive disorders for young, middle, and old adulthood in the United

States. Second, based on the mined attributes from each adult group, we predict depressive disorders

for each group and evaluate the performances of those prediction tasks. Throughout the study, we

obtain an in-depth understanding of what impacts the depressive disorders diagnosis for each adult

group in the United States, as well as how machine learning and statistical approaches are useful in

mining information about the factors and predicting the depressive disorders.
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CHAPTER 1

Introduction

1.1 Topic of Interest: Depressive disorders in the U.S.

Mental health is a significant portion of humans’ overall health, and sometimes we face problems in

maintaining good mental health conditions. In particular, depressive disorders (or major depression)

are one of the most common and serious mental health risks for all age groups in the United States.

They may cause other major mental health disorders such as suicide attempts, bipolar disorders,

and even schizophrenia.

Current research indicates that depressive disorders are caused by genetic, biological, environ-

mental, and psychological factors [18]. Also, previous research has found that family history of

depression, major stress, and certain medications due to physical illnesses can be major risk factors

of depressive disorders [18]. Furthermore, individuals can be diagnosed with depressive disorders

at any age, but they usually realize their suffering from the related symptoms in their adulthood. In

particular, people in midlife or old age groups can have complex physical illnesses that can co-occur

with depressive disorders due to side effects of medications [18].

Therefore, we set the two objectives of our study as follows. First, we discover factors with

regard to overall health states, demographic features, health risk behaviors, and healthcare access

that would impact depressive disorder diagnosis for three adult groups (young, middle, and old

adulthood) by using machine learning techniques with some statistical approaches. Then, based

on the extracted features of depressive disorders from each adult group, we predict the depressive

disorders by constructing models with the same methods that we used for the discovery process,

and we evaluate the performance of the prediction tasks.

1
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1.2 Research trends about Depressive Disorders

One research paper from Tara W. Strine claimed that chronic health issues, sex, and marital status are

associated with mental health issues [21]. Strine also states that healthcare access for both physical

and mental health should be improved. Therefore, the article provides a clue that demography

and healthcare access can affect one’s depressive disorders. Different research from Strine also

found a significant relationship between depressive disorders and health-related risk behaviors

such as smoking, physical inactivity, and alcohol consumption [22]. The main result of the article

is that adults with depressive disorders tend to smoke, have obesity, be physically inactive, and

drink heavily. Thus, we can grasp an understanding of the impact of health risk behaviors on an

individual’s depression.

Also, the application of machine learning (ML) to the research of depressive disorders is

substantial. For example, one recent study discusses the performance of several machine learning

algorithms in the detection of depressive disorders from a clinical data set [8]. The article presents

some insights that several ML models, such as logistic regression, CART trees, and support vector

machines, have overall good performance in prediction tasks [8]. Also, it points out that the ML

models can bring a broader view of depressive disorders by tracking the demographic factors, such

as household income and educational background of individuals [8]. Following the current research

trend over the topic of our interest, we therefore decide to use ML algorithms to not only find risk

factors of depressive disorders for each age group of the U.S. adults, but also to predict the onset of

depressive disorders for each group.

1.3 Machine Learning Approaches

We live in a world of data, where the analysis of the data is now considered to be essential in

every academic field. Thus, we employ an advanced technique called machine learning to extract

knowledge from, and find patterns in, the data of interest. In this section, we present an overview of

machine learning, as in later chapters we will apply this technique to the data of our interest. This

enables us to uncover valuable, organized information about depressive disorders among the U.S.

adult residents in 2018.



1.3. Machine Learning Approaches 3

1.3.1 Machine Learning: Supervised learning

Machine learning enables computers to learn the patterns of data by themselves. Also, it is

academically denoted as a learning process from experience E with respect to some task T and some

performance measure P, as its performance on T improves with experience E [16]. In simpler

words, machine learning gives computers the capacity to automatically learn the data with low

time-complexity so as to find complex patterns and perform better decisions [12]. There are major

three types of machine learning techniques: supervised, unsupervised, and reinforcement learning. Since

our study will use supervised learning methods, we explore the concept of supervised learning, as

our main focus of machine learning fields.

In supervised learning, training data is provided with the correct class labels, and based on

discovered patterns from the training set, a machine learning method responds to the testing data

with unknown class labels [15]. A typical example is classification, where the trained model classifies

the incoming inputs into each class label. If a target variable is numerical, regression can predict the

numeric value of the target based on results from the trained model. Notice that logistic regression

is an exception of regression methods, as it is widely used as a classification method and calculates

the probability of belonging to the given class labels [11].

Figure 1.1: An example of supervised learning as a classification method of spam emails [12]

For example, Figure 1.1 shows how supervised machine learning method can classify spam emails.

The learning method obtains characteristics of spam email from the examples of the training set.

The method also predicts the label of the incoming email as either spam or non-spam, based on the

findings from the training process [12].



4 1. Introduction

1.4 Outline of Study

In this chapter, we have introduced the motivation of our study regarding depressive disorders in

the U.S., reviewed some related literature, and explored the overview of machine learning. These

contents provide us the essentials to investigate advanced supervised machine learning algorithms:

decision trees, logistic regression with several statistical hypothesis tests, and support vectors

machines along with prediction metrics, which are to be examined in Chapter 2, 3, and 4, respectively.

After exploring the three methodologies, we put all theories of methods into practice. Chapter 5

discusses the data set of our interest, called the BRFSS, and performs data transformation procedures,

followed by exploratory data analysis of the BRFSS. Then, Chapter 6 presents all the results produced

by the three methods. To be specific, this chapter shows the factors of depressive disorder diagnosis

that have been produced by decision trees and logistic regression models, as well as the interpretations

and insights into those discovered factors. Then, the chapter displays all prediction metrics that all

three methods - decision trees, logistic regression, and support vector machines - have performed.

In Chapter 7, we have an in-depth discussion about the results presented in Chapter 6 by first

comparing decision trees and logistic regression in terms of factor discovery and then providing

insights into the prediction metrics of the three methods. Finally, Chapter 8 concludes our study

regarding depressive disorders among the U.S. adults, as well as provides potential topics of future

research as an extension of this study.



CHAPTER 2

Decision Trees

In this chapter, we present the theory for building a decision tree using the CART algorithm, and

we illustrate an example of how the CART algorithm builds a decision tree on a simple data set.

2.1 Introduction

Decision trees are one of the supervised machine learning methods that are most frequently utilized

for drawing inference on a given data set. There are several reasons for the popularity of decision

trees in the current field of machine learning, but the following two properties of the trees have

attracted most people to utilize this method. First, decision trees are computationally low-cost, as

they mainly apply if-then rules (or binary decision rules) that simplify the process of querying the

trained algorithms. Second, unlike most machine learning techniques which operate in a black-box

setting, decision trees are transparent in their decision-making. Therefore, these two benefits of

decision trees consolidate the credibility of the algorithm as well as its results. In particular, decision

trees have been applied to a wide range of classification tasks such as medical diagnosis, credit card

fraud detection, and even sports analysis. Since we aim to investigate what affects the diagnosis of

depressive disorder, we confirm that decision tree algorithm is a suitable method for our study.

2.2 Foundation of Decision Trees

Decision trees create classification rules by tracing down the tree from the root node – the node in the

highest level - to a set of leaf nodes in the bottom line. Each node in the tree contains an explanatory

variable that contributes to the response, and each branch connecting two nodes corresponds to a

logical "AND." Therefore, the main evaluation of any decision trees always starts at the root node,

answers the branch from this node, and moves downward the tree. Figure 2.1 shows an example of

5
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a decision tree that classifies four animals based on the specific features that each possesses. From

the root node, we apply if-then rules to move downward the trees. For example, if an animal has

feathers and can fly, then the animal is classified as dove. If an animal does not have feathers and

fins as well, then it is classified as lion. Therefore, decision trees are suitable for presenting clues to

problems that necessitate discrete output values, such as boolean responses (e.g. Yes or No).

Figure 2.1: An example of decision tree

2.3 CART (Classification and Regression Tree Algorithm)

Next, we investigate how to build a decision tree: to be specific, how to choose the features to

be put on the nodes of the tree. One fundamental algorithm for building decision trees is called

classification and regression trees (CART), and it was developed by Leo Breiman alongside many

other colleagues in the 1980s [10]. One advantage of the CART algorithm is that it only builds a

binary tree: that is, a tree that has only two separated branches to the following nodes. Thus, a CART

decision tree can be readily interpreted by using humans’ intuition that makes decisions based on

the dichotomous responses from each node in the tree. In addition, this binary nature of a CART

decision tree creates a visualization of the decision-making process in a highly appealing manner

[10, 16, 15]. In addition, the CART constructs a classification tree for the categorical response variable

and a regression tree for the numeric one. Since the objective of our study is to classify depressive

disorders in the U.S., we would solely concentrate on how the CART builds a classification tree.
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2.3.1 Tree-Structured Classifiers

How does the CART build a decision tree for classification? The CART algorithm defines its

classification trees in mathematical context as follows [16].

First, tree-structured classifiers are built by beginning with the entire sample D itself at the root

and repeatedly splitting D into two descendant subsets Xi and X j. Figure 2.2 is a hypothetical

binary classification tree. X1 and X2 are disjoint, as D = X1 ∪ X2. Likewise, X3 and X4 are disjoint

as X1 = X3 ∪ X4. Also, the following subsets - X3, X5, X7, X8, X9, and X10 - are denoted as terminal

subsets. Those terminal subsets, also known as leaves or terminal nodes, are assigned a class label.

For instance, the terminal sets X8 and X9 are classified as class B, as the common characteristics of

training examples in these two subsets belong to class B.

Figure 2.2: A hypothetical two-class decision tree

Suppose that the vector ~x is a multidimensional data point of the examples used in building

a decision tree. The splitting rules assign one of the labels j ∈ {1, ..., J} to every vector ~x ∈ D. For

example, the first splitting rule assigns to every vector ~x ∈ D either X1 or X2, by applying its defined

condition to the ~x and determining whether ~x belongs to X1 or X2. Repeating the process and finally

reaching a terminal subset in the bottom level of the tree, the tree classifier labels ~x with the class

of that terminal subset. Thus, each terminal subset is a partition of D, and it is assigned to one of

the two class labels A or B, as shown in Figure 2.2. Then, the partition corresponding to each class

is obtained through compiling all terminal subsets within the same class. For example, we write

A as a partition of D where all vectors ~x in this partition are assigned to class A. Similarly, set B is

the other partition of D where all remaining ~x belong to the class B. Hence, Figure 2.2 presents the

following partitions made through the tree: A = X3 ∪ X7 ∪ X10A = X3 ∪ X7 ∪ X10A = X3 ∪ X7 ∪ X10 and B = X5 ∪ X8 ∪ X9B = X5 ∪ X8 ∪ X9B = X5 ∪ X8 ∪ X9. Definition 2.1

summarizes all procedures of the classification tree.
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Definition 2.1 A classification tree is a partition of D into j disjoint subsets X1, ...,X j, where D =

X1 ∪ X2 ∪ ... ∪ X j for every x ∈ X j is assigned to the class label j. Each terminal subsets of D becomes

terminal nodes and D is then a root node of the tree. [16]

2.3.2 Splitting Criterion

The main focus of building classification trees is to understand when and where to split the data.

In the thesis we will examine one splitting criterion that has been most popularly utilized - Gini

impurity.

2.3.2.1 Impurity of a Data Set

What does the term ’impurity’ represent? First, consider a random data set. If the data set is pure,

there exists only one class label of the data. Also, if the data set X is said to be pure and contains

two classes A and B, then all data points in A have one characteristic a, whereas the remaining data

points in B have the other characteristic b which is opposite to a. Suppose a data set M contains 50

red and 0 blue points, then M is a pure data. If the data set does not show whether every A has a and

every B has b, then it is considered as impure. For example, a data set N that contains 20 red and 30

blue points is said to be impure. Therefore, the data should be impure in order to build a decision

tree based on it.

In formal words, we define a splitting tuple σ as:

σ =< i, tk >, (2.1)

where i indicates the feature that we choose for splitting the data inputs at a given node of the

decision tree, and tk is the threshold value that determines the left and right branch to proceed. Then,

the total impurity I(D, σ) of the splitting tuple σ is defined in Equation 2.2:

I(D, σ) =
Nle f t

ND
I(Dle f t) +

Nright

ND
I(Dright), (2.2)

where ND is the number of the entire data inputs at the selected node N, Nle f t and Nright are the

number of the resulting subsets from the splitting tuple σ [4]. For example, suppose that we have a

data set of 100 cases with Nle f t = 50 and Nright = 50. Then, the impurity of this split can be expressed

as below:
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∴ I =
50

100
× I(Dle f t) +

50
100
× I(Dright)

2.3.2.2 Gini Impurity

How do we compute the impurities I(Dle f t) and I(Dright)? Gini impurity is a widely-used measure of

impurity [4]. It is the sum of a product of the probability pi that a data point is correctly classified as

the label i and the probability p j that the data point is misclassified at a certain node N. Notice that

p j is equivalent to 1 − pi.

Definition 2.1. As defined in Equation 2.3, the Gini impurity IG(N) is a measure of how an input from the

data set is not correctly classified as the class i at a node N under the assumption that the label is randomly

chosen using the probability distribution of the branch [16].

IG(N) =

J∑
i=1

pip j =

J∑
i=1

pi(1 − pi) =

J∑
i=1

(pi − p2
i ) = 1 −

J∑
i=1

p2
i (2.3)

The Gini impurity reaches its minimum 0 when all inputs are correctly classified as only one

class. On the other hand, the impurity is at maximum when the number of those inputs for each

class is evenly distributed. Thus, the graph of the Gini impurity is concave down, with its minimum

of 0, as observed in Figure 2.3.

Figure 2.3: The Gini Impurity index as a function of the probability pi
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2.3.3 Splitting Process

Equation 2.3 shows the formula of Gini impurity of each subset of the data set. The subset with the

lowest Gini impurity is considered as the feature that splits the data best. Thus, we use this selected

feature as splitting criteria for any current node N. Repeating the process of computing the Gini

impurity of the remaining subset, the one with the lowest Gini impurity is then placed at the node of

the next level of the decision tree.

In mathematical context, the splitting process of decision trees can be explained as the maximiza-

tion of the change in Gini impurity after each split s at node N.

∆I(s,N) = I(N) − I(NL) − I(NR) (2.4)

In Equation 2.4, I(N) is the overall tree impurity, and I(NL) and I(NR) denote the impurity of the

left and right child nodes, respectively. Therefore, the objective of splitting procedures of a CART

decision tree are either to minimize the overall Gini impurity I(N) of the tree, or to maximize the

change in Gini impurity ∆I(s,N).

2.4 Example of Decision Tree Classification

This section investigates a real-world example of building a CART decision tree that uses Gini

impurity as a splitting criterion. Sourced from Kaggle, the data set in this example includes

information about weather conditions of 14 days, such as Outlook, Temperature, Humidity, and

Wind. Based on those given weather conditions, the data set also includes a response column about

whether a participant would play tennis or not in that specific day. Thus, the CART tree for this

example investigates which features impact their decisions on playing tennis outside [13].

2.4.1 Root Node

First, we explore which variable can be placed at the root node of the decision tree. Given the entire

data set as an input for the root node, we compute the Gini impurity of each explanatory variable.
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Day# Outlook Temperature Humidity Wind Play Tennis
1 sunny hot high weak no
2 sunny hot high strong no
3 overcast hot high weak yes
4 rainfall mild high weak yes
5 rainfall cool normal weak yes
6 rainfall cool normal strong no
7 overcast cool normal wrong yes
8 sunny mild high weak no
9 sunny cool normal weak yes

10 rainfall mild normal weak yes
11 sunny mild normal strong yes
12 overcast mild high strong yes
13 overcast hot normal weak yes
14 rainfall mild high strong no

Table 2.1: The example data set of playing tennis [13]

Gini Impurity (GI) of Outlook

We will compute the Gini impurity when we split the data by using Outlook. Table 2.2 is a two-way

table that counts decisions within each category of Outlook. Suppose IG(t) is a Gini impurity for the

category t within Outlook variable.

Outlook Play Yes Play No Total
sunny 2 3 5

overcast 4 0 4
rainfall 3 2 5

Table 2.2: The decision table for the Outlook variable

Referring to Equation 2.3 and Table 2.2, we then compute Gini impurity for each category of

Outlook, as described in Equation 2.5, 2.6, and 2.7.

IG(outlook = sunny) = 1 −
(2

5

)2

−

(3
5

)2

=
12
25

= 0.48 (2.5)

IG(outlook = overcast) = 1 −
(4

4

)2

−

(0
4

)2

= 0 (2.6)

IG(outlook = rain f all) = 1 −
(3

5

)2

−

(2
5

)2

=
12
25

= 0.48 (2.7)

Then, the weighted sum of Gini impurity for Outlook can be calculated using Equation 2.2, as

shown in Equation 2.8:

∴ IG(outlook) =
Nsunny

Ntotal
× IG(sunny) +

Novercast

Ntotal
× IG(overcast) +

Nrain f all

Ntotal
× IG(rain f all)

=
( 5

14
× 0.48

)
+

( 4
14
× 0

)
+

( 5
14
× 0.48

)
= 0.342

(2.8)
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GI of Temperature

We take the same procedures to calculate the Gini impurity of Temperature, using Table 2.3 which

displays the two-way table for the response within each Temperature category.

Temperature Play Yes Play No Total
hot 2 2 4
cool 3 1 4
mild 4 2 6

Table 2.3: The decision table for the Temperature variable

Equation 2.9, 2.10 and 2.11 describe the process of obtaining the Gini impurity for each category

of Temperature variable, respectively.

IG(temperature = hot) = 1 −
(2

4

)2

−

(2
4

)2

=
8
16

= 0.5 (2.9)

IG(temperature = cool) = 1 −
(3

4

)2

−

(1
4

)2

=
6
16

= 0.375 (2.10)

IG(temperature = mild) = 1 −
(4

6

)2

−

(2
6

)2

=
16
36

= 0.445 (2.11)

Then, the weighted sum of Gini impurity for Temperature can be calculated as:

∴ IG(temperature) =
Nhot

Ntotal
× IG(hot) +

Ncool

Ntotal
× IG(cool) +

Nmild

Ntotal
× IG(mild)

=
( 4

14
× 0.5

)
+

( 4
14
× 0.375

)
+

( 6
14
× 0.445

)
= 0.439

(2.12)

GI of Humidity

Table 2.4 displays the two-way table for the binary response from each Humidity category. Similarly,

Equation 2.13 and 2.14 describe the process of obtaining the Gini impurity for each category of

Humidity variable, respectively. Additionally, Equation 2.15 shows the weighted sum of the total

Gini impurity of the Humidity variable.

Humidity Play Yes Play No Total
high 3 4 7

normal 6 1 7

Table 2.4: The decision table for the Humidity variable

IG(humidity = high) = 1 −
(3

7

)2

−

(4
7

)2

=
24
49

= 0.489 (2.13)

IG(humidity = normal) = 1 −
(6

7

)2

−

(1
7

)2

=
12
49

= 0.244 (2.14)
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∴ IG(humidity) =
Nhigh

Ntotal
× IG(high) +

Nnormal

Ntotal
× IG(normal)

=
( 7

14
× 0.489

)
+

( 7
14
× 0.244

)
= 0.367

(2.15)

GI ofWind

Table 2.5 displays the two-way table for the binary response from each Wind category. In the same

manner, Equation 2.16 and 2.17 describe the process of obtaining the Gini impurity for each category

of Wind variable, respectively. Additionally, Equation 2.18 indicates the total Gini impurity of the

Wind variable.

Wind Play Yes Play No Total
weak 6 2 8
strong 3 3 6

Table 2.5: The decision table for the Wind variable

IG(wind = weak) = 1 −
(6

8

)2

−

(2
8

)2

=
24
64

= 0.375 (2.16)

IG(wind = strong) = 1 −
(3

6

)2

−

(3
6

)2

=
18
36

= 0.5 (2.17)

∴ IG(wind) =
Nweak

Ntotal
× IG(weak) +

Nstrong

Ntotal
× IG(strong)

=
( 8

14
× 0.375

)
+

( 6
14
× 0.5

)
= 0.428

(2.18)

Table 2.6 shows the Gini impurity values for all variables of the data set. Since the variable

with the lowest Gini impurity is to be selected as a splitting node according to CART, it is clearly

identified that Outlook is the root node of the decision tree for this example.

Variables Gini Impurity
outlook 0.342

temperature 0.439
humidity 0.367

wind 0.428

Table 2.6: The Gini impurity for all variables

Therefore, we have our root node of Outlook with three different branches, one for each category

within Outlook. Next, we will set three internal nodes for each branch as described in Figure 2.4.
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Figure 2.4: The root node of the play tennis tree

2.4.2 Internal Nodes

For setting the internal nodes of the tree, we first formulate three different subsets on the Outlook

variable. Then, we apply the same process to figure out the next splitting variable.

Sunny Outlook

Table 2.7 shows all inputs within the sunny category of Outlook variable. Then, for the remaining

variables - Temperature, Humidity, and Wind - we will compute the Gini impurity for each one

within the same category of the Outlook group.

outlook temperature humidity wind play tennis
sunny hot high weak no
sunny hot high strong no
sunny mild high weak no
sunny cool normal weak yes
sunny mild normal strong yes

Table 2.7: The subset table for sunny response of Outlook variable

GI of Temperature

Table 2.8 shows the decision of playing tennis based on Temperature categories within sunny outlook.

Temperature Play Yes Play No Total
hot 0 2 2
cool 1 0 1
mild 1 1 2

Table 2.8: The decision table for Temperature on sunny outlook

Then, the Gini impurity for Temperature on sunny outlook will be:

IG(outlook = sunny & temperature = hot) = 1 −
(0

2

)2

−

(2
2

)2

= 0 (2.19)
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IG(outlook = sunny & temperature = cool) = 1 −
(1

1

)2

−

(0
1

)2

= 0 (2.20)

IG(outlook = sunny & temperature = mild) = 1 −
(1

2

)2

−

(1
2

)2

= 0.5 (2.21)

Therefore, the total Gini impurity for Temperature on sunny Outlook is calculated as:

∴ IG(outlook = sunny & temperature) =
Nhot

Ntotal
× IG(hot) +

Ncool

Ntotal
× IG(cool) +

Nmild

Ntotal
× IG(mild)

=
(2

5
× 0

)
+

(1
5
× 0

)
+

(2
5
× 0.5

)
= 0.2

(2.22)

GI of Humidity

Humidity Play Yes Play No Total
high 0 3 3

normal 2 0 2

Table 2.9: The decision table for Humidity on sunny outlook

IG(outlook = sunny & humidity = high) = 1 −
(0

3

)2

−

(3
3

)2

= 0 (2.23)

IG(outlook = sunny & humidity = normal) = 1 −
(2

2

)2

−

(0
2

)2

= 0 (2.24)

Then, the weighted sum of Gini impurity for Humidity on sunny outlook is 0.

GI ofWind

Wind Play Yes Play No Total
weak 1 2 3
strong 1 1 2

Table 2.10: The decision table for Wind on sunny outlook

IG(outlook = sunny & wind = weak) = 1 −
(1

3

)2

−

(2
3

)2

= 0.44 (2.25)

IG(outlook = sunny & wind = strong) = 1 −
(1

2

)2

−

(1
2

)2

= 0.5 (2.26)

Then, the weighted sum of Gini impurity for Humidity on sunny outlook is 0.466, as explained

in Equation 2.27.

∴ IG(outlook = sunny&wind) =
(3

5
× 0.44

)
+

(2
5
× 0.5

)
= 0.466 (2.27)

Since Humidity variable has the lowest Gini impurity value of 0, it will be placed on the next

node connected with sunny outlook branch. In addition, we can identify in Table 2.7 that if outlook
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is sunny and humidity is high, then the person does not play tennis. Since our response variable is

binary, the left terminal node of the humidity is yes and the right one is no, as described in Figure 2.5.

Figure 2.5: The first internal node is Humidity

Overcast Outlook

In Table 2.11, we observe that all the responses for Overcast outlook is ’yes.’ Since all those

corresponding inputs are classified into a single class ’yes’, the Gini impurity of the Overcast variable

is 0. The updated decision tree is shown in Figure 2.6.

outlook temperature humidity wind play tennis
overcast hot high weak yes
overcast cool normal strong yes
overcast mild high strong yes
overcast hot normal weak yes

Table 2.11: The subset table for Overcast response of Outlook variable

Rainfall Outlook

Now, we focus on the subsets for rainfall outlook variable, as described in Table 2.12. Then, we

compute the Gini impurity for Temperature, Humidity, and Wind variable respectively in order to

select the next internal node with the lowest Gini impurity.
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Figure 2.6: The decision tree, added with Overcast outlook

outlook temperature humidity wind play tennis
rainfall mild high weak yes
rainfall cool normal weak yes
rainfall cool normal strong no
rainfall mild normal weak yes
rainfall mild high strong no

Table 2.12: The subset table for Rainfall response of Outlook variable

Temperature Play Yes Play No Total
cool 1 1 2
mild 2 1 3

Table 2.13: The decision table for Temperature on Rainfall outlook

GI of Temperature

Based on Table 2.13, the Gini impurity for Temperature on Rainfall outlook will be:

IG(outlook = rain f all & temperature = cool) = 1 −
(1

2

)2

−

(1
2

)2

= 0.5 (2.28)

IG(outlook = rain f all & temperature = mild) = 1 −
(2

3

)2

−

(1
3

)2

= 0.444 (2.29)

Therefore, the weighted sum of Gini impurity for Temperature on Rainfall outlook is:

∴ IG(outlook = rain f all& temperature) =
Ncool

Ntotal
× IG(cool) +

Nmild

Ntotal
× IG(mild)

=
(2

5
× 0.5

)
+

(3
5
× 0.444

)
= 0.466

(2.30)

GI of Humidity
IG(outlook = rain f all & humidity = high) = 1 −

(1
2

)2

−

(1
2

)2

= 0.5 (2.31)

IG(outlook = rain f all & humidity = normal) = 1 −
(2

3

)2

−

(1
3

)2

= 0.444 (2.32)
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Humidity Play Yes Play No Total
high 1 1 2

normal 2 1 3

Table 2.14: The decision table for Humidity on Rainfall outlook

Therefore, the total Gini impurity for Humidity on rainfall outlook is:

∴ IG(outlook = rain f all &humidity) =
Nhigh

Ntotal
× IG(high) +

Nnormal

Ntotal
× IG(normal)

=
(2

5
× 0.5

)
+

(3
5
× 0.444

)
= 0.466

(2.33)

GI ofWind

Lastly, we compute the Gini impurity for Wind on Rainfall outlook, as described in Equation 2.35,

2.34, and 2.36 based on Table 2.15.

Wind Play Yes Play No Total
weak 3 0 3
strong 0 2 2

Table 2.15: The decision table for wind on rainfall outlook

IG(outlook = rain f all & wind = weak) = 1 −
(3

3

)2

−

(0
3

)2

= 0 (2.34)

IG(outlook = rain f all & wind = strong) = 1 −
(0

2

)2

−

(2
2

)2

= 0 (2.35)

∴ IG(outlook = rain f all & wind) = 0 (2.36)

Therefore, we have calculated the Gini impurity of all categories of the remaining variables when

the Outlook is rainfall. Since the Wind variable has the lowest Gini impurity, we confirm that the

next node following rainfall outlook is Wind. In addition, the decisions of playing tennis are always

no when the Wind is strong, and they are always yes when the Wind is weak. Therefore, the left

terminal node from the Wind is no, and the right one is yes. Figure 2.7 displays the complete decision

tree for the example data set.
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Figure 2.7: The complete decision tree for playing tennis



CHAPTER 3

Logistic regression

In this chapter, we explore our second supervised machine learning method with statistical

approach, called logistic regression. We discuss essential backgrounds of logistic regression and its

application to a real-world example. All explanations of logistic regression through this chapter are

referenced from the textbook Stat2: Building a Model for a World of Data by Ann Cannon, et al [9].

3.1 Introduction

Regression is a statistical method that summarizes the quantitative relationship between a response

variable Y and explanatory variables Xs. This approach lets us predict a new value of Ywith the Xs,

based on the quantitative information learned from results of the regression. There are various types

of regression models, and what determines the types of regression depends primarily on the type of

a response variable Y.

First, we use linear regression for a numeric response variable Ywith a set of explanatory variables

Xs. Since Y is a continuous variable, fitting a linear regression model to the Y is appropriate for

quantitatively extracting relationship between each X and Y and predicting Y by the multiple

predictors (explanatory variables). However, when the Y changes its type to a binary variable,

which has only two discrete values, then we may consider using another type of regression, called

logistic regression. This uses a transformed version of Y as the response variable. The necessity of

transforming an ordinary linear regression is described in Section 3.2.

20
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3.2 Foundations of Logistic Regression

3.2.1 Logistic transformation

As mentioned earlier, logistic regression is utilized when a response variable of a certain model is

binary, and it is originated from the transformation of the equation of ordinary linear regression.

First, suppose that we have a data from a random sample of 346 teenagers aged 14 to 18, who

respond to the question "On average how many hours of sleep do you get?" The summary of the

data is presented in Table 3.1. In Figure 3.1, we observe what relationship exists between age and

the proportion of saying "Yes" - it is the proportion of the randomly selected teenagers who sleep at

least 7 hours on average weekdays.

Age 14 15 16 17 18
Sleeping

At least 7 hours?
Yes 34 79 77 65 41
No 12 35 37 39 27

Total 46 114 114 104 68
Proportion of Yes 0.74 0.69 0.68 0.63 0.60

Table 3.1: The table of sleeping hours (Yes/No) and age [9]

Figure 3.1: The scatterplot of age and proportion of the corresponding teenagers sleeping at least 7
hours (saying "Yes") [9]

We observe a linear relationship between ages of teenagers and the proportion of those sleeping

at least 7 hours in weekdays. Hence, the five data points shown in Table 3.1 are fitted well into the

linear regression line. However, as we predict other age values not in the table - before 14 and after

18 - with using the fitted line, there will be numerous points whose predicted y-values will be either
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greater than 1 or less than 0. Considering that definition of the response variable in this example

is proportions which must lie between 0 and 1, we confirm that fitting a straight line to those five

points is not appropriate. Therefore, we see the necessity to transform the format of linear regression

to logistic regression, particularly when using a regression for any response variable that has only

two discrete outputs - 0 (No) or 1 (Yes).

Figure 3.2: The fitted linear regression Figure 3.3: The fitted logistic regression

The transformation on the binary response variable Y is called logit or log(odds). Also, the logit

transformation have two essential features. First, this transformation is reversible due to a nature of

logarithm: one π value has only one logit (= log(odds)) form. Also, the logit form of the response

variable can take on any real number, which allows a fitted linear equation of a set of predictors.

Therefore, we predict the logit (Y) with linear predictors (explanatory variables) of the equation form

β0 + β1X1 + ... + βkXk, as described in Equation 3.1.

∴ logit(Y) = log(odds of Y) = β0 + β1X1 + ... + βkXk (3.1)

Definition 3.1. Let π = Pr(Y = 1) = probability that the response variable Y is a "success." The odds

of Y = 1 is π
1−π , which is the ratio of the probability of "success" to the probability of "failure." Then, the

log(odds) or logit(Y) equals log( π
1−π ), where the log is indeed natural log.

Then, the Equation 3.1 can be written as Equation 3.2. Also, Figure 3.4 shows a fitted line of logit

form of the proportion of sleeping at least 7 hours a day predicted by age.

∴ log(odds) = log
(
π

1 − π

)
= β0 + β1X1 + ... + βkXk (3.2)

Based on Equation 3.2, we compute the log (odds) of sleeping at least 7 hours for each age, as listed

in Table 3.2. Finally, we draw a plot of log (odds) versus Age , with a fitted line as described in
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Figure 3.4. Therefore, we confirm that logit transformation of Y succeeds in fitting given data with a

line and predicting other future values at the end.

Age 14 15 16 17 18
Sleeping

At least 7 hours?
Yes 34 79 77 65 41
No 12 35 37 39 27

Total 46 114 114 104 68
Proportion of Yes (=π) 0.74 0.69 0.68 0.63 0.60

log( π
1−π ) 0.74

1−0.74 = 1.05 0.69
1−0.69 = 0.80 0.68

1−0.68 = 0.75 0.63
1−0.63 = 0.53 0.60

1−0.60 = 0.41

Table 3.2: Observed values of log( π
1−π )

Figure 3.4: The fitted logit plot, with four white points that are not given in the data and five black
points that are given [9]

In order to compute the probability of success π of a binary response variable, Equation 3.3 can

be used under the assumption that we use k explanatory variables to predict the response, as a

modification of Equation 3.2.

∴ P(Y = 1) = π =
odds

1 + odds
=

eβ0+β1X1+...+βkXk

1 + eβ0+β1X1+...+βkXk
(3.3)

3.2.2 Odds Ratio and Fitted Slope

Another essential concept of logistic regression is called odds ratio, which is defined as the ratio of

two odds. When fitting a linear model of predictors to the logit form of a response variable, the slope

of the fitted line is equal to natural log of odds ratio within a single explanatory variable. Thus, the

odds ratio equals to efitted slope. For example, suppose that a categorical explanatory variable X has
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two discrete values - A and B, and we want to compute the odds ratio of A to B, defined in Equation

3.4, by using the slope of the fitted log-linear model logit(Y) = aX + b.

odds ratio =
odds of "success" when X = A
odds of "success" when X = B

(3.4)

Assuming the category B is the reference (baseline) group, we will arbitrarily decide that X = 0 for

X = B and X = 1 for X = A. Then, we substitute X with 0 and 1 for B and A, respectively. The entire

process are presented from Equation 3.5 to 3.8.

log(Odds(A)) = a ∗ 1 + b = a + b (3.5)

log(Odds(B)) = a ∗ 0 + b = b (3.6)

log(Odds(A)) − log(Odds(B)) = a (3.7)

∴ Odds ratio =
Odds(A)
Odds(B)

= ea (3.8)

If the X is numeric, we use the same ways for obtaining odds ratio for one-unit increase in X as for

the categorical X shown in Equation 3.5 to 3.8. In general, by using a computational method we fit a

logistic regression model to the data. Then, from the model summary we obtain estimated slopes of

the model to compute the odds ratio of an explanatory variable.

3.3 Assessment of Logistic RegressionModels

When using a logistic regression model, we must consider the three requirements to confirm validity

of the model for drawing formal inference: linearity, randomness, and independence.

3.3.1 Linearity

When checking the linearity of a logistic regression mode, we examine the following two cases, which

primarily depend on the type of given explanatory variables and their corresponding y values. First,

if an explanatory variable in the model is binary or categorical, linearity is automatically satisfied.

Otherwise, we draw a empirical logit plot of log(odds) versus the explanatory variable. If the plot

shows a linear form as Figure 3.4, then linearity is satisfied. If not linear, we may transform the

explanatory variable to have more linear relationship. Lastly, if any transformation does not make

the variable have a linear relationship with the log(odds), then using the variable is inappropriate for

the logistic regression model.
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3.3.2 Randomness and Independence

Since logistic regression derives from a probability model, considering randomness is important for

formal inference. We determine the randomness condition based on either how the data has been

created or certain situations that we may judge with our discretion. For example, suppose that an

experiment design includes random assignments of its participants to either group A or group B.

This experimental design satisfies randomness condition.

However, we may take into consideration various situations for checking randomness. For

example, if we throw the ball into a box and record the success of each event, the result can be

considered as fairly random, because we assume that certain physical forces are engaged in the

result of the ball going into the box so that we can apply a probability model.

With regard to independence, we may check whether there are no links to each other. First, if

certain events happen with time differences, then it is reasonable to assume that one result does

not impact the others in the sequence. Also, if the events include some spatial relationship such

as people in the same units, we investigate whether the outcome of one unit is independent of

other units. If the events do not explicitly imply independence in the process, then we may use our

subjective judgements to determine independence.

3.4 Formal Inference by Statistical Tests

When we utilize formal statistical tests that depend on a probability interpretation of p-values and

confidence levels, at least conditions of randomness, independence, and linearity must be satisfied.

Once we check the three conditions of a logistic regression model, we can conduct several statistical

tests to confirm that the logistic regression model predicts the binary response variable well. The

tests can be readily conducted with a computational software such as R.

3.4.1 Wald Test

Wald test examines whether the slope (or coefficient) of an individual explanatory variable is

significantly different from 0. If the slope is 0, the odds ratio of the corresponding predictor will

be 1 as it equals eslope. This indicates no change in odds between different factor levels within the

predictor, and thus the predictor has no impact on the response variable. Hence, Wald tests the

following hypotheses, H0 : βi = 0 and Ha : βi , 0. The corresponding test statistic is defined as

Equation 3.9:
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z =
β̂i

SEβ̂i

, (3.9)

where the z-statistic (or called the Wald statistic) follows the standard normal distribution under

the null hypothesis H0. If we find the small p-values for the slope of the individual predictor in the

summary of Wald tests, then we reject the null hypothesis and ultimately conclude that there is a

significant log-linear relationship between the predictor and the binary response variable.

Furthermore, we can compute a confidence interval for the slope using Equation 3.10:

(β̂i ± z∗ · SEβ̂i
), (3.10)

where z∗ is obtained using the normal distribution and the given confidence level. Also, we

exponentiate the confidence interval for the slope βi to obtain an interval for the odds ratio. Therefore,

the estimated odds ratio for an one-unit change in the individual predictor xi is eβ̂i with confidence

interval eβ̂i±z∗·SEβ̂i .

3.4.2 Drop-in-deviance Test

Drop-in-deviance test looks for the overall usefulness of a logistic regression model. In other words,

it examines how much improvement was gained by using this logistic model to predict a binary

response variable with linear predictors, instead of a constant (or null) model.

To conduct the drop-in-deviance test, we first set up the following hypotheses as below.

H0 : log-linear model is useless

Ha : log-linear model is useful

Then, this test compares the null deviance of the constant model to residual deviance of the logistic

model. We use the G-statistic as defined in Equation 3.11:

G = null deviance − residual deviance, (3.11)

where under the null hypothesis H0, the G-statistic follows an approximate chi-square distribution

with the degrees of freedom equal to the difference in the number of predictors estimated between

the constant and the logistic model. Like the Wald test, we observe the associated p-value of the

G-statistic. If the p-value is small, we reject the null hypothesis and confirm that there is a compelling
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evidence that the logistic regression model is useful to predict the response variable by the linear

form of explanatory variables.

3.4.3 Nested Drop-in-deviance Test

Nested drop-in-deviance test examines whether adding a predictor to the logistic regression model

increases the overall effectiveness of the model. Then, we build a hypothesis as follows:

H0 : Reduced model with fewer predictors is sufficient

Ha : Full model is better

We use the G-statistic with a similar formula to Equation 3.11.

G = (resid. deviance of the reduced model) − (resid. deviance of the full model), (3.12)

where the G-statistic follows a chi-square distribution with degrees of freedom equal to difference in

the number of predictors between the reduced and the full model. If the associated p-value of the

nested G-statistic is significantly close to 0, then the full model is a significant improvement over the

reduced model.

3.4.4 Misclassification rate

The last assessment for the logistic regression model is to compute the misclassification rate of

the model. The misclassifiation rate can be expressed as the proportion of values that the model

incorrectly predicts - Type I (false success) and Type II (false failure) error. The logistic regression

model with the lowest misclassification rate is the best model that predicts the binary response

variable with the linear form of explanatory variables. For the sake of simplicity, we may compare

misclassification rates to determine if an additional explanatory variable can improve the overall

performance of the logistic regression model.

3.5 Example Study: Medical School Admissions Results

We now explore how logistic regression can be applied to a real-world problem. The data set MedGPA

is retrieved from a R-package ’Stat2Data,’ which contains the medical school admission results, GPA,
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and other standardized test scores for 55 selected students from a liberal arts college in the Midwest

region of the United States [7]. We want to use this data to determine how well academic scores and

biological sex of individuals predict their medical school admission outcomes. Table 3.3 displays the

explanations of the selected 5 variables from the data set MedGPA.

Type Variable Name Explanation
Response Acceptance Accept: 1 or Denied: 0 (Binary)

Explanatory

Sex F = female or M = male
GPA College GPA

MCAT MCAT exam score

Table 3.3: The variables of interest in the MedGPA data set

3.5.1 Single Logistic Regression: One Predictor

First, we explore the characteristics of each selected variable in Table 3.3. We observe that 54.5%

of the applicants in the data received an admission from the medical schools. Also, the applicants

earned their average college GPA of 3.55, average MCAT score of 36.3, and on average they applied

to 8 medical schools.

3.5.1.1 Sex Predictor

First, we examine whether there is a relationship between sex and the medical school admission

results. Table 3.4 is a two-way table of Acceptance and Sex, where we obtain information about the

percentage of each sex type that received admission.

Sex
Acceptance Female Male
Accepted 18 12
Denied 10 15

Table 3.4: The two-way table of sex and acceptance results

Of the female applicants of medical schools,
18

(18 + 10)
∗ 100 = 70.3% were accepted. Of the

male applicants of medical schools,
12

(12 + 15)
∗ 100 = 44.4% received admissions. Then, we fit the

logistic regression model LRsex to predict the admission (’Acceptance’) from the biological sex of
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the applicants (’Sex’). Table 3.5 shows the summary of LRsex that predicts the acceptance to medical

schools by the applicants’ sex. Then, Equation 3.13 shows the linear equation of LRsex:

∴ log(odds) = 0.5878 − 0.811 ∗ Sex(Male) (3.13)

Variable Factor
Coef.
Estimate eEstimate SE z-statistic p-value Null Dev.

Residual
Dev. d.f.

Sex
(Female) Male -0.811 0.444 0.553 -1.467 0.142 75.79 73.59 1

Table 3.5: The summary table of LRsex (Dev. represents deviance and d.f. indicates degrees of
freedom for Chi-square distribution.)

Also, we use Equation 3.8 to obtain the corresponding odds ratio of acceptance by sex: e−0.811 =

0.444. Hence, the odds of acceptance for male applicants is 44% times the odds of acceptance for

female applicants. Based on Equation 3.3, we also obtain that for the male applicants, the probability

of acceptance to medical schools is
e(0.5878−0.811)

1 + e(0.5878−0.811)
= 0.444. This result matches the proportion of

male applicants who received admission, as described above.

In order to draw formal inference, we first check the conditions of the model LRsex. The linearity

condition is automatically satisfied because the variable ’Sex’ in the model is binary. In terms of

randomness and independence, we use our subjective judgements from the speculations of the

data collection process. According to the ’Stat2’ package manual, the data ’MedGPA’ is collected

from some students from a randomly selected liberal arts college in the Midwest, which implies

reasonable randomness in our model LRsex. Regarding independence, an individual’s acceptance

does not affect the others’ admission results under the assumption that there is no quota in the

number of accepted class year for the medical schools. However, since the data ’MedGPA’ consists

of only 55 students, there is a weakness in drawing generalizations from the results of LRsex.

By using Equation 3.10, we compute a 95% confidence interval for the odds ratio: (0.146, 1.296).

Hence, we are 95% confident that the odds of acceptance for a male applicant is between 14.6%

and 129.6% the odds of acceptance for a female applicant. However, since the confidence interval

includes 1, we conclude that male applicants are not significantly more or less likely to receive

admission than female applicants.

Finally, we use two statistical tests to the effectiveness of the model LRsex. According to the Wald

test, the associated p-value of the predictor ’Sex’ is 0.142, as presented in Table 3.5, which implies that
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the variable ’Sex’ is not statistically significant as a predictor of acceptance to the medical schools.

Also, the drop-in-deviance test shows its G-statistic of 2.2 and the associated p-value of 0.14. Hence,

we confirm that there is not strong evidence that the odds of acceptance to the medical schools

depends on the biological sex of the applicants.

3.5.1.2 GPA Score Predictor

Since the applicants’ biological sex does not significantly affect the acceptance to their medical

schools admission, we want to alternatively examine the relationship between applicants’ GPA score

and the acceptance to medical schools. Figure 3.5 shows that the admitted students have higher

median of GPA scores than the rejected students.

Figure 3.5: The boxplot of GPA scores by admission results

The fitted logistic regression model LRGPA and the summary of it are described in Equation 3.14

and Table 3.6, respectively.

∴ log(odds) = −19.21 + 0.545 ∗ GPA(0.1unit) (3.14)

Variable Coef. Estimate eCoe f SE z-statistic p-value Null Dev. Residual Dev. d.f.
GPA 0.545 1.724 0.158 3.45 0.00055 75.79 56.84 1

Table 3.6: The summary table of LRGPA (Dev. represents deviance, and d.f. indicates degrees of
freedom for Chi-square distribution)

We compute the odds ratio of acceptance regarding GPA scores by using the slope coefficient of

LRGPA: e0.545 = 1.724. This means that a 0.1-unit increase in GPA is associated with an 72.4% increase

in the odds of acceptance to the medical schools. Also, the fitted probabilities of acceptance for two

applicants with each 3.5 and 3.8 GPA are,
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π̂(GPA = 3.5) =
e(−19.21+10∗0.545∗3.5)

1 + e(−19.21+10∗0.545∗3.5)
= 0.466 (3.15)

π̂(GPA = 3.8) =
e(−19.21+10∗0.545∗3.8)

1 + e(−19.21+10∗0.545∗3.8)
= 0.817 (3.16)

Since we confirm the randomness and independence of the MedGPA data in Section 3.5.1.1, we only

examine the validity of linearity in the model LRGPA. Figure 3.6 does show the reasonable extent of

linearity between log (odds) of acceptance and GPA scores.

Figure 3.6: Linearity between log odds and GPA

The 95% confidence interval for the odds ratio is (1.31, 2.45), and we interpret it as "We are 95%

confident that an 0.1-unit increase in GPA is associated with between 31% and 145% higher odds of

acceptance." Since the interval does not include 1, we conclude that higher GPA score is a significant

predictor of medical school admission.

Lastly, we use two statistical tests for the overall performance of the model LRGPA. According to

the Wald test, the associated p-value with GPA is 0.0005, which implies that GPA is a statistically

significant predictor of the acceptance to medical schools. The drop-in deviance test shows its

G-statistic of 18.95 and the p-value of 0.0000134, so there is strong evidence that the odds of

acceptance relies on the GPA scores. To compare the two logistic models LRsex and LRGPA, we can use

misclassification rate. LRsex has the misclassification rate of 0.4, whereas LRGPA has 0.27. Therefore,

we conclude that GPA performs better as a predictor of acceptance to medical schools.
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3.5.2 Multiple Logistic Regression: Two orMore Predictors

Next, we examine the relationship between multiple predictors and the response variable. For

instance, we select MCAT to discuss whether an addition of MCAT to the model LRGPA is worth-

while. In Figure 3.7, the admitted students are likely to attain higher MCAT scores. We fit the

logistic regression model LRGPA,MCAT with using the two explanatory variables ’GPA’ and ’MCAT’

simultaneously. The fitted line equation is presented in Equation 3.17 and the summary in Table 3.7.

Figure 3.7: The boxplot of MCAT scores by admission results

∴ log(odds) = −22.37 + 0.468 ∗ GPA + 0.164 ∗MCAT (3.17)

Variable
Coef.
Estimate eEstimate SE z-statistic p-value Null Dev.

Residual
Dev. d.f.

GPA 0.468 1.597 0.164 2.85 0.00439 75.79 54.01 2
MCAT 0.164 1.178 0.103 1.56 0.111 75.79 54.01 2

Table 3.7: Summary table of LRGPA,MCAT (Dev. represents deviance, and d.f. indicates the degrees of
freedom of Chi-square distribution)

We state that assuming the same MCAT score, a student with a 0.1-point higher GPA has 59.5%

higher odds of the acceptance to the medical schools. Assuming the same GPA, a student with a

1-point higher MCAT scores has 17.9% higher odds of the acceptance to the medical schools. Then,
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we calculate the probabilities of two applicants who have different GPA scores of 3.5 and 3.8 but the

same MCAT score of 37.

π̂(GPA = 3.5 and MCAT = 37) =
e(−22.37+10∗0.468∗3.5+0.164∗37)

1 + e(−22.37+10∗0.468∗3.5+0.164∗37)
= 0.519 (3.18)

π̂(GPA = 3.8 and MCAT = 37 ) =
e(−22.37+10∗0.468∗3.8+0.164∗37))

1 + e(−22.37+10∗0.468∗3.8+0.164∗37)
= 0.815 (3.19)

The 95% confidence intervals for the odds ratio of GPA and MCAT in LRGPA,MCAT are (1.19, 2.29)

and (0.974, 1.468), respectively. Assuming constant MCAT score, we are 95% confident that an

0.1-unit increase in GPA is associated with between 19% and 129% higher odds of acceptance. Also,

under a condition of same GPA, we are 95% confident that an one-point increase in MCAT scores

has between 3% lower and 47% higher odds of the acceptance to medical schools. Since the interval

of GPA does not include 1, a higher GPA does impact the odds of acceptance to medical schools.

However, the interval of MCAT scores includes 1, so higher MCAT scores does not significantly

impact the odds of acceptance to medical schools, as long as GPA is included in the model.

Furthermore, we use two statistical tests for the overall performance of the model LRGPA,MCAT.

From the Wald test, we see that the associated p-value with GPA and MCAT is 0.00439 and 0.111,

which implies that GPA is a statistically significant predictor of the acceptance to medical schools

but MCAT is not. Also, the drop-in-deviance test of LRGPA,MCAT shows its G-statistic of 21.78 and the

p-value of 0.0000187, thus confirming the overall usefulness of the model LRGPA,MCAT.

Lastly, we compare the two logistic models LRGPA and LRGPA,MCAT by using the nested drop-in

deviance test and the misclassification rate. First, the nested drop-in deviance test checks the validity

of our hypothesis that LRGPA,MCAT is better than LRGPA. We observe that the residual deviance

of LRGPA is 56.84 and of LRGPA,MCAT is 54.01, thus the corresponding G-statistic is 2.83 and the

associated p-value is 0.093. It means that there is not strong evidence to conclude that LRGPA,MCAT

possesses more effectiveness. Also, LRGPA has a misclassification rate of 0.27 and LRGPA,MCAT has the

comparable misclassification rate of 0.25. Therefore, for simplicity concerns we may choose LRGPA

as the best model for predicting the odds of acceptance to medical schools, based on the Wald-test,

the nested drop-in deviance test, and the comparable misclassification rate with LRGPA,MCAT.
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3.6 Advanced Topics in Logistic Regression

In light of in-depth discussion about logistic regression, the following questions have stimulated the

essence of our understanding about the method. How does a computational software compute the fitted

coefficient estimates of each predictor in the logistic regression? What are the fundamentals and mathematical

derivations of the calculations of the estimates? Based on what mathematical backgrounds do we confirm that

the logistic regression model has good overall effectiveness of predictions? In this section, we investigate

advanced mathematical backgrounds behind the three questions with regards to logistic regression.

3.6.1 Likelihood

Likelihood is defined as the probability of the observed data, expressed as a function of parameters

whose values are unfixed [2]. Suppose that a coin is flipped 50 times and 20 heads are observed.

Given a probability p of getting a head on a single flip, we can compute the probability of getting 20

heads out of 50 trials, as Equation 3.20:

P(20 H) =

(
50
20

)
× p20

× (1 − p)30 (3.20)

Since the probability P(20H) depends on the value of the unknown probability p, we can define the

likelihood of 20 heads out of 50 trials given that the probability of a head out on a single flip is p, as

shown in Equation 3.21.

L(20 H| p) =

(
50
20

)
× p20

× (1 − p)30 (3.21)

For any statistical model that contains parameters whose values are not fixed, we typically

assume a probability distribution for the response variable of the model. In light of logistic regression

models, we assume that a binary response variable follows Bernoulli distribution with a parameter

pi: the probability of success for an random, independent trial i [1]. Given that a probability of

success for a trial i is pi and the probability of failure is 1− pi, we compute the likelihood function of

success of the binary response variable for the trial i, as Equation 3.22:

L(Y = yi| pi) = pyi

i × (1 − pi)1−yi , where yi = {1 (success), 0 (failure)} (3.22)

Since the data under Bernoulli distribution are identically independent, the likelihood function of
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the binary response for all Bernoulli trials is defined as Equation 3.23, and the formula also applies

to logistic regression models [23]:

L(Y = yi| pi) =
∏
i=1

pyi

i × (1 − pi)1−yi , where yi = {1 (success), 0 (failure)} (3.23)

3.6.2 Deviance

To measure how well a logistic regression model fits to the data of interest, we may conduct the

drop-in-deviance test, called a goodness-of-fit measurement. This computes the statistic G = ∆Deviance,

the difference between the deviance under the null hypothesis and the deviance of the fitted logistic

model, as discussed in Equation 3.11. Also, if the difference between these two deviance becomes

larger due to the fitted logistic model, then we can state that the model fits to the data well.

Now, we rewrite Equation 3.11 as the difference in the log-likelihoods between the fitted model

and the null model, as shown in Equation 3.24.

∴ G = ∆Deviance = 2[log(L f itted) − log(Lnull)], (3.24)

where log is a natural logarithm, Lnull the likelihood of the null model Mnull with only an intercept,

and L f itted the likelihood of the fitted logistic model M f itted [1]. Since Mnull does not include any

explanatory variable available in the data, Lnull is constant. Therefore, we confirm that the G-statistic

is largely impacted by log(L f itted).

Furthermore, we want the G-statistic to be as large as possible, for the larger difference between

the null and residual deviance indicates a smaller p-value of Chi-square distribution under the

null hypothesis. This also means that the model fits to the data well and thus is useful. Therefore,

we conclude that 2log(Lfitted) should be maximized for the overall effectiveness of the fitted logistic

model M f itted. This also indicates that the value of L f itted should reach its maximum value.

Therefore, a concept of likelihood is essential to compute the deviance for testing the effectiveness

of a logistic regression model. The large likelihood of the model indicates a good fit between the

explanatory variables used in the model and our data of interest. Thus, a computational software

obtains each of the estimated coefficients of explanatory variables in the model, by maximizing

the likelihood of a response variable of any given data. One methodology to find the estimated

coefficients of predictors in a logistic regression model is called Maximum Likelihood Estimation

(MLE). This chooses parameter values of a model to maximize L f itted.
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3.6.3 Maximum Likelihood Estimation (MLE)

3.6.3.1 Introduction

As in Equation 3.25, the maximum likelihood estimate (MLE) of a parameter β is the fitted value β̂ at

which the associated likelihood function reaches its maximum [2]. Namely, this is the parameter

value under which the observed data have the highest probability of occurrence [1].

∴ β̂MLE = argmax
β

L(Y|X, β) (3.25)

A simple example of the MLE is a game of rolling a die. Suppose that we have three types of

dice, such as a 4-sided, a 6-sided, and a 10-sided die. We roll one of the three dice 5 times and obtain

two 3s. Then, the probability p of obtaining one 3 varies by the type of a die that we rolled: that is, 1
4

for a four-sided, 1
6 for a six-sided , and 1

10 for a ten-sided die. Based on the findings, we calculate the

likelihood of obtaining two 3s from five trials, as in the following equations 3.26 to 3.28, where Y is

the number of 3s obtained in five trials.

4-sided die: L(Y = 2| p =
1
4

) =

(
5
2

) (1
4

)2 (3
4

)3

= 0.264 (3.26)

6-sided die: L(Y = 2| p =
1
6

) =

(
5
2

) (1
6

)2 (5
6

)3

= 0.161 (3.27)

10-sided die: L(Y = 2| p =
1

10
) =

(
5
2

) ( 1
10

)2 ( 9
10

)3

= 0.073 (3.28)

Of those calculations, the largest likelihood occurs at p =
1
4

, i.e. rolling a four-sided die. This means

that the MLE p̂MLE of the parameter p is
1
4

. In more contextual interpretation, the event of obtaining

two 3s out of the total five rolls is most likely to occur when we roll a four-sided die.

As an extension of the above example regarding the MLE, suppose that we are not given

information about how many sides the dice include. Then, the likelihood functions are modified.

First, the likelihood function L2 with a probability p of getting two 3s out of the total five rolls is,

L2 ≡ L(Y = 2| p) =

(
5
2

)
p2(1 − p)3 = 10 p2(1 − p)3 (0 ≤ p ≤ 1) (3.29)

Also, the likelihood function L4 with a probability p of getting four 3s out of the total five rolls is,

L4 ≡ L(Y = 4| p) =

(
5
4

)
p4(1 − p)1 = 5 p4(1 − p) (0 ≤ p ≤ 1) (3.30)
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In Figure 3.8, we observe that the two likelihood functions reach maximum values at different p: L2

appears to be maximized near p = 0.4 whereas L4 near p = 0.8. Therefore, the MLE of L2 is p̂ = 0.4

and the MLE of L4 is p̂ = 0.8. Hence, the result of two 3s out of the total five rolls is more likely to

occur when p = 0.4 than any other p value between 0 and 1 [2]. Also, the result of four 3s out of the

total five rolls occurs at most when p = 0.8, compared to any possible p in the interval [0, 1].

Figure 3.8: The plot of L2 and L4, the likelihood functions for two 3s and four 3s, respectively

3.6.3.2 Calculations ofMLE

Rather than approximating the MLE of a parameter by either looking at the plot or comparing

the possible parameter values, we now want to calculate the MLE of the parameter directly from

the likelihood function. Notice that the MLE β̂MLE of L(Y|β) also maximizes log(L(Y|β)), the natural

log-transformation of the original likelihood function L(Y|β) [1]. In particular, the log-transformation

can simplify the computation of MLE, as it will turn the powers and products into the products and

sums. Hence, we take the following two steps to calculate the MLE of a parameter with regard to a

certain likelihood function.

1. Take the natural logarithm of the original likelihood function of interest.

2. Optimize the log-transformed likelihood by differentiating it in terms of the parameter of

interest and setting the differentiated equation to 0. The obtained parameter value is the MLE

of the parameter.
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The MLEs of p for the likelihood function L2 in Equation 3.29 and L4 in Equation 3.30 are computed

as below, and the obtained MLEs for L2 and L4 also match the findings from Figure 3.8.

log(L2) = log(10p2(1 − p)3) = log 10 + 2 log p + 3 log(1 − p) (0 < p < 1)

d log(L2)
dp

=
2
p

+ 3 ·
1

1 − p
· (−1) = 0

∴
2(1 − p) − 3p

p(1 − p)
=

2 − 5p
p(1 − p)

= 0

∴ p̂MLEL2
=

2
5

= 0.4 (3.31)

log(L4) = log(5p4(1 − p)) = log 5 + 4 log p + log(1 − p) (0 < p < 1)

d log(L4)
dp

=
4
p
−

1
1 − p

= 0

∴
4(1 − p) − p

p(1 − p)
=

4 − 5p
p(1 − p)

= 0

∴ p̂MLEL4
=

4
5

= 0.8 (3.32)

3.6.3.3 MLE for Logistic Regression

Lastly, we examine the MLE of each parameter of a logistic regression model. We use the maximum

likelihood estimation to find the coefficient estimate of each predictor that maximizes the likelihood

function of the fitted logistic model.

For any binary logistic regression model, each response value y follows Bernoulli distribution

such that any y will take either 1 or 0, with the probability p(x) and 1 − p(x), respectively. For each

data point, suppose there is a vector < xi, yi > of explanatory features xi and its response yi. Since

p(xi) is defined as the probability of success (or yi = 1) for xi, we can rewrite Equation 3.23, the

likelihood function for the logistic regression, as shown in Equation 3.33.

L(β) = L(Y = yi| β) =

n∏
i=1

p(xi)yi (1 − p(xi))1−yi (yi = 1 (success), 0 ( f ailure)), (3.33)
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where p(xi) is defined by the logistic model, as in 3.34 and 3.35.

logit(p(xi)) = log
(

p(xi)
1 − p(xi)

)
= β0 + β1x1 + ... + βnxn (3.34)

∴ p(xi) =
eβ0+β1x1+...+βnxn

1 + eβ0+β1x1+...+βnxn
(3.35)

Following the two steps of obtaining the MLE, we first take a natural log of the likelihood function

L(β) defined from Equation 3.33.

logL(β) = log

 n∏
i=1

p(xi)yi (1 − p(xi))1−yi


=

n∑
i=1

(
yi logp(xi) + (1 − yi) log(1 − p(xi))

)
=

n∑
i=1

(
yi logp(xi) + log(1 − p(xi)) − yi log(1 − p(xi))

)

∴ logL(β) =

n∑
i=1

(
log(1 − p(xi)) + yi log

(
p(xi)

1 − p(xi)

))
(3.36)

We know from Equation 3.34 that log
(

p(xi)
1 − p(xi)

)
= β0 + β1x1 + · · ·+ βixi, so the log-likelihood function

log(L(β)) is

log(L(β)) =

n∑
i=1

(
log(1 − p(xi)) + yi(β0 + β1x1 + · · · + βixi)

)
(3.37)

Also, we replace p(xi) with Equation 3.35:

log(1 − p(xi)) = log
(
1 −

eβ0+β1x1+···+βixi

1 + eβ0+β1x1+···+βixi

)
= log

( 1
1 + eβ0+β1x1+···+βixi

)
= log1 − log(1 + eβ0+β1x1+···+βixi )

∴ log(1 − p(xi)) = −log(1 + eβ0+β1x1+···+βixi ) (3.38)

Therefore, the log-likelihood of L(β) is,

∴ logL(β) =

n∑
i=1

(
−log(1 + eβ0+β1x1+···+βixi )

)
+

n∑
i=1

yi(β0 + β1x1 + · · · + βixi) (3.39)

The second step of obtaining the MLE is to differentiate the log likelihood with respect to each
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parameters β j, set the derivatives equal to 0, and find the β̂ j.

d logL(β)
dβ j

= −

n∑
i=1

eβ0+β1x1+···+βixi

1 + eβ0+β1x1+···+βixi
∗ x j +

n∑
i=1

yix j (3.40)

=

n∑
i=1

x j(yi − p(xi)) = 0 (3.41)

Notice that Equation 3.40 is non-linear and do not have a closed form of solutions, so we use iterative

optimization to numerically approximate the MLE β̂ jMLE for each parameter β j [1, 20]. Therefore, we

can define the MLE β̂ jMLE for each parameter β j, as Equation 3.42.

∴ β̂ jMLE = argmax
n∑

i=1

x j(yi − p̂(xi)), (3.42)

where p̂(xi) =
eβ̂0+···+β̂ixi

1 + eβ̂0+···+β̂ixi
is the ML estimate of the probability of success p for xi.

So far, we have examined the derivation of how to obtain the estimated coefficient of each

predictor in the logistic regression model. Based on Equation 3.42, the computational software

iteratively calculates the MLE of each parameter β j using the previous β j−1. Possible numerical

optimization methods can be the Newton-Raphson method or the stochastic gradient ascent, as

these are the most popular iterative optimization algorithms when performing parameter estimation

for logistic regression models [1, 20].



CHAPTER 4

Support VectorMachines & Metrics of

Prediction

The second objective of our research is to predict depressive disorders diagnosis among the U.S.

adults by using several supervised machine learning methods. In this chapter, we first investigate

support vector machines, which is widely renowned for its superb classification tasks. Note that the

depth of our investigation toward support vector machines is comparatively shallow, as our study

focuses more on mining attributes of depressive disorders for each group by using decision trees

and logistic regression. Lastly, we explore various metrics of model performance when testing the

prediction tasks: confusion matrix, accuracy, precision, F1 score, recall, and ROC curve.

4.1 Support VectorMachines

4.1.1 Historical Background

Support vector machines (SVMs) are a widely-used supervised machine learning algorithm, first

developed by a Russian statistician Vladimir Vapnik and his coworkers in the field of computer

science [14]. Then, the concepts of SVMs were introduced in the two eminent books of statistics:

Statistical Learning Theory and The Nature of Statistical Learning Theory in early 1970s [14].

Since then, the algorithm of SVMs has been spotlighted because of its distinctness from the

traditional learning theories, where SVMs do not require dimension reduction in the high-dimensional

data but find the optimal hyperplane that separates the data. In addition, the comparatively simple

algorithm of the SVMs vastly expedites the application of SVMs to wider variety of fields, particularly

two-class classification tasks.

41
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4.1.2 Linear Support VectorMachine Classifiers

Support vector machines (SVMs) have been utilized in many fields for classification and regression.

Since a goal of our study is to predict the diagnosis labels of depressive disorders among the U.S.

adults, we examine support vector machine classifiers (SVMCs) for predicting data with one of the two

responses (i.e. yes or no) for depressive disorders.

The main idea behind SVMCs is to find a line (or hyperplane) that separates the data of interest

into two or multiple areas for each category of a response variable in the best manner. Then, we

predict the labels of incoming data by looking at the area that each data point is placed on. For

example, in Figure 4.1 there are two bands of blue and green points, and using the linear SVMC we

separate the bands into two areas. We observe that future data points above the line are classified

as blue, and those below green. The objective of SVMC is to find a line or hyperplane that has the

widest margin, with each of the two decision boundaries going through the closest point in each

band of points [4].

Figure 4.1: The data separated by a linear SVMC (The solid line is the optimal hyperplane that has
the widest margin between the two dashed boundary hyperplanes.

Then, how do we find the optimal hyperplane that has the largest margin? Suppose that we

have a data set of explanatory vectors X = {x1, x2, . . . , xn} where xi ∈ Rn and a two-class vector

Y = {y1, y2, . . . , yn}where yi ∈ {−1, 1}. Then, we find the best hyperplane with the maximized margin,

as described in Equation 4.1 [4]:

wTx + b = 0, (4.1)
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where w =< w1, . . . ,wn > is the weight vectors, x =< x1, . . . , xn > the inputs, and b is bias. Then, for

any linearly separable data, the two classes can be split by a margin with two possible boundaries,

where some data points from each class, called support vectors, lie on the boundaries. In this

example, these two boundaries are given by Equation 4.2. Also, we observe in Figure 4.2 that there

are four support vectors, two from each class. If we substitute any input vector xi into the equation

wTx + b and the corresponding output value is above 1, then the vector is placed in the area of blue

points. Otherwise, the vector is placed in the area of green points if the output value is below −1.

wTx + b = 1

wTx + b = −1
(4.2)

Figure 4.2: The four support vectors marked with red circles: the above solid line is given by the
equation wTx + b = 1 and the below solid line is wTx + b = −1. The dashed line indicates
the optimal hyperplane that has the widest margin from these two boundaries.

Since the main objective of SVMC is to maximize the margin between these two parallels (or

boundary hyperplanes) that divide the classes, we select some two vectors that are perpendicular to

and ended on each decision boundary, x1 and x2. Figure 4.3 shows an arbitrary example of the x1

and x2 on a random data. Then, we compute the distance of these two vectors, which is defined by

the length of the margin between the two boundaries, as expressed in Equation 4.3 [4].

x2 − x1 = tw, (4.3)

where the t is the margin. Then, Equation 4.2 can be modified as Equation 4.4:

wTx2 + b = wT(x1 + tw) + b = (wTx1 + b) + t||w||2 = 1

∴ t =
2
||w||2

(∵ wTx1 + b = −1)
(4.4)
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Figure 4.3: The two selected vectors ~x1 and ~x2 for each decision boundary. w′ is the transposed
weight vectors w.

Since the distance d(x1, x2) is the length of the margin t, we obtain the value of d(x1, x2), as

expressed in Equation 4.5.

d(x1, x2) = ||tw|| = t||w|| =
2
||w||2

× ||w|| =
2
||w||

, (4.5)

where ||w|| is the normalized weight vectors. Using the training set, we minimize the value of ||w|| to

maximize the distance of x1 and x2. In addition, since every data point will be classified into one

of the two classes, we can impose the constraint into the outputs of every points in each class, as

described in the bottom of Equation 4.6 [4].

yi(w
Txi + b) ≥ 1, ∀(xi, yi), (4.6)

where yi is the class value of wTxi + b - that is, either −1 or 1. Finding the minimum value of ||w|| can

be solved by using the Lagrange Multipliers technique, which is beyond the scope of our exploration

of support vector machines. Instead, we will use the following computational functions linearSVC or

SVC (kernel = ’linear’) in Python machine learning library Scikit-learn, which automatically compute

the minimized normal weight vector ||w|| and the two decision boundaries as a result.

4.1.3 Non-linear Support VectorMachine Classifiers

We face many data sets that are not linearly separable, such as Figure 4.4. Then, we are not able

to use linear SVMCs to separate the points into one of the two classes. A possible solution of this
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problem is to manipulate the data to become linearly separable, known as kernel tricks. The kernel

trick is a machine learning technique that projects the original vectors into higher dimensional spaces

by using several kernel functions, where the projected data thereby become linearly separated [4].

Then, we can apply SVMCs to this modified data and classify the points into the two classes.

Figure 4.4: An example of non-linearly separable data: the circular data set

The following are three kernel functions K that have been widely used for the kernel trick, given

the two-dimensional vectors x1, x2, . . . , xn with xi =< x1, x2 > for all i = 1, 2, . . . ,n. Note that γ is a

constant term that determines the amplitude of the function, influenced only by the distance [4].

1. The Radial Basis Function (RBF): K(xi, x j) = e−γ||xi−x j ||
2

2. The polynomial kernel function: K(xi, x j) = (γxT
i x j + r)c, where c is the parameter degree.

3. The sigmoid kernel function: K(xi, x j) =
1 − e−2(γxT

i x j+r)

1 + e−2(γxT
i x j+r)

.

Let us use the RBF kernel functions to transform the original data in Figure 4.4 from non-linear

spaces to linear ones. As visualized as a 3D plot in Figure 4.5, we first add a third dimension defined

by the RBF kernel function of the original vectors xi and x j. Figure 4.5 displays that the two bands of

either blue and green data points are now trivially linearly separable. Then, fitting a RBF-kernel

SVMC to the three-dimensional space of this modified data can separate the two bands of data

points by the red plane r = 0.7, as shown in Figure 4.6.

Indeed, if we make a two-dimensional plot of the original data in Figure 4.4 and apply the

RBF-kernel SVMC to every data point, we observe two solid circular decision boundaries and

support vectors lying on each circular boundary hyperplane, as descried in Figure 4.7. Likewise, the

dashed circular hyperplane drawn by the RBF-kernel SVMC has the maximized margin.

Furthermore, we can apply other kernel functions to non-linearly separable data with an increased

dimension. Then, we may compare and confirm which kernel function produces the maximized

decision boundaries that separate the data into each given class.
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Figure 4.5: 3D-transformed linear data
expanded by the RBF kernel in
the z-axis

Figure 4.6: 3D-transformed linear data
separated by with the SVMC
hyperplane

Figure 4.7: The RBF kernelized SVMC to the non-linearly separable data: the dashed circle
corresponds to the optimal (3D) hyperplane shown in Figure 4.6.

4.1.4 Soft-margin Classfication

All the examples above have perfect and clean decision boundaries: that is, every data point of

each class is clearly located in the area of the class. They are called as hard-margin classification.

However, there are many data set that are not clearly separable, such as the data points in Figure 4.8

where two groups of data points are overlapped in some areas.

In this case, neither a linear SVMC nor kernel tricks would separate the data clearly into one of

the two classes. Thus, we use another technique of SVMC, called soft-margin classification. This

creates a flexible model that allows some of the points to "creep into" the margin as long as this

process results in a better performance in classification [4, 24]. Therefore, soft-margin classification

not only maximizes a margin but also limits the number of misclassified points in margin violations.

Then, the extent of allowing outliers is determined by a tuning parameter C, which controls the
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Figure 4.8: The data with overlapped areas of each class

trade-off between the smooth margin and the correct classification of the points [24]. For example, if

the value of C is high, then the SVMC prioritizes classifying all data points correctly, thus resulting

in a narrower (or "hard") margin. On the other hand, smaller C intends to find the widest margin,

thus producing some incorrect classification scores.

Figure 4.9: An example of soft-margin classification with different values of C. The dotted line is the
optimal hyperplane that has the widest margin from the two solid decision lines.

In Figure 4.9, we observe that the SVMC with C = 10.0 has a narrower margin but higher rates of

correct classification, whereas the SVMC with C = 1.0 has a wider margin but encompasses some

data points within the margin area. Finding the optimal value of C can be performed by using either

cross-validation or a function GridSearchCV in Python Scikit-learn library, which seeks the best choice

of C and other parameters automatically [4, 24].

4.1.5 Assessment of SVMC algorithm

SVMCs are renowned as powerful classifiers. First, the SVMC depends their training process only

on a few support vectors with spending a low cost on time and space, thereby producing fast

classification. Hence, it can handle high-dimensional data with high precision. In addition, the
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kernel tricks can be adapted to many types of data [11]. However, the classification results of

SVMCs rely significantly on the tuning parameter C, which may increase the computational cost.

Furthermore, the SVMC is a black-box model, which does not show the internal procedures that the

results have been made by.

4.2 Metrics of Prediction

In this section, we explore some widely-used metrics of prediction. The first important metric is the

accuracy, which is the ratio of correct classifications to the total size of data. However, the accuracy

is not always an appropriate metric for classifiers, particularly when classifying skewed data in

which a class is more frequent than the others [11].

The second metric is the confusion matrix, also known as the misclassification table from Chapter

3. The confusion matrix counts the number of instances of predicted class ’Yes’ as either actual

class ’Yes’ or ’No.’ In other words, we compute the following four possibilities: true positive, true

negative, false positive, and false negative cases [11].

Predicted
class

Actual
class

No Yes
No 230 12
Yes 15 210

Table 4.1: An example of confusion matrix

Table 4.1 shows that 230 cases of No are correctly classified (true negatives), while the remaining

12 are wrongly classified as Yes (false positives). The second row also displays that 15 cases of

Yes are incorrectly classified as No (false negatives) and the remaining 210 are correctly classified

as Yes (true positives). If a confusion matrix have non-zero values only on its diagonal, then the

corresponding classifier is said to be perfect [11].

The third metric is the precision, which is the accuracy of the positive predictions. It is also

defined as the ratio of the number of true positives to the number of all predicted positives.

precision =
TP

TP + FP
, (4.7)

where TP is the number of true positives and FP the number of false positives. It tests whether the

classifier is able to detect the characteristics that determine the positiveness of sample and to avoid
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misclassification as negative [4]. Precision is typically computed along with another metric called

recall, which calculates the ratio of true positive cases to all the actual positives.

recall =
TP

TP + FN
, (4.8)

where TP is the number of true positives and FN the number of false negatives. For many cases, we

observe that despite the same objectives of the two metrics, recall is usually lower than precision

because the number of false negatives is proportionally higher than the number of false positives.

Therefore, we use another metric, called F1 score, which harmonizes the weighted mean between

precision and recall. To be specific, this harmonized mean places more weights to recall.

F1 =
2

1
precision

+
1

recall

=
TP

TP +
FN + FP

2

, (4.9)

where TP is the number of true positive cases, FN the number of false negatives, and FP the number

of false positives [11]. Higher precision outputs the highest F1 score, while higher recall gives the

least F1 score. Hence, F1 score performs as a trade-off between high precision and a limited number

of false negatives [4]. All the procedures of computing those four classification metrics can be

conducted by using sklearn.metrics from a scikit-learn library.

The last metric is the ROC curve (receiver operating characteristics curve) that enables us to

compare several classifiers by assigning a prediction score to each classifier [4]. It plots the true

positive rate (TPR) against the false positive rate (FPR) at different thresholds on the curve, where

the TPR is equal to recall and the FPR is the ratio of negative cases that are incorrectly classified as

positive. An example of ROC curve is shown in Figure 4.10, where the yellow curve is the ROC

curve of a given classifier and the dashed line represents the ROC curve of a random classifier [25].

Hence, any classifier with a ROC curve above the dashed threshold line performs better than the

random classifier. Therefore, the best classifier has a ROC curve that consists of two line segments:

one from (0, 0) to (0, 1) and the other from (0, 1) to (1, 1). Then, we aim to find the classifier whose

ROC curve should be as close as possible to these line segments [4].

A measure of prediction in light of ROC curves is to compute the area under curve (AUC) of

the curves. The value of AUC lies between 0 and 1, where the perfect classifier has AUC = 1, the

worst one has AUC = 0, and the random classifier has AUC = 0.5. Hence, higher AUC means higher

accuracy of classification. Therefore, by plotting the ROC curves and computing the corresponding
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Figure 4.10: An example of a ROC curve [25]

AUC values of multiple classifiers simultaneously, we are able to visualize and compare the quality

of classification of each classifier.

4.3 Real-world Example: Breast Cancer Classification

In this section, we apply support vector machine classifiers (SVMCs) to a simple real-world

data set, known as Breast Cancer Wisconsin Diagnostics. The original data can be retrieved from

UCI Machine Learning Repository, but instead we load and fetch the same data from a module

sklearn.datasets.load_breast_cancer in the Scikit-learn library. The data set of breast cancer

consists of 569 rows and 31 columns, which also includes a class column of two tumor states:

malignant (cancer) and benign (non-cancer). Note that there are no missing values in the data.

In order to classify the states of tumors into either malignant or benign, we first split the entire

data into a training set and a testing set. For example, we have 70% of the randomly shuffled data

as a training set and the remaining 30% as a testing set. Then, we normalize both the training

and testing sets to keep all the values of each attribute within the range [0, 1]. Next, we train the

RBF-kernel SVMC and C = 1.0 as a default by using the training set, and then we predict the labels

of each example in the testing set with our trained SVMC. Table 4.2, 4.3, and Figure 4.11 present the

confusion matrix, classification report, and the ROC curve for the trained SVMC model.

Predicted

Actual
Benign Malignant

Benign 104 5
Malignant 2 60

Table 4.2: The confusion matrix of breast cancer diagnostics with the SVMC
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Precision Recall F1 score
"Benign" 0.98 0.95 0.97

"Malignant" 0.92 0.97 0.94
macro average

accuracy 0.95 0.96 0.96

weighted average
accuracy 0.96 0.96 0.96

Table 4.3: Classification report of breast cancer diagnostics with the SVMC

Figure 4.11: The ROC curve of breast cancer diagnostics with the default RBF-kernel SVMC

Based on Table 4.2, we compute the accuracy of the SVMC performance, which is
104 + 60

104 + 5 + 2 + 60
=

0.959. Also, only two people with actual malignant tumors were predicted as benign ones. Further-

more, the values of precision, recall, and F1 scores are on average from 0.95 or 0.96, as shown in

Table 4.3. All those metrics indicate that the default SVMC model performed very well in predicting

tumor states of the examples in the given data. Lastly, the ROC curve in Figure 4.11 is almost close to

the perfect one, and its AUC value is 0.9935. Thus, we identify the good performance of this SVMC

on the breast cancer prediction.

However, we may consider the possibility of overfitting, regardless of the good prediction results

of the SVMC. Therefore, we optimize the tuning parameters, such as C, γ, and the kernel function, in

order to increase the extent of generalization. All the optimization process can be done by using a

function GridSearchCV in the Scikit-learn module sklearn.model_selection, which grid-searches

the optimal parameters to the SVMC. When we consider only two non-linear kernel functions - RBF

and polynomial, we find that the polynomial kernel with C = 0.1 and γ = 1 is the best parameters

for the SVMC in this data.

According to Table 4.4, the accuracy of the prediction made by the optimized RBF SVMC is
105 + 60

105 + 4 + 2 + 60
= 0.965. Also, according to Table 4.5, the optimized SVMC has improved values



52 4. Support Vector Machines & Metrics of Prediction

Predicted

Actual
Benign Malignant

Benign 105 4
Malignant 2 60

Table 4.4: The confusion matrix of the optimized SVMC

Precision Recall F1 score
"Benign" 0.98 0.96 0.97

"Malignant" 0.94 0.97 0.95
macro average

accuracy 0.96 0.97 0.96

weighted average
accuracy 0.97 0.96 0.97

Table 4.5: The classification report of breast cancer diagnostics with the optimized SVMC

Figure 4.12: The ROC curve of breast cancer diagnostics with the optimized SVMC

of precision, recall, and F1 scores within a range of 0.96 and 0.97, compared to the default SVMC.

Furthermore, the ROC curve in Figure 4.12 seems almost perfect, and its AUC value is 0.9942, thereby

indicating excellent performance of the optimized SVMC. Therefore, we conclude that the optimized

polynomial-kernel SVMC is said to be a better model than a default RBF-kernel SVMC.



CHAPTER 5

Data Description

In this chapter, we examine the data set of our interest, 2018 BRFSS, and perform data transfor-

mation to produce the finalized data set. Lastly, we conduct exploratory data analysis of three adult

groups in our data set, thus enhancing our understanding of the characteristics of each age group.

5.1 Data Source Investigation

The data set of interest is the Behavioral Risk Factor Surveillance System (BRFSS) [17], collected

in 2018 and released by the Centers of Disease Control and Prevention (CDC) in July 2019. The

BRFSS is composed of self-reported responses to a health-related questionnaire distributed through

telephone surveys. Also, the surveys collect uniform and state-specific data on health risk behaviors,

chronic illnesses conditions, healthcare access, and use of preventive health services, which influence

the main factors of death and disability of people in the United States [17]. Its target respondents are

the non-institutionalized adult population over 18 years old who reside in the 50 states of the United

States, the District of Columbia, and participating U.S. territories (i.e., Guam and Puerto Rico).

The data collection of the BRFSS is operated through a collaboration among health departments of

all 53 participating regions and the Centers for Disease Control and Prevention (CDC). To be specific,

state health departments cooperate with the CDC in designing the process, conduct their telephone

surveys on their randomly selected residents each month, and transmitting the collected responses

to the CDC for data editing, processing and analysis [17]. Also, due to the diminishing population

of landline telephone users, the BRFSS also includes the responses from cellular telephone surveys

on randomly selected people by using a weighting methodology called raking. This method adds

indicators of demographic characteristics of the participants. Therefore, the dual-frame telephone

survey format increases the validity, data values, and the representativeness of the BRFSS [17].

53
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The BRFSS questionnaire has been influenced by established national health surveys, such as

the National Health Interview Survey (NHIS) and the National Health and Nutrition Examination

Survey (NHANES) [17]. Thus, the reflection of the these eminent surveys in the BRFSS guarantees

verification of the responses to questions in the BRFSS.

The questionnaire consists of three main parts: core component, optional BRFSS modules,

and state-added questions. First, the core component is a standard set of questions that all 53

participating regions ask to participants, such as current health conditions, potential risk behaviors,

and demography. However, optional BRFSS modules and state-added questions are not required to

be asked for all regions; they depend on the discretion of the corresponding state health departments.

For the sake of eliciting uniform and general inferences, we therefore decide to focus only on the core

component questionnaire for our study about depressive disorders among the U.S. adults in 2018.

5.2 Data Transformation

Rather than applying machine learning methods to the original data set, we aim to first produce a

cleaned, organized version of the BRFSS that contains valid responses only from the core component

questions. All the transformation process have been conducted by the statistical software R.

5.2.1 Data Cleaning & Wrangling

The core component questionnaire of the original BRFSS consists of 437,436 rows and 84 columns.

First, we remove some unnecessary columns of the original BRFSS that are not needed in our study,

such as the identifiers of participants. Examples of the respondent identifiers are listed in Table 5.1.

Code Name Definitions
STATE State State identification
IYEAR Interview year The year of interview conducted

PVTRESD1 Private Residence Is this a private residence?
CELLFON5 Cellular phone Is this your cell phone?

CADULT Adult identifier Are you 18 years of age or older?

Table 5.1: Removed participant identifiers from the BRFSS

Second, we convert all the remaining columns of the BRFSS to be either numerical or categorical.

Then, we set the following variable as the target variable of our study: ADDEPEV2 - (Ever told)

Do you have a depressive disorder, including depression, major or depression, and dysthymia?

This question consists of four possible answers from the participants who are asked: Yes, No, Don’t
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Know/Not Sure, and Refused. However, since the responses of ’Not Sure’ and ’Refused’ take up

only 0.49% of the total responses, we delete those two unnecessary responses from the column

’ADDEPEV2’ and select only the two binary responses (’Yes’ and ’No’).

Third, we remove irrelevant responses from the explanatory variables in the BRFSS. Each

explanatory variable has responses of either ’7’ or ’9’, which are not to be included in the data analysis

process [17]. Therefore, we examine all explanatory variables in the core component questionnaires

and delete these two responses in the columns of explanatory variables. In general, the answers 7,

77, or 7 represent the response of ’Don’t know/Not sure’, while 9 or 99 indicates ’Refused.’

Up to this point, the BRFSS consists of only the valid responses from the 84 columns of all the 17

core sections questionnaires. Then, we add the column of age from the calculated variables section.

Noticing that there are no missing values in the column of age in the BRFSS, we divide the entire

BRFSS responses by three categories of age groups for adults: young adults (18-39), middle-aged

adults (40 - 60), and older adults (61 - 85).

Lastly, we manipulate missing values in the BRFSS. Omitting all missing values in the data set

would result in reducing a vast size of the available responses, thus lacking generalization of certain

conclusions generated by this study. In order to cope with this problem, we employ an imputation

strategy: the missing values are replaced with the mean if the corresponding variable is numeric, or

with the mode if the variable is categorical. As the BRFSS data is randomly collected, we can assume

that those missing values are likely close to the mean or mode of the distribution of the columns

[3]. Therefore, we utilize the mean/mode imputation to handle with the missing values in the data.

Hence, we generate a finalized data set of use that consists of 238,219 rows and 85 columns.

5.2.2 Feature Selection

In the previous section, we produced a finalized data set of the BRFSS, which contains 84 explanatory

columns and 1 response column as a result. However, it is reasonable to assume that not all of 84

explanatory columns will be good predictors of the column ADDEPEV2. Using irrelevant or partially

relevant columns can negatively impact the performance of any predictive models. Therefore, we

investigate which explanatory variables out of the total 84 contribute most to the ADDEPEV2.

Feature selection algorithms automatically select explanatory variables that are most relevant

to a target variable. Hence, it improves the accuracy of prediction with less time complexity and

lower chances of overfitting [5]. One methodology is to calculate the feature importance of each



56 5. Data Description

explanatory variable available in the data, which represents the relative importance of each variable

when making a prediction [6].

To compute feature importance, we examine CART importance, which computes the Gini

importance scores of each variable available in the data and compares one with the others. We decide

on the largest score as it contributes most to predicting a response variable. The Gini importance

of an explanatory variable is defined as the total decrease in Gini impurities from splitting on the

variable, averaged over all trees [19]. Namely, if the total decrease in Gini impurities due to placing

the variable on a node increases, the importance of the variable increases. To find the importance

of each variable, we will use Scikit-learn which automatically implements its embedded function

feature_importances_when implementing a decision tree classifier.

5.2.2.1 Decision Trees

Feature selection for a decision tree can be readily performed by limiting the maximum depth of the

tree. In Scikit-learn, we use a parameter named max_depth of the function DecisionTreeClassifier

for limiting the depth of the tree clf, as described in the code line below:

clf = DecisionTreeClassifier(max_depth = 4, criterion = 'gini')

After computing the Gini impurity and importance scores of each explanatory variable in the data,

this code will build a binary decision tree that has a depth of 4. The selected variables, descriptions,

and importance values are presented in Tables 5.2 (young adult group), 5.3 (middle-aged adult

group), and 5.4 (older adult group).

5.2.2.2 Logistic Regression

Unlike decision trees, a logistic regression does not automatically perform feature selection when it

constructs a predictive model. Thus, we first determine to utilize the CART importance scores of

each explanatory variable selected by decision trees.

Then, we also perform a Chi-square test to observe an association between categorical variables

and a response variable ADDEPEV2 by examining the associated p-value of Chi-square statistic of

each categorical variable. We report that for the young adult group, all categorical variables from

Table 5.2 are relevant to the response variable ADDEPEV2, as their associated p-values are close to 0.

For the middle-age group, all from Table 5.3 but IMFVPLAC are related to the response variable. In

terms of the older adult group, all categorical variables in Table 5.4 turn out to have an association

with the ADDEPEV2.
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5.3 Explanatory Data Analysis (EDA)

Now, we perform exploratory data analysis about the relationships between some of the selected

explanatory variables and ADDEPEV2 for each adult group. All related tables and plots for EDA

procedures are presented in the Appendix A.

5.3.1 Young Adulthood (18 - 39)

First, 20% of the participants in young adulthood have been diagnosed with depressive disorders.

According to Table A.1, the participants who have depressive disorders appear to have, on average,

14 uncomfortable mental days during the past 30 days, while those who do not have depressive

disorders have nearly 10 uncomfortable mental days.

In terms of health status risks, the young adult participants diagnosed with depressive disorders

appear to have a higher proportion of the following variables: difficulties in making decision by

themselves, doing errands alone, and arthritis. Regarding demography, the young participants who have

been diagnosed with depressive disorders are more likely to be either unemployed or a homemaker,

and the higher proportion identify themselves as White. Lastly, the young adult participants who

have depressive disorders are much more likely to smoke more than 100 cigarettes in their life and

take HPV tests at least once.

5.3.2 Middle Adulthood (40 - 60)

According to the summary tables in the Appendix A, 19.9% of the middle-aged participants have

been diagnosed with depressive disorders. Those who suffer from depressive disorders have an

average of 14 days of uncomfortable mental status, while those who do not have an average of 10 days.

However, both groups of the middle-age participants have a comparable number of the alcohol

drinks in a month on average.

Also, the middle-aged participants with depressive disorders have higher proportion of having

difficulties in making decisions by themselves. In terms of demography, these adults have a higher

proportion of being unemployed, and they are less likely to be currently married. In addition, those

who have depressive disorders have a higher proportion of having arthritis and receiving HIV tests

at least once in their lifetime. However, the type of places for receiving a flu shot appears to have a

weak relationship with depressive disorders for this middle-age group.
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5.3.3 Old-age Adulthood (61 - 85)

15.2% of the old-aged participants answered that they have been diagnosed with depressive disorders.

The participants with depressive disorders have a monthly average of 13 days with uncomfortable

mental status, whereas those without feel an average of 11 days with uncomfortable mental status

during the past 30 days.

Like the young and middle adult groups, the old-aged participants who suffer from depressive

disorders are more likely to find difficulties in making decisions; suffer from pneumonia and arthritis;

receive sigmoidoscopy or colonoscopy exams; and have less access to healthcare services due to high

medical costs. For demographic attributes, the old-aged participants who have depressive disorders

tend to be divorced and/or separated. Also, they are less likely to be veterans, compared to those

who do not have depressive disorders.

Variable Definition Responses (Encoded) Gini Importance

MENTHLTH
# of bad mental days

during the past 30 days
Any positive integer

(1 - 30) 0.611

DECIDE
Difficulty of making

decision alone

Yes (1) / No (2)

0.177

DIFFALON
Difficulty of doing

errands alone 0.083

HAVARTH3
Arthritis, lupus,

or related illnesses 0.035

HPVTEST HPV test records 0.024

SMOKE100
Smoke

more than 100 0.015

EMPLOY1
Current

employment

Employed (1)
Unemployed (2)

Student (5)
Homemaker (6)

Retired (7)

0.013

RACE Race

White (1)
Black (2)

American Indian (3)
Asian (4)

Native Hawaiian (5)
Multiracial (6)
Hispanic (7)
Others (8)

0.012

USENOW3
Current use of

tobacco or snuff

Everyday (1)
Somedays (2)
Not at all (3)

0.0108

CHILDREN # of children Any positive integer 0.0107
WEIGHT2 Weight in pounds Any positive integer 0.008

Table 5.2: Selected variables by the CART feature importance, with the definition, responses, and
Gini importance value of each variable (young adult group)
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Variable Definition Responses (Encoded) Gini Importance

MENTHLTH
# of bad mental days

during the past 30 days
Any positive integer

(1 - 30) 0.700

DECIDE
Difficulty of making

decision alone Yes (1) / No (2) 0.181

HAVARTH3
Arthritis, lupus,

or related illnesses 0.039

EMPLOY1
Current

employment

Employed (1)
Unemployed (2)

Student (5)
Homemaker (6)

Retired (7)

0.029

AVEDRNK2
Average # of alcohol

drinks per month
Any positive

integer 0.015

IMFVPLAC
Type of place

for flu or vaccine shots

Doctor/Hospital (1)
Health department (2)

Community health center (3)
Non-medical spaces (4)

0.010

HIVTSTD6 HIV test records Yes (1)/No (2) 0.009

MARITAL Current marital status

Married (1)
Divorced (2)
Widowed (3)
Separated (4)

Never (5)
Unmarried couple (6)

0.008

Table 5.3: Selected variables by the CART feature importance, with the definition, responses, and
Gini importance value of each variable (middle-aged adult group)
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Variable Definition Responses (Encoded) Gini Importance

MENTHLTH
# of bad mental days

during the past 30 days
Any positive integer

(1 - 30) 0.762

DECIDE
Difficulty of making

decision alone Yes (1) / No (2) 0.141

HAVARTH3
Arthritis, lupus,

or related illnesses 0.020

MARITAL Current marital status

Married (1)
Divorced (2)
Widowed (3)
Separated (4)

Never (5)
Unmarried couple (6)

0.020

HADSIGM3
Sigmoidoscopy and

colonoscopy exam record
(intestine exams)

Yes (1)/ No (2) 0.017

SLEPTIM1
Average sleeping hours

per day Any positive integer 0.010

CHCCOPD1 Pulmonary or lung-related disease Yes (1)/No (2) 0.0094
DIABAGE2 Age when diabetes started Any positive integer 0.0093
VETERAN3 Veteran status Yes (1) / No (2) 0.006

MEDCOST
Healthcare inaccessibility
due to high medical costs Yes (1) / No (2) 0.004

Table 5.4: Selected variables by the CART feature importance, with the definition, responses, and
Gini importance value of each variable (old-aged adult group)



CHAPTER 6

Results

In this chapter, we examine the results of what decision trees and logistic regression select as the

determinants of depressive disorders for each adult group in the BRFSS sample. Also, we present

the results of prediction metrics of decision trees, logistic regressions, and support vector machines

for each group.

6.1 Decision Trees

Before constructing decision tree models, we first take 10% of the original data of each adult group

as a random sample. Then, we set the maximum tree depth as 4, thereby avoiding overfitting.

In the results of the decision trees, the blue leaf nodes represent people not diagnosed with

depressive disorders (No), while the brownish leaf nodes are people diagnosed with depressive

disorders (Yes). Also, the saturation of colors indicates the extent of Gini impurities of the responses

in each leaf node: the more saturated the color, the smaller Gini impurity the response is. We

notice that these inequalities ’≤ 1.5’ on certain nodes indicates Yes, and ’≥ 1.5’ means No, since all

categorical variables have values of either 1 (Yes) and 2 (No).

6.1.1 Young adults (18 - 39)

Figure 6.1 displays the decision tree of whether a young adult in the sample has been ever diagnosed

with depressive disorders, based on the features selected by the tree algorithm.

61
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Figure 6.1: The decision tree for the young adult group
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Table 6.1 presents all 16 decision rules of the decision tree, as shown in Figure 6.1. The rule

numbers of important decision rules are colored in red, as their Gini impurity scores are comparatively

low. Now, we examine the important rules for the young adult participants who are diagnosed with

depressive disorders in the sample.

According to rule 6, among the young participants who have 11 or fewer bad mental days,

feel difficulty in making decision, and suffer from arthritis or related illnesses, those who are not

employed (i.e., students, homemaker, retired, unemployed) are more likely to be diagnosed with

depressive disorders.

Also, we obtain an insight from rule 12 that for those who have more than 11 bad mental days,

decision-making difficulty, and errands-doing difficulty, those who have more than 11 children in

their household are more likely to be diagnosed with depressive disorders. In addition, as rules 15

and 16 show, depressive disorders can more likely to occur among those who have 12 or more bad

mental days, never snuffed, and have difficulty doing errands.

Therefore, we can conclude that the number of bad mental days, decision-making difficulty,

arthritis or related illnesses, employment status, tobacco and snuff records, errands-doing

difficulty, and the number of children in the household are most important factors of depressive

disorders among the young participants of the sample.



64
6.

R
esults

Rule #
Bad mental

days
Decision
difficulty

Arthritis
(muscle) Employment Race

Weight
(lbs)

Smoke >100
cigarettes? Snuff

Errands
difficulty

HPV
test Children Diagnosis # Yes # No

1 No No 165 720
2 < 10 No Yes No 29 45
3 Yes No 83 546
4 10 - 11 No No No 99 1552
5 Employed No 10 11
6 Yes Non-employed Yes 17 1
7 White No 51 53
8

≤ 11 Yes
No Non-white No 21 55

9 ≤ 159 No 0 4
10 > 159

Every
Some Yes Yes 2 0

11 ≤ 11 Yes 32 28
12

Yes
No

> 11 Yes 50 15
13 Yes Yes 68 52
14

> 11

No No No No 87 164
15 12 − 15 Never Yes Yes 14 6
16 > 15 Never Yes Yes 81 6

Table 6.1: The decision table for the young adult group (The most important rules are colored in red.)
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6.1.2 Middle-aged adults (40 - 60)

Figure 6.2 displays the decision tree of whether an individual in the middle-age adult group has

been ever diagnosed with depressive disorders. Table 6.2 presents some selected decision rules of

the decision tree, as displayed in Figure 6.2. Also, the rule numbers of important rules have been

colored in red.

As rule 8 illustrates, the participants in the middle-age group are more likely to be diagnosed

with depressive disorders if they have the following characteristics: have fewer than 11 bad mental

days; suffer from decision-making difficulty; currently retired or never employed; and have received

flu shot at non-doctor spaces (i.e., health departments, community health centers, schools, and

workplaces).

Furthermore, within the group of middle-age participants who have more than 11 bad mental

days in the past month, we find two meaningful results regarding depressive disorders diagnosis.

First, we focus on rule 9, in which the corresponding participants have difficulties making decisions

alone and are students, retired, or unable to work. If the respondents in this group have, on average,

9 or fewer alcohol drinks per month, then they are more likely to be diagnosed with depressive

disorders. Second, as rule 13 shows, we look at the group that does not have decision-making

difficulty. If the respondents in this group are unable to work and have 3.5 or fewer alcohol drinks,

then they are more likely to have depressive disorders.

Therefore, we can conclude that the number of bad mental days per month, decision-making

difficulty, current employment status, the number of alcohol drinks per month, and the places

of receiving flu shots are the most relevant factors of depressive disorders in most middle-age

participants in the sample.
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Figure 6.2: A decision tree for the middle-age adult group
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Rule #
Bad mental

days
Decision
difficulty

Arthritis
(muscle) Employment

Marital
status

Flu shot
place

# of alcohol
drinks in
a month

HIV
test Diagnosis # Yes # No

1 No No 151 612
2 ≤ 9 No Yes No 108 179
3 No No 188 2853
4 10 - 11 No Yes No 130 764
5 Married No 20 58
6

Once/currently
work Not-married Yes 42 40

7 Medical space Yes 47 46

8

< 11 Yes Never,
Retired

Health departments
Community health center

Non-medical spaces
Yes 21 2

9 ≤ 9 Yes 175 13
10 Yes Students,

retired, unable > 9 No 1 2
11 Yes Yes 85 63
12 Able to work No No 70 109
13 ≤ 3.5 Yes 54 14
14

> 11
No

Unable to work
> 3.5 No 0 6

Table 6.2: The decision table for the middle-aged adult group (The most important rules are colored in red.)
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6.1.3 Older adults (61-85)

Figure 6.3 displays the decision tree for the old-aged adult group of the sample. Also, Table 6.3

presents all decision rules shown in Figure 6.3.

Within the group of old-aged adults in the sample who have more than 11 bad mental days,

we can obtain two important results that indicate determinants of depressive disorders among the

group. First, rule 9 focuses on the respondents who have difficulties in making decisions alone and

suffer from diabetes before 72 years old. If the respondents in this group sleep on average 17 or fewer

hours per day, then they are more likely to be diagnosed with depressive disorders. In addition,

as rule 15 shows, we look at the group of old-aged participants who do not have decision-making

issues and who are separated, never married, or in an unmarried couple. If the respondents in this

group receive insufficient healthcare services due to high medical costs at least once in their lifetime,

then they are more likely to be diagnosed with depressive disorders. Therefore, we can conclude

that the number of bad mental days per month, decision-making issues, sleeping hours, the age

when diabetes has started, marital status, and healthcare inaccessibility due to high costs are the

most relevant factors of depressive disorders in most old-aged participants of the sample data of

the U.S. residents in 2018.
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Figure 6.3: A decision tree for the old-aged adult group
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Rule #
Bad mental

days
Decision
difficulty

Arthritis
(muscle)

Marital
status

Sleeping
hours

Veteran
status

Lung
illnesses

Diabetes
age

Intestine
exams

Healthcare
inaccess

(high
medical

costs)

Diagnosis # Yes # No

1 ≤ 1 No No 18 133
2 2 − 9 No No 187 471
3 Yes No 3 10
4 ≤ 9 Yes No Yes 47 34
5 Yes No 28 29
6 Yes No No 47 123
7 Yes No 240 2062
8

10 - 11
No No No 123 2565

9 ≤ 17 Yes 151 32
10 > 17 ≤ 72 No 0 3
11

Yes
> 72 No 0 3

12 Yes Yes 123 102
13

Married,
Divorced, Widowed No No 14 40

14 Yes No 1 2
15

> 11

No Separated, Never,
Unmarried couple No Yes 29 3

Table 6.3: The decision table for the old-aged adult group (The most important rules are colored in red.)
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6.2 Logistic Regression

6.2.1 Young adults (18 - 39)

Table 6.4 presents the summary of a logistic model for the young adults. This model was chosen

through removing variables with the largest p-value and comparing the one with a smaller number of

variables to the model with all variables from Table 5.2. Then, considering simplicity, misclassification

rate, and linearity, we decided that the logistic model in Table 6.4 is considered to be the best model

that predicts the depressive disorders among the young adults. This model includes all variables

from Table 5.2 except WEIGHT2 and SMOKE100. We will call this selected model as Myoung.

From the Wald tests for Myoung, the following variables are most statistically significant predictors

for depressive disorders among the young adults: the number of bad mental days, difficulty of

making decisions, employment status, race, arthritis, difficulty of doing errands alone, the number

of children, and HPV test records. All those variables are explained in Table 5.2.

In addition, from Table 6.4, we can interpret the results of some statistically significant variables

in Myoung. First, assuming that all other variables are constant for the young-aged group, we

interpret the results of the odds ratio for each significant predictor, as listed below. According to

this interpretation, young-age adult residents of the United States are most likely to have been

diagnosed with depressive disorders when they are a white homemaker; have arthritis; have

difficulty doing errands and making decisions alone; and have HPV test records. More children

and more bad mental health days slightly increase the likelihood of depressive disorders diagnosis.

• One day increase in the number of bad mental days during the past 30 days is associated with

5% higher odds of depressive disorders diagnosis.

• The odds of the onset of depressive disorders for people who have difficulty in making

decisions are 402% higher than the odds of the disorders for people who do not have.

• The odds of depressive disorders diagnosis for people who are homemaker and students are

57% and 24% higher than the odds of the disorders for those who are currently employed.

• Whites have the highest odds of depressive disorders. Specifically, Blacks, American Indians,

Asians, Native Hawaiians, and other racial groups have 46%, 70%, 41%, 48%, and 55% times

the odds of depressive disorders for Whites, respectively.

• The odds of the depressive disorders for people who have arthritis, lupus, or other related

illnesses are 153% higher than the odds of the disorders for those who do not.
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Variables Levels
Coef.

Estimate SE OR
95% CI
for OR z-test p-value

Bad mental days . 0.054 0.002 1.05 (1.052, 1.059) 32.1 2e-16
Decision
Difficulty

(No)
Yes 1.61 0.034 5.02 (4.7, 5.3) 47.1 2e-16

Employment
Status

(Employed)

Homemaker 0.45 0.04 1.57 (1.45, 1.70) 11.2 2e-16
Retired 0.16 0.05 1.17 (1.06, 1.29) 3.1 0.0019
Student 0.22 0.04 1.24 (1.15, 1.34) 5.4 7.02e-8

Unemployed 0.19 0.25 1.21 (0.73,0.95) 0.75 0.45

Race
(White)

Black -0.76 0.045 0.46 (0.43, 0.51) -17.1 2e-16
American Indian

Alaska Native -0.36 0.081 0.7 (0.59, 0.82) -4.4 9.76e-6

Asian -0.9 0.077 0.41 (0.35, 0.47) -11.7 2e-16
Native Hawaiian
Pacific Islanders -0.74 0.14 0.48 (0.36, 0.62) -5.3 1.15e-7

Multiracial -0.51 0.15 0.60 (0.44, 0.81) -3.3 0.0009
Hispanic -0.075 0.065 0.93 (0.81, 1.05) -1.1 0.25

Other -0.60 0.03 0.55 (0.51, 0.59) -17.1 2e-16
Arthritis

(No) Yes 0.93 0.04 2.53 (2.35, 2.72) 25.3 2e-16

Doing errands
alone
(No)

Yes 1.15 0.06 3.15 (2.82, 3.52) 20.3 2e-16

Snuff Use
(Everyday)

Some days 0.25 0.10 1.29 (1.05, 1.58) 2.4 0.015
Not at all 0.3 0.078 1.35 (1.16, 1.57) 3.85 0.0001

Children . 0.015 0.002 1.01 (1.01, 1.02) 9.1 2e-16
HPV Test

(No) Yes 0.78 0.025 2.18 (2.08, 2.29) 30.9 2e-16

Table 6.4: Coefficient estimate, standard error (SE), the odds ratio and its 95% CI, and results from
Wald-Test statistics in Myoung (Most statistically significant variables are marked as bold,
as presented in Table 5.2)

• The odds of the depressive disorders for people who have difficulties in doing errands alone

are 215% higher than the odds of the disorders for those who do not.

• One increase in the number of children is associated with 1% higher odds of the depressive

disorders.

• The odds of the depressive disorders for people who have HPV test records are 118% higher

than the odds for those who do not.

For simplicity, we interpret 95% confidence intervals for odds ratios of only two statistically

significant predictors. Holding all other variables constant, we are 95% confident that young adult

participants with decision-making difficulties will have between 370% and 430% higher odds of

the depressive disorders diagnosis than those without. Also, we are 95% confident that the young
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participants who have HPV test records will have between 108% and 129% higher odds of the

depressive disorder than those who do not.

We now assess Myoung. First, the linearity condition is satisfied because the empirical odds

ratio of both the number of bad mental days and children does not vary a lot, and all other

predictors are categorical. According to the data collection process in Chapter 5, randomness and

representativeness are also automatically met, as well as independence, since one’s depressive

disorders are not generally affected by the others. From the drop-in-deviance test, the corresponding

G-statistic is 10,318 and its associated p-value is 0, which means that Myoung predicts the depressive

disorders diagnosis of the young adults in the sample well. Finally, the misclassification rate of

Myoung is 16.45%. To be specific, the percentage of young adults who are predicted to have, but do

not have, depressive disorders is 2.4%, and the percentage of young adults who are predicted to not

have, but actually have, depressive disorders is 14.1%.

6.2.2 Middle-aged adults (40 - 60)

Table 6.5 presents the summary of the selected logistic model for the middle-aged adult participants.

This model was also chosen through repetitive procedures of removing variables with the largest

p-value and comparing the one with a smaller number of variables to the model with all variables

from Table 5.3. Then, considering simplicity, misclassification rate, and linearity, we decided that the

logistic model in Table 6.5 is the best that predicts the depressive disorders among the middle-aged

participants. This model includes all variables from Table 5.3 except AVEDRNK2. We now call the

model Mmiddle.

From the Wald tests for Mmiddle, the following variables are most statistically significant predictors

of depressive disorders of the middle-age group: the number of bad mental days, difficulty of

making decisions, employment status, arthritis, HIV test records, and marital status. All those

variables are explained in Table 5.3 . In addition, from Table 6.5 we can interpret the results of the

most statistically significant variables in Mmiddle. First, assuming that all other variables are constant

for the middle-age group, we interpret the results of the odds ratio for each significant predictor

as follows. According to the results, the middle-aged participants are most likely to have been

diagnosed with depressive disorders when they are unemployed, divorced individuals who have

arthritis, HIV test records, and difficulty making decisions alone. More days of bad mental health

per month slightly increase the likelihood of depressive disorders for the middle-aged adults.
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Variables Levels
Coef.

Efficient SE OR
95% CI
for OR z-test p-value

Bad mental days . 0.048 0.001 1.05 (1.046, 1.052) 32.88 2e-16
Decision
Difficulty

(No)
Yes 1.71 0.028 5.54 (5,25 5.86) 60.33 2e-16

Employment
Status

(Employed)

Homemaker 0.525 0.046 1.69 (1.54, 1.85) 11.49 2e-16
Retired 0.200 0.033 1.22 (1.12, 1.33) 4.49 6.95e-6
Student 0.512 0.13 1.67 (1.29, 2.14) 3.96 7.48e-5

Unemployed 0.762 0.026 2.14 (2.04,2.25) 29.53 2e-16

Marital Status
(Divorced)

Married -0.411 0.026 0.66 (0.63, 0.70) -16.03 2e-16
Never -0.242 0.034 0.78 (0.73, 0.84) -7.13 1e-12

Separated 0.077 0.053 1.08 (0.97, 1.20) 1.45 0.15
Unmarried

couple -0.296 0.058 0.74 (0.66, 0.83) -4.09 3.48e-7

Widowed 0.030 0.052 1.03 (0.93, 1.14) 0.575 0.56
Arthritis

(No) Yes 0.825 0.020 2.28 (2.19, 2.38) 40.41 2e-16

HIV test
(No) Yes 0.437 0.020 1.55 (1.49, 1.61) 22.11 2e-16

Flu shot
place

(Community
center)

Doctor
/Hospital -0.107 0.057 0.90 (0.80, 1.00) -1.87 0.06

Health
department -0.176 0.14 0.84 (0.63, 1.10) -1.25 0.21

Non-medical 0.144 0.06 1.15 (1.02, 1.30) 2.34 0.02

Table 6.5: Coefficient estimate, standard error (SE), the odds ratio and its 95% CI, and results from
Wald-Test statistics in Mmiddle (Most statistically significant variables are marked as bold,
as explained in Table 5.3)

• One day increase in the number of bad mental days during the past 30 days is associated with

5% higher odds of the depressive disorder diagnosis.

• The odds of depressive disorder diagnosis for the middle-aged participants who have difficulty

in making decisions are 454% higher than the odds of the disorders for people who do not

have.

• The unemployed people in the middle-age group have the highest odds of depressive disorders,

who are 114% higher than those who are employed. Specifically, homemaker, students, and

retired people have 69%, 67%, and 22% times higher odds of the depressive disorders than the

employed people, respectively.

• The divorced participants who are in their middle adulthood have the highest odds of

depressive disorder diagnosis. In particular, those who are never married, widowed, and

married have 78%, 74%, and 66%, respectively, the odds of depressive disorders of the divorced.
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• The odds of the depressive disorders for the middle-aged participants who have arthritis,

lupus, or other related illnesses are 128% higher odds of the disorders than those who do not.

• The odds of the depressive disorders for the middle-aged participants who have HIV test

records are 55% higher odds than those who do not.

Likewise, we interpret 95% confidence intervals for the odds ratios of only two significant

predictors. Holding all other variables constant for the middle-aged participants, we are 95%

confident that one day increase in the number of bad mental days is associated with an increase

in the odds of a depressive disorder diagnosis between 4.6% and 5.2% higher. Also, we are 95%

confident that the middle-aged participants who are unemployed will have between 104% and 125%

higher odds of the depressive disorder diagnosis than those who are employed.

We have identified that linearity condition is satisfied because the empirical odds ratio of the

number of bad mental days is fairly constant, and all other predictors are categorical. From the

drop-in-deviance test, the corresponding G-statistic is nearly 16,984 and its associated p-value is

0, which means that Mmiddle predicts depressive disorder diagnosis of the middle-age participants

in the sample data well. Finally, the misclassification rate of Mmiddle is 15.5%. To be specific, the

percentage of middle-aged adults from the sample who are predicted to have, but actually do not

have, depressive disorders is 2.3%, and the percentage of middle-aged adults who are predicted to

not have, but actually have, depressive disorders is 13.2%.

6.2.3 Older adults (61-85)

Table 6.6 presents the summary of a logistic model for the old-aged participants. This model was

chosen with the same procedures as Myoung and Mmiddle. Considering simplicity and linearity, we

decided that the model that includes all from Table 5.4 except SLEPTIM1 is the best model that

predicts depressive disorders diagnosis for the old-age group. We will call this model Mold.

From the Wald tests for Mold, the following variables are most statistically significant predictors

for the depressive disorder diagnosis among the older adults: the number of bad mental days,

difficulty of making decisions, the age when diabetes started, arthritis, marital status, intestine exams

experiences for colorectal cancer, healthcare inaccessibility due to high medical costs, lung illnesses,

and veteran status. All those variables are explained in Table 5.4. In addition, from Table 6.6, we can

interpret the results of statistically significant variables in Mold. Assuming that all other variables

are constant, we interpret the results of the odds ratio for some meaningful predictors as follows.

According to the interpretations, the old-aged participants are most likely to have been diagnosed
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with depressive disorders if they are married non-veterans who have decision-making difficulties,

suffer from arthritis and lung illnesses, and who have intestine-related exams but lack healthcare

accessibility due to medical costs. More bad mental days and lower ages at which diabetes started

slightly increase the likelihood of the depressive disorders diagnosis for this old-age group.

Variables Levels
Coef.

Estimate SE OR
95% CI
for OR z-test p-value

Bad mental days . 0.054 0.002 1.055 (1.051, 1.058) 32.1 2e-16
Decision
Difficulty

(No)
Yes 1.59 0.028 4.93 (4.66, 5.21) 56.99 2e-16

Diabetes . -0.0075 0.001 0.99 (0.989, 0.995) -4.88 1.1e-6

Marital
Status

(Divorced)

Married 0.532 0.026 1.70 (1.62, 1.79) 20.49 2e-16
Never 0.057 0.026 1.06 (1.01, 1.11) 2.23 0.025

Separated 0.485 0.0748 1.62 (1.40, 1.88) 6.48 9.2e-11
Unmarried

couple 0.371 0.039 1.45 (1.34, 1.56) 9.35 2e-16

Widowed 0.500 0.079 1.65 (1.41, 1.92) 6.29 3.3e-10
Arthritis

(No) Yes 0.660 0.020 1.93 (1.86, 2.01) 32.57 2e-16

Intestine Exams
(No) Yes 0.413 0.027 1.61 (1.43, 1.59) 15.23 2e-16

High Medical
Cost Difficulty

(No)
Yes 0.492 0.037 1.63 (1.52, 1.76) 13.26 2e-16

Lung Illnesses
(No) Yes 0.535 0.026 1.71 (1.62, 1.80) 20.33 2e-16

Veteran Status
(No) Yes -0.293 0.025 0.75 (0.71, 0.78) -11.63 2e-16

Table 6.6: Coefficient estimate, standard error (SE), the odds ratio and its 95% CI, and results from
Wald-Test statistics in Mold (Most statistically significant variables are marked as bold, as
explained in Table 5.4.)

• One day increase in the number of bad mental days during the past 30 days is associated with

5.5% higher odds of the depressive disorder diagnosis for the old-aged participants.

• The odds of the depressive disorders diagnosis for the old-aged participants who have difficulty

in making decisions are 393% higher odds of the disorders than people who do not have.

• One year increase in the age that the diabetes started is associated with 1% lower odds of the

depressive disorder diagnosis for the old-aged participants.

• The married people in the old-age group have the highest odds of depressive disorders.

Specifically, the widowed, separated, and unmarried couple have 65%, 62%, and 45% higher

odds of depressive disorders than the divorced, respectively.
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• The odds of the depressive disorders for the old-aged participants who have arthritis, lupus,

or other related illnesses are 93% higher odds of the disorders than those who do not.

• The odds of the depressive disorders for the old-aged participants who have experienced

intestine exams for colorectal cancer are 61% higher odds than those who do not.

• The odds of the depressive disorders for the old-aged participants who have healthcare

inaccessibility due to high medical costs are 63% higher odds than those who do not.

• The odds of the depressive disorders for the old-aged participants who have lung-related

illnesses are 71% higher odds than those who do not.

• The odds of the depressive disorders for the old-aged veterans are 75% the odds for non-

veterans.

Likewise, we interpret 95% confidence intervals for odds ratios of two selected predictors.

Holding all other variables constant for the old-aged participants, we are 95% confident that people

who have healthcare inaccessibility due to economic hardships will have between 52% and 76%

higher odds of a depressive disorder diagnosis than those who do not have. Also, we are 95%

confident that one day increase in the number of bad mental days is associated with an increase in

the odds of the depressive disorder diagnosis between 5.1% and 5.8% higher.

To assess Mold, we have identified that linearity condition is satisfied because the empirical odds

ratio of the following two numeric variables - the number of bad mental days and the age of diabetes

- turns out to be fairly constant, and all other predictors are categorical. The G-statistic is nearly 9,450

and its associated p-value is 0, so Mold predicts the depressive disorders diagnosis of the old-aged

participants in a good manner. Finally, the misclassification of Mold is 13.92%. To be specific, the

percentage of old-aged participants who are predicted to have, but do not have, depressive disorders

is 1.2%, and the percentage of old-aged participants who are predicted to not have, but actually have,

depressive disorders is 12.7%.

6.3 PredictionMetrics

Before making and evaluating the prediction tasks that the three methods perform for each adult

group, we randomly split the data of each group into 70% of the training set and the remaining 30%

into the testing set.
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6.3.1 Decision Trees

We present the prediction metrics of decision tree models for each of the three adult groups, by using

the following six metrics: confusion matrix, accuracy, precision, recall, F1 scores, and ROC curve.

6.3.1.1 Young adults

Predicted No Predicted Yes
Actual No 1354 58
Actual Yes 228 104

Table 6.7: The confusion matrix of the decision tree model (young adult group)

Table 6.7 is the confusion matrix of the decision tree that predicts the young adult group of the

BRFSS data sample. According to the table, among the young adult participants in the sample, 77.6%

of people who have not been diagnosed with depressive disorders are correctly predicted (true

negatives), while the remaining 3.3% are wrongly predicted as those who have depressive disorders

(false positives). In contrary, 13.1% of people who have been suffering from depressive disorders are

predicted as those who have not (false negatives), whereas the other 5.9% are correctly predicted

(true positives). Considering the medical setting where false diagnosis of actual patients would result

in serious issues, we focus on the number of false negatives in Table 6.7 that would affect the value of

recall. Furthermore, the accuracy of this decision tree model is then
( 1354 + 104

1354 + 58 + 228 + 104

)
= 0.8355,

which indicates good performance of the tree model, given that the tree predicts the depressive

disorders among the young adult group of the U.S. adult respondents.

Precision Recall F1 score
"No" 0.86 0.96 0.90
"Yes" 0.64 0.31 0.42

macro average
accuracy 0.75 0.64 0.66

weighted average
accuracy 0.82 0.84 0.81

Table 6.8: Classification report of the decision tree model (young adult group)

Second, we examine the classification report as presented in Table 6.8, which shows the three

metrics for whether a young adult has been diagnosed with depressive disorders. Notice that the

proportion of people who are diagnosed with depressive disorders in this sample is lower than those

who are not. Hence, we look at the weighted average accuracy of each metrics score at any situation

that encompasses skewness of one category in a response variable. Then, we confirm that weighted
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precision, recall, and F1 scores are all above 0.80, which indicates the acceptable quality of prediction

that the tree model made for the disorders among the U.S. young adults.

Lastly, as presented in Figure 6.4, the ROC curve has its AUC score of 0.78, which maintains our

confirmation that the decision tree model, which is pre-pruned by limiting the number of tree depth

to avoid overfitting issues, predicts depressive disorder diagnosis among the young age group of

the U.S. adult residents in 2018 in an effective manner.

Figure 6.4: ROC curve of the decision tree model (young adult group)

6.3.1.2 Middle-aged adults

Table 6.9 is the confusion matrix of the decision tree for the middle-age group of the BRFSS data

sample. Likewise, we interpret the table as follows: among the middle-aged adults in the sample,

75.9% of people who have not been diagnosed with depressive disorders are correctly predicted

(true negatives), while the remaining 4.2% are wrongly predicted as those who have been diagnosed

with depressive disorders (false positives). Also, 11.2% of people who have been suffering from

depressive disorders are predicted as those who have not (false negatives), whereas the other 8.7%

are correctly predicted (true positives). Furthermore, the accuracy of the decision tree model is then( 1947 + 222
1947 + 108 + 288 + 222

)
= 0.8456, which indicates good performance of the tree model in terms of

accuracy.

Predicted No Predicted Yes
Actual No 1947 108
Actual Yes 288 222

Table 6.9: The confusion matrix of the decision tree model (middle-aged adult group)
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Second, Table 6.10 shows the three prediction metrics within the middle-age group. As the young

adults shows, the proportion of middle-aged adults who are diagnosed with depressive disorders

is much lower than those who are not. Thus, we focus on the weighted average accuracy of each

metrics score. Then, we confirm that the weighted precision, recall, and F1 scores are all above 0.83,

which indicates the good quality of predictions that the tree model made for the disorders among

the U.S. middle-aged adults.

Precision Recall F1 score
"No" 0.87 0.95 0.91
"Yes" 0.67 0.44 0.53

macro average
accuracy 0.77 0.69 0.72

weighted average
accuracy 0.83 0.85 0.83

Table 6.10: Classification report of the decision tree model (middle-aged adult group)

Lastly, Figure 6.5 shows that the ROC curve has its AUC score of 0.80, which confirms that our

selected, pruned decision tree model predicts depressive disorder diagnosis among the middle-age

group of the U.S. adults in an acceptable manner.

Figure 6.5: ROC curve of the decision tree model (middle-aged adult group)

6.3.1.3 Older adults

Finally, Table 6.11 is the confusion matrix of the decision tree for the older adults. We observe that

82.5% of people who have not been diagnosed with depressive disorders are correctly predicted

(true negatives), while the remaining 2.9% are wrongly predicted as those who have been diagnosed

with depressive disorders (false positives). Also, 10.1% of people who have been suffering from

depressive disorders are predicted as those who have not (false negatives), whereas the other 4.4%
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are correctly classified and predicted (true positives). Furthermore, the accuracy of the decision tree

model is then
( 2343 + 126

2343 + 82 + 288 + 126

)
= 0.8697, which indicates good prediction of the tree model

for depressive disorder diagnosis among the old-age group.

Predicted No Predicted Yes
Actual No 2343 82
Actual Yes 288 126

Table 6.11: The confusion matrix of the decision tree model (old-aged adult group)

Precision Recall F1 score
"No" 0.89 0.97 0.93
"Yes" 0.61 0.30 0.41

macro average
accuracy 0.75 0.64 0.67

weighted average
accuracy 0.85 0.87 0.85

Table 6.12: Classification report of the decision tree model (old-aged adult group)

Furthermore, Table 6.12 shows the three prediction metrics for the tree of the old adults. Again,

the proportion of the group of old-aged people who are diagnosed with depressive disorders is

lower than those who are not. Therefore, we focus on the weighted average accuracy of each metrics

score. Then, we confirm that the weighted precision, recall, and F1 scores are all above or equal to

0.85, which indicates good prediction of the tree model regarding the disorder diagnosis among the

U.S. older adults.

Lastly, Figure 6.6 shows that the ROC curve has its AUC score of 0.77, which proves that our

chosen decision tree model with a limitation on the number of tree depth, predicts depressive

disorders diagnosis of the U.S. older adults in an acceptable manner.

Figure 6.6: The ROC curve of the decision tree model (old-aged adult group)
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6.3.2 Logistic Regression

We present prediction metrics of three logistic regression models for the three adult groups. In

order to do so, we first take 10% of the entire data for each adult group, thus creating three random

samples. Then, we randomly split each of the three samples into 70% of the training set and the

remaining 30% into the testing set. Notice that the results from misclassification rates for each group

that have been presented in the former section do not match the results from the confusion matrices

in this section. We use the testing set of the sample for computing the confusion matrix in this

section, while the misclassification rates for each adult group in the former section were calculated

by using the entire data set for each group.

6.3.2.1 Young adults

Predicted No Predicted Yes
Actual No 1370 42
Actual Yes 235 97

Table 6.13: The confusion matrix of the logistic model Myoung (young adult group)

Table 6.13 is the confusion matrix of the logistic model Myoung that predicts the depressive

disorders diagnosis among the young adult group sample. We see that 78.5% of people who have

not been diagnosed with depressive disorders are correctly predicted (true negatives), while the

remaining 2.4% are wrongly predicted as those who have depressive disorders (false positives).

In contrary, 13.5% of people who have been suffering from depressive disorders are predicted as

those who have not (false negatives), whereas the other 5.6% are correctly predicted (true positives).

Furthermore, the accuracy of this logistic model Myoung is then
( 1370 + 97

1370 + 42 + 235 + 97

)
= 0.8412,

which indicates good prediction, given that Myoung predicts depressive disorder diagnosis among

the young group of the U.S. adult respondents.

Precision Recall F1 score
"No" 0.85 0.97 0.91
"Yes" 0.70 0.29 0.41

macro average
accuracy 0.78 0.63 0.66

weighted average
accuracy 0.82 0.84 0.81

Table 6.14: Classification report of the logistic model Myoung (young adult group)

Second, we examine the classification report scores as presented in Table 6.14. Notice that the

proportion of young adult participants who are diagnosed with depressive disorders in the sample
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is lower than those who are not. Hence, we look at the weighted average accuracy of each metrics

score, for our data sample is imbalanced with one category in the response variable. Considering the

medical setting where false diagnosis of actual patients could result in serious issues, we similarly

focus on the number of false negatives in Table 6.13 that would effect in the value of recall. Then, we

confirm that weighted precision, recall, and F1 scores are all above 0.80, which indicate the good

quality of prediction that the Myoung performed.

As presented in Figure 6.7, the ROC curve has its AUC score of 0.74, which maintains our

confirmation that Myoung predicts depressive disorder diagnosis among the young adult group of

the U.S. residents from the 2018 BRFSS sample reasonably well.

Figure 6.7: ROC curve of the logistic model (young adult group)

6.3.2.2 Middle-aged adults

Predicted No Predicted Yes
Actual No 1995 60
Actual Yes 335 175

Table 6.15: The confusion matrix of the logistic model Mmiddle (middle-aged adult group)

Table 6.15 is the confusion matrix of the logistic model Mmiddle that predicts depressive disorders

among the middle-aged adults in the sample. In this setting, 77.8% of people who have not been

diagnosed with depressive disorders are correctly predicted (true negatives), while the remaining

2.3% are wrongly predicted as those who have depressive disorders (false positives). In contrary,

13.1% of people who have been suffering from depressive disorders are predicted as those who have

not (false negatives), whereas the other 6.8% are correctly predicted (true positives). Furthermore,
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Precision Recall F1 score
"No" 0.86 0.97 0.91
"Yes" 0.74 0.34 0.47

macro average
accuracy 0.80 0.66 0.69

weighted average
accuracy 0.83 0.85 0.82

Table 6.16: Classification report of the logistic model Mmiddle (middle-aged adult group)

the accuracy of this logistic model Mmiddle is then
( 1995 + 175

1995 + 60 + 335 + 175

)
= 0.8460, which indicates

good prediction of the model.

Next, we look at the classification report of Mmiddle, as shown in Table 6.16. Likewise, we look at

the weighted average accuracy of each metrics score, for our middle-age group data is also skewed

to one category in the response variable. Then, since the weighted precision, recall, and F1 scores are

around or above 0.82, Mmiddle shows good prediction for the disorders among the U.S. middle-aged

adults in the sample. As presented in Figure 6.8, the ROC curve has its AUC score of 0.73, thus Mmiddle

predicts depressive disorder diagnosis among the middle-age group of the U.S. adult residents from

the 2018 BRFSS in a fair manner.

Figure 6.8: ROC curve of the logistic model Mmiddle (middle-aged adult group)

6.3.2.3 Older adults

Predicted No Predicted Yes
Actual No 2387 38
Actual Yes 324 90

Table 6.17: The confusion matrix of the logistic model Mold (old-aged adult group)
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Table 6.17 is the confusion matrix of the logistic model Mold that predicts depressive disorders

of the older adults in the sample. Interpreting the table, we claim that 84.1% of people who have

not been diagnosed with depressive disorders are correctly predicted (true negatives), while the

remaining 13.4% are wrongly predicted as those who have depressive disorders (false positives). In

contrary, 11.4% of people who have been suffering from depressive disorders are predicted as those

who have not (false negatives), whereas the other 3.2% are correctly predicted (true positives). Also,

the accuracy of this logistic model Mold is then
( 2387 + 90

2387 + 38 + 324 + 90

)
= 0.8725, which indicates its

good performance in predicting the depressive disorders among the older adults.

Precision Recall F1 score
"No" 0.88 0.98 0.93
"Yes" 0.70 0.22 0.33

macro average
accuracy 0.79 0.60 0.63

weighted average
accuracy 0.85 0.87 0.84

Table 6.18: Classification report of the logistic model Mold (old-aged adult group)

Figure 6.9: ROC curve of the logistic model Mold (old-aged adult group)

In Table 6.18, we look at the weighted average accuracy of each metrics score, for our old-age

group data is also imbalanced. Since the weighted precision, recall, and F1 scores are around or

above 0.84, Mold shows a good prediction for the disorders among the U.S. older adults in the sample.

As presented in Figure 6.9, the ROC curve has its AUC score of 0.71, thus Mold predicts the depressive

disorders among the old-age group of the U.S. adult residents from the 2018 BRFSS in an effective

manner.
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6.3.3 Support VectorMachine Classifiers (SVMC)

First, we take 10% of the entire data for each adult group to make three samples for the three adult

groups and normalize the samples. Then, we use a grid-search algorithm to find the optimized

parameters of the SVMCs that provide the best balanced accuracy score for each adult group.

6.3.3.1 Young adults

The SVMC that predicts the depressive disorders diagnosis among the U.S. young adults in the

sample have the following optimized tuning parameters, as presented in Table 6.19. Hence, the

RBF-kernel SVMC with the optimized tuning hyperparameters C = 10 and γ = 0.01 produces the

best balanced accuracy scores for the SVMC.

C γ kernel function
10 0.01 Radial Basis Function (RBF)

Table 6.19: The optimized parameters of the SVMC for young adult group)

Predicted No Predicted Yes
Actual No 1323 89
Actual Yes 217 115

Table 6.20: The confusion matrix of the SVMC model (young adult group)

Table 6.20 is the confusion matrix of the optimized SVMC for the young adult sample. First,

75.9% of people who have not been diagnosed with depressive disorders are correctly predicted (true

negatives), while the remaining 5.1% are wrongly predicted as those who have been diagnosed with

depressive disorders (false positives). Also, 12.4% of people who have been suffering from depressive

disorders are predicted as those who have not (false negatives), whereas the remaining 6.6% are

correctly predicted (true positives). Then, the accuracy of prediction is
( 1323 + 115

1323 + 89 + 217 + 115

)
=

0.8245.

Precision Recall F1 score
"No" 0.86 0.94 0.90
"Yes" 0.56 0.35 0.43

macro average
accuracy 0.71 0.64 0.66

weighted average
accuracy 0.80 0.82 0.81

Table 6.21: Classification report of the optimized SVMC model (young adult group)
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In addition, Table 6.21 provides the prediction metric scores of this optimized SVMC. The

weighted average scores of all precision, recall, and f1 score are around or above 0.80, which shows

a good performance of the SVMC in this prediction task. Lastly, Figure 6.10 shows that the ROC

curve of this SVMC has its AUC score of 0.74, which confirms that our optimized SVMC predicts

depressive disorders diagnosis among the U.S. young adults of the sample in an acceptable manner.

Figure 6.10: ROC curve of the optimized SVMC model (young adult group)

6.3.3.2 Middle-aged adults

The optimized parameters of the SVMC that predicts the depressive disorders among the U.S. middle-

aged adults are presented in Table 6.22. The RBF-kernel function with the tuning hyperparameters

C = 10 and γ = 0.01 produces the best balanced accuracy scores for the SVMC.

C γ kernel function
10 0.01 Radial Basis Function (RBF)

Table 6.22: The optimized parameters of the SVMC for middle-aged adult group)

Predicted No Predicted Yes
Actual No 1900 155
Actual Yes 288 222

Table 6.23: The confusion matrix of the optimized SVMC model (middle-aged adult group)

Table 6.23 is the confusion matrix of the optimized SVMC for the random sample of the middle-

aged adults. First, 74.1% of people who have not been diagnosed with depressive disorders are

correctly predicted (true negatives), while the remaining 6% are wrongly predicted as those who

have been diagnosed with depressive disorders (false positives). Also, 11.2% of people who have

been suffering from depressive disorders are predicted as those who have not (false negatives),
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whereas the remaining 8.7% are correctly predicted (true positives). The accuracy score of the

prediction made by this SVMC is then
( 1900 + 222

1900 + 155 + 288 + 222

)
= 0.8273.

Precision Recall F1 score
"No" 0.87 0.92 0.90
"Yes" 0.59 0.44 0.50

macro average
accuracy 0.73 0.68 0.70

weighted average
accuracy 0.81 0.83 0.82

Table 6.24: Classification report of the optimized SVMC model (middle-aged adult group)

Table 6.24 provides the prediction metrics of this optimized SVMC for the middle-aged adults.

The weighted average scores of all precision, recall, and f1 score are around or above 0.81, which

demonstrates a good quality of prediction that this optimized SVMC performed. Lastly, Figure 6.11

shows that the ROC curve of the SVMC has its AUC score of 0.78. Therefore, our optimized SVMC

predicts depressive disorders diagnosis among the U.S. middle-aged adult residents in an effective

manner.

Figure 6.11: The ROC curve of the optimized SVMC model (middle-aged adult group)

6.3.3.3 Older adults

The parameters of this optimized SVMC that predicts depressive disorders among the U.S. older

adults from the sample are presented in Table 6.25. The RBF function with the tuning hyperparameters

C = 100 and γ = 0.001 produces the best balanced accuracy scores for the SVMC.

Table 6.26 is the confusion matrix of the optimized SVMC for the old-aged adults in the sample.

First, 82.7% of people who have not been diagnosed with depressive disorders are correctly predicted

(true negatives), while the remaining 2.7% are wrongly predicted as those who have been diagnosed
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C γ kernel function
100 0.001 Radial Basis Function (RBF)

Table 6.25: The optimized parameters of the SVMC for old-aged adult group)

with depressive disorders (false positives). Also, 11.1% of people who have been suffering from

depressive disorders are predicted as those who have not (false negatives), whereas the other 3.5%

are correctly predicted (true positives). Then, the accuracy score of predictions made by this SVMC

for the older adults is
( 2347 + 99

2347 + 78 + 315 + 99

)
= 0.8616.

Predicted No Predicted Yes
Actual No 2347 78
Actual Yes 315 99

Table 6.26: The confusion matrix of the SVMC model (old-aged adult group)

Precision Recall F1 score
"No" 0.88 0.97 0.92
"Yes" 0.56 0.24 0.34

macro average
accuracy 0.72 0.60 0.63

weighted average
accuracy 0.83 0.86 0.84

Table 6.27: Classification report of the optimized SVMC model (old-aged adult group)

Figure 6.12: ROC curve of the optimized SVMC model (old-aged adult group)

Table 6.27 provides the prediction metrics of this optimized SVMC. Likewise, the weighted

average scores of all precision, recall, and f1 score are around or above 0.83, which proves a good

performance of this SVMC in this prediction task. Lastly, Figure 6.12 shows that the ROC curve has

its AUC score of 0.73. Hence, the results confirm that our optimized SVMC predicts depressive

disorder diagnosis among the U.S. old-aged residents in a good manner.
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Summary & Discussion

In this chapter, we summarize and discuss the important findings from the previous chapter.

First, we compare and discuss our interpretations of the characteristics of U.S. adults diagnosed

with depressive disorders, based on both decision trees and logistic regression models for each

adult group. Then, we compare the performance of the three methods as predictors of depressive

disorders diagnosis for each of the three adult groups.

7.1 Factor Discovery

7.1.1 Young adults

Decision tree Logistic regression
- # of bad mental days per month (↑)

- Decision-making issues (Yes)
- Arthritis or related illnesses (Yes)

- Difficulty of doing errands alone (Yes)
- # of children in household (↑)

- Employment status
(student, homemaker,

unemployed)
- Tobacco & Snuff history (Yes)

- Employment status
(student, homemaker)

- Race (White)
- HPV test records (Yes)

Table 7.1: The most important variables for the young adult group, selected by decision trees and
logistic regression: when holding all other conditions constant, categories in parentheses
for each variable in the table are relevant factors that increase the likelihood of a
depressive disorders diagnosis for the young adults.

Both the decision tree model and the logistic regression model (’Myoung’) present that the following

five variables are relevant factors of the depressive disorders diagnosis among the U.S. young

adult group in the 2018 BRFSS sample: the number of bad mental days, decision-making difficulty,

90
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arthritis, difficulty of doing errands alone, and the number of children in the household. Also, both

methods select the current employment status of student and homemaker as another factor, but the

only difference is that the decision tree model additionally picks an unemployed status. This means

that stability in employment status can impact a young adult’s mental state and have a relationship

with their likelihood of depressive disorders.

In addition, the decision tree selects tobacco and snuff history as another potential deciding

variable, while the Myoung selects race and HPV test records. One interesting finding can be made in

terms of HPV test records. It is widely known that the HPV test is the health exam for women’s

cervical cancer and that HPV is a serious sexually transmitted disease (STD) among the young-adult

women. We observe how stressful it is to take the HPV test for women due to the social stigma

around HPV, which may have an association with women’s depressive disorders diagnosis.

Hence, we confirm that an individual’s overall health status, including physical and mental

conditions, demography, use of preventive health services and risk behaviors, impact the diagnosis

of depressive disorders among the young adults.

7.1.2 Middle-aged adults

Decision tree Logistic regression
- # of bad mental days per month (↑)

- Decision-making issues (Yes)
- Employment status

(homemaker, students, retired, unemployed)
- Flu shot places

(health departments,
community health centers,
schools and workplaces)

- # of alcohol drinks per month (↓)

- Arthritis (Yes)
- Marital status (divorced)

- HIV test records (Yes)

Table 7.2: The most important variables for the middle-aged adult group, selected by decision tree
and logistic regression: when holding all other conditions constant, categories in
parentheses for each variable in the table are relevant factors that increase the likelihood
of a depressive disorders diagnosis for the middle-aged adults.

The decision tree model and the logistic regression model Mmiddle select the number of bad mental

days per month and decision-making difficulty as the important variables of depressive disorders

diagnosis for the middle-aged adults in the 2018 BRFSS sample. We observe that an individual’s

mental states impact their depressive disorders diagnosis. Also, the two methods commonly select
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the current employment status of all categories but employed as another determinant. Since middle-

aged adults are usually in the range of working ages, having jobs with monetary compensation

would impact the depressive disorders diagnosis for this adult group.

On top of that, the decision tree selects the average alcohol consumption per month and the type

of flu shot place as important determinants. On the other hand, Mmiddle considers arthritis, marital

status, and HIV test records as important. We can provide additional insights into some of these

results. First, a middle-aged adult’s divorced status of marriage turns out to have the strongest

relationship with their depressive disorders diagnosis. Hence, staying married is considered as the

important feature of lives for the middle-aged adults from this sample data.

Second, HIV test records can determine the depressive disorders diagnosis for the middle-aged

adult group. There exists harsh stigma around the HIV and AIDS all over the world, and no perfect

treatments have been developed for the diseases. Therefore, the incurable nature of and negative

perspective toward HIV and AIDS can impact the depressive disorders diagnosis for those in this

adult group.

Lastly, non-doctor spaces such as health departments, community centers, workplaces and

schools typically provide flu shots at lower costs. Hence, we reasonably assume that the impact

of economic inequality on healthcare services has a certain relationship with depressive disorders

diagnosis among the middle-aged adults in the sample.

7.1.3 Older adults

Decision tree Logistic regression
- # of bad mental days per month (↑)

- Decision-making issues (Yes)
- Healthcare inaccessibility due to high costs (Yes)

- The age when diabetes started (<72, ↓)

- Marital status
(separated, never married,

unmarried couple)
- Sleeping hours (<17)

- Marital status (non-divorced)
- Arthritis (Yes)

- Veteran status (No)
- Intestine-related exams (Yes)
- Lung-related illnesses (Yes)

Table 7.3: The most important variables for the old-aged adult group, selected by decision tree and
logistic regression: when holding all other conditions constant, categories in parentheses
for each variable in the table are relevant factors that increase the likelihood of a
depressive disorders diagnosis for the older adults.

Both the decision tree and the logistic regression model Mold select the following variables as

determinants of the depressive disorders diagnosis for the older adults in the 2018 BRFSS sample:
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the number of bad mental days per month, decision-making difficulty, healthcare inaccessibility due

to high costs, and the age when diabetes started. Similar to the young and middle-age groups, we

confirm that older adults’ mental health states are highly associated with the depressive disorders

diagnosis. Also, we can assume that there is healthcare inequity among those in the older group

because of high medical costs. Thus, we gain an insight into the impact of individuals’ economic

status on the quality of medical services among the U.S. older adults in 2018.

Furthermore, both methods state that when an older adult’s diabetes starts at lower ages,

particularly before 72, they have a higher likelihood of being diagnosed with depressive disorders.

In addition, the two methods select the current marital status as another common factor, but the

difference is that the decision tree picks a status of separated, never, or unmarried couple as the

determinant, while the Mold selects all except divorced.

Besides those attributes stated above, the tree model chooses the average sleeping hours per

day, while Mold picks arthritis, veteran status, intestine exams, and lung-related illnesses. Then, we

examine some of those variables that were selected from these two methods. First, an older adult’s

non-veteran status has a relationship with their depressive disorders diagnosis, and we may guess

that the U.S. governments provides some special care and priorities for the old-aged veterans, which

highly impacts their mental states.

In addition, we imply that people’s having an experience of intestine screening to check any

tumor or colorectal cancer represents their usage of preventive services. Then, we can reasonably

state that the older adults who had screening exams for preventing colorectal cancers are slightly

more likely to be diagnosed with depressive disorders. More importantly, people’s active usage

of preventive care services increases their access to medical services, including mental healthcare.

The older generation, in general, tends to rarely access mental healthcare services, or even related

medical services, due to social stigma around a mental disorder diagnosis. If the old-aged adults

have more frequent access to medical services, they are more likely to receive mental healthcare

services, thereby increasing their likelihood of depressive disorder diagnosis.

7.1.4 Comparison to Literature Review

Our findings indicate that for all adult groups, people’s physical and mental well-being, demography,

healthcare access, and some health-related risk behaviors, such as high frequency of tobacco use,

have significant relationships with their depressive disorder diagnosis. Those results show similar

viewpoints with the two research papers presented in Chapter 1. However, our study presents
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the lower alcohol drinks per month as the relevant factor, which is opposite to the result from the

research paper [22]. Also, our findings suggest the importance of one additional factor - the use of

preventive services such as intestine-related exams for tumor screening.

7.2 Prediction Evaluation

7.2.1 Young adults

In Table 7.4, we observe that logistic regression performs better in terms of accuracy than other two

methods, but it has comparable scores with the decision tree in precision, recall, and F1 score. But,

the tree has the highest AUC values. Considering recall and F1 scores, we conclude that both the

decision tree model and logistic regression predict the depressive disorders diagnosis among the

young adults of the BRFSS sample in the best manner.

Accuracy Precision Recall F1 score AUC
Decision tree 0.836 0.82 0.84 0.81 0.78

Logistic regression 0.841 0.82 0.84 0.81 0.74
Support vector machine 0.825 0.80 0.82 0.81 0.74

Table 7.4: Comparison of classification metrics among the three methods (young adult group)

7.2.2 Middle-aged adults

In Table 7.5, we observe that the logistic regression has slightly better accuracy than others, but it

shows comparable performance with the decision tree model in terms of precision and recall. Also,

the decision tree has the highest AUC value among the three methods.

Accuracy Precision Recall F1 score AUC
Decision tree 0.845 0.83 0.85 0.83 0.80

Logistic regression 0.846 0.83 0.85 0.82 0.73
Support vector machine 0.827 0.81 0.83 0.82 0.78

Table 7.5: Comparison of classification metrics among the three methods (middle-aged adult group)

7.2.3 Older adults

In Table 7.6, we observe that except accuracy, the decision tree outperforms or is on parallel with the

logistic regression in terms of precision, recall, F1 score, and AUC values. However, the tree shows

comparable accuracy scores with the other two methods.
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Accuracy Precision Recall F1 score AUC
Decision tree 0.870 0.85 0.87 0.85 0.77

Logistic regression 0.872 0.85 0.87 0.84 0.71
Support vector machine 0.862 0.83 0.86 0.84 0.73

Table 7.6: Comparison of classification metrics among the three methods (old-aged adult group)

Lastly, we observe that support vector machine classifiers show slightly lower scores for each

metric in all adult groups, compared to the decision trees and logistic regression models. Considering

that there was no feature selection process before building support vector machines models, we can

recognize how powerful this classifier is, which uses all of the 84 explanatory variables without any

pre-processing steps and generates comparable performance in prediction tasks.



CHAPTER 8

Conclusion & FutureWorks

We have created three different models for each adult group using supervised machine learning

algorithms. Hence, we have achieved the two objectives of our research. Using the statistical and

machine learning methods, we first discovered factors about health risk behaviors and societal

attributes of depressive disorders for each group, and then we constructed and evaluated predictive

models by comparing several metric scores.

First, we have comprehensively examined that the number of bad mental days and decision-

making difficulty are the two most important variables for the depressive disorders diagnosis

across all adult groups. Second, one’s demographic attributes may accelerate the risk of depressive

disorders diagnosis among the U.S. adult residents in 2018: the number of children in household

and race for young adults; employment status for young and middle-aged adults; marital status for

middle-aged and older adults; and veteran status for older adults.

In terms of health states and risk behaviors, the following factors turns out to be important

determinants of depressive disorders in U.S. adults: arthritis for all age groups; difficulty of doing

errands alone and tobacco use for young adults; the monthly average number of alcohol drinks

for middle-aged adults; and the average sleeping hours, the age when diabetes started, and lung

illnesses for older adults. Furthermore, individuals’ healthcare access and use of preventive services

can be a determinant of depressive disorders among the adults in the U.S., specifically, HPV test

records for young adults; the type of flu shot places and HIV test records for middle-aged adults;

and intestine-related exams for tumor screening and healthcare inaccessibility due to medical costs

for older adults.

Finally, we have found that both decision trees and logistic regression produce similar quality of

prediction performance, particularly accuracy scores, and agree on selecting important factors in
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common that can impact risks of depressive disorders diagnosis. Also, support vector machine clas-

sifiers have shown comparable performance with the other two methods, but they lack transparency

as to what factors influence the prediction of depressive disorders among all age groups.

8.1 Limitations

First, our research has been conducted only on the BRFSS data collected in 2018. This indicates

that the findings and conclusions from this research can be valid only for the survey respondents.

Second, the BRFSS data takes the form of a telephone survey, which implies the possibility that

the respondents of the BRFSS in 2018 may not provide true answers to the surveyors due to social

stigma associated with the depressive disorders. This could generate biases or errors in collecting

responses on the survey and ultimately distort the conclusion of our study.

As mentioned earlier, the support vector machine classifiers show good performance in predictions

according to each metric score for all adult groups. However, since it uses every explanatory variable

in the sample to train itself, this can result in a situation in which irrelevant explanatory variables

may disturb the performance of predicting the depressive disorders diagnosis. To overcome this

weaknesses in support vector machines, one may use principal component analysis for reducing the

dimension of the data and extracting only relevant factors for the training process.

8.2 Future scope of the study

Although our study has examined the important factors of the depressive disorders diagnosis among

U.S. adults, it is an indirect approach to the nature of any medical problem: we only analyzed the

environmental factors of depressive disorders, not the direct causes in medical settings. Therefore,

one may investigate the problem of our study with more clinical approaches: for instance, analyzing

the behaviors and speech of the patients who suffer from depressive disorders, and thus detecting

biological or behavioral markers of depressive disorders. In order to do so, researchers may use deep

learning and computer vision techniques to examine the body gestures and the voice of patients.

Also, they can use electronic health records (EHRs) or social media texts to conduct information

extraction in the field of natural language processing. This approach will capture the medical

indicators of depressive disorders in any linguistic format. Hence, those research processes within

more clinical settings will provide us direct causes of depressive disorders among not only U.S. adult

residents but also all people over the world.



APPENDIX A

Exploratory Data Analysis (EDA) Outputs

In Appendix A, we present the summary tables and several plots that were created during the

exploratory data analysis (EDA) procedures. Interpretations about the data exploration for each

adult group of our study are fully explained in Chapter 5.

A.1 Young Adults(18-39)

Tables A.1 to A.3 present the summary statistics of the response variable ADDEPEV2 for young

adult group between 18 and 39 years old, grouped by the following numeric variables MENTHLTH,

WEIGHT2, and CHILDREN.

ADDEPEV2 Minimum 25% Quartile Median Mean 75% Quartile Maximum
No 1 7 10.71 9.68 10.71 30
Yes 1 6 10.71 13.74 20 30

Table A.1: Summary table for young adult group: MENTHLTH

ADDEPEV2 Minimum 25% Quartile Median Mean 75% Quartile Maximum
No 1 97 127 138.11 155 567
Yes 1 94 126 139.45 162 567

Table A.2: Summary table for young adult group: WEIGHT2

ADDEPEV2 Minimum 25% Quartile Median Mean 75% Quartile Maximum
No 1 2 4 9.06 17 18
Yes 1 2 5 9.31 17 18

Table A.3: Summary table for young adult group: CHILDREN

98
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Figures A.1 to A.7 shows the bar plots of the proportion of each factor levels of the following cate-

gorical variables: DECIDE, EMPLOY1, DIFFALON, SMOKE100, HAVARTH3, HPVTEST, USENOW3

and RACE, which impact the response variable ADDEPEV2.

Figure A.1: Difficulties in making decision by oneself (Young adult group)

Figure A.2: Arthritis or bone-related illnesses (Young adult group)

Figure A.3: Current employment status (Young adult group)
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Figure A.4: Difficulties in doing errands alone (Young adult group)

Figure A.5: HPV test records (Young adult group)

Figure A.6: Smoking more than 100 times (Young adult group)
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Figure A.7: Race types (Young adult group)



102 A. Exploratory Data Analysis (EDA) Outputs

A.2 Middle-aged Adults (40-60)

Tables A.4 to A.5 present the summary statistics of the response variable ADDEPEV2 for middle-aged

adult group between 40 and 60 years old, grouped by the following numeric variables MENTHLTH

and AVEDRNK2.

ADDEPEV2 Minimum 25% Quartile Median Mean 75% Quartile Maximum
No 1 10.71 10.71 10.07 10.71 30
Yes 1 7 10.71 14.26 20 30

Table A.4: Summary table for middle-aged adult group: MENTHLTH

ADDEPEV2 Minimum 25% Quartile Median Mean 75% Quartile Maximum
No 1 2 3.012 3.016 3.012 54
Yes 1 2 3.012 3.146 3.012 54

Table A.5: Summary table for middle-aged adult group: AVEDRNK2

Figures A.8 to A.13 shows the bar plots of the proportion of each factor levels of the following

categorical variables: DECIDE, EMPLOY1, MARITAL, HAVARTH3, IMFVPLAC, HIVTST6, which

impact the response variable ADDEPEV2.

Figure A.8: Difficulties in making decision by oneself (Middle-aged adult group)
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Figure A.9: Arthritis or bone-related illnesses (Middle-aged adult group)

Figure A.10: Current employment status (Middle-aged adult group)

Figure A.11: Current marital status (Middle-aged adult group)
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Figure A.12: The type of flu shot places (Middle-aged adult group)

Figure A.13: HIV test records (Middle-aged adult group)
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A.3 Older Adults(61-85)

Tables A.6 to A.8 present the summary statistics of the response variable ADDEPEV2 for older

adult group between 61 and 85 years old, grouped by the following numeric variables MENTHLTH,

DIABAGE2 and SLEPTIM1.

ADDEPEV2 Minimum 25% Quartile Median Mean 75% Quartile Maximum
No 1 10.71 10.71 10.3 10.71 30
Yes 1 7 10.71 12.7 15 30

Table A.6: Summary table for older adult group: MENTHLTH

ADDEPEV2 Minimum 25% Quartile Median Mean 75% Quartile Maximum
No 1 49.65 49.65 50.92 49.65 94
Yes 1 49.65 49.65 50.62 49.65 90

Table A.7: Summary table for older adult group: DIABAGE2

ADDEPEV2 Minimum 25% Quartile Median Mean 75% Quartile Maximum
No 1 6 7 7.25 8 24
Yes 1 6 7 7.20 8 24

Table A.8: Summary table for older adult group: SLEPTIM1

Figures A.14 to A.20 shows the bar plots of the proportion of each factor levels of the following

categorical variables: DECIDE, VETERAN3, MARITAL, HAVARTH3, HADSIGM3, MEDCOST,

CHCCOPD1, which impact the response variable ADDEPEV2.

Figure A.14: Difficulties in making decisions by oneself (Older adult group)
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Figure A.15: Arthritis and bone-related illnesses (Older adult group)

Figure A.16: Sigmoidoscopy and colonoscopy exam records (Older adult group)

Figure A.17: Pulmonary illnesses (Older adult group)

Figure A.18: Current marital status (Older adult group)
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Figure A.19: Current veteran status (Older adult group)

Figure A.20: Medical cost hardships (Older adult group)
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