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Abstract

Nuclear magnetic resonance (NMR) is used in organic chemistry to identify unknown

organic compounds. The data obtained from an NMR spectrometer are typically

shown in the form of a spectrum, which is then analyzed by an analytical chemist.

The action of analyzing a spectrum, especially one of a large and complex molecule, is

a long and tedious process. In this project, Python is used to implement hierarchical

clustering on NMR data obtained from an NMR spectrometer at the College of

Wooster to explore its application in NMR analysis. MATLAB is used to build

a decision tree from the same data, whose accuracy is compared to that of the

hierarchical clustering. The decision tree is also examined to gain information about

how to better automate the analysis process. These data clustering and classification

processes are used to identify major functional groups within the compound from

the spectral data, once feature extraction has been performed. Once these functional

groups are identified, the compounds are clustered via hierarchical clustering, or

classified with a decision tree. This processes provides insight into how to identify

unknown organic molecules in a faster and more accurate manner, a much needed

improvement in organic chemistry experimental research. It was found that decision

trees are a much more accurate machine learning method to classify the organic

compounds, when doing so based on present functional groups.
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CHAPTER 1

Introduction

Nuclear magnetic resonance (NMR) spectroscopy is a method of identifying

unknown organic compounds. It is one of the most common methods, and often

crucial in the identification process. The use of NMR in compound identification

is often coupled with other forms of spectroscopy, or multiple methods of NMR

spectroscopy are used in tandem to reduce uncertainty of compound identity [28].

While the process through which NMR spectroscopic data are analyzed is

relatively efficient and reliable, which causes NMR’s popularity, it has plenty of

room for improvement and potential to be even more powerful than it currently is.

The spectra produced by a spectrometer after the insertion of a compound is typically

viewed by an analytical or organic chemist specializing in NMR and analyzed by

hand. This process is tedious and long for compounds of even moderate complexity,

and takes years of schooling to learn how to do effectively. Even when performed

by experts, much of the analysis process contains room for error in identification.

A program that fully automates – or even semi automates – the analysis process

would save much time and many resources. This project explores the application of

machine learning with NMR spectra analysis to attain that automation.

This thesis is organized in such a way that ensures the results may be understood

after an introduction into both organic chemistry and NMR analysis, as well as

the machine learning tools used in this project. Chapter 2 is comprised of four

1



2 1. Introduction

main sections. Section 2.1 provides a brief introduction to and description of

organic molecules and their properties with respect to their interaction with nuclear

magnetic resonance. Sections 2.2 and 2.3 describe the analysis process of 1HNMR

and 13CNMR respectively. The information that can be extracted from NMR spectra

is explained in order to provide an understanding of the approach taken in this

project. Finally, section 2.4 summarizes the issues that accompany NMR spectra and

their analysis. Chapter 3 presents further background to provide an understanding

of the tools used in this project. Section 3.1 explains hierarchical clustering, a

method of unsupervised learning that is used in this project with NMR spectral

data. In section 3.2, a form of supervised learning is explained: decision trees. This

method is also used with NMR spectral data. Finally, the tools with which these

machine learning methods are implemented are described in section 3.3. Chapter

4 acts as an introduction to the project. The first section, section 4.1, outlines

the data preparation procedure and the way in which the data were formatted.

Section 4.2 is a short introduction into the hierarchical clustering and decision tree

formation. Chapter 5 presents the results of all the analyses performed. Section 5.1

includes a description of the outcome of hierarchical clustering with 1HNMR data,

13CNMR data, and combined 1HNMR and 13CNMR data, as well as the figures of

dendrograms and heat maps that summarize those results. Section 5.2 describes

how the organic compounds from the dataset were clustered by a chemist, whose

clusters are used in section 5.3 for the analysis of the hierarchical clustering results

from section 5.1. In section 5.3, the results of hierarchical clustering are compared

to the clusters formed by the chemists and the comparison is discussed. The error

that accompanies hierarchical clustering in this project specifically as well as in a

broader sense is also touched upon. Finally, a closer examination of the linkage

methods used in hierarchical clustering is performed. The final section of chapter 5

is section 5.4, in which the formation of the decision tree is described. In this section,
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the results of the decision tree are displayed and then discussed with respect to

their comparison with the clusters formed by the chemist, and their usefulness in

further organic chemical compound analysis. This thesis is concluded with chapter

6, which summarizes all that has been discussed in previous chapters, touches on

problems encountered and errors discovered, and closes with a description and

explanation of future work that could be done following what has been learned in

this project.
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CHAPTER 2

NuclearMagnetic Resonance

When an organic compound is in an oscillating magnetic field, the frequency of

that magnetic field may cause the nuclei within the compound to emit electromag-

netic signals. This is referred to as nuclear magnetic resonance, or NMR. Different

nuclei emit electromagnetic signals at different frequencies of oscillation depending

on their structure and surrounding electron cloud. Subjecting an organic compound

to a magnetic field oscillating at a range of frequencies and recording the frequencies

at which electromagnetic signals are emitted is known as NMR spectroscopy. NMR

spectroscopy is used to identify unknown organic compounds, since the patterns of

electromagnetic signals emitted are distinct between molecules [28].

There are many forms of NMR, each examining a different atom within a

compound, the most common forms being 1HNMR and 13CNMR. 1HNMR provides

information about the hydrogen-1 atoms (atomic weight = 1 amu) within the

molecule, whereas 13CNMR provides information about the carbon-13 atoms

(atomic weight = 13 amu) within the molecule. These are most common because

organic molecules are largely made up of carbon and hydrogen atoms. 1HNMR

provides a greater amount of information about the structure of the molecule,

though 1HNMR and 13CNMR are often used in tandem to obtain the largest amount

of information possible [28]. Because 1HNMR provides the largest amount of

structural information (detailed in section 2.2.1), as well as the fact that 1HNMR was

5



6 2. Nuclear Magnetic Resonance

historically the first form of NMR performed, the use of the term "nuclear magnetic

resonance" or "NMR" is assumed to refer to 1HNMR unless otherwise specified [28].

While the most common use of NMR is organic compound identification, which

is the process explored in this project, it has other important applications as well.

Magnetic resonance imaging (MRI) is used daily to obtain images and scans of living

tissue such as the brain and other organs, tendons, bones, etc. for medical purposes.

The MRI scanner is a large-scale NMR spectrometer. MRI is the least invasive

process for imaging the interior of the human body, due to the way in which NMR

spectroscopy affects molecules without breaking any bonds or destroying them in

any way [28, 10].

2.1 Properties of OrganicMolecules

While not all compounds that contain carbon are organic, all organic compounds

contain carbon. Compounds that contain exclusively carbon and hydrogen atoms

are referred to as hydrocarbons, but it is also common for organic compounds to

contain nitrogen, oxygen, and/or halogens such as chlorine or bromine. The majority

of organic compounds are made up of mostly carbon and hydrogen [28].

Atoms that have an odd atomic number or an odd mass number have a nonzero

nuclear spin (I). This occurs when the number of protons or the number of neutrons

an atom has is odd; I is only zero when the number of both the protons and neutrons

are even. If this is the case, the atom has no magnetic moment, and can therefore

not be observed with nuclear magnetic resonance spectroscopy [28, 23]. Some

of the most commonly present atoms in organic compounds (hydrogen, carbon,

and nitrogen) have spin active isotopes, allowing them to respond to NMR. This

allows for organic compounds to always be detected through NMR spectroscopy,

which contributes to the practicality of the method in identifying unknown organic
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compounds [23]. The most abundant isotope of hydrogen is 1H, where 1H makes

up 99.99% of all hydrogen atoms. This means that almost all hydrogen atoms are

spin active, and therefore organic molecules are very sensitive to NMR. Carbon,

conversely, has a highly abundant isotope with no magnetic moment, and the

spin active isotope is more rare. With the spin active 13C only making up 1.07%

of all carbon atoms, carbon is insensitive to NMR when compared to hydrogen

atoms. Because of this, an organic sample must be approximately 100 times

more concentrated when performing 13CNMR spectroscopy than when performing

1HNMR spectroscopy [28, 25].

Organic compounds are often characterized by reactive sections called functional

groups. Functional groups are distinct groups of atoms and bonds that are more

reactive than hydrocarbons, which consist of only single bonds (these parts of the

compound are called alkanes or alkyl groups). Functional groups may be a double

bond between two carbons, an oxygen bonded to a carbon, a nitrogen bonded to a

carbon, a halogen bonded to a carbon, or other similar bonds. The term functional

group gets its name because functional groups are the parts of the compound where

reactions occur [28].

2.2 Analysis of 1HNMR Spectra in Organic Chemistry

Spectral analysis is the most common method of organic compound identification,

and 1HNMR is the most commonly used form of NMR when identifying those

compounds [28]. In an 1HNMR spectrum, the x-axis is in terms of parts per million

(ppm), a representation of the frequency at which an electromagnetic signal may be

emitted. The y-axis represents the relative intensity of the emitted signals, and is

therefore unitless.
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2.2.1 The 1HNMR Spectrum

An 1HNMR spectrum gives insight into the structure of a molecule in a variety of

ways. A peak on a spectrum has three important properties:

• Chemical shift: the position of the peak on the x-axis, denoting the frequency

at which electromagnetic energy was emitted.

• Intensity: the area under the peak, or integration, denoting how strong of a

signal was emitted at that peak’s frequency.

• Splitting pattern or multiplicity: the way in which the peak is split, denoting

how many hydrogen atoms "neighbor" the atom(s) corresponding to the peak

in question. Hydrogen atoms are "neighbors" if their respective carbon atoms

to which they are bonded are also bonded to each other.

As an example of how these properties present themselves in a spectrum, figure

2.1 shows a quartet, or a peak split into four, that occurs at a ppm of 4.28, and has

an integration (intensity) of 1.

The multiplicity tells us that the hydrogen atom represented by that peak has

three neighboring hydrogen atoms. The chemical shift tells us that the atom is

relatively shielded by electrons, creating a frequency that is below a hydrogen in a

highly electronegative area, but above a hydrogen in a non-electronegative area.

Specifically, this hydrogen is likely bonded to the same carbon to which a halide

(F, Cl, Br, or I) or oxygen is also bonded. The integration tells us that this peak is

describing one hydrogen atom, as opposed to a group of more than one.

2.2.2 The Analysis Process

Analysis of 1HNMR spectra can be a very complex process, especially when

performed for a particularly large or complex molecule. In its most simple form,
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Figure 2.1: A quartet: a peak with a multiplicity of four

each peak corresponds to one group of hydrogen atoms in the compound, and an

identification can easily be made. This is the case with ethylbenzene in figure 2.2,

where the three groups of hydrogen atoms in ethylbenzene are easily captured by

1HNMR.

While this seems to be a simple task, that is not always the case. A cholesterol

molecule (depicted in figure 2.3) for example, would be much more difficult to

identify from the 1HNMR spectrum alone. The cholesterol molecule is much larger

than the ethylbenzene molecule, and contains almost five times more hydrogen

atoms. Furthermore, the cholesterol molecule has no symmetry, causing almost

every hydrogen atom to react differently to the NMR and therefore create a separate

peak. Some hydrogens, while they are different enough to create separate peaks,

are still very similar, which causes their peaks within the spectrum to overlap. This

overlapping of peaks creates difficulties in analysis because integration is altered,
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Figure 2.2: The identification of ethylbenzene using 1HNMR analysis [19]

and two peaks close to one another can be mistaken for a doublet (a single peak

split into two). The 1HNMR spectrum of cholesterol is shown in figure 2.4. Peaks at

higher ppm are distinct and clear, but peaks at lower ppm are clustered and difficult

to discern. This is common with large molecules and creates difficulties in analysis

that lead to errors in compound identification.

Figure 2.3: The molecular structure of cholesterol [20]

Analyzing the identity of an organic compound from NMR often begins with
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Figure 2.4: The NMR spectrum of cholesterol [1]

1HNMR spectrum analysis, but is supplemented with 13CNMR analysis. 13CNMR is

the second most common form of NMR [28]. The process of analyzing these spectra

is described below.

2.3 Analysis of 13CNMR Spectra in Organic Chemistry

13CNMR analysis is rarely used alone in identifying organic compounds. It is

often used in conjunction with 1HNMR analysis in order to gain confidence in

the identified functional groups present in the organic compound. In a 13CNMR

spectrum, the x-axis is also in terms of parts per million (ppm), and the y-axis again

represents the unitless relative intensity of the emitted signals.

2.3.1 The 13CNMR Spectrum

The most common isotope of carbon is carbon-12, which is not spin-active and

therefore does not react to NMR. The carbon isotope that is being represented in

13CNMR is carbon-13, which makes up about 1.07% of all carbon atoms. Because

only 1.07% of the carbon atoms in the unknown organic compound are spin active,

whereas 99.99% of the hydrogen atoms in the compound are spin active, a much

higher concentration of the compound is needed to generate a readable spectrum
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[28, 25]. Additionally, this low concentration of spin active carbons causes a lot of

noise in the spectrum. To remedy this, hundreds of spectra are taken and averaged

to form a spectrum that is usable in analysis [28]. The spectrum itself provides less

information than the 1HNMR spectrum, but still allows for a better understanding

of the present functional groups. Each peak in a 13CNMR spectrum describes a

carbon atom or a group of carbon atoms, similarly to how the 1HNMR does so for

hydrogen atoms. However, unlike 1HNMR spectra, 13CNMR spectra lack splitting

patterns. Therefore, 13CNMR gives no direct insight into neighboring hydrogen or

carbon atoms. Intensity, or integration, of 13CNMR peaks correlate to the number

of carbon atoms being described, but not as precisely as 1HNMR peak intensity

shows the number of hydrogen atoms being described. Chemical shift is the most

important property of 13CNMR spectra. Like 1HNMR spectra, different areas along

the x-axis correspond to different functional groups. While there is quite a bit of

overlap of these areas, causing some confusion as to which functional group the

peak is describing, there are many distinct functional groups that can be described

by a 13CNMR spectrum. Additionally, when cross-referencing these functional

groups with those extracted from the 1HNMR spectrum for the same compound,

the overlap becomes inconsequential [28].

The values of chemical shift specifically are approximately 15-20 times larger

than those in the 1HNMR spectra. This is because the carbon atoms in a molecule

are less shielded by electrons than their hydrogen counterparts [28, 9, 11].

2.3.2 The Analysis Process

Because 13CNMR is very rarely used alone, the analysis process often includes

cross-referencing with the 1HNMR spectrum of the same organic molecule. To better

understand the technique of using both forms of NMR to identify a compound,
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an example is presented. The 13CNMR spectrum of ethylbenzene, whose 1HNMR

spectrum is shown in figure 2.2, can be seen in figure 2.5.

Figure 2.5: The identification of ethylbenzene using 13CNMR analysis [19]

Both spectra show the presence of functional groups in different ways. Therefore,

if one has ambiguous peaks, the other can make clear what is present. In the example

of ethylbenzene, the peaks in the 13CNMR spectrum showing the presence of an

aromatic ring (shown in red, green, and blue) may be mistaken for an alkene, whose

peaks occur between 100 and 150 ppm in 13CNMR [9]. Referencing the 1HNMR

spectrum, however, it can be concluded that there is an aromatic ring, and no alkene,

whose peaks occur between 4.5 and 6.8 in 1HNMR, where no peaks are present [2].

While ethylbenzene is a simple example and would not need both forms of NMR to

identify, the cross-referencing process described is necessary for larger and more

complex molecules.
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2.4 Obstacles in NMR Analysis

NMR analysis is not a straightforward procedure. It has an experimental approach,

in which structures are often built or drawn based on the spectral information,

and either rejected or accepted upon comparison to the spectrum. A simple flow

diagram of what this process looks like is seen in figure 2.6.

Figure 2.6: The NMR analysis process [23]

This method of analysis is time consuming and difficult, and becomes even more

so the more complex a molecule is.

What makes NMR spectrum analysis more complicated is missing or indis-

cernible information. In 1HNMR spectra, a hydrogen atom that is bonded to on

oxygen or nitrogen atom is sometimes visible and sometimes is not. The information

gained from the area in which that peak may appear is therefore not completely

reliable. In 13CNMR, baseline noise causes small peaks to occasionally get lost in the

baseline, or noise to be mistaken for a peak that is part of the unknown compound.



2.4. Obstacles in NMR Analysis 15

Additionally, the absence of splitting pattern in 13CNMR creates a lack of clear

structural information [28]. Impurities in the sample impedes the analysis even

further, as it is often not known which peaks refer to the compound in question,

and which to impurities in the solution.

The NMR instrument itself is large and quite expensive, with prices of $500,000

and above [24], which creates problems for researchers with little funding or capital.
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CHAPTER 3

Hierarchical Clustering, Decision Trees, and

Machine Learning Tools

This chapter introduces hierarchical clustering and decision tree classification

techniques, and explores the libraries that were used for data preprocessing and

analysis.

3.1 Hierarchical Clustering

Machine learning can be broken into three categories: supervised learning, un-

supervised learning, and reinforcement learning [7]. Supervised learning allows

data to be sorted into labeled classes, by providing an already sorted set of similar

data, called the training set. Unsupervised learning is used to find connections

and patterns in data, without knowing what those connections or patterns will be

beforehand. The goals of supervised and unsupervised learning are largely the

same – grouping data into classes or clusters – the difference being whether it is

known prior what those classes or clusters will be. Reinforcement learning uses a

reward and punishment system to train a software agent, and is often used in game

development to simulate intelligent behavior. In this project, a common form of

unsupervised learning called clustering will be used. When clustering is applied,

17
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data are grouped into clusters such that members of a cluster are similar to each

other in some way, and dissimilar to data points in other clusters [7]. An example

of this can be seen in figure 3.1, where data points are clustered by position in the

x-y plane.

Figure 3.1: Example of clustered data [26]

One of the many forms of clustering is hierarchical clustering. Agglomerative

hierarchical clustering builds clusters slowly, allowing each combination of data

points/sets to be recorded into a hierarchy. Divisive hierarchical clustering does the

opposite of agglomerative clustering, breaking clusters apart one at a time to form

a hierarchy. The hierarchy that is formed by this method of clustering, which is

called a dendrogram, allows for the splitting of data to obtain the desired number

of clusters. Splitting a dendrogram close to the base creates a larger number of

clusters that are smaller and more specific. Splitting a dendrogram close to the top

creates fewer clusters that contain more data and are broader in the type of data

they include. A visual representation of this can be seen in figure 3.2 [26, 17]. Often,

the most effective location to split a dendrogram is through the largest vertical area
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in which no classes are clustered. An example of this can be seen in figure 3.3. In

this example, there would be four classes, since four vertical lines are crossed by the

split going through the horizontal band denoted by AB [17]. These classes would

include data elements 9, 23, 17, 6, 11, 3, 15, and 7 in the first cluster, elements 14, 19,

16, 24, and 22 in the second cluster, and so on.

Figure 3.2: Example of a dendrogram [26]

Figure 3.3: Dendrogram split at the largest vertical distance with no merging of classes [17]
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The way in which the hierarchy is formed is that, at each step, the two most

similar clusters are combined into one cluster. This process depends on the type

of data and the similarity measure. The criteria followed to determine how the

clusters relate to each other are called linking criteria. Seven ways of determining

the distance between clusters are the following:

• Average linkage defines the distance between two clusters to be the average

distance between each of the data points in one cluster with each of the data

points in the other cluster.

• Ward linkage defines the distance between two clusters to be the sum of the

squares of the distances between all data points within each cluster.

• Single linkage defines the distance between two clusters to be the distance

between the two data points closest together, where one data point is in one

cluster and the other data point is in the other.

• Complete linkage defines the distance between two clusters to be the distance

between the two data points farthest apart, where one data point is in one

cluster and the other data point is in the other.

• Weighted linkage defines the distance between two clusters to be the average

distance between one cluster to each of the two subclusters of the other.

• Centroid linkage defines the distance between two clusters to be the distance

between the centroids computed from all elements in each cluster.

• Median linkage defines the distance between two clusters to be the distance

between the centroids computed from the average of the centroids of the two

subclusters in each cluster.

[17, 4]
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The similarity measure used to calculate the distance between the data points

themselves is also important. Common methods of doing so are using Euclidian and

Manhattan distances. Euclidian distance is simply the shortest distance between

two points, x = (x1, x2) and y = (y1, y2):

√
(x1 − y1)2 + (x2 − y2)2 (3.1)

Manhattan distance is the distance between two points traveling along axes at right

angles, and is calculated with the following equation:

|x1 − y1| + |x2 − y2| (3.2)

for points x = (x1, x2) and y = (y1, y2) [17, 8].

Every method of machine learning has advantages and disadvantages. Hierar-

chical clustering is inefficient in time as well as memory relative to other forms of

clustering, with a time complexity of O(n3) and a space complexity of O(n2). This

causes issues when hierarchical clustering is required for a large dataset, and there

is a limited amount of time and/or storage [21]. Hierarchical clustering is, however,

a very useful way of clustering data when it is not known how many clusters there

will be, or what will identify those clusters, as it is a form of unsupervised learning.

The dendrogram formed through hierarchical clustering is also a distinct advantage,

as it allows for any number of clusters to be extracted, depending on where the

dendrogram is chosen to be split.

3.1.1 HeatMaps

A heat map, also called a double dendrogram, is a method of data visualization in

matrix form. The rows of the data matrix are clustered to form a dendrogram, which
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is then used to determine the ordering of the rows within the heat map, causing

similar rows to be near each other. Similarly, the columns of the data matrix are

clustered to determine their ordering in the heat map as well. Finally, a color scale

is used to denote values of each data point, allowing the viewer to visualize and

understand the clustering of, and differences between, points within the dataset

[14]. An example of a heat map is shown below, in figure 3.4.

Figure 3.4: Example of a heat map with student exam scores [14]

Any of the linkage methods described previously in section 3.1 may be used

when clustering the rows and columns of the heat map. The linkage methods with

which rows and columns are clustered may be different from each other, and these

methods are often chosen based on the ’goodness-of-fit’ of the method to the data.

The ’goodness-of-fit’ can be determined by calculating the Cophenetic correlation

coefficient or the delta of each of the methods and choosing the method that results
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in the highest or lowest value respectively [14]. Due to the small size of the dataset

used in this project, neither of these methods are used to determine the best linkage

method. Instead, all linkage methods are used and compared to the way in which a

chemist would cluster the compounds, and the most accurate linkage method is

determined by which set of clusters has the most overlap with the set of clusters

formed by the chemist.

3.2 Decision Trees

Decision trees, unlike hierarchical clustering, are a form of supervised learning.

Class labels are known, and data points are grouped and given those labels by the

decision tree. From a set of training data, a tree is formed, and classification error is

minimized. A set of test data is then passed through the tree to ensure that there is

little error when classifying data outside of the training examples. A decision tree

can be described as a set of rules, that are in an "if-else" format. An example of this

is in figure 3.5, with a table of rules in table 3.1.

Rule

R1 If no vertebrae⇒ Insect

R2 If vertebrae and fur⇒Mammal

R3 If vertebrae, no fur, and no wings⇒ Amphibian

R4 If vertebrae, no fur, and wings⇒ Bird

Table 3.1: The rules generated by the decision tree in figure 3.5

Each rule in the table follows from the root of the tree to a leaf, where a

classification is made. Each node within the tree corresponds to an attribute of
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Figure 3.5: Example of a decision tree that classifies animal types

the data. In the example in figure 3.5, the attributes are Wings, Vertebrae, Fur, and

Eggs. The attributes closer to the root node split the data in such a way that each

group has the least entropy possible. Entropy refers to the impurity of the group of

data points, so the greater the entropy, the less one class of data points dominates

the other classes. This means that the attributes closer to the root node of the

decision tree are more useful in partitioning the dataset into the desired classes.

This example does not make use of the attribute Eggs. This omitting of an attribute

occurs when its information can be found in other attributes in an equally or more

efficient way. While this example has only two options for each attribute, that is

not always the case for other datasets: there can be any number of options in the

dataset for attributes, even an infinite amount, as is the case with continuous data.

Datasets used with decision trees are typically much longer than that in the

given example in figure 3.5. With a larger dataset, more accurate information can

be extracted from the decision tree.
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3.3 Tools and Libraries

In this project, multiple Python libraries were used in conjunction to obtain dendro-

grams and heat maps of the NMR spectral data. After the raw data were converted

to a usable format through the use of the SpinWorksJ software and the open-source

program jcamp, NumPy was used to store and manipulate the data, and matplotlib

was used to perform agglomerative clustering on that data, as well as to display the

dendrograms formed from that clustering. Pandas was used to form a dataframe,

which was then formed into a heat map with the use of seaborn. MATLAB was also

used to form a decision tree from the data formatted by SpinWorksJ, jcamp, and

NumPy.

3.3.1 SpinWorksJ and Jcamp

The raw data output from the NMR spectrometer is in a format that is difficult to

read. SpinWorksJ was used to convert the data from a jdf format to a jcamp format.

SpinWorksJ allows the user to view the NMR spectrum and manipulate it for ease

of analysis. The data could be saved in a variety of formats; this project made use

of the option to save the file in the jcamp format [6]. The jcamp format data files

were still difficult to read, and needed to be restructured in a way that allowed the

data to be more easily obtainable. The jcamp program allows the user to insert a

jcamp file, and get a Python dictionary of the data in return. The Python dictionary

can then be iterated and read with more ease than the jcamp file. The data were

extracted from the Python dictionary and saved as a set of NumPy arrays to allow

for manipulation and calculation [12].
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3.3.2 NumPy, SciPy, andMatplotlib

The Python library NumPy provides the ability to create arrays, which are similar to

lists but easier to manipulate for mathematical purposes. Many other open-source

libraries are built upon NumPy, including the libraries used in this project (i.e. scipy,

matplotlib, pandas, and seaborn) [13]. The Python library matplotlib contains the

capability to form dendrograms from data that are formatted by the SciPy Python

library. The linkage method of scipy.cluster.hierarchy takes in a set of data and

a linkage method (e.g. ward), and outputs a linkage matrix encoded with the

hierarchical clustering [27]. This linkage matrix can then be passed to the matplotlib

library method called dendrogram, which forms a dendrogram from the given data,

with optional formatting specifications [15].

3.3.3 Pandas and Seaborn

The Python library seaborn was created for simple, clear, and well-designed data

visualizations. It is based on matplotlib, allowing intuitive interaction between the

two. Pandas allows the formation of dataframes, a data structure for large datasets

that the seaborn method clustermap reads in order to form a heat map of the given

data. The Pandas dataframe structure was used, holding data transferred from

the NumPy array of spectral data, in the clustermap method to form the heat maps

displayed in this thesis. [30, 29]

3.3.4 Decision Trees inMATLAB

MATLAB was used to form a decision tree from the spectral data formatted by

SpinWorksJ, jcamp, and NumPy. A numerical matrix was created from the data

in the NumPy array, and that matrix, as well as an additional matrix holding the

target classifications, were passed into the MATLAB function fitctree. This method
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produced a decision tree from the given data, with information about how many

data points from each class were given each class label [3].
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CHAPTER 4

Preparing Spectral Data for Hierarchical

Clustering and Decision Trees

This chapter describes and explains data preprocessing steps and introduces the

methods used for hierarchical clustering and decision trees. The spectral data

examined in this chapter was obtained using a Jeol NMR spectrometer with a

reference frequency of 400 MHz.

4.1 Formatting Data

In order to extract usable and relevant data from the raw data obtained from

the spectrometer, a series of calculations were completed. The raw 1HNMR data

contained data points at frequencies above 5000 MHz, which would always have

an intensity of zero. This is because no hydrogen atoms can have a vibrational

frequency above 5000 MHz in a 400 MHz spectrometer [28]. These data points were

ignored, as were any extraneous data points that happened to appear below 0 MHz.

The raw 13CNMR data contained data points at frequencies above 22,000 MHz,

which would always have an intensity of zero because no carbon atoms can have a

vibrational frequency above 22,000 MHz in a 400 MHz spectrometer [28]. These

data points were also ignored, as were any extraneous data points that happened to

appear below 0 MHz.

29
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The frequency was then converted into units of parts per million (ppm), by

dividing the 1HNMR frequencies by the reference frequency of the spectrometer

(400 MHz), and the 13CNMR frequencies by one fourth of the reference frequency

(100 MHz). Any 1HNMR data points with an intensity below zero were rounded

up to zero, and any 13CNMR data points below 5% of the maximum intensity were

rounded to zero, in order to mitigate the large amount of noise typically present in

13CNMR spectra.

Finally, the data was normalized for easy comparison by dividing each intensity

value by the largest in that dataset. This normalization causes the largest intensity to

be equal to 1, and any other peaks to have intensities that are a fraction of the largest.

Differences in the y-axis of the spectra occur when different concentrations of the

sample are measured. Variation in concentration does not affect the identity of the

compound itself and only causes difficulties in comparing compounds to each other,

due to the differences in y-axis scale. Normalization ensures that all datasets have

an equal weight, so that meaningful relationships can be drawn between similar

compounds without the inconsistency in how each sample was measured in the lab.

An example of the effect data normalization has on the spectrum is shown in figure

4.1.

Figures 4.1 a and b show how dissimilar the y-axis scale can be for samples of

different concentration, where 2-pentanol has a maximum intensity of approximately

50,000 (a), and benzil has a maximum intensity of approximately 30,000 (b). Once

the data are normalized, the maximum intensities for 2-pentanol and benzil (c and

d respectively) are equal; they are both 1. The spectrum itself, independent of the

y-axis, is exactly the same between the original graph and the normalized graph.

This shows that normalizing the data does not affect the dataset itself, only the

ability to compare different datasets that may have been obtained using varied

concentrations of sample.
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Figure 4.1: 1HNMR spectra of 2-pentanol and benzil before normalization (a and b respectively)
and after normalization (c and d respectively)

4.1.1 Discretizing Data

The datasets contain thousands of data points for each compound. Comparing each

singular data point to one another would take an immense amount of computational

power and time for a result whose greater accuracy would not be worth that

sacrifice. Instead, the data were discretized into seven or fourteen chunks, allowing

for faster comparisons and a lower dimensional clustering and heat map. In order to

discretize the data in a meaningful way, current techniques of spectral analysis were

examined. Due to the way specific atoms or bond types distribute electrons within

a molecule, signals of hydrogen and carbon atoms in certain functional groups will

appear in certain frequency ranges, or locations on the x-axis of the spectrum. A

visual representation of this can be seen in figure 4.2 for 1HNMR, and figure 4.3 for

13CNMR.

The spreading of functional groups over the spectrum was used as a guideline
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Figure 4.2: Locations of hydrogens in specific functional groups on a spectrum [2]

Figure 4.3: Locations of carbons in specific functional groups on a spectrum [2, 9, 11, 28]

for discretizing the data: the data were split into groups that correspond to each

functional group, and a sum of signal intensities was taken over each range. This

provided a complete dataset with seven data points from 1HNMR and fourteen

from 13CNMR, as opposed to the thousands existing originally.

While this discretization was largely beneficial and necessary, there are some

disadvantages that accompany it. Firstly, with the combining of hundreds of data
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points into one, some data is lost. This is unavoidable in discretization, as it is

not possible to contain the information of hundreds of data points in just one

datum. Additionally, the way in which functional groups appear on a spectrum

is not completely discrete. There are sections in which ranges overlap each other,

allowing some signals to have the possibility of referring to two or more types of

hydrogens. For 1HNMR, there is also the alcohol/amine (-OH and -NH) range in

which hydrogen atoms bonded to oxygen or nitrogen atoms may appear, which

was not included as a discretized group in this project. The reason for omission is

due to the fact that the signals are often varyingly small or don’t appear at all. The

omission can become an issue if the signal does appear, as it will then fall into one

of the other regions.

4.2 PerformingHierarchical Clustering and Building

a Decision Tree

The compounds within the dataset were first clustered by a chemist, based on

functional groups present in the molecules. It is important to note that there is not a

single correct way of doing this. While some sets of clusters are better than others,

different chemists may cluster the compounds in slightly different ways. For the

dataset in this project, the chemist formed the clusters in an appropriate way, with

collaboration with other chemists. The clusters formed in this way were used as a

basis for measuring error in the hierarchical clustering, and as target classifications

for the decision tree.

As outlined in section 3.1, there are many linkage types that can be used in the

clustering of data. In order to obtain the most accurate set of clusters, and to explore

the effects of each linkage type on the clusters formed, hierarchical clustering was

repeated with each linkage type and the resulting clusters were compared. A heat
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map was formed using the most accurate linkage type, and error was calculated.

The results of this clustering are shown in chapter 5, and an analysis of the linkage

types is detailed in section 5.3.

Using the MATLAB command fitctree, a decision tree was formed from the

combined spectral data. The clusters formed by the human chemist were used as

class labels to provide target classification and to determine the error in the tree.

The accuracy of the decision tree was compared to that of the hierarchical clustering.

Results of the tree are shown in section 5.4, and implications of what was learned

are discussed subsequently.



CHAPTER 5

Analysis of Results

The results of the hierarchical clustering performed and decision trees built in this

project, along with the discussion of them, are described below.

5.1 Results ofHierarchicalClustering of theOrganic

Compounds

Hierarchical clustering was performed on 1HNMR and 13CNMR spectral data from

24 distinct organic compounds. The 1HNMR and 13CNMR data for each compound

were then combined and hierarchical clustering was performed for a third time.

Dendrograms were formed for the resulting clusters, and can be seen in figures 5.1,

5.2, and 5.3. Single linkage was used to form the dendrogram for the 1HNMR data,

and ward linkage was used to form the dendrograms for the 13CNMR data and

the combined data. The linkage methods used in these dendrograms differ due to

their accuracy in clustering the data. The calculation of the accuracies and a deeper

discussion of this discrepancy in them can be found in section 5.3.

Heat maps were constructed for each NMR spectral dataset as well, which are

shown in figures 5.4, 5.5, and 5.6. Again, single linkage was used to form the heat

map for the 1HNMR data, and ward linkage was used to form the heat maps for the

35
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Figure 5.1: Dendrogram visualizing the clustering of 24 organic compounds from 1HNMR spectral
data. Single linkage was used to form this dendrogram.

Figure 5.2: Dendrogram visualizing the clustering of 24 organic compounds from 13CNMR spectral
data. Ward linkage was used to form this dendrogram.
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Figure 5.3: Dendrogram visualizing the clustering of 24 organic compounds from combined
1HNMR and 13CNMR spectral data. Ward linkage was used to form this dendrogram.

13CNMR data and the combined data. The dendrograms for each dataset can be

seen on the left side of their respective heat maps.

From each of the three dendrograms, which are also shown in their respective

heat maps, clusters of similar molecules can be created. If six clusters were formed

from the 1HNMR spectral data by using a cutoff of 25 in the dendrogram, the

clusters would be:

• 4-methyl-2-pentanone, 2-pentanone, ethyl methyl ketone, n-butanal, trans-2-

methyl-2-butenal

• p-bromoacetophenone, 4-methylbenzyl alcohol, 2,4-dimethoxybenzaldehyde

• tert-amyl alcohol, isobutyraldehyde, 2-methyl-2-pentanol, isoamyl alcohol

• 3-pentanone, 1-propanol, isobutyl alcohol
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Figure 5.4: Heat map visualizing the clustering of 24 organic compounds with the functional groups
they possess. Created using the 1HNMR spectral data

Figure 5.5: Heat map visualizing the clustering of 24 organic compounds with the functional groups
they possess. Created using the 13CNMR spectral data
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Figure 5.6: Heat map visualizing the clustering of 24 organic compounds with the functional groups
they possess. Created using the combined 1HNMR and 13CNMR spectral data

• p-bromophenol, 2-iodophenol, diphenylcarbinol, 1,1-diphenylethanol, m-

nitrobenzaldehyde, 4-nitrobenzaldehyde

• benzophenone, benzil, benzyl phenyl ketone

as seen in figure 5.7.

If six clusters were formed from the 13CNMR spectral data by using a cutoff of 9

in the dendrogram, the clusters would be:

• diphenylcarbinol, benzil, 4-methylbenzyl alcohol, p-bromoacetophenone,

4-nitrobenzaldehyde, p-bromophenol

• benzyl phenyl ketone, benzophenone

• m-nitrobenzaldehyde, 2-iodophenol, 2,4-dimethoxybenzaldehyde

• isobutyl alcohol, 4-methyl-2-pentanone, isoamyl alcohol, 2-pentanone, tert-

amyl alcohol, ethyl methyl ketone, 3-pentanone
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Figure 5.7: Dendrogram showing the six clusters of organic compounds from 1HNMR spectral data

• 2-methyl-2-pentanol, 1-propanol, n-butanal, isobutyraldehyde, trans-2-methyl-

2-butenal

• 1,1-diphentlethanol

as seen in figure 5.8.

If six clusters were formed from the combined 1HNMR and 13CNMR spectral

data by using a cutoff of 70 in the dendrogram, the clusters would be:

• p-bromoacetophenone, 4-methylbenzyl alcohol, 2,4-dimethoxybenzaldehyde,

tert-amyl alcohol, isoamyl alcohol, ethyl methyl ketone, 4-methyl-2-pentanone,

2-pentanone

• isobutyl alcohol, 3-pentanone

• trans-2-methyl-2-butenal, 1,1-diphentlethanol

• n-butanal, 1-propanol, isobutyraldehyde, 2-methyl-2-pentanol
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Figure 5.8: Dendrogram showing the six clusters of organic compounds from 13CNMR spectral data

• diphenylcarbinol, 4-nitrobenzaldehyde, p-bromophenol, 2-iodophenol, m-

nitrobenzaldehyde

• benzophenone, benzil, benzyl phenyl ketone

as seen in figure 5.9.

While similarity between molecules may be an abstract and unmeasurable

quality of organic compounds, it is still possible to analyze the correctness of this

clustering. This analysis may be done by comparing the results obtained through the

applied method of clustering to the way a chemist may cluster these 24 molecules

by hand, as is done in the next sections.
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Figure 5.9: Dendrogram showing the six clusters of organic compounds from combined 1HNMR
and 13CNMR spectral data

5.2 Non Computational Clustering of the Organic

Compounds

When clustering the 24 compounds non computationally, the chemical structure of

the compounds were analyzed and compared. This resulted in the groups depicted

in table 5.1.

This clustering of compounds was done based on the structure of the compounds,

namely the functional groups contained within them. The spectra, therefore, should

look similar to one another within the clusters. A visual representation of the

clusters can be seen in figure 5.10, where the spectra for each compound is shown

in its corresponding cluster.

Visually, the clusters seem to be accurate, even with no knowledge of the actual
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A 1-propanol, 2-methyl-2-pentanol, isoamyl alcohol, isobutyl alcohol, tert-amyl alcohol

B 2-iodophenol, diphenylcarbinol, p-bromophenol, 4-methylbenzyl alcohol, 1,1-diphenylethanol

C 2-pentanone, 3-pentanone, 4-methyl-2-pentanone, p-bromoacetophenone, ethyl methyl ketone

D 2,4-dimethoxybenzaldehyde, isobutyraldehyde, n-butanal, trans-2-methyl-2-butenal

E 4-nitrobenzaldehyde, m-nitrobenzaldehyde

F benzyl phenyl ketone, benzil, benzophenone

Table 5.1: The six clusters formed when the organic compounds were clustered by a chemist
viewing their structures

structure of the compounds that the spectra represent. This shows that compounds

have the possibility of being clustered by structure based on their spectra alone.

Certain groups look very similar, namely B and E, but are structurally different

enough to be placed in separate groups. Groups A and D also share quite a few

similarities, but are again structurally distinct. Even so, the structure differences

between groups B and E, and those between groups A and D, are less significant

than the structural differences between groups A and F for example, which have

many more clear differences in their spectra (figure 5.10). An example of this can be

seen in figures 5.11, 5.12, and 5.13.

The compound shown in figure 5.11 is 4-methylbenzyl alcohol and is in group B,

and that in figure 5.12 is 4-nitrobenzaldehyde and is in group E. They are structurally

very similar, but the difference of the alcohol group (-OH) of 4-methylbenzyl alcohol

and the aldehyde (O double bonded to C-H) of 4-nitrobenzaldehyde causes them to

be placed in different groups by chemists. Similarities in compound structure like
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Figure 5.10: Spectra of organic compounds clustered by the human chamist

Figure 5.11: Structure of 4-methylbenzyl alcohol [5]
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Figure 5.12: Structure of 4-nitrobenzaldehyde [5]

Figure 5.13: Structure of 2-pentanone

this cause groups B and E to be closer clusters than B and C for example, where 2-

pentanone, the compound in figure 5.13 is located. The structure of 2-pentanone and

other compounds in the same group have many more differences to 4-methylbenzyl

alcohol and other compounds in group B.

Hierarchical clustering was used to cluster the compounds, whose clusters were

compared to those of the chemist. The hierarchical clustering was performed six

times for each NMR method as well as the combined data from both NMR methods,

once using each linkage type (average, ward, single, complete, weighted, centroid,

and median linkage). Figures 5.14, 5.15, 5.16, and 5.17 show the dendrograms for

average, ward, single, and complete linkage hierarchical clustering of 1HNMR data

respectively. The clusters formed from weighted, centroid, and median linkage

hierarchical clustering were equivalent to those using average linkage. Figures
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5.18, 5.19, 5.20, 5.21, 5.22, and 5.23 show the dendrograms for average, ward, single,

complete, weighted, and median linkage hierarchical clustering of 13CNMR data

respectively. The clusters formed from centroid linkage hierarchical clustering

were equivalent to those using single linkage. Figures 5.24, 5.25, and 5.26 show

the dendrograms for average, ward, and single linkage hierarchical clustering

respectively of combined 1HNMR and 13CNMR data. The clusters formed from

complete linkage hierarchical clustering were equivalent to those using ward linkage,

and the clusters formed from weighted, centroid, and median linkage hierarchical

clustering were equivalent to those using average linkage.

Figure 5.14: 1HNMR dendrogram formed using average linkage
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Figure 5.15: 1HNMR dendrogram formed using ward linkage

Figure 5.16: 1HNMR dendrogram formed using single linkage
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Figure 5.17: 1HNMR dendrogram formed using complete linkage

Figure 5.18: 13CNMR dendrogram formed using average linkage
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Figure 5.19: 13CNMR dendrogram formed using ward linkage

Figure 5.20: 13CNMR dendrogram formed using single linkage
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Figure 5.21: 13CNMR dendrogram formed using complete linkage

Figure 5.22: 13CNMR dendrogram formed using weighted linkage
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Figure 5.23: 13CNMR dendrogram formed using median linkage

Figure 5.24: Combined data dendrogram formed using average linkage
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Figure 5.25: Combined data dendrogram formed using ward linkage

Figure 5.26: Combined data dendrogram formed using single linkage
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5.3 Discussion of Findings

5.3.1 Proton NMR Hierarchical Clustering

Figure 5.27 shows the clusters of average, ward, single, and complete linkage

hierarchical clustering from 1HNMR spectral data compared to the groups formed

by the chemist. The clusters formed from weighted, centroid, and median linkage

hierarchical clustering were equivalent to those formed using average linkage.

Figure 5.27: Clusters from 1HNMR data formed using hierarchical clustering with average, ward,
single, and complete linkage methods. Colors indicate when the group the compound
is in matches the groups formed by the chemist.

Single linkage produced the most accurate clusters when compared to those

formed by the chemist, though they were not much more accurate than all other

linkage methods. The compounds were placed into the same clusters as the chemist

58.3% of the time. While this is not very accurate, the compounds that were

incorrectly clustered together tend to belong to similar groups created by the
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chemist. If four groups were formed by the chemist in place of six, and the similar

groups (A and D, and B and E) were merged, the accuracy of hierarchical clustering

with single linkage would be 79.2%.

5.3.2 Carbon NMR Hierarchical Clustering

Figure 5.28 shows the clusters of average, ward, single, complete, weighted, and

median linkage hierarchical clustering from 13CNMR spectral data compared to

the groups formed by the chemist. The clusters formed from centroid linkage

hierarchical clustering were equivalent to those formed using average linkage.

Figure 5.28: Clusters from 13CNMR data formed using hierarchical clustering with average, ward,
single, complete, weighted, and median linkage methods. Colors indicate when the
group the compound is in matches the groups formed by the chemist.

Ward linkage produced the most accurate clusters when compared to those

formed by the chemist, though it was not much more accurate than average,

complete, and weighted linkage. The compounds were placed into the same clusters

as the chemist 54.2% of the time. Again, this is not very accurate, but the compounds
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that were incorrectly clustered together tend to belong to similar groups created

by the chemist. If four groups were formed by the chemist in place of six, and the

similar groups (A and D, and B and E) were merged, the accuracy of hierarchical

clustering with ward linkage would be 70.8%.

5.3.3 Analysis of Combined Results

Figure 5.29 shows the clusters of average, ward, and single linkage hierarchical

clustering from the combined 1HNMR and 13CNMR spectral data compared to

the groups formed by the chemist. The clusters formed from complete linkage

hierarchical clustering were equivalent to those formed using ward linkage, and the

clusters formed from weighted, centroid, and median linkage hierarchical clustering

were equivalent to those formed using average linkage.

Again, ward linkage produced the most accurate clusters when compared to

those formed by the chemist, though it was not much more accurate than single

linkage. The compounds were placed into the same clusters as the chemist 54.2%

of the time. While this is not very accurate, once again the compounds that were

incorrectly clustered together tend to belong to similar groups by the chemist. If

four groups were formed by the chemist in place of six, and the similar groups (A

and D, and B and E) were merged, the accuracy of hierarchical clustering with ward

linkage would be 75.0%.

Interestingly, the combining of spectral data produced clusters with an accuracy

between that of the 1HNMR and 13CNMR data clustering, rather than a higher

accuracy than both. Possibilities as to why this is the case are discussed in the next

section.
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Figure 5.29: Clusters from combined 1HNMR and 13CNMR data formed using hierarchical
clustering with average, ward, and single linkage methods. Colors indicate when the
group the compound is in matches the groups formed by the chemist.

5.3.4 Discussion of Error in Hierarchical Clustering of the Spec-

tral Data

Inaccuracies in the clustering are due to a mixture of both physical and computational

issues. When NMR spectroscopy is performed on organic compounds, a solution of

the compound must be created. Impurity of this solution can affect the spectrum

produced, as the hydrogen atoms in the impurities would be read just as any

hydrogen atoms in the compound of interest are, and the same is true for carbon

atoms in any present impurities. Changes in spectra due to these impurities, as well

as any systematic errors that may have been present in the spectrometer for some of

the compounds, could affect the clustering of the compounds from the spectral data.
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Computationally, the largest obstacle is the feature extraction and data discretiza-

tion. The condensation of the data is unavoidable, but causes a loss of precision.

A larger set of features could increase the accuracy of the clusters. Additionally,

a larger dataset would provide a clearer view of which clusters are more distinct.

These changes could be implemented into a future project and the effects of those

changes could be explored. A further discussion of the obstacles that accompany

hierarchical clustering can be seen in section 6.1, and a further discussion of the

work that could potentially follow this thesis can be read in section 6.2.

5.3.5 Examination of LinkageMethods

The 1HNMR data had the most accurate clustering when single linkage was used,

and 13CNMR data had the most accurate clustering when ward linkage was used.

The differences in accurate clustering between linkage methods is minute, though an

examination of single and ward linkage may still be useful. Single linkage defines

distance between two clusters u and v as:

d(u, v) = min(dist(u[i], v[ j]))

for all points i in u and j in v. Ward linkage defines distance between two clusters u

and v as:

d(u, v) =

√
|v| + |s|

T
d(v, s)2 +

|v| + |t|
T

d(v, t)2 −
|v|
T

d(s, t)2

where s and t are subclusters of u, T = |v| + |u| + |t|, and |x| denotes cardinality [4].

These equations show that single linkage takes only one datapoint from each

cluster into account, while the computation for ward linkage includes all subclusters,

which include all data points within them. One of these linkage methods may be

more accurate in some situations, and seen as ’better’, but, as seen in this project,

one is not always ’better’ that the other. While the 1HNMR and 13CNMR spectral
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data are distinct within the focus of organic chemistry, they are mathematically

the same: a numerical matrix of sums of intensities of peaks within sections of a

spectrum. Yet different linkage methods performed differently when clustering the

compounds. It may be predicted that this disparity in accurate linkage methods is

incidental, but this cannot be certain without a larger set of compounds with which

to test this hypothesis.

5.4 Results andDiscussion ofDecision Tree Formation

The discretized data was formatted into a numerical matrix, in which each row

was a compound and each column was an attribute (the apparent presence of a

functional group in the spectral data). The target column matrix was made up of

integers representing the classes formed by the human chemist. Using the MATLAB

command fitctree, a decision tree was formed from the data. This tree can be seen in

figure 5.30, and its rules are listed in table 5.2.

Figure 5.30: Decision tree formed from combined spectral data. Attributes x3, x2, and x19 represent
the presence of an aromatic ring in 1HNMR, the presence of an aldehyde group in
1HNMR, and the presence of an R3CH alkyl group in 13CNMR respectively. The classes
at the leaf nodes correspond to those formed by the human chemist.
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Rule Data Points in Classification

R1 x3 < 22.21 and x19 < 0.57⇒ C4 4 data points in C4, 1 data point in C1

R2 x3 < 22.21 and x19 ≥ 0.57⇒ C3 5 data points in C3, 4 data points in C1

R3 x3 ≥ 22.21 and x2 < 1.25⇒ C2 5 data points in C2

R4 x3 ≥ 22.21 and x2 ≥ 1.25⇒ C6 3 data points in C6, 2 data points in C5

Table 5.2: The rules generated by the decision tree in figure 5.30

There are two notable aspects of this tree: 18 of the 21 attributes not being

considered as part of the classification, and classes 1 and 5 not being represented.

Attributes x3, x2, and x19 are the only three attributes that are considered when

classifying the 24 data points, or compounds, in this decision tree. This shows that,

in this case, these three attributes are the most important to view when identifying

these organic compounds. Attribute x3 represents the presence of an aromatic ring

in 1HNMR. The aromatic ring is one of the most recognizable functional groups in

both the physical structure of a molecule and the 1HNMR spectrum of the molecule.

In the heat map in figure 5.6, the aromatic column is also visibly distinct from

the other functional group columns. Attributes x2 and x19 represent the presence

of an aldehyde group in 1HNMR, and the presence of an R3CH alkyl group in

13CNMR respectively. These are also recognizable functional groups, though not

as recognizable as the aromatic ring in 1HNMR. Rule R3, as seen in the table 5.2,

perfectly recognizes class 2. This shows that attributes x3 and x2 are most important

when recognizing specifically the types of compounds present in class 2 (alcohols

with aromatic rings).

If the dataset used to form the decision tree was larger, the attributes of importance

may change. With a dataset as small as 24 compounds, it is possible that there is
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one or more functional group(s) in much higher presence proportionally than there

would be in a dataset that is orders of magnitude larger, and therefore would more

closely resemble the distribution of functional groups over the set of all organic

compounds. With this small dataset, it is possible to get an idea of what to expect

when viewing more compounds, even if the most important attributes themselves

are not the same.

Another consequence of the small size of the dataset used in the formation of this

decision tree is the missing classification leaf nodes. To avoid overfitting, MATLAB

prevents nodes from splitting further if they have fewer than 10 data points. This

causes classes of small size to be lost. The smallest classes present in the dataset are

classes 5 and 6, which contain two and three data points respectively. The leaf node

classified as class 6 contains all five of the data points that belong to classes 5 and 6,

but because class 5 only has two data points and class 6 has three, the tree assumes

that all should belong to class 6. Class 1 is also missing from the decision tree,

although not due only to its size. Data points from class 1 were split on attribute x19,

causing one of them to be classified with class 4, and the other four to be classified

with class 3. Class 3 having five data points caused all nine of the data points (five

from C3 and four from C1) at that leaf node to be classified as class 3.

Altogether, the misclassifications produced an error of 29.2%, giving the decision

tree an accuracy of 70.8%. Comparing this to the accuracy of the hierarchical clus-

tering described in the previous sections (54.2%), the decision tree has significantly

higher accuracy.

The misclassifications that cause this error can be further examined in another

decision tree. As mentioned previously, classes 1 and 3 are classified almost

completely the same. A decision tree can be formed from isolated data from only

those two classes to identify the attribute that is needed to separate the two. When

this is done, the decision tree in figure 5.31 is formed and the rules in table 5.3 can
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be written. This shows that attribute x5 (the presence of a neighboring halogen, O,

or NO2 in 1HNMR) is the most important attribute in separating these two classes.

Figure 5.31: Decision tree formed from classes 1 and 3 of the combined spectral data. Attribute x5
represents the presence of a neighboring halogen, O, or NO2 in 1HNMR. The classes at
the leaf nodes correspond to those formed by the human chemist.

Rule Data Points in Classification

R1 x5 < 15.62⇒ C1 4 data points in C1

R2 x5 ≥ 15.62⇒ C3 5 data points in C3, 1 data point in C1

Table 5.3: The rules generated by the decision tree in figure 5.31

Ideally, this examination of misclassification would be repeated with classes 5

and 6, but because there are a total of only five data points on those two classes

combined, the fitctree command would not form a tree.

While the default for fitctree is to not allow splitting of nodes with fewer than

ten data points, the parameter MinParentSize can be changed in order to allow the

nodes to split as small as necessary. Changing MinParentSize to 5 to allow for the
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spitting of classes 5 and 6 produces the decision tree depicted in figure 5.32, with

rules described in table 5.4.

Figure 5.32: Decision tree formed from combined spectral data, with MinParentSize = 5.

Rule Data Points in Classification

R1 x3 < 22.22 and x19 < 0.57 and x1 < 0.006⇒ C1 1 data point in C1

R2 x3 < 22.22 and x19 < 0.57 and x1 ≥ 0.006⇒ C4 4 data points in C4

R3 x3 < 22.22 and x19 ≥ 0.57 and x5 < 15.622⇒ C1 3 data points in C1

R4 x3 < 22.22 and x19 ≥ 0.57 and x5 ≥ 15.622 and x1 < 3.692⇒ C3 5 data points in C3

R5 x3 < 22.22 and x19 ≥ 0.57 and x5 ≥ 15.622 and x1 ≥ 3.692⇒ C1 1 data point in C1

R6 x3 ≥ 22.22 and x2 < 1.25⇒ C2 5 data points in C2

R7 x3 ≥ 22.22 and x2 ≥ 1.25 and x1 < 0.569⇒ C5 2 data points in C5

R8 x3 ≥ 22.22 and x2 ≥ 1.25 and x1 ≥ 0.569⇒ C6 3 data points in C6

Table 5.4: The rules generated by the decision tree in figure 5.32

The decision tree generated with a MinParentSize of 5 has an error of 0%, or an

accuracy of 100%. While this specific decision tree overfits this small dataset of
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only 24 examples, it provides clear and useful rules for each of the eight classes.

Furthermore, it gives important information about the five most important attributes

out of the 21 total attributes in defining these classes. For instance, attribute x1 (the

presence of carboxylic acid in 1HNMR) is important for discerning between classes

5 and 6. It is also important when identifying compounds in class 1. Attribute x5

(the presence of a neighboring halogen, O, or NO2 in 1HNMR) separates class 1 data

points from class 4 and class 3.

It is important to note that no validation or testing set was used in this project. This

is, again, due to the limited available data. Error in the decision trees was calculated

from misclassifications in the training data, which included all available data in

order to produce the most accurate tree possible. With a larger dataset, validation

and testing sets could more easily be generated, and a clearer understanding of the

accuracy of the decision tree could be established.

The constructing of decision trees in this way can provide chemists with the best

places to focus on when identifying organic compounds. Attributes close to the root

of the tree divide the set of compounds clearly and simply, and examining attributes

farther down the tree separate compounds less distinct from each other. Allowing

a decision tree to classify a compound completely independently is a possibility,

though decision trees with larger error would be put to better use providing attributes

at which to look more closely to analyze and identify compounds manually.
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CHAPTER 6

Conclusion

The machine learning methods of hierarchical clustering and decision trees were

applied to a dataset containing 1HNMR and 13CNMR spectral data. The results were

analyzed to determine the accuracy and usefulness of each of these methods, and it

was found that decision trees not only form more accurate clusters, but also provide

valuable information about which attributes are most relevant in the identification

process. The purpose of this project was to begin exploring the application of

machine learning methods with NMR data analysis, but much more work is to

be done. There were significant limitations encountered throughout this project,

which are discussed below in section 6.1. The work that is necessary to reduce and

overcome these limitations, as well as the work that logically follows what was

learned in this project, is discussed in section 6.2.

6.1 Limitations in this Project

As explained in section 4.1.1, discretizing data with feature extraction is necessary

with a dataset with as many attributes as there are in a (virtually) continuous

signal. However, data is lost through discretization. Some forms of data may not

need feature extraction, and others may have clear and distinct features such that

discretization causes little to no loss in data, but full NMR signals are unfortunately

too complex to have lossless feature extraction. Additionally, if the number of

65
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attributes is relatively large, while the number of data points (or compounds in this

case) is relatively small, both hierarchical clustering and decision tree forming are

difficult to make accurate. It is analogous to plotting very few points in a very high

dimensional space. This is the case in this project. NMR data for only 24 compounds

were available, and 21 attributes were present for the data with combined 1HNMR

and 13CNMR spectral data.

An additional problem with such a small dataset is lack of representation.

There are over nine million organic compounds currently known by scientists [18].

Therefore, the dataset used in this project contains less than 0.0003% of all organic

compounds. The more representation present in the dataset used in machine

learning, the more accurate the result of that learning method will be.

6.2 FutureWork

This work could easily be expanded upon simply with the use of more organic

compounds. A larger dataset would increase the accuracy of both hierarchical

clustering and decision trees, and introduce the types of organic compounds that

were missing from this project due to the size of the dataset available. If a dataset of

NMR spectra with multiple spectra for each compound were available, a decision

tree or other form of supervised learning could be implemented with each class

label as a different compound. This would take enormous amounts of data, and

therefore storage, time, and processing power as well, but would result in a virtually

automatic organic compound identifier, assuming little error occurs. While this is

ideal, it is not very attainable. However, further research can be done to determine

the best way to achieve semi- or close to full automation with less data. Machine

learning algorithms other than hierarchical clustering and decision trees would be

valuable to implement for analyzing NMR data. Unsupervised learning is especially
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beneficial when completing tasks similar to hierarchical clustering, where similar

compounds are identified and clustered. Supervised learning would require clear

labels which, as discussed in section 4.2 can be difficult to define. As mentioned

above, these labels could simply be the names of the compounds themselves, but

again, large amounts of data would be required to obtain an accurate classifier of

the compounds.

It is important to note that this work can never be truly complete. New organic

compounds are discovered constantly, with an annual rate of approximately 4.4% as

of 2015 [16]. As these new discoveries are made, databases of organic compounds

must be updated, and machine learning identification algorithms must then be

re-tested and possibly re-trained.

With the NMR analysis process semi- or fully automated, as this project began

to pursue, the field of practical organic chemistry would be drastically altered.

Semesters worth of education would not be required to focus on the tedious process

of analyzing an NMR spectrum by hand, hours of work identifying unknown

compounds from their spectra could be spent continuing the experiment, and

intelligent chemists would not need to spend hour after hour completing the busy

work of analyzing NMR spectra and identifying compounds. While this project

only scratched the surface of what is possible to accomplish in the area of organic

compound spectral analysis using machine learning, it has prompted a discussion

of what can be improved and how those improvements may be accomplished.
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