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Abstract

We introduce a two-stage theoretical framework of fire services that justifies

the status of response time as a factor input. In the first stage, the provincial

government distributes a budget to its cities, resulting in varied numbers of

firefighters and fire engines in each city. In the second stage, each city fire

department places its fire stations at spatially optimal locations that minimize

expected response times. When a fire occurs, the outputs from these two stages

are actualized into dispatch level, response time, and suppression time. These

intermediate outputs are then transformed into inputs for producing service

output, which is measured in terms of fire spread. Using a data set of 49,000 fire

dispatches that occurred in Gyeonggi Province, South Korea in 2014-2018, we

estimate a set of models for the above outputs. We find evidence for increasing

returns to population scale, while empirically showing that response time and

suppression time are indeed inputs for the production of fire services.
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Chapter 1

Introduction

Unlike manufactured goods, output in fire services can be difficult to quantify

due to its intangible nature. In fact, it may be difficult to conceptualize, let alone

quantify, output to begin with. What exactly is being produced in the case of fire

services? In what form does output exist? How do we measure it? In answering

these questions, one may envision a fire station equipped with firefighters and

fire trucks. A fire station as a physical building is certainly one form of output,

but it fails to provide a complete picture of the public good. Some fire stations

are busier than others, implying that the quantity of service provided may differ

even if the size of the station is the same.

Following this train of thought, one may proceed to consider indicators of

a station’s busyness, such as the total number of fire dispatches per month

or total fire suppression time. These indicators contain information about the

amount of work performed by different fire services. However, defining output

becomes even more challenging if one considers that fire service has a quality

dimension. Promptness of response is an integral component of a fire service

1



2 CHAPTER 1. INTRODUCTION

because fire, in many cases, is an emergency situation. Fire can spread over

time, making the delivery of service sensitive to time. Meanwhile, from an eco-

nomic standpoint, one may associate output with value saved. After all, saving

the lives and property of citizens is the raison d’être of fire services. Considering

this end goal of the service, it seems reasonable to define output in terms of the

outcome of a fire.

As such, defining output in the case of fire services can be a challenging

task because there are multiple aspects to be considered. Existing economic

studies of fire service production have defined output in largely two distinct

ways1. The first camp of researchers consider output as the sum of the inputs

that go into service provision (Hirsch, 1959; Ahlbrandt, 1973; Hitzhusen, 1973;

Kristensen, 1983). For them, firefighters and fire engines simply constitute out-

put. As a result, output is measured in terms of the costs of labor and capital,

which are revealed in the size of government expenditure. The studies aim to

identify the factors that “affect” expenditure, such as population, area, density

of houses, and real estate values, although the selection of control variables may

vary, ranging from urbanization index, insurance costs, percentage of commer-

cial properties, environmental variables, and so on. However, their focus is

commonly set on finding the factors that determine the size of a fire service.

The second camp defines output in terms of the consequences of a fire,

such as casualties (Jaldell, Lebnak, and Amornpetchsathaporn, 2014), dollar

damage to property (Coulter, 1979; Duncombe, 1991; Duncombe and Yinger,

1Of course, there are also a number of studies that have defined output in ways other than
the two that we have identified. In fact, Jaldell (2002) provides a thorough review of literature
and categorizes the definitions of output into five categories. Readers interested in the details
of this topic may find the first chapter of the author’s work useful.
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1993), square feet measure of physical damage (Ignall, Rider, and Urbach, 1979),

and degree of fire spread (Jaldell, 2005; Jaldell, 2019). The advantage of this

approach is that the quality or effectiveness of the service provided is taken into

account. For citizens, the consequence of fires may be of greater importance

than the sheer number of fire stations within the city. For this reason, Bradford,

Malt, and Oates (1969) refer to the consequence of a fire as the outcome of

interest to voters. Given that the ultimate goal of fire services is to protect the

lives and property of citizens, indicators of consequence provide a more vivid

picture of what is being produced by the fire services.

This paper aims to integrate the two camps of thoughts into a single the-

oretical framework. This integration necessitates a distinction between the ex

ante and the ex post. In a sense, the focus of the first camp is more heavily set

on determining the size of a fire service before a fire occurs. On the contrary,

the consequence of a fire, by definition, exists only after a fire occurs. Thus,

the second camp automatically situates itself in an ex post framework. The cost

functions developed by the first camp will fit into what we will define as the

first stage of ex ante production: the distribution of provincial budget across

cities according to varied fire risks faced by each city. However, this process in

itself is not our primary focus and we will not build or estimate any models for

government expenditure.

Instead, we attempt to model a production function for fire services using

information about the consequence of fires. That is, we follow the output def-

inition of the second camp. However, there will be two notable differences.

First, the first-stage distribution activity will be an integral part to constructing

our output. In fact, the first-camp output will be defined as an intermediate
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output that eventually becomes an input for the second-camp output. This will

be where the integration of the two camps occurs. Second, we will develop a

theory that justifies the status of response time as a factor of production. This

will entail defining the second stage of ex ante production: the spatial allocation

of fire stations by the city fire department.

Moving on, the two-stage procedure of the ex ante production will be ex-

tended to the ex post production of fire services. We believe that this is a

contribution to the current state of literature. Existing studies of fire services

do not consider the linkage between the ex ante and ex post production activi-

ties. Recognizing this linkage allows one to have a better picture of how fire

services are organized and provided. It also offers a theoretical validation of

econometric models that treat response time as an input for fire service pro-

duction (Wallace, 1977; Ignall, Rider, and Urbach, 1979; Morley, 1986; Jaldell,

2002; Jaldell, 2005). This validation may be useful because time-oriented factors

are not conventionally viewed as factors of production, compared to standard

inputs such as labor or capital.

So far, we have discussed how past studies have defined output in the case

of fire services. Then, we presented the structure of our theoretical framework

and explained where this paper stands within the current state of literature.

Now, we conclude with an overview of the chapters to follow.

In Chapter 2, the details of our theory are presented. As we enter the ex

post framework, we define the intermediate outputs as well as the final version

of the output, which we call the service output. As a result, we will be able to

explain the relationships between different layers of outputs and their relevant

inputs in a systematic manner.
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In Chapter 3, we review three empirical papers that are important to this

study. Particular emphases will be made on: the conceptual framework, output

definition and proxy variables, data set and nature of the sample, key compo-

nents of the econometric models, and important findings. All these aspects of

the papers will be discussed in connection to the current paper.

In Chapter 4, we introduce the three statistical methods that were consid-

ered for this paper: linear regression using Ordinary Least Squares estimation,

instrumental variable method using Two-Stage Least Squares estimation, and

ordered probit model using Maximum Likelihood estimation. We will explain

the underlying logic of each method with an example.

In Chapter 5, we specify our models for the three ex post intermediate out-

puts and the service output. We aim to establish a causal relationship between

the explanatory variables and the dependent variables of each model. Then,

we introduce the composition of our data set. Lastly, we explain how the de-

pendent variable for the service output model was constructed.

In Chapter 6, we present the estimation results for the following models:

response time, suppression time, and service output. We aim to provide mean-

ingful interpretations of the results, while also pointing out the limitation of

each model.

Finally, Chapter 7 concludes.
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Chapter 2

Economic Theory

In this chapter, the production of fire services is described as a two-stage process

in which the economic agents of each stage engage in a sequential optimization.

This two-stage theoretical framework is inspired by Jaldell (2002) who, to our

knowledge, first defined response time as an intermediate output and also as

an input for producing fire services, rather than a simply exogenous factor.

We consolidate this argument by identifying the source of this intermediate

output. That is, in order to justify the status of response time as an output, a

relevant production activity needs to be defined. We formalize this argument

by extending the theoretical presentations of Duncombe and Yinger (1993).

Section 2.1 provides a brief background of how fire services are organized

and operate, for readers who are not familiar with the entity. This discussion

will be made in the context of the jurisdictional structure of South Korea.

Section 2.2 introduces the two-stage optimization problem by defining the

economic agents and their decisions carried out in each stage. The type of

strategic interdependence is assumed to be sequential and not simultaneous;

7



8 CHAPTER 2. ECONOMIC THEORY

that is, the first-stage decision affects the second-stage decision but not vice

versa. We will state the advantage of this framework and refute two possible

objections.

Section 2.3 defines the intermediate outputs of the two-stage decisions in an

ex ante framework, meaning that the decisions are made prior to the incidence

of a fire. In Section 2.4, these concepts are extended to an ex post framework

where we now consider individual fire dispatches after the incidence of fires.

As a result, we will be able to define response time and suppression time as

inputs for producing fire services.

Lastly, Section 2.5 will present a model of average response time (Kolesar,

1975). Although the model will not be empirically tested in this paper, it will

help understand the relationship between response time, number of fire stations

across a city, and area. In particular, we will introduce the concept of service

reach, which will appear later in our model specification.

2.1 Background

The organizational structure of South Korean fire services is as follows. A

province consists of cities and sub-regions; each city has its own fire department;

and fire stations are located in a subset of sub-regions across the city. Most sub-

regions automatically fall under the jurisdiction of a particular city. There exist

extremely large sub-regions that have its own fire department; these will be

referred to as a city for the sake of convenience. Such sub-regions are very

rare and their status are typically raised to a city over the years. Fire stations

are placed in a subset of the sub-regions but not necessarily in all of them. The
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province is the entity that independently organizes and provides funding for its

own fire services; sub-regions do not have the ability to collect taxes or organize

their own fires services (unlike municipalities in the case of United States).

A city fire department acts as the headquarters for its fire stations and

substations within a city. The city fire department building is also where all the

administrators and higher-ranked officers are located. Therefore, it is usually

located in the center of the city to provide citizens with better access to public

services. The city fire department also tends to be equipped with specialized

vehicles, such as rescue trucks or ladder trucks, as it is located in the most

urbanized area within the city where these vehicles are most likely needed. On

the other hand, fire stations are located in different parts of the city to meet

the demand for fire service across the city. All fire stations are equipped with

a pump truck and a tank truck. Depending on the level of fire risks within

the neighborhood, additional vehicles are often allocated to fire stations as

well. Substations are placed in areas with very low population density and

are usually equipped with one pump truck. All fire departments have multiple

paramedic and one rescue squad across the city, each of which has one or two

ambulances and one or two rescue trucks. These squads operate as a separate

entity from the fire stations but are typically located in the same building with

firefighters for management purposes.

2.2 A Two-Stage Sequential Process

The production of fire service is a sequential process that occurs in two stages.

In the first stage, the provincial government makes the distribution decision of
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how much budget should be spent for each of its cities. Cities have different

population density, geographical characteristics, and number of fire-hazardous

facilities, which are all determinants of the level of fire risk. The provincial

government evaluates these risk factors and distributes fire resources (fire sta-

tions, fire trucks, and firefighters) to the cities. In the first stage, the goal is to

acquire a desired level of social outcome using minimum amount of budget. In

other words, the objective is to minimize the cost of producing a certain level

of output.

In the second stage, each city fire department makes the allocation decision

of where to place its fire stations. Fire stations are established at the spatially

optimal locations so that response time is minimized. Thus, the second-stage

objective is to maximize output, in the form of minimized response time, given

the budget constraint predetermined in the first stage. In both stages, legal reg-

ulations are considered as they specify the minimum number of firefighters and

fire trucks required for a given population, area, and number of fire-hazardous

facilities. Although the terms ‘distribution’ and ‘allocation’ are often used in-

terchangeably in other contexts, each will specifically and exclusively refer to

the relevant stage of production activity throughout this paper.

2.2.1 Advantages of the Framework

Existing economic studies of fire service limit the definition of production only

to the distribution decisions carried out by provincial governments. However,

the allocation decision clearly impacts the quality of service provided and thus

should be considered a part of the production process. The inclusion of the



CHAPTER 2. ECONOMIC THEORY 11

allocation decision into the production process has practical value. To demon-

strate this point, let us assume that a city fire department identifies inefficiency

in the operation of one of its fire station. This inefficiency may be revealed in

prolonged response times which would lead to increased damages from fire.

Without consideration for the allocation decision, the only argument that the

city fire department can make is that it needs to receive more budget from the

provincial government. However, with consideration for this issue, the city

fire department can now identify the source of inefficiency more accurately. If

the inefficiency is due to sub-optimal placement of fire stations, the city fire

department may choose to reallocate its stations in different locations, as long

as the benefit of doing so exceeds its costs. If the allocation proves to be optimal,

then this justifies the need for more fire budget endowed from the provincial

government. In both cases, consideration for the two stages will enable the city

fire department to achieve greater social welfare within a neighborhood or the

city.

2.2.2 Possible Objections

One may object to the claim that spatial allocation of fire decisions counts as

a production activity. One possible argument is that response time is only a

quality indicator and has nothing to do with the quantity of service produced.

This claim is certainly consistent with the neoclassical expression of production

where quantity produced is a function of capital and labor inputs. However, we

will demonstrate that the quality dimension is integral to output measurement

in the case of fire services considering the nature of what is being produced as
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well as the objective function of the producer.

Another objection may be that response time is only an exogenous vari-

able. That is, one may acknowledge that response time affects the quantity of

output but argue that firefighters do not have any control over response time.

According to this argument, response time cannot be defined as a factor input

because the producer does not have control over it. However, we will show

that response time exists as a result of a city fire department’s decisions and is

thus fundamentally within the control of the producer of the service.

In the following section, we shall develop a theory of fire service produc-

tion by carefully defining input, output, and outcome. In particular, we will

newly introduce spatial allocation and response time to the theoretical frame-

work of Duncombe and Yinger (1993). This will provide a more comprehensive

understanding of the organization and provision of fire services.

2.3 A Theory of Fire Service Production

Following the definitions presented in the text, Microeconomics: Theory and Ap-

plications with Calculus by Jeffrey M. Perloff (2009), we define output as the goods

and services that a firm sells or provides; and inputs as factors of production

such as labor, capital, and material that are used to produce an output. In this

study, we narrow the scope of fire services to firefighting activities only, while

excluding fire prevention and administrative duties from consideration. Then,

output can be broadly defined as the sum of all firefighting activities produced

by the provincial government and provided through the agency of the city fire

department. As suggested in the previous chapter, the ex ante and ex post pro-
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duction should be considered separately in order for one to better understand

exactly what is being produced. Before a fire actually breaks out, the production

of fire services occurs as a sequential process of two stages, each of which results

in different types of output. After firefighters respond to a fire, ex ante output is

transformed into ex post output under the influence of environmental variables

and fire conditions.

2.3.1 First-Stage Output: Stand-by Level

In the first stage of production, the provincial government produces the avail-

ability of city fire departments of different sizes across its cities. That is, the

provincial government provides citizens with the availability of fire depart-

ments and the subsidiary fire stations that are equipped with the adequate

amount of fire resources given the environment. Determination of the ade-

quate requires evaluation of varied risks of fire in each neighborhood, which

are reflected in factors such as population density or number of hazardous fa-

cilities. For example, neighborhoods with higher population density are given

a larger number of firefighters compared to less populated ones. Also, ladder

trucks are distributed to neighborhoods with tall buildings, but not to areas

without vertical structures. In both cases, different amounts of fire resources

are distributed to the neighborhoods so that firefighters can readily respond to

fires with the appropriate equipment.

We notice that the first-stage output has two aspects. The first aspect is the

size of fire stations, which is determined by the size of the budget distributed

to each city from the provincial government. The second aspect is availability.
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The provincial government does more than merely purchasing fire trucks and

hiring firefighters; it ensures that fire service is provided whenever citizens need

it. In other words, the first-stage output is produced no matter what happens.

These two aspects can be encapsulated into the term stand-by level (Jaldell,

2002). Following Duncombe and Yinger (1993), stand-by level can be expressed

as follows:

G = g(L,K,Z) (2.1)

where L is labor, K is physical capital and equipment, and Z is all ‘other inputs’

such as GPS technology specialized for fire services. The function g is similar

to the production function of a private firm because it defines the way in which

inputs are combined to produce an output. In the meantime, G can also be

defined as the level of governmental activity because it is directly proportional

to the size of the budget endowed from the provincial government. However,

G only reflects a particular size of a fire service and its constant availability to

citizens, without any consideration for the actual location of the fire service. In

other words, fire departments and fire stations do not physically exist at this

stage.

2.3.2 Second-Stage Output: Firefighting Power

In the second stage of production, the city fire department places its fire stations

at optimal locations so as to minimize expected response time, or the expected

time it takes a fire service to arrive at the fire scene. When a fire incident occurs,

firefighters and fire trucks are sent to the scene to suppress the fire as promptly

as possible. In economic terms, these firefighters and fire trucks are the inputs,
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while their capacity to suppress the fire is the output at this stage of production.

We will call this capacity the firefighting power of a fire service. However, labor

and capital are not the only factors that determine firefighting power. Response

time is also a crucial factor because a fire typically aggravates over time and

prompt arrival can change the course of the fire. Given the same severity of

fire and same number of firefighters and fire trucks involved in a dispatch, a

shortened response time will enhance the firefighting power of a fire service.

For this reason, expected response time should be considered an input that

determines the level of firefighting power. Therefore, the second-stage output

can be expressed as:

F = f (G,A) (2.2)

where A is the vector of decisions relating to the spatial allocation of fire stations

by the city fire department. For average-sized fire incidents, the firefighting

power of a fire department would be a vector of the firefighting power of the

subsidiary fire stations. However, in some cases, the collective firefighting

power of a city fire department may be greater than the sum of its parts (i.e. fire

stations). For example, a massive fire may occur in which multiple fire stations

become involved, or fires may occur simultaneously within a neighborhood

and require one fire station to cover for another. In these cases, proximity

between fire stations will produce a synergy effect that is greater than the mere

sum of each fire station’s firefighting power. As such, the specific function of a

fire department’s firefighting power may differ across cities. Thus, f should be

understood as a generalization of such functions.
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2.4 Ex Post Output

When a fire incident occurs, firefighters and fire trucks closest to the location

are dispatched to the fire scene. In the ex post framework, it is reasonable to

make the following assumptions. First, firefighters always ‘do their best’ to

suppress a fire. In other words, assuming identical fire severity, the level of

suppression effort is the same regardless of the value of the property on fire.

Second, firefighters always aim to arrive at the fire scene as promptly as they

can1. Exogenous factors such as weather, road, or traffic conditions may yield

some variance in response times. However, response time is predominantly

determined by the location of the fire station, which is the product of the second

stage of service production.

The sequential procedure of the ex post production largely resembles its ex

ante counterpart. Depending on the severity of a fire, only a subset of a fire

station may be dispatched to the scene. In other words, not all firefighters and

fire trucks may respond to suppress the fire. Let L′, K′, and Z′ each denote a

subset of firefighters, fire trucks, and other fire resources that are involved in a

particular fire incident. Then, these subsets of first-stage inputs would produce

a certain level of first-stage output. We will call this ex post first-stage output

the dispatch level and denote it as G′. While dispatch level is analogous to the

stand-by level, G, it is different in that only a subset of fire resources are actually

dispatched to the scene. Thus, dispatch level can be written as follows:

G′ = g(L′,K′,Z′). (2.3)

1We will release this assumption when we specify the model for response time.
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In the ex post framework, the prior spatial allocation decision, A, is actu-

alized in the form of response time, R. It is important to recognize that both

dispatch level and response time are predetermined by the two stages of ex ante

decisions. In other words, the first-stage distribution decision and second-stage

allocation decision have a bearing on the ex post production of fire services.

Given a certain amount of dispatch level and response time, ex post fire-

fighting power is produced in a particular fire incident. Denoted Fpost, this

firefighting power is also analogous to its ex ante counterpart and can thus be

expressed as:

Fpost = f (G′,R). (2.4)

Here, Fpost indicates the maximum potential of suppression activity that can be

performed by a fire service. In other words, Fpost, by itself, does not provide

information about the specific level of suppression effort that was actually made

to put out the fire. Whether firefighters utilize their firefighting power up to

their full potential depends on the severity and conditions of the fire. For

example, the actualized level of effort to suppress a fire in a barren field will

certainly be different from that of suppressing a house fire, even if the same

number of firefighters and same types of fire trucks were involved. The varied

levels of effort may be reflected in the time it takes to suppress the fire.

In response to a fire incident, firefighters provide their firefighting power to

the citizens for a certain amount of time, which will be referred to as suppression

time and denoted T. The amount of work that is being done during this time

is the very output that we have been trying to define; this is the final form of

output.
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We are now able to define service output, Q, as the amount of firefighting

power that is produced when a group of firefighters and fire trucks respond to

an emergency call and suppress the fire for a certain amount of time. Notice that

this definition involves all of the intermediate outputs that we have established

within the ex post framework: dispatch level, response time, and suppression

time. To sum up, service output can be expressed as follows:

Q = q(L′,K′,Z′,R,T). (2.5)

As a result, we have established response time and suppression time as outputs

of intermediate production activities as well as inputs for producing service

output.

2.5 A Theory of Response Time

In spatial economics, market reach refers to the minimum area that a firm

needs to serve in order for its service to be worthwhile (Christaller and Baskin,

1966). Although fire services are not organized in response to a market-oriented

demand for emergency services, per se, we may consider the concept of market

reach in the context of fire services. Here, we define the service reach, SR, of a

fire station as follows and use the term in the remainder of the paper:

SR =
A
n

(2.6)
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where A is the area of a city and n is the number of fire stations in the city.

Response time will increase as service reach increases, as a fire station will

have to cover a larger area of land and travel longer distances. Meanwhile, re-

sponse time will decrease as the number of fire stations within a city increases;

each fire station will cover a smaller service reach, as revealed in Equation 2.6.

We conclude this chapter with a fundamental model of response time that

has been used in many applications. This model can be understood as an ex-

tension to the notion of service reach with a consideration for the number of

“busy” fire stations. Following Kolesar (1975), expected response time (travel

time), ET, can be expressed in the following relationship:

ET = α + β ·
[ A
n − λES

]γ
(2.7)

where A and n follow the same definitions from Equation 2.6, λ is the expected

number of fire dispatches per hour for all fire stations in the city, and ES is the

expected suppression time (in hours). The specific values of the parameters α,

β, and γ are dependent upon the physical characteristics of the city. The term,

λES, is an approximation for the expected number of fire stations that are not

available. Therefore, the denominator, n − λES, indicates an approximation for

the expected number of fire stations that are available during a given hour2.

Equation 2.7 suggests that response time would increase as fires occur si-

multaneously within a given area. That is, as the number of unavailable fire

2These approximations are based on a separate model for distance. As such, the described
model is not an expression for a set of physical laws; rather, it is an “approximation combined
into another approximation”, as the author clarifies. This model has been employed in numer-
ous applications even in recent years (Taylor, 2015) and has been shown to be robust to different
samples.
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stations increases, the expected response time will increase as well. This implies

an interdependence between fire stations; the availability of one fire station may

affect the performance of another by prolonging its response time to a fire in-

cident. For this reason, the density of fire stations should also be considered

when modelling fire service provision. Population density may not suffice as

an indicator because some cities may be in a relative shortage of fire stations

even though its population is high. In this sense, service reach can be a more

effective indicator of whether a “sufficient” number of fire stations are in place

within a city.



Chapter 3

Literature Review

In Chapter 1, we provided a survey of economic literature on the provision of

fire services. The focus was set on identifying different definitions of output and

the relevant measurement variables that were chosen for empirical analysis. In

this chapter, we review three pieces of empirical literature with an emphasis on

their conceptual framework and selection of independent variables for model

specification.

3.1 Duncombe and Yinger (1993)

The goal of the following article is to systematically define ‘returns to scale’ in

public production. A system of four dimensions are proposed. The first three

are the service quality, level of governmental activity, and population scales; the

fourth is the economies of scope. The article presents a thorough, mathemati-

cal derivation of each dimension by considering a cost function for fire service

production. Rather than mentioning the technical details, we will focus more

21
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on the logic behind the derivations.

Their strategy of obtaining the cost function is to take the ‘inverse’ of a

production function. A two-stage framework is considered. The first stage con-

cerns the level of governmental activities, which are revealed in government

expenditures. The second stage involves a qualitative aspect of the service,

which is directly experienced by citizens. The government activities are de-

fined as an intermediate output; and the outcome of interest to voters as the

final output.

Before we proceed, a clarification may be useful. The first-stage inter-

mediate output is analogous to our own definition of stand-by level. In our

theoretical framework, the size (and availability) of a fire service is determined

by the first-stage budgetary decisions. However, the article “jumps” directly

to the final output without considering varied response times or suppression

activities. This difference stems from their purpose being the construction of a

cost function. Their interest does not lie on the stand-by level itself but on the

cost of maintaining a fire station. Meanwhile, our focus is set on the production

function of the fire services, not on governmental entities.

As a result of this difference, the unit of observations are different. In our

paper, we naturally consider individual fire dispatches to analyze the role and

impact of input factors on our output. Duncombe and Yinger (1993), on the

other hand, consider a sample of 188 municipal fire departments in New York

State in 1984-1986. Their analysis does not involve time- or space-related fac-

tors.

The article defines the relevant inputs for each output. Government activ-

ities are defined as a function of labor, capital, and other materials; outcome
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of interest to voters is expressed as a function of the government activities, a

jurisdiction’s population, and (a vector of) environmental variables. Notice that

the intermediate output now becomes an input for the final output. That is,

government expenditure becomes a factor that decides the outcome that citi-

zens experience. However, these are affected by how many people are served

and how harsh the firefighting environment is.

Here, we notice that an analysis of fire production, whether it be on an

aggregated government-level or on an individual fire-level, involves popula-

tion and external factors. However, the population is only considered in the

context of how many citizens are being served and how costly it is to do so; our

motivation for considering population will be to examine the marginal returns

to output (namely, response time) rather than marginal costs.

After a series of algebraic manipulations, the article derives the cost func-

tion. Then, it takes the partial derivative of the total cost with respect to different

scale and scope dimensions. These partial derivatives are the mathematical def-

inition of returns to scale. Thus, the goal of their empirical analysis is to estimate

the values of these scale parameters. The rest of the analysis is not relevant to

our paper.

The article provides two interesting points to consider. First, their measure

of the final output is property loss, L, relative to the property value, V, within

a community. This proxy, L
V can be written as follows:

L
V

=
L
F
×

F
V
,
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where F represents fires. To directly quote their explanation, “a reduction in

property losses can either come from a decrease in the number of fires (fire

prevention) or in the loss per fire (fire suppression).” This simple equation

summarizes the two key aspects of the fire service. If data for continuous

dependent variable relating to monetary value are available, this can be a useful

approach.

Second, the concept of returns to population scale is worth investigating. This

can be an indicator of how efficiently a fire service is serving its citizen. Notice

the use of the word ‘efficient’. Generally speaking, the conflict of efficiency and

equity in fire services boils down to the issue of population and land size covered

by a fire department. From an efficiency standpoint, the size and location of a

fire service should be determined in such a way that the largest population (for

a given area of jurisdiction) can be served. However, this results in a possibly

unevenly greater allocation of resources to densely populated, urban areas. On

the contrary, rural areas will receive a smaller amount of resources and have

fewer fire stations. This leads to prolonged response times in these areas, which

often makes a big difference on outcome in emergency situations. For this

reason, regulations in South Korea dictate both land- and population-oriented

guidelines for the minimum number of fire stations to be established across

jurisdictions. Of course, due to a limited amount of resources, the population-

oriented guidelines practically determine the allocation of fire resources. In this

sense, considering both land size (service reach) and population density will

allow one to carry out a more “balanced” analysis on the production of fire

services.
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3.2 Jaldell (2005)

The primary purpose of the following article is to compare the productivity

differences among Swedish fire services. To do so, the article first establishes

a conceptual framework within which fire suppression activity is delivered to

citizens. As shown in Figure 3.1, the article separates the production of fire

services to intermediate steps. Note that the figure is directly copied from the

article.

In the first step, resource allocation of the Swedish government results

Figure 3.1: Flowchart of Fire Suppression Activity (Jaldell, 2002)

in varied average response times and manning level (number of firefighters

initially reaching the fire). For the sake of consistency, we will use the term

dispatch level instead of manning level. Response time and dispatch level

are “assumed” to be outputs. The way in which the author introduces these

elements into the framework is not based on any prior economic decision or

activity; rather, the author explains that the “intermediate output can be mea-

sured both by response time, the faster the better, and by how many firemen

that will turn out, the more the better”1. In other words, the two are defined as
1This statement was directly quoted from the dissertation of the same author (Jaldell, 2002),

which includes a more detailed narrative of the author’s conceptual framework.
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Figure 3.2: Revised Flowchart of Fire Suppression Activity (Hwang, 2020)

outputs because they are important indicators of fire suppression activity.

In the theoretical framework that we proposed in the previous chapter, we

identified the very source of these intermediate outputs. As shown in Figure 3.2,

dispatch level originates from stand-by level, which is determined in the first

stage of the ex ante production: distribution of government budget. Meanwhile,

we claim that response time originates from the specific location of a fire station,

which is determined by the second-stage decision of the city fire department:

spatial allocation of fire stations. In particular, we have established that the

location decisions are actualized into response times when a fire actually occurs.

Therefore, we believe that the revised conceptual framework in Figure 3.2 can

function as a theoretical improvement to the framework in Figure 3.1; that is, the

status of response time and manning level as intermediate outputs is validated

through the identification of the relevant economic activities.

Jaldell (2005) points out that the performance of firefighters may differ even

if the same size of dispatch level is sent out to the fire scene within the same

response time. These productivity differences are reflected in the second inter-

mediate output proposed by the article: saved lives and property. In producing

this output, the first set of intermediate outputs are transformed into inputs.
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This transformation justifies the inclusion of response time and dispatch level

as explanatory variables within the econometric model for the second interme-

diate outputs.

As shown in Figure 3.1, the production scheme extends to the rather ab-

stract notion of welfare from fire security, which is the final form of output. In

producing the final output, the prevention aspect of the fire services needs to

be considered. Since this is beyond the scope of our paper, we did not include

this in Figure 3.2. Jaldell (2005) also does not perform any empirical analysis

on the final output.

The measurement of the second intermediate outputs is the primary focus

of the article. The article defines a criterion for an effective measurement: the

proxy must capture the difference between the potential course of a fire and the

result due to the firefighters’ work. In this sense, the degree of fire spread is

an effective proxy because it shows what could have happened and what was

prevented by the fire service. However, the article acknowledges that the ideal

proxy would have been the value of property and number of lives saved (in

relation to the total the total value and number) and explains that relevant data

were not available.

The author introduces a novel way of constructing the dependent variable.

The author devises a measure of fire spread that compares the fire condition

upon arrival and where the fire was extinguished. There exist multiple ‘out-

comes’ based on this measurement, which the author categorizes into three

ordinal levels. The details of this process will be presented in Chapter 4 of our

paper, since we chose to use a similar proxy. As a result of this ordering process,

the dependent variable consists of three levels that indicate better (Y = 2) to
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worse (Y = 0) outcomes.

Due to the dependent variable being discrete, an ordered probit model is

used. The right-hand side of the regression equation takes the form of a typical

linear model, consisting of five input variables and 37 individual city dummy

variables. The input variables include: response time, number of own fire-

fighters (initial crew), number of extra firefighters (additional crew), binary

variable for full-time and part-time (firefighters), and another binary variable

for life-saving activity. The city fixed effects are included for the purpose of

productivity comparison among fire services. Out of 253 fire services, only the

37 with more than 20 dispatches are given a dummy variable.

The data set considered in the article consists of 3,039 residential fires that

occurred across 288 Swedish municipalities in the years of 1996 and 1997. The

sample only includes fires on detached houses, as they are understood to be

the most homogeneous type of structure. The data set does not contain any

information on environmental conditions or capital inputs, namely, fire engines

and water equipment. While the author is correct in that firefighters and fire

trucks are complements, we believe that fire trucks could be a better proxy, if

data were available on both inputs. This would particularly be the case if there

are multiple types of fire trucks. Including the number of fire trucks in the

model would allow one to capture the different contributions that each type of

truck makes. The number of firefighters would simply be a linear combination

of the number of each truck.

The author restricts the maximum number of own firefighters to 20 and ex-

tra firefighters to 10. The reason is that each variable includes those firefighters

who were put in to the scene after a shift change. That is, fires may continue
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at hours when the night-shift firefighters end their duty and the day-shift ones

begin working. In Sweden, a shift change seems to occur, given that the author

discusses an exchange of firemen at the scene. In South Korea, this does not

happen; those who are sent to the fire dispatch complete the fire suppression

even they go over hours2. Thus, we did not have to consider such a cap in our

econometric model. However, our data set suffers the problem that all the initial

crew and additional crew are added together without distinction. Therefore,

we will also try the method of restricting the maximum number of the dispatch

level, but our reason will be different from the article. Also, we will apply this

method only for sensitivity analysis and not for our main model.

The binary variable for full-time firefighters is included to test the hypoth-

esis that full-time professionals would produce better outcomes than part-time

firefighters. The reasoning is that the full-time group receives better training

and has more experience. In fact, their results show that there is no productivity

difference between the two groups. The author thus infers that team spirit is

a more decisive factor than the number or constituents of firefighters, at least

in fires on detached houses. However, it is also possible that this result was

due to the very small number of fires in which the initial severity was high.

If their data set consisted of a larger number of harsh fires, then professional

firefighters may have shown to be more productive. Our own data set shows

a similar composition of severe and relatively trivial fires; the number of the

former is disproportionately small.

Lastly, the life-saving dummy variable was included to test the hypothesis

2If a fire continues for days, which is not uncommon in large forest fires, then firefighters in
South Korea do exchange shifts. However, in our sample of residential fires, no fires continued
for over 6 hours.
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that rescue activity would result in worse fire outcome. The reasoning is that

rescuing human lives always comes first. Spending more time on the life-saving

activity, fire suppression may be carried out at a slower pace or not carried out

at all, thus allowing the fire to spread more.

In the described model, the role of the response time variable is rather

questionable. While we fully agree with the motivation of including it as an

input variable, response time should not have any impact on their outcome

variable, given the way it was defined. Their dependent variable is designed

to indicate the degree of fire spread between two time points: the time when

the initial crew arrived and the time when the fire was extinguished. If a fire

has already evolved to a greater magnitude, we are unable to know if this high

initial severity of fire is due to prolonged response time or simply due to late

discovery. Once a fire service arrives, the only factors of production that can

make a difference in the outcome are labor and capital. Response time only

matters in the sense that a fire can spread and aggravate the situation while the

firefighters are traveling to the fire scene.

For this reason, we suggest that the definition of the dependent variable

should rather involve the following time points: the time when an emergency

call was made and the time when the fire was extinguished3. Under this defi-

nition, shortened response time directly impacts the fire outcome; it will mean

that the initial crew arrives earlier, which will connect to a lower initial severity

of a fire and possibly to better fire outcomes.

Finally, we discuss the fire service fixed effects. The author explains that the

3The obvious alternative would be to adhere to the original definition of the output and
exclude the response time from the model.
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37 dummy variables are analogous to the individual effects in panel data mod-

els. The author claims that the coefficient estimates on the fire service dummy

variables can be interpreted productivity differences between the fire services.

The article presents a table of these coefficient estimates and use this result to

rank the productivity of each fire service. An analysis of this sort may serve as

a useful decision tool for policy makers, as it enables a quantitative comparison

between entities, whether it be individuals or fire services. However, one must

also thoroughly examine any other factors that can enter the fixed effects.

By definition, fixed effects capture all the unobserved cross-sectional char-

acteristics. The characteristics may be unobservable by nature; or they may be

observable but relevant data may be unavailable. Although the cross sections

in the above model are defined as fire services of each municipality, the fixed

effects are essentially encapsulating all the characteristics of the municipalities

and not only fire services. These characteristics may be strong enough to distort

the impact of productivity differences within fire services. For example, what

if certain municipalities mandated the installation of sprinklers in every single

detached house? What if other municipalities had a larger proportion of old

houses that were more susceptible to fires? Unless these factors are controlled

for in the model, the possibility of these attributes entering the fixed effects

remains. Even if all the relevant control variables are included, there still exist

attributes that cannot be observed at all.

The model presented in the article does not include any control variables

relating to external conditions. Given that the data were recorded in the late

1990’s, a lack of detailed information is comprehensible. However, this very

limitation may pose a question to the validity of fire service fixed effects as an
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indicator of a fire service’s productivity. The following article to be presented

mitigates this concern by including comprehensive and detailed information

about each fire.

3.3 Jaldell (2019)

The following article is an extension of the author’s previous work (Jaldell,

2005). The two purposes of the study are given as: to show how efficiency can

be measured using a discrete outcome variable; and to measure efficiency for

Swedish fire and rescue services and examine the source of these differences.

The statistical method selected for this study is the logistic random parameter

model. We will not discuss the technical details of the method, as our own

model estimation will not involve random effects. Two versions of the depen-

dent variable are considered: one being the three-level ordinal variable and the

other being a binary outcome variable. The data set considered in the article

consists of 29,813 residential fires that occurred in Sweden from 2009 to 2013,

with 290 municipalities and about 150 fire and rescue services.

There are a few notable differences from the previous article. First, a bi-

nary version of the dependent variable is introduced. This may involve some

aggregation of the data because the qualitative measure of outcome is now

simplified, compared to its three-level counterpart. Instead, the interpretations

of the parameter estimates may become relatively simple. Second, the sam-

ple considered has expanded from detached houses to residential fires. While

the homogeneity of the observations has weakened, sample size has greatly

increased. The author may have made this decision due to the availability of
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increased, detailed information about individual fires. The reason for convert-

ing from probit to logit models could not be found in the article.

The model estimation is performed in largely three steps. First, a similar

model from the previous article (Jaldell, 2005) is estimated. However, only the

response time variable is included as a key explanatory variable; instead, a long

list of control variables are included in this model. The controls are categorized

into three groups: fire suppression devices, reasons of fire, and starting room.

Fire reasons include explosion, fire works, candles, and many other; starting

room encompasses all spaces within a residential house, from bathroom and

garage to stairwell and chimney. All of these controls are binary variables. Also,

fire and rescue service (which used to be called fire service) random effects are

estimated.

In the second step, the service-specific random intercept is used as a relative

efficiency measure. In the third step, these random effects become the depen-

dent variables, while the explanatory variables are: dispatch level (firefighters

only), the previous full-time dummy variable, size of the service, and popula-

tion of the municipality. The author states that this novel method of analysis

is lacking in econometric foundation. For this reason, we do not employ this

particular method in our model estimations. The more relevant aspect of this

article to our paper would be the motivation for including the stand-by level

and population variables.

The size of the fire and rescue service is included to observe any organiza-

tional differences that would connect to variations in productive efficiency. The

reasoning behind this is that a larger service may offer better training opportu-

nities and facilities. In South Korea, firefighters are employed by the provincial



34 CHAPTER 3. LITERATURE REVIEW

government and go through homogeneous training organized by the provincial

fire academy. Therefore, we would not expect improved training opportunities,

per se, in larger fire departments. However, fire departments in larger cities

do seem to have more resources and may provide better facility. For example,

the working conditions for firefighters may vary due to deteriorated capital

equipment or poor training facilities.

In the meantime, larger population is explained to draw in more competent

personnel both in fire crew and in management. South Korean firefighters are

employed by the province not by municipalities, so we would not necessar-

ily expect a firefighter in an urban area to be more competent than their rural

counterpart. A more relevant explanation to our study may be in regards with

population density. In densely populated areas, fire services will be able to

cover a larger number of population within a shorter response time. To con-

struct a more accurate indicator, we may also consider population density per

fire station of a city. This will allow us to observe the impact that the density of

fire stations have on response time or service output.

The article concludes with a few findings. First, a more “flexible” organi-

zation of fire services, such as one with first response persons, is said be more

effective in fire suppression. First response persons, in Swedish fire services,

are single firefighters whose role is to arrive at the fire scene two minutes before

other services. Although such a concept does not exist in South Korean fire

services, an ambulance may perform a similar role due to better mobility. The

second finding is that populated municipalities are more efficient. However,

this result is derived based on a variable that only indicates population. We

claim that population density is a more relevant measurement, unless all munic-



CHAPTER 3. LITERATURE REVIEW 35

ipalities are equal in land size. For our model specification, we will include the

population density variable as well as population density per fire station. Since

response time is dependent upon the spatial environments, a consideration for

the land size of each city will be frequently made in our models.
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Chapter 4

Statistical Methods

Regression is a powerful tool of analysis that allows one to quantify the impact

of an independent variable on a dependent variable. The verb regress implies

that the method returns data points back to a somewhat simplified form. Re-

gression analysis allows one to identify patterns that exists within a data set and

the relationship between variables. In particular, linear regression expresses the

dependent variable as a linear function of one or more independent variables.

The method is utilized for many analytical purposes such as creating a model

that describes the reality; testing hypotheses about a theory or policy; or fore-

casting future outcomes by constructing predictive models.

We will begin this chapter by presenting the statistical theory behind linear

regression analysis. Then, in section 3.2, we will introduce the concept of an

instrumental variable, which is a method that has been increasingly used in

econometric analyses. Lastly, in Section 3.3, we will describe the ordered probit

model and its usefulness when the dependent variable is not continuous in

nature.

37
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4.1 Linear Regression

In order to demonstrate the underlying logic of linear regression, we begin

with the simplest case of single-variable regression. We will define the key

components of a regression equation, examine the derivation of coefficient

estimates, and use an example to demonstrate how the results are interpreted.

4.1.1 Single-Variable Regression

A single-variable regression involves one independent (explanatory) variable

affecting the dependent (outcome) variable. We may establish a ‘theoretical’

equation that perfectly describes our reality:

Yi = β0 + β1 Xi + εi (4.1)

where εi is the error term which accounts for the stochastic variation in the

dependent variable, Y. It is important to notice that the error term absorbs the

randomness that cannot be encapsulated in our model of the real world. When

real life data are collected, not all data points lie on the regression line. If all our

observations lie on the line of the theoretical equation, then this implies that

there was nothing for us to model in the first place. In such case, the relationship

between X and Y are said to be purely deterministic and thus no estimation is

required.

Equation (1) can also be understood as the relationship between X and Y

within the entire population. In statistical inference, it is implicitly assumed

that a complete set of data for the population is unavailable; otherwise, there
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would be nothing for us to infer because we already have full knowledge of the

population. Thus, we use available data and produce an estimated equation

for a given sample as follows:

Ŷi = β̂0 + β̂1Xi (4.2)

where the subscript i represents the observation number ranging from 1 to N,

and N is the number of observations in the sample. Deriving this equation is

equivalent to finding the line that best describes the data points in our sample. In

other words, we want to estimate the coefficients so that the estimated regression

equation “fits” our data well. In obtaining the values of the coefficients, we may

choose to use an estimator called Ordinary Least Squares.

4.1.2 Ordinary Least Squares

The ultimate goal of linear regression analysis is to create a regression equation

by estimating the coefficients. In statistical terms, these coefficients are the

parameters of interest, or quantities we wish to estimate. An estimator of a

parameter is some function of the data that enables us to derive a value that is

close to the true value of the parameter. This ‘true’ value is only theoretical and

is usually not revealed in empirical studies, so the goal of the researcher is to

choose the most effective estimator available. The one that is most widely used

in linear regression is the Ordinary Least Squares (OLS) estimator.

OLS is a function that minimizes the sum of the squared residuals. A

residual refers to the difference between the actual and estimated values of Y,

in other words ei = Yi − Ŷi. In single-variable regression, the residual can also
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be expressed as ei = Yi − β̂0 − β̂1Xi from Equation 4.2. As residuals are signed

differences, adding them up is not desirable because distances of opposite signs

may cancel out, which may not allow the information about the distances to

be preserved. For this reason, we square the residuals. Therefore, the OLS

estimator derives the line of best fit in a manner that minimizes the squared

distance between data points and estimated values. In other words,

OLS minimizes
N∑

i=1

e2
i . (4.3)

Equation 4.3 is equivalent saying that OLS minimizes
N∑

i=1

(Yi− β̂0− β̂1Xi)2. Specif-

ically, the OLS procedure calculates the estimates of our regression coefficients

by the following formulae:

β̂0 = Ȳ − β̂1X̄

and

β̂1 =

∑N
i=1[(Xi − X̄)(Yi − Ȳ)]∑N

i=1(Xi − X̄)2

where X̄ and Ȳ are the means of all Xi’s and all Yi’s, respectively. OLS will

produce different values of β̂0 and β̂1 for different data sets.

4.1.3 Multiple Linear Regression

In many cases, movement in the dependent variable may not be fully explained

using only one explanatory variable. We can extend the logic behind single-

variable regression analysis to multivariate models by including more explana-
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tory variables into the equation. The theoretical multivariate regression equa-

tion has the form:

Yi = β0 + β1 X1i + β2 X2i + · · · + βK XKi + εi (4.4)

where K is the number of explanatory variables. The constant term β0 indicates

the value of the dependent variable when all explanatory variables and the

error term equal zero. The coefficients indicate the change in the dependent

variable associated with a one-unit increase in the corresponding explanatory

variable, holding constant all other explanatory variables in the equation. In

other words, multivariate regression enables us to measure the estimated im-

pact of each explanatory variable in isolation.

To illustrate an example, we utilize a sample of 219 college students pro-

vided in the First Year GPA data set under the Stat2Data package in R (Cannon et

al., 2018). Some modifications have been made to the data set for our purposes,

which are provided in Appendix 3. The variables that will be used to construct

the OLS model (as well as other models in the subsequent sections) are listed

in Table 4.1:

Variable Name Definition
Y GPA College GPA
X1 hsGPA High School GPA
X2 SATmath SAT Math Score
X3 SATverbal SAT Verbal/Critical Reading Score
X4 StudyHours Hours Studied in College per Week
Z Roommate Hours Spent with Roommate per Week

Table 4.1: Variables in the College GPA Model
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Let our model express first-year college GPA as a linear function of variables

listed in Table 4.1: high school GPA, SAT Math score, SAT Verbal and Critical

Reading scores, and study hours in college. Note that Z is not included here but

will be used as an instrumental variable in the following section. The theoretical

equation for this model will have the form:

GPA = β0 + β1 · hsGPA + β2 ·SATmath + β3 ·SATverbal + β4 ·StudyHours + ε (4.5)

which can also be understood as the true population regression equation for all

first-year college students. Meanwhile, the estimated regression equation will

have the form:

ĜPA = β̂0 + β̂1 · hsGPA + β̂2 · SATmath + β̂3 · SATverbal + β̂4 · StudyHours. (4.6)

As was stated in Equation 4.3, OLS derives the estimates of the above coefficients

in such a way that minimizes the squared residuals. Using a statistical software,

we obtain the results in the Table 4.2. Based on the information about the

coefficients in Table 4.2, we can now construct the estimated regression equation

for the sample of 219 students as follows:

ĜPA = 3.793+0.004·hsGPA−0.004·SATmath−0.0003·SATverbal+0.065·StudyHours.

(4.7)

Recall that each coefficient indicates the change in the dependent variable as-

sociated with a one-unit increase in the corresponding explanatory variable,

holding constant all other explanatory variables in the equation. For example,
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Table 4.2: College GPA Model (OLS)

Dependent variable:

GPA

hsGPA 0.004
(0.351)

SATmath −0.004∗

(0.002)

SATverbal −0.0003
(0.002)

StudyHours 0.065∗∗∗

(0.014)

Constant 3.793∗∗

(1.611)

Observations 219
R2 0.122
Adjusted R2 0.106

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
(Standard errors in parentheses)

an additional hour of study time per week is associated with a 0.065 increase in

college GPA, holding the other three variables constant.

4.1.4 Measures of Fit

When presenting regression results, it is common practice to inform the reader

of how well the model fits the actual data. In most cases, an estimated regression

equation cannot fit the data perfectly because real data points are spread out

with some degree of randomness. As this randomness cannot be fully captured
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in a single line, it becomes useful to establish a measure of fit. To construct one,

we first introduce a quantity called the total sum of squares (TSS), which is the

squared variations of Y around its mean, Ȳ, and can be computed as follows:

TSS =

N∑
i=1

(Yi − Ȳ)2. (4.8)

In Ordinary Least Squares, the TSS can be decomposed into two components.

The first component is the explained sum of squares (ESS), which represents

the variation in Y that can be explained by the model. ESS can be computed as

follows:

ESS =

N∑
i=1

(Ŷi − Ȳ)2. (4.9)

The second component is the residual sum of squares (RSS), which represents

the variation in Y that cannot be explained by the model. Recall that residual

was defined as the difference between the actual and the estimated values of Y,

in other words, ei = Yi − Ŷi. Thus, RSS can be computed as follows:

RSS =

N∑
i=1

(Yi − Ŷi)2 =

N∑
i=1

ei
2. (4.10)

By definition, total sum of squares is the sum of explained sum of squares and

residual sum of squares:

TSS = ESS + RSS (4.11)

N∑
i=1

(Yi − Ȳ)2 =

N∑
i=1

(Ŷi − Ȳ)2 +

N∑
i=1

(Yi − Ŷi)2 (4.12)
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Equation 4.12 states that the total variation in Y can be decomposed into two

types of variation: one that can be attributed to the regression equation, and

the other that is due to the stochastic nature of the data.

R2

If the residual sum of squares takes up a large proportion of the total sum of

squares, this means that much of the variation in Y cannot be explained by our

model. This is equivalent to saying that our estimated regression equation does

not fit the data very well. On the other hand, if if the ESS takes up a large

proportion of the TSS, this means that our model is capable of explaining much

of the variation in Y. This is equivalent to saying that our estimated regression

equation fits the data well. The quantity called R2 measures the overall fit of

the model in this manner. R2 is the ratio of the ESS to the TSS, or equivalently,

R2 =
ESS
TSS

= 1 −
RSS
TSS

= 1 −
∑N

i=1 ei
2∑N

i=1(Yi − Ȳ)2
. (4.13)

In Table (2), the R2 was shown to be 0.122. This means that 12.2 percent of the

variation in Y can be explained by our independent variables. This also means

that 87.8 percent of the variation cannot be explained by the model due to the

incompleteness of the model or simply due to pure randomness within the data.

Adjusted R2

R2 may be increased simply owing to the inclusion of more explanatory variables

into the model. An additional variable is guaranteed to either increase or have

no impact on the explanatory power of the model, but it will never reduce the R2.
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Put differently, adding a variable will either increase the ESS or have no impact

on the ESS (if the variable is completely uncorrelated with Y). In empirical

applications, increased R2 is not necessarily a virtue because a nonsensical

variable may have been included and increased the ESS. To cope with this

problem, a slightly different measure of fit called the adjusted R2 may be used.

Adjusted R2 is derived as follows:

Adj.R2 = 1 −

∑
e2

i /(N − K − 1)∑
(Yi − Ȳ)2/(N − 1)

. (4.14)

The benefit of this measure is that it adjusts for the number of variables in the

model, K. In Table 4.2, the R2 shows to 0.122 but the adjusted R2 is lower because

it accounts for the number of independent variables considered.

4.1.5 Statistical Significance

In essence, estimating a regression equation is equivalent to performing a set of

hypothesis tests. In Section X, we created a model of first-year college GPA by

considering a set of independent variables. We hypothesized that the variables

of our selection would impact our dependent variable, so we used regression

analysis to empirically test our hypotheses. Specifically, the hypotheses tested if

the coefficient of an independent variable was equal to zero or not. Furthermore,

the OLS procedure quantified the level of impact of each explanatory variable

on first-year GPA by deriving the coefficients.

As much as we are interested in finding the value of the coefficient estimates,

we must pay heed to how much confidence we can have in our results. The

reliability of our results can be communicated using the concepts of p-value and
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statistical significance. To define these concepts, let us consider the following

hypothesis test for β1, the coefficient of the HSGPA variable:

H0 : β1 = 0

H1 : β1 , 0.

We define p-value as the probability of observing something as extreme

as or more extreme than what we observed, assuming that H0 were true. In

the case of the GPA model, the p-value of β̂4 is the probability of observing a

coefficient estimate for StudyHours as extreme as or more extreme than 0.065

, assuming that study hours have no impact on college GPA in actuality. In

the meantime, significance level α0 is the probability of rejecting H0, assuming

that H0 was true. If the significance level is greater than or equal to the the

p-value, then we reject H0. On the other hand, if significance level is less than

the p-value, then fail to reject H0.

As shown in Table 4.2, inequality statements about the p-value of a variable

and different significance levels are indicated by different number of asterisks.

For example, the StudyHours variable has three asterisks, meaning that the p-

value is less than or equal to 0.01. This means that chances are less than 1% that

we would find StudyHours to have an impact as high as or higher than 0.065,

assuming that it does not have any impact in actuality. In other words, it is very

unlikely that we would have obtained such result just by chance. The p-value

being less than or equal to 0.01 allows us conclude that we are 99% confident

that StudyHours is a statistically significant variable.
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4.1.6 The Classical Assumptions

Next, we move on to discuss the classical assumptions that are required in

order for OLS to be the ‘best’ estimator for regression analysis. If any of these

conditions do not hold true, the validity of our statistical inference may be at

risk. Although there exist remedies that can be used when the conditions are

not satisfied, it is important to check the conditions by using residual plots.

While there exist different statistical tests to check for these assumptions, we

will only observe the residual plots in this paper. The classical assumptions are

given in Table 4.3:

Table 4.3: The Classical Assumptions

I. The model is linear in the coefficients and has an additive error term.

II. The error term has a population mean of zero.

III. All explanatory variables are uncorrelated with the error term.

IV. Observations of the error term are uncorrelated with each other.

V. The error term has a constant variance.

VI. No explanatory variable is a perfect linear function of another.

VII. The error term is normally distributed.

4.1.7 Residual Plots

A subset of the classical assumptions that specifically concern the error term

may be checked using the plot function in R. We will examine if these conditions

are satisfied in the case of our GPA model. This process will add strength to
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Figure 4.1: Residual Plot for College GPA Model

our selection of OLS as our estimator for linear regression. Since the error

term is a theoretical component of the regression model, ε cannot be observed.

Alternatively, we can calculate the residuals, e, and perform a residual analysis.

While there exists rigorous statistical tests, we will rely on visual presentations

in order to communicate the procedure in a more intuitive manner.

Figure B.6 represents the residuals (ei) of each fitted value (Ŷi). The red line

indicates the calculated mean of the residuals for each fitted value. The first

condition, particularly the existence of an additive error term, is met because the

error terms are clearly not zero. Also, the second condition is satisfied because

the red line closely aligns with the horizontal dotted line where residual equals

zero. There is some slight deviance in the both ends of the red line, but we

claim this is negligible considering that there are such few points. The fourth

condition is also secured as there does not seem to be a correlation between

the error terms. Had there been a correlation, the points would have formed a

pattern. Lastly, we claim that the fifth condition of error terms having a constant

variance is generally fulfilled. Almost all of the data points are distributed
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Figure 4.2: Normal Probability Plot

within an imaginary horizontal “band” where residuals are between -4 and 4.

The existence of points outside this band certainly weakens the fifth condition,

which may affect the statistical significance of our results to a certain extent.

Figure 4.2 enables us to check if the seventh condition is fulfilled. On the

y-axis lie the standardized residuals, whereas the theoretical residuals are indi-

cated on the x-axis. Simply put, this plot allows us to compare what actually

happened with the residuals versus what should happen if the residuals fol-

lowed a normal distribution. If the points align with the dotted line, then

the normality condition is said to be satisfied. In our case, the points deviate

somewhat from the dotted line when theoretical quantiles are greater than 1.

Although it is certainly questionable whether the error term “perfectly” follows

a normal distribution, we claim that this is not too concerning. The OLS pro-

cedure is known to be robust to departures (of the error term) from the normal

distribution; simply put, the regression results do not change much even if the

seventh condition is not perfectly met (Greene, 2017). This is also confirmed

when we draw a histogram of the residuals as in Figure 4.3.
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Figure 4.3: Histogram of the Residuals

The distribution is not certainly perfectly normal, however, we claim that

it is “close enough”. While it is recommended that the normality condition is

checked, minor violations of the condition such as in Figure 4.3 do not drastically

reduce the reliability of the regression results (Studenmund, 2017).

4.2 Instrumental Variables

4.2.1 The Endogeneity Condition for OLS

Among the seven conditions required for OLS to be the best estimator, we turn

our attention to the third condition which addresses endogeneity. Endogeneity

refers to the presence of correlation between an explanatory variable and the

error term. Recall the theoretical regression equation that was presented in

Equation 4.4:

Yi = β0 + β1 X1i + β2 X2i + · · · + βK XKi + εi.
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An independent variable X j is said to be endogenous if the correlation between

X j and ε j is non-zero; and exogenous if the correlation is zero. If endogeneity is

present in the model, OLS produces biased coefficient estimates, which means

that the expected value of an estimated coefficient is not equal to the unknown

true value of the coefficient. Put differently, endogeneity is problematic because

the bias in our coefficient estimates becomes non-zero, or equivalently,

E(β̂ j) − β j , 0.

This is not a desirable result since we want our estimates to be as close to the

true value of the parameter as possible.

Simultaneous Models

The endogeneity problem commonly occurs in simultaneous models in which

variables are jointly determined. To give an example, education level and

income may have a two-way causal relationship. On one hand, those with a

higher level of education may be more likely to find a higher-paying job. On the

other hand, higher income may enable one to afford longer years of education

without having to hurriedly get a job. Following Studenmund (2017), we

present a generalized form of simultaneous equations that contain such jointly

determined variables:

Y1t = α0 + α1Y2t + α2X1t + ε1t (4.15)

Y2t = β0 + β1Y1t + β2X2t + ε2t. (4.16)
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Equations 4.15 and 4.16 are structural equations that are formulated on the

basis of theoretical speculation. Similar to the example of education level and

income, Y1t and Y2t are jointly determined and are thus endogenous variables.

Meanwhile, the X1 and X2 variables do not possess this simultaneous nature

and are thus exogenous.

Endogeneity in Simultaneous Equations

Simultaneous equations with jointly determined variables violate the endo-

geneity condition. This violation can be shown rather intuitively through the

following train of thoughts. If ε1t increases, then Y1t increases in Equation 4.15;

increased Y1t leads to increased Y2t in Equation 4.16; and due to the simultane-

ous nature, increased Y2t also increases Y1t in Equation 4.15. In short, an increase

in ε1t leads to an increase in Y2t, which is an independent variable in Equation

4.15. Due to this correlation between the error term and an explanatory vari-

able, the model expressed in Equation 4.15 is said to violate the endogeneity

condition of the OLS. Without loss of generality, the same conclusion can be

made about Y1t and ε2t.

4.2.2 2SLS: A remedy for endogeneity

The OLS estimator produces biased coefficient estimates when used in simul-

taneous models. To cope with this problem, the researcher may choose to use

an alternative estimation procedure called Two-Stage Least Squares (2SLS).

As the name implies, this method is also based upon the idea of minimizing

squared residuals. In essence, 2SLS performs the OLS procedure across two
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stages while involving the selection of an instrumental variable. To effectively

remedy the endogeneity problem, the selected instrumental variable(s) must be

relevant to the endogenous variable and exogenous to the dependent variable.

We will examine these conditions in more detail in Section 4.2.3.

Reduced-Form Equations

In Equation 4.15, Y2t is an independent variable that is correlated with the error

term, ε1t. To reduce (or, ideally, eliminate) this correlation and resolve the

endogeneity problem, we construct another regression equation to express Y2t

as a function of some instrumental variables that are uncorrelated with the error

term, ε1t. Doing the same for Equation 4.16, we establish a set of reduced-form

equations that express our endogenous variables, Y1t and Y2t, in terms of the

exogenous variables:

Y1t = γ0 + γ1X1t + γ2X2t + γ3X3t + γ4X4t + v1t (4.17)

Y2t = δ0 + δ1X1t + δ2X2t + δ3X3t + δ4X4t + v2t. (4.18)

Note that we include all exogenous variables within the system into the reduced-

form equations. This is because every exogenous variable in the simultaneous

system is a “candidate” to be an instrumental variable. By choosing only one in-

strumental variable, we would be “throwing away” information (Studenmund,

2017). The γs and δs are the reduced-form coefficients, whereas vs are the error

terms for the new regression equations. The reduced-form equations do not

have inherent simultaneity, so we have successfully avoided the violation of the
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endogeneity condition. In particular, the variables X3 and X4 have been addi-

tionally selected as instrumental variables for Y1 and Y2, respectively. Now, we

proceed to describe the two stages of 2SLS.

2SLS: Stage One

The first step of the 2SLS procedure is to estimate the reduced-form equations

using OLS. We estimate Equations 4.17 and 4.18 and write:

Ŷ1t = γ̂0 + γ̂1X1t + γ̂2X2t + γ̂3X3t + γ̂4X4t (4.19)

Ŷ2t = δ̂0 + δ̂1X1t + δ̂2X2t + δ̂3X3t + δ̂4X4t. (4.20)

Ideally, the researcher would identify all instrumental variables so that endo-

geneity is completely eliminated. If this is the case, the X variables would be

exogenous and uncorrelated with the error terms, vs. Also, the OLS estimates

of the reduced-form coefficients, δ̂s and γ̂s, would be unbiased.

2SLS: Stage Two

In order to perform the second-stage estimation, we must first replace the

endogenous variables with the estimated reduced-form equations. That is, we

substitute the Ys with the Ŷs (from Equations 4.19 and 4.20) in order to express

the structural equations only in terms of the exogenous X variables:

Y1t = α0 + α1Ŷ2t + α2X1t + ε1t (4.21)

Y2t = β0 + β1Ŷ1t + β2X2t + ε2t (4.22)
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In essence, we are rewriting Equations 4.15 and 4.16 by plugging Equations 4.19

and 4.20 into the Ŷ1t and Ŷ2t terms. As a result, we obtain:

Y1t = α′0 + α′1X1t + α′2X2t + α′3X3t + α′4X4t + ε′1t (4.23)

Y2t = β′0 + β′1X1t + β′2X2t + β′3X3t + β′4X4t + ε′2t (4.24)

where theα′ and β′ terms represent the coefficients after algebraic simplification.

Now, we perform the second-stage of 2SLS by estimating Equations 4.23 and

4.24. Recall that we estimated the first-stage equations with OLS. It must be

noted that the second-stage equations are not estimated with OLS. Estimating

the second-stage equations with OLS will produce incorrect standard errors in

our coefficient estimates, SE(α̂) and SE(β̂). Therefore, it is important that we use

the computer’s 2SLS procedure when performing the second stage. In STATA,

the built-in command, ivregress, performs this procedure.

Properties of 2SLS

There are two properties to note about 2SLS estimation. First, 2SLS estimates are

still biased. Simultaneity bias cannot be fully eliminated due to any remaining

correlation between the Ŷs produced by the first-stage estimations and the εs.

With larger sample size, the 2SLS bias will be reduced but will remain non-zero.

However, the expected bias due to 2SLS will be smaller than the expected bias

due to OLS. This is certainly an advantage that 2SLS has over OLS. The second

property of 2SLS is that the coefficient estimates have increased variances and

SE(β̂)s compared to OLS estimates (Wooldridge, 2016).
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4.2.3 Example

We revisit the college GPA example to demonstrate how an instrumental vari-

able can be selected and utilized in a statistical model. Our dependent variable

is college GPA with all other independent variables being the same as our pre-

vious OLS model described in Equation ??. One may critique that there exists

reverse causality in GPA and study hours. On one hand, students who study

more may be likely to have better academic performances. On the other hand,

students with high GPA may be more likely to study longer hours to maintain

a high GPA. In this sense, one may claim that these two variables are simulta-

neous in nature. Since StudyHours is an endogenous variable, we may consider

using an instrumental variable to remedy this problem.

The roommate variable was added and simulated into the original data set.

This variable represents the number of hours per week spent with a roommate

in college. Although not ideal, roommate may be an appropriate instrumental

variable for two reasons. First, it is theoretically and statistically relevant to the

endogenous variable, StudyHours. Spending time with a studious roommate

may motivate a student to spend more hours studying; having a roommate who

loves to play video games may reduce a student’s study hours if they spend

a lot of time together. When we estimate a simplistic single-variate regression

using these variables, we acquire the results in Table 4.4.

The roommate variable is statistically significant in the model with an ar-

guably large impact; an additional hour spent with a roommate is associated

with a 0.183-point increase in GPA. Thus, we claim that the relevance condition is

met. Meanwhile, the correlation between GPA and roommate shows to be −0.06,
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Table 4.4: Relevance of roommate to StudyHours

Dependent variable:

StudyHours

roommate 0.183∗∗

(0.071)

Constant 22.182∗∗∗

(1.160)

Observations 219
Adjusted R2 0.025

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
(Standard errors in parentheses)

which we consider a very small number for a correlation. Although roommate

is not purely exogenous to GPA, we consider this selection of instrumental

variable reasonable and proceed with our example.

As shown in Table 4.5, the coefficient estimate for StudyHours changed from

0.065 to 0.125 in the 2SLS model. This change is due to the use of roommate as an

instrumental variable, which seems to have corrected for the bias was present in

the OLS model. As we noted in Section 4.2.2, the standard error of StudyHours

has increased as a result of the 2SLS procedure.

4.3 Ordered Probit Model

4.3.1 Modeling Binary Outcomes

The Ordinary Least Squares procedure is useful when modelling continuous

outcomes. However, at least two problems arise when the dependent variable
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Table 4.5: OLS and 2SLS Results

Dependent variable:

GPA

OLS 2SLS

hsGPA 0.004 0.197
(0.351) (0.475)

SATmath −0.004∗ −0.004∗

(0.002) (0.002)

SATverbal −0.0003 −0.0003
(0.002) (0.001)

StudyHours 0.065∗∗∗ 0.125∗

(0.014) (0.084)

Constant 3.793∗∗ 1.411
(1.611) (3.763)

Observations 219 219
Adjusted R2 0.106 0.047

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
(Standard errors in parentheses)

involves binary choices or categorical outcomes. To address these problems, we

consider the previous GPA model but now with a slightly different dependent

variable. What if our data were less complete and did not contain full infor-

mation about a student’s GPA? Let us assume that the dependent variable is a

binary indicator of whether a student’s GPA is high or low. In other words, our

Y equals 0 if a student has a GPA lower than 3.5 and Y equals 1 if their GPA is

higher than or equal to 3.5.

The first problem is that our coefficient estimates does not make intuitive
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sense. If the coefficient of an independent variable, such as high school GPA,

is estimated to be 0.05, what does this mean? A 0.05-unit increase in “whether

GPA is high or low” may not be as meaningful as OLS coefficients. The second

problem is that we may obtain predicted values that are greater than 1 or less

than 0. If an individual has all the favorable conditions for a high GPA, then the

model may produce a predicted value of 1.2, which is not even a valid outcome.

To cope with the first problem, we may look at the above linear regres-

sion model as a linear probability model. In other words, we treat the binary

dependent variable as the probability of being employed. This allows us to in-

terpret a coefficient estimate of 0.05 as a 5% increase in the probability of being

employed. However, the second problem remains. Two of the most commonly

adopted solutions to this problem are the logit and probit models.

4.3.2 Different Link Functions

The strongest motivation for using a logit or a probit model would be to con-

strain the dependent variable within the range between 0 and 1. To achieve this

result, the logit model uses the link function:

Prob(Y = 1|x) =
exp(x′βx′βx′β)

exp(x′βx′βx′β) + 1
(4.25)

where βββ is the set of parameters that show the impact of changes in indepen-

dent variables x on the probability. For the sake of concision, we express our

explanatory variables as the vector x, instead of listing them out individually.
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Meanwhile, the probit model uses the link function:

Prob(Y = 1|x) =

∫ x′βx′βx′β

−∞

φ(t)dt = Φ(x′βx′βx′β) (4.26)

where φ and Φ are the probability distribution function (pdf) and cumulative

distribution function (cdf) of the normal distribution, respectively. Greene

(2016) and Studenmend (2017) note that the partial effects produced by these

two models are nearly the same. In the vein of Jaldell (2005; 2019), we will

proceed with the probit model only.

4.3.3 Binomial Probit Model

We begin with the most basic form of the probit model, which involves a binary

independent variable. We will discuss the structure of the binomial probit

model and extend our consideration to the ordered probit model which will

have multiple levels within the dependent variable.

The Latent Variable

A latent variable is a variable “behind the scenes” that determines the value

endowed to the dependent variable. In many cases, the latent variable is not

observable. When modelling the choice that an individual makes between two

options, the latent variable is the net utility of her decision. The individual is

assumed to gauge the cost and benefit of each option, and choose the option that

produces a net benefit greater than 0. On the other hand, when modelling two

possible outcomes, the latent variable would be an unobservable measure of the

outcome. For example, to model the severity of a fire outcome, some theoretical
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measure of the severity of fire spread will be implicitly assumed to be the latent

variable. If the severity of a fire outcome exceeds a certain threshold, then a

value of 1 (or 0) will be endowed to the dependent variable Y.

The Latent Regression Model

We now consider an underlying latent regression equation. Let the latent

variable y∗ be a function of x andβββ, each being a matrix of independent variables

and their corresponding coefficients, respectively. In other words,

y∗ = x′βx′βx′β + ε

where we assume that ε follows a standard normal distribution with mean zero

and variance one. The right-hand side of the above equation is equivalent to

that of Equation 4.4. Recall that we do not observe the actual values of y∗ but

only whether a choice is made or not (for binary choice models) or whether an

outcome fits into a certain category or not (for binary outcome models). If the

net utility of a choice is greater than zero, then a value of 1 is endowed to the

dependent variable of the (actual, not underlying) model to indicate that the

choice is made. If the net utility is less than or equal to zero, then we endow a

0 to our Y.

Likewise, in a binary outcome model, we endow a 1 or 0 to our dependent

variable, y, depending on whether the latent variable, y∗, is above or below a

certain threshold. To simplify our discussion, we may assume this threshold to

be 0.
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Functional Form and Probability

Now, let us examine how Equation 4.26 can be obtained. Consider that we have

defined our dependent variable so that:

Y = 1 if y∗ > 0,

Y = 0 if y∗ ≤ 0.

To solve for the first case where y∗ > 0, we write:

y∗ = x′βx′βx′β + ε > 0.

Rearranging and solving for ε, we obtain:

ε > −x′βx′βx′β.

Since we assumed ε to follow a normal distribution, we express the probability

of Y = 1 in terms of the area underneath the normal distribution curve, where

the threshold is 0. As a result, we obtain the probability statement:

Prob(Y = 1|x) =

∫ x′βx′βx′β

−∞

φ(t)dt = Φ(x′βx′βx′β).

By a similar logic, we can express the probability of Y = 0 as follows:

Prob(Y = 0|x) =

∫
∞

x′βx′βx′β
φ(t)dt = 1 −Φ(x′βx′βx′β).

Recall that predicted values in a binary outcome model represent the probability

of an event. We have shown that the link function for the probit model can be

derived from the underlying definition of our dependent variable Y. Thus, we

conclude with the following:

Prob(Y = 1|x) = Φ(x′βββ) (4.27)

Prob(Y = 0|x) = 1 −Φ(x′βββ), (4.28)
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where βββ is the set of coefficients that indicate the impact of changes in x on the

probability.

Estimation of Beta Coefficients

The probit model cannot be estimated under the ordinary least squares proce-

dure because our dependent variable is not continuous. Essentially, our data

points do not really have a y-coordinate since the dependent variable is a binary

variable. Therefore, the concept of minimizing the distance to a line of best fit

is not relevant in the first place. Instead, we use the maximum likelihood esti-

mator to derive the coefficient estimates. As the name implies, the objective of

maximum likelihood estimation is to maximize the likelihood function so that

our observed data is the most probable.

We can construct the likelihood function by considering each choice or out-

come as a Bernoulli trial. We use the probability statements that were presented

in the previous section.

Let yi represent each of the Bernouilli outcomes for the ith observation. In

a binary case, yi is either 0 or 1. Also, using the the probability statements we

have established, we can express the likelihood of the ith observation as follows:

Prob(Y = yi|x) = [Φ(x′βx′βx′β)]yi · [Φ(1 − x′βx′βx′β)]1−yi .

As a result, we construct the likelihood function as follows:

L =

N∏
i=1

[Φ(x′βx′βx′β)]yi · [Φ(1 − x′βx′βx′β)]1−yi (4.29)

where N represents the number of observations, or equivalently, Bernouilli
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trials. The maximum likelihood estimator can be obtained by maximizing the

log of the likelihood function L. Since there is no closed form solution to this

optimization problem, a numerical approximation may be used.

Calculating Marginal Effects

Just as any other regression analyses, the goal of the probit model is to quan-

tify the impact of an independent variable on the outcome variable. Since the

coefficient estimates do not convey this information, marginal (partial) effects

are calculated in many applications. By definition, marginal effect is the partial

derivative of the cumulative distribution function with respect to an indepen-

dent variable, where the dependent variable Y takes a particular value. The

vector of marginal effects can be obtained using the chain rule as follows:

∂Φ(y|x)
∂x

=
[∂Φ(x′βx′βx′β)

∂x

]
× βββ = φ(x′βββ) × βββ (4.30)

where Φ and φ are the cdf and pdf of the normal distribution, respectively.

There are largely two ways of computing partial effects. The first is the par-

tial effects at the averages (PEA), for which the partial derivatives are evaluated

at the the sample means of the independent variables. In other words,

PEA = φ(x̄′β̂x̄′β̂x̄′β̂) · β̂̂β̂β.

PEA becomes less meaningful when the independent variables are binary vari-

ables. For instance, there is no individual in the sample with a “mean gender”

of 0.5. For this reason, the average partial effects (APE) are more commonly
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used, which are calculated as follows:

APE =
1
n

n∑
i=1

φ(xi
′β̂xi
′β̂xi
′β̂) · β̂̂β̂β.

Simply put, APE is the average of the partial effects for all observations in the

sample.

4.3.4 Ordered Probit Model

The binary probit model can be extended to consider the cases in which there

are multiple levels within the dependent variable. A necessary condition for

this extension is the proportional odds assumption, or the parallel regression

assumption. Ordered probit models are built upon the assumption that the

relationship between any pairs of outcome categories is the “same”. However,

as Greene (2018) points out, the difference between Y = 0 and Y = 1 versus

Y = 1 and Y = 2 may not necessarily be the same. In many cases, these numbers

often function as a categorical distinction for the different levels of outcomes

rather than containing a numerical meaning. Therefore, the researcher must be

aware of the proportional odds assumption and the potential limitations of her

chosen method.

The simplest form of an ordered probit model would be the one with three

levels. To be divided into three levels or categories, two cutoff values are

needed. For the sake of simplicity, we may assume the first cutoff to be zero, so

that only one unknown threshold constant, µ, is needed.

Consider the unobservable latent variable, y∗. The associated y values are

as follows:
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Y = 0 if y∗ ≤ 0,

Y = 1 if 0 < y∗ ≤ µ,

Y = 2 if µ ≤ y∗.

Using the fact that y∗ = x′βββ + ε and that ε follows a normal distribution, we

can construct the functional form of the probit model as follows:

Prob(Y = 0|x) = 1 −Φ(x′βx′βx′β) (4.31)

Prob(Y = 1|x) = Φ(µ − x′βx′βx′β) −Φ(−x′βx′βx′β) (4.32)

Prob(Y = 2|x) = 1 −Φ(µ − x′βx′βx′β). (4.33)

For these probabilities, the marginal effects of changes in the independent

variables can be calculated in a similar fashion from Equation 4.30:

∂Φ(Y = 0|x)
∂x

= −φ(x′βx′βx′β) · βββ, (4.34)

∂Phi(Y = 1|x)
∂x

=
[
φ(−x′βx′βx′β) − φ(µ − x′βx′βx′β)

]
· βββ, (4.35)

∂Phi(Y = 2|x)
∂x

= φ(µ − x′βx′βx′β) · βββ. (4.36)

4.3.5 Example

To demonstrate an example, we will continue to use the First Year GPA data set.

As was mentioned in Section 4.3.1, we will construct a binary variable named

HighGPA and use this as our dependent variable. The variable will equal 0 if

a student’s GPA is lower than 3.5 and 1 if it is higher than or equal to 3.5. As

the coefficient estimates cannot be interpreted as marginal effects, we will use
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the margins command in STATA to produce the partial effects, specifically the

average partial effects.

Table 4.6: Probit Model Results

Dependent variable:

GPA: High or Low

Coefficients Partial Effects

hsGPA 1.051∗∗∗ 0.288∗∗∗

(0.306) (0.080)

SATmath −0.0002 −0.00005
(0.002) (0.004)

SATverbal 0.003 0.0006
(0.002) (0.0004)

StudyHours −0.021∗ −0.006∗

(0.011) (0.003)

Constant 3.793∗∗∗ -
(1.390) -

Observations 219 219
Pseudo R2 0.110 0.110

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
(Standard errors in parentheses)

The results in Table 4.6 show that a one-unit increase in high school GPA

is associated with a 28 percentage point increase in the probability of having a

high college GPA (in other words, a GPA of 3.5 or higher). As probit models

are not estimated with OLS, the pseudo R2 does not represent the proportion

of variance of the independent variable explained by the explanatory variables.

Each statistical software package may report a different type of pseudo R2
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established by different statisticians. Greene (2017) provides further detail on

this matter.

4.4 Application to Current Study

In this chapter, we have carefully examined three statistical methods: multiple

linear regression using Ordinary Least Squares, Two-Stage Least Squares esti-

mation using an instrumental variable, and the ordered probit model. These

methods were chosen because of their potential relevance to the subject matter.

Multiple linear regression will be used to describe the composition of interme-

diate outputs in the case of fire service provision. One benefit of this method

is the intuitive interpretability of coefficient estimates, which may shed light

on the relationship between the inputs and outputs. In the meantime, a set of

ordered levels had to be considered as the dependent variable due to a lack

of detailed information about fire spread. Since the dependent variable is not

continuous in nature, the ordered probit model will prove useful in creating a

production function for fire service output.

The instrumental variable method emerged as a promising candidate for

this study but ended up not being used at all. The initial anticipation was that

the 2SLS method may help mitigate the endogeneity of the fire truck variable

(which indicates the number of fire trucks involved in a fire incident). How-

ever, while it is reasonable to expect a larger number of fire trucks to produce a

higher level of service output, it is also true that a larger number of fire trucks

implies that fire was already very severe to begin with. Due to limited data on

the fire truck variable, it was difficult to resolve the endogeneity problem using
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the instrumental variable method.

Having established a firm understanding of the methodology, we now pro-

ceed to specify our empirical models in the following chapter.



Chapter 5

Models and Data

This chapter presents the model specification and the data used to estimate the

models.

5.1 Model Specification

In Chapter 2, we established firefighters, fire trucks, response time, and sup-

pression time as intermediate outputs, all of which become factor inputs for

producing service output. This provided a theoretical justification for includ-

ing the intermediate outputs as independent variables within the service output

model.

In an attempt to illuminate the relationship between variables, we will first

specify the models for all intermediate outputs: dispatch level, response time,

and suppression time. In all of these models, a linear relationship is assumed

between the dependent variable and the independent variables. Note that this

paper focuses only on the ex post output rather than the ex ante. In other words,

71
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the stand-by level, G, will not be considered in this chapter as it is the ex ante

first-stage output. The stand-by level consists of firefighters and fire trucks

distributed to each city before the incidence of a fire. Specifying a model for G

necessarily involves the ‘prevention’ aspect of the fire services, which is beyond

the scope of this paper.

Subsequently, a model for service output will be specified. While this model

largely follows the work of Jaldell (2005), recall that two differences were noted

in Chapter 3. First, we suggested an alternative definition of the starting point of

fire when constructing the dependent variable. That is, rather than considering

the location of fire upon a fire service’s arrival, we claimed that considering the

location of fire when the emergency call was made would be more appropriate.

Second, we pointed out that municipality fixed effects are likely to absorb not

only each fire service’s productivity level but also many other aspects of the

municipality, including institutional characteristics.

5.1.1 Dispatch Level

In Equation 2.3, dispatch level was defined as the subset of firefighters, fire

trucks, and equipment dispatched to the fire scene:

G′ = g(L′,K′,Z′).

The dispatch level in a given fire incident has two components: the initial crew,

G′i , and the additional crew, G′a, who back up the initial crew upon their request.
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We may express this composition as:

G′ = G′i + G′a, (5.1)

which allows us to consider the different sets of factors and decisions that affect

G′i and G′a, respectively. We present the theoretical regression equation for

dispatch level, G′, as follows:

DispatchLevel = β0 + β1 · Building + β2 ·Hazard + β3 ·Nearby

+ β4 · SameCalls + β5 · ReportedSeverity

+ β6 ·Urgency + β7 · ActualSeverity + ε.

(5.2)

The first six independent variables affect G′i and the last affects G′a. The defini-

tions of the variables are provided in Table 5.1.

Variable Definition

Building Type, structure, and height of building on fire

Hazard Presence of hazardous or flammable materials

Nearby Number of fire stations within 3km radius

ReportedSeverity Severity or size of fire described by the caller

SameCalls Number of emergency calls for the same fire

Urgency Degree of urgency in caller’s description

ActualSeverity Severity or size of fire described by firefighters

Table 5.1: Dispatch Level Model: Variable Definitions

The decision relating to the level of initial crew is made by the emergency

call dispatcher who picks up the call, listens to the description of the fire, and

sends out certain types and number of fire trucks. The types of fire vehicles and
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equipment to be dispatched are mostly determined by the described structure

or height of the building. For example, if the fire is said to be on the tenth floor,

a ladder truck will be included in the initial dispatch level.

The number of fire vehicles can be dependent upon the potentially subjective

decisions of the dispatcher. If the fire is described to involve hazardous materi-

als or to be producing a large amount of smoke, a larger number of fire trucks

may be dispatched. Also, if the reporter of the fire (who made the emergency

call) seems to be in great horror or urgency, the dispatcher may be inclined to

perceive the fire as more severe and send out more trucks. According to fire ex-

perts, the number of redundant emergency calls also affects the dispatch level.

The explanation is that if there are multiple individuals reporting the same fire,

the dispatcher anticipates the fire to be very severe and sends out more trucks.

In addition, experts explain that dispatching an additional unit of fire service

becomes “less burdensome” for the dispatcher if there exists another fire station

in close proximity to the primary unit (that is responding to the fire in its own

jurisdictional unit). Since the ‘cost’ of sending out an additional fire service is

low, the dispatcher may rather send out ‘too many’ trucks than send out too

few and receive criticism for misjudgement.

In the meantime, the number of additional crew, G′a, is largely determined

by the members of the initial crew. The firefighters at the scene may request for

back-ups if the fire is too large or severe. The dispatcher almost fully relies on

the radio messages from the initial crew when sending additional fire trucks.

The error term in Equation 5.2 may include individual differences between

dispatchers, such as risk-averse characteristics or level of experience; produc-

tivity differences between one initial crew and another; and other stochastic
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elements.

Due to insufficient data, the model for dispatch level could not be estimated.

In fact, some of the independent variables are not observable or measurable be-

cause they are involved with the subjective perceptions or judgements of the

dispatcher. Nevertheless, we have specified this model because it will prove

useful for identifying the sources of endogeneity when we consider the service

output model in later sections.

5.1.2 Response Time

Response time refers to the time it takes the first fire service to arrive at fire scene

after the emergency call is made. In Section 2.5, the model for estimated re-

sponse time (Kolesar, 1975) was introduced as a useful tool with which decision

makers can determine the number and location of fire stations to be established

across a city. In this section, we consider an ex post framework and model the

actual response times rather than expected response times.

The theoretical regression equation for the response time model can be

written as follows:

RespTime = β0 + β1 ·Distance + β2 · StationPopDen + β3 ·Highway

+ β4 · RoadQuality + β5 · RushHour + β6 ·WeekDay

+ β7 · Campaigns + β8 · BuildingType + β9 · FireType

+ β10 ·Weather + ε.

(5.3)

The definitions of the independent variables are given in Table 5.1.2.

The distance from the fire station to the fire scene is included as the first
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Variable Definition

Distance Distance from fire station to fire scene (km)

StationPopDen Mean population in 1km2 covered by a city’s fire station

Highway Proportion of distance travelled on a highway

RoadQuality Condition of roads such as age or width

RushHour Whether fire occurred during rush hour

WeekDay Day of week

Campaigns Number of monthly road campaigns by fire department

BuildingType Type of building (residential, public, industrial, etc.)

FireType Type of fire (explosive, chemical, smoke alarm, etc.)

Weather Weather conditions (wind, rain, and snow)

Table 5.2: Response Time Model: Variable Definition

explanatory variable. As established in Section 2.3.2, this distance exists as a

product of the spatial allocation decisions that are made prior to the fire. If

this allocation decision was optimal, then distance would generally be shorter

because the fire stations would have been placed in greater proximity to sub-

regions with higher fire risk. All other things being equal, longer distance is

expected to increase response time.

The StationPopDen of each city fire department refers to the average popu-

lation density (persons/km2) per fire station, or equivalently:

StationPopDen =
population

area
×

1
stations

×
1

100
.

We multiplied by 1
100 simply for calculation reasons. We expect that having more

fire stations concentrated in a given area will decrease the response time. Note

that ‘population density’ was considered inadequate for this model because it
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does not contain any information on how many fire stations are available in

a city. For this reason, we divided population density by the number of fire

stations.

Even if the distance is the same, the travel time will differ according to road

conditions. For example, if the fire trucks travel on a highway, the response

time may be shorter even if the distance is longer. Also, if the roads are generally

older and narrower, then this will slow down the speed at which firefighters can

travel. For these reasons, the Highway and RoadQuality variables are included

in the theoretical equation. However, due to a lack of data, these two could not

be included in our estimation. In the meantime, certain weather conditions may

prolong response time. Indeed, safety is considered as crucial as promptness

when it comes to the delivery of fire service. Thus, strong wind or extreme

snow may cause the fire trucks to travel at a lower speed to avoid accidents.

Similarly, traffic conditions may affect response time. Travel speed may be

reduced during rush hours or on busier days of the week. In addition, how

quickly citizen drivers yield the right-of-way to fire trucks could be a factor. In

South Korea, citizens are not legally obligated to pull over to the right or stop

parallel to the curb. Thus, city fire departments conduct monthly campaigns

to educate or remind citizens of their social responsibilities. Depending on the

number and effectiveness of such campaigns, the behavioral responsiveness

of citizen drivers to emergency vehicles may vary, which might also affect

response time. Unfortunately, the Campaign variable could not be included in

the estimation as data were unavailable.

While firefighters are trained to respond to all fires in an equally prompt

manner, it is still possible that the degree of urgency with which they travel
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to the fire scene may be affected by the description of the fire or type of the

building on fire. For example, an identical group of firefighters responding to

a smoke alarm and to a massive factory fire may experience different levels of

tension until they arrive at the scene, which may lead to varied response times.

For this reason, the BuildingType and FireType variables are considered in the

model.

5.1.3 Suppression Time

The theoretical regression equation for the suppression time model can be writ-

ten as follows:

SuppTime = β0 + β1 · StartPoint + β2 · RespTime + β3 ·DispatchLevel

+ β4 ·OtherServices + β5 ·Hydrant + β6 ·Hazard

+ β7 ·Weather + β8 · RescueNeed + β9 · Teamwork + ε

(5.4)

where the definition of each independent variable is given in Table 5.3:

Suppression time, measured in minutes, will largely be affected by the initial

severity of a fire. Since there does not exist an objective, observable ‘measure’

of fire severity, information about the starting point of a fire may be considered.

The variable StartPoint indicates the location of fire within the house when the

emergency call is made, further detail for which will be given in Section 5.2.

If a fire is more severe to begin with, it may take longer to suppress the fire.

For example, if the fire is only contained in the room, then the suppression will

be relatively easy compared to a fire that had already spread out to the entire

building when the emergency call was being made.
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Variable Definition

StartPoint Location of fire at the time of emergency call

RespTime Response time in minutes

DispatchLevel Number of firefighters and fire vehicles at fire scene

OtherServices Workers and equipment from other public services

StationDensity Mean area covered by a city’s fire station (km2)

Hydrant Number of hydrants per km2 across the city

Hazard Presence of explosive or inflammable substances

Weather Weather conditions (temperature, humidity, wind speed)

RescueNeed Number of persons who needed to be rescued

Teamwork Teamwork among firefighters dispatched to a scene

Table 5.3: Suppression Time Model: Variable Definitions

Components of the ex post firefighting power will also be factors of suppres-

sion time. On one hand, prolonged response time will allow the fire to spread

more, which may require more suppression work and result in increased sup-

pression time. On the other hand, a greater number of firefighters and firetrucks

will increase the firefighting power of a fire service, meaning that the suppres-

sion activity may be more effective. In other words, greater dispatch level is

expected to decrease suppression time. At a fire scene, having one more crew

member or one more vehicle can make a big difference to the ease of firefighting

activity. For example, an additional person may enhance the mobility of fire-

fighters holding the water hoses, as a hose can weigh up to a thousand pounds

depending on water pressure. Also, the presence of a tank truck connected to

a pump truck provides a direct source of water, without firefighters having to

look for a hydrant nearby. Volunteer firefighters1 present at the fire scene were

1In South Korea, each city has a volunteer fire service unit consisting of volunteer, non-



80 CHAPTER 5. MODELS AND DATA

also included for a similar reason.

Pumper and tank trucks are the most prevalent types of fire engines,

equipped in almost every fire station. In addition to these, a city fire department

also has the following vehicles in place: ladder truck, chemical truck, rescue

truck, and ambulance. The provincial headquarters also sends out a helicopter

when needed. These vehicles are all included in the DispatchLevel variable. In

particular, the rescue and paramedic squads were included because they can

indirectly enhance the firefighting power by lessening the burden on firefight-

ers. Due to their presence, firefighters can focus on fire suppression and worry

less about the rescue or paramedic aspects.

In the meantime, OtherServices include all of the following types of workers

and equipment from other public services: the office of electricity and gas, the

police, soldiers, municipal offices (such as the city hall), and ‘others’. These

personnel and their equipment may also contribute to enhanced firefighting

power by enabling firefighters to concentrate their effort into fire suppression.

The StationDensity variable indicates the average land size (km2) that each

fire station of a particular city covers, or equivalently:

StationDensity =
area

stations
.

This variable contains information about how promptly an additional unit of

fire service can arrive at the scene to back up the primary unit. Since our data set

does not contain this information, StationDensity was created as a proxy. Notice

that the formula for this variable is the very definition of service reach that we

professional, citizen firefighters are who are often dispatched to the scene.
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introduced in Section 2.5. The time it takes additional units of firefighters to ar-

rive at the scene will be shortened if the average service reach of a fire station is

smaller. The StationDensity variable captures this density of fire stations across

a city. We hypothesize that a higher density of fire stations will produce greater

firefighting power and result in shorter suppression time.

External factors are also considered in the model. Extreme weather condi-

tions such as high temperature or high humidity are likely to diminish the labor

productivity of firefighters. In the summer, the protective gears trap a great deal

of external heat and can cause the firefighters to experience a temperature as

high as 50◦C (122 ◦F). High humidity may also negatively impact respiration

and reduce the effectiveness of the firefighting activity. High wind speed may

be of a hindrance to effective suppression as fire could spread in unexpected

directions and aggravate the situation.

The presence of hazardous materials may prolong the suppression time in

two ways. First, the firefighters may have to be more cautious and strategic

about their approach, which can slow down the firefighting process. Second,

explosive objects or inflammable substances may simply increase the severity

of a fire, which will then increase the time it takes to put out the fire.

The availability of fire hydrants may be a factor that reduces suppression

time. When suppressing severe fires, pumper trucks may run out of water. If

hydrants are located in many places across the city, replenishment of water can

be made more quickly without having to wait for additional tank trucks. As a

result, suppression time may be reduced.

Also, teamwork can play a crucial role in the effectiveness of suppression

activity. At a fire scene, collaboration may occur not only within a fire station
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but also across fire stations. Since all fire services in our sample are required to

hold the same number of monthly fire drills and training sessions, no variation

is captured across different fire departments. Also, it is difficult to observe

or measure teamwork among firefighters from different stations. Thus, the

Teamwork variable could not be operationalized.

Lastly, the presence of one or more persons waiting to be rescued may

negatively impact suppression time (Jaldell, 2005). Firefighters will prioritize

life-saving over fire suppression when a person is inside a structure that is

on fire. For this reason, the number of persons requiring rescue activity was

included in the model.

5.1.4 Service Output

Recall that service output, Q, is the final form of output that we have defined

in our theoretical framework. In particular, we established labor, capital, other

materials, response time, and suppression time as the five factors of production,

which was expressed in Equation 2.5:

Q = q(L′,K′,Z′,R,T).

While these inputs will necessarily be involved in the production of service

output, different sets of control variables should be considered for different

types of fires. For example, the set of factors that affect service output in

residential fires will certainly be different from that of industrial fires. Therefore,

service output should be considered according to the type of building or object

on fire. Given the types of fires available in our data set, the composition of
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service output, Q, may be written as follows:

Q = Qresidential + Qindustrial + Qpublic + Qvehicle

+ Qcommercial + · · · + Qmountain + Qother.
(5.5)

Given the scope of this paper, we will only consider residential fires and aim to

establish a production function for Qresidential.

Finally, we present the theoretical regression equation for service output in

the case of residential fires:

yit = β0 +

8∑
m=1

(βm · xmit) +

16∑
n=1

(γn · znit) + αi + δi + εit (5.6)

where yit is the service output that is produced in the tth fire incident of the ith city

fire department; xm are the key independent variables that represent the factors

of production; zn includes all exogenous control variables; and α represents the

average service reach of fire stations in a city. The names and definitions of the

variables are presented in Table 5.4.

While the xm variables represent the factors of production established in

our theoretical framework, labor inputs are not included in the model. When

the emergency call dispatcher sends out one or more fire services to the fire

scene, the dispatcher does not really consider the number of firefighters, per

se; each firefighter is designated to a particular fire vehicle anyway, so the dis-

patcher bases their decision on the fire trucks. For example, in South Korea,

three to four firefighters are designated to board a pumper truck when the vehi-

cle is dispatched to an incident, while two firefighters board on each tank truck.



84 CHAPTER 5. MODELS AND DATA

Variable Definition

yityityit ServiceOutput Service output produced in tth fire dispatch of city i

x2x2x2 Pumper Total number of pumper trucks (mobility)

x2x2x2 PumperSq Total number of pumper trucks squared

x3x3x3 Tank Total number of tank trucks (water source)

x3x3x3 TankSq Total number of tank trucks squared

x4x4x4 Ladder Total number of ladder trucks (height)

x5x5x5 RespTime Response time in minutes

x6x6x6 SuppTime Suppression time in minutes

x7x7x7 Hydrant Number of fire hydrants per km2

x8x8x8 OtherInputs Personnel and vehicles from other public services)

z1z1z1 Floor Floor on which the fire started

z2z2z2 RushHour Whether fire occurred during rush hours

z3z3z3 WeekDay Day of week

z4z4z4 Temperature Temperature (degrees in Celsius)

z5z5z5 Humidity Humidity (grams of water vapor per kilogram of air)

z6z6z6 WindSpeed Wind speed (meters per second)

z7z7z7 Snow Weather alert for extreme snow

z8z8z8 Rain Weather alert for extreme rain

z9z9z9 RescueNeed Number of persons who needed to be rescued

z10z10z10 Prevention Whether equipped with prevention facilities

z11z11z11 Kitchen Whether fire started at kitchen

z12z12z12 Trash Whether fire started on trash

z13z13z13 Electricity Whether fire started on electric object or circuit

z14z14z14 Gas Whether fire involved gas leakage or toxic gas

z15z15z15 Arson Whether fire was due to arson

z16z16z16 Explosive Presence of explosive material

αiαiαi StationDensity Mean area covered by a fire station in city i (km2)

δiδiδi PopDensity Population density of city i (persons/km2)

Table 5.4: Service Output Model: Variable Definition
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Since Fire f ighter is a linear combination of all the (vectors of) truck variables,

it was considered more reasonable to exclude Fire f ighter from the model. A

relatively high correlation of 0.75 between Fire f ighter and Pumper supports this

exclusion.

Response time and suppression time are both considered in the service

output model. In previous chapters, we have established these two time factors

as factors of production.

The Pumper and Tank variables have their square terms included in the

model. The purpose of squaring is to reflect the potential congestion issues

that may arise when too many fire trucks congregate at the fire scene. This may

be a reasonable consideration particularly for urban areas with higher popu-

lation density. In Equation 5.2, we expected a positive relationship between

DispatchLevel and Nearby; that is, the dispatch level would be higher if an ad-

ditional unit of fire service is located close to the primary unit. As a result,

it is often the case that a larger number of fire trucks tend to be dispatched

in densely populated areas. If there are too many fire trucks within a limited

space, then the marginal productivity of capital may decrease due to conges-

tion. Since there are typically only one or two ladder trucks within a city, the

Ladder variable was not squared.

Most components of ‘other inputs’, Z, are equipment and materials that are

contained or built into the fire trucks. While these are not included in the model,

we did consider the number of hydrants per km2 in each city as the Z variable.

Meanwhile, the OtherInputs variable includes all other personnel and vehicles

from the suppression time model: additional emergency vehicles equipped in

the main fire department building, helicopter dispatched from the provincial
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headquarters, civil servants from other public services, and volunteer firefight-

ers.

The zm variables include a comprehensive list of control variables that are

expected to affect service output in residential fires. If a fire occurs on a high

level of floor within a building, fire suppression will become more challenging.

This may lead to worse outcomes and result in lower level of service output2.

External factors such as weather and traffic and the RescueNeed variable are

included in the service output model for the same reasons as in the previous

model. As firefighters value life-saving over protecting property, a need for res-

cue activity may negatively impact service output. This statement may sound

counter-intuitive because saving a life is a desirable outcome. However, our

dependent variable measures the severity of fire spread not the number of lives

saved. This will be further elaborated in Section 5.3 when we construct the

dependent variable.

Some residential buildings are subject to regulations that require prevention

facilities or devices within the building, such as sprinklers or alarm systems.

The binary variable Prevention indicates whether such regulations apply. The

variable is expected to have a positive relationship with service output because

prevention facilities help mitigate the damage of a fire and may lead to a more

desirable outcome.

Various causes and sources of fire were considered, as represented in vari-

ables z11 through z16. We anticipate that the impact of miscellaneous fires, such

as trash or food on the stove, would be less critical than that of fires which

2The dependent variable not only measures the amount of work performed but also reflects
a quality assessment of outcome. As a result, if the outcome of a fire is bad, service output may
be measured as low even if a lot of work was done by firefighters.
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involve gas leakage or explosive materials. Also, arson is expected to result in

a more severe outcome because these fires involve deliberate and destructive

intentions.

Lastly, two types of density variables are included. First, the α term,

StationDensity, represents the average service reach of fire stations in each city

and functions as a proxy for how promptly an additional unit can arrive at the

scene. Second, the δ term represents the population density of each city. This is

a rough proxy for how likely it is for a fire to spread to another building, which

is relevant to the dependent variable of this model. One possible critique may

be that α and δ must be highly correlated because densely populated regions

would also have a greater number of fire stations. However, a correlation of

0.45 suggests that this is not necessarily the case. Perhaps, other indicators of

fire risk, such as the number of hazardous facilities, matter as much. Thus,

we include both density variables in the model as they represent two different

aspects of a city while not being highly correlated with each other.



88 CHAPTER 5. MODELS AND DATA

5.2 Data Composition

Data were provided by the Fire Headquarters of Gyeonggi Province, South Ko-

rea. Thanks to the generous support from the Henry J. Copeland Independent

Study Fund, the author was able to travel to South Korea, visit the Fire Head-

quarters, acquire the data set directly from the office of data management, and

interview several administrators and firefighters. The original data set contains

98,000 observations and 144 variables. Each observation represents a fire inci-

dent that occurred between the years 2008 and 2018 in Gyeonggi Province. The

variables contain detailed information about the fire incidents. All information

was recorded in Korean and was manually translated into English by the au-

thor.

In 2014, the province implemented an electronic reporting system through

which firefighters submitted information about their firefighting activity. Since

then, firefighters were asked to click on a designated button on their electronic

device (provided in every fire truck) when they arrived at the fire scene, fin-

ished suppressing the fire, and returned to the fire station. Thus, the exact time

of these activities were electronically saved. Integral to this study is the exact

duration of response to and suppression of fire. For this reason, all observa-

tions without this information, which are fires from before the year 2014, were

omitted. Also, columns that contained overly detailed accounts of the fires in

text format were excluded from consideration. As a result, the data set used in

this empirical study consists of 49,000 observations and 80 variables.

The following sections provide a categorized list of all the columns and

variables in the cleaned data set. Then, we will describe how the dependent
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variable for the service output model was constructed.

5.2.1 Administrative Information

When a fire occurs, the emergency call response center of Gyeonggi Province

automatically designates a city fire department to an incident according to the

location. Then, the closest available fire station is dispatched to the scene. Each

fire incident is given a unique dispatch identification number. Also, jurisdic-

tional information is recorded such as the name of the city fire department and

station (or substation); and the name of the city and subregion in which the fire

occurred. Names of the cities and subregions were encoded to numeric values

for this study. The date and time of dispatch are included as well.

5.2.2 Distance and Time

Information about the distance from a fire scene to the city fire department, to

the closest fire station, and to the closest substation (if any) is available. Using

this information, a column indicating the minimum distance to the fire scene

was constructed. The fire service closest to the fire scene is assumed to have been

dispatched to the scene, which is a reasonable assumption because this is how

the system automatically selects the fire service to be sent out. Also, response

time is indicated in hours, minutes, and seconds. Using this information, a

column indicating total response time in minutes was generated.
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5.2.3 Suppression Activity

About 20 percent of the fires show to be suppressed before the firefighters’

arrival, which is indicated by the binary variable, by911. These fire dispatches

are not very meaningful in the discussion of firefighting power, but they still

contain important information about response time and the placement decision

of fire stations. However, in our analysis of service output in residential fires,

these observations were dropped.

Suppression time indicates the duration of firefighting activity, starting at

initial arrival and terminating at ‘initial suppression’. When a fire is mostly

suppressed and the situation is under control, firefighters report this to the

headquarters. At this point, additional fire vehicles that were dispatched as

back-ups return to their fire stations. Only the fire service in charge of the

jurisdictional area remains and suppresses the rest of the fire. This ‘final sup-

pression’ is not considered in our models.

Information about the number of firefighters, the number and types of fire

trucks, and the involvement of other public services is also available. The

types of fire vehicles are pumper, tank truck, ladder truck, chemical truck, res-

cue truck, ambulance, and helicopter. Other public services include the police,

office of electricity and gas, army, and municipal civil servants. Oftentimes, vol-

unteer firefighters are also mobilized in large fires, but all fires are responded

to by full-time firefighters.
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Fire Type Count Percent

Residential 10,953 22.09

Industrial 8,843 17.83

Vehicle 6,555 13.22

Service 4,127 8.32

Open fields 3,520 7.10

Commercial 2,586 5.22

Complex 394 0.79

Medical 359 0.72

School 318 0.64

Hazardous 26 0.05

Miscellaneous 11,903 24.02

Total 49,586 100.00

Table 5.5: Types of Fire by areatype legal

5.2.4 Buildings and Objects

The variable areatype legal consists of 15 types of objects or buildings where a

fire occurred. A tabular summary is provided in Figure 5.5. Certain types of

buildings are legally mandated to be equipped with fire prevention facilities.

This requirement is indicated as a binary variable. The types of object that

caught on fire exist as a column, which include flammable objects, furniture,

electric devices, and several more.

Detailed information about the buildings is available. First, the area of

a structure in km2 is given. Second, the monetary value of real estate and

insurance payments is recorded only in some observations. Third, there is in-

formation about the number of floors above and below ground in a building,
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where basement levels are indicated as negative integers. The floor on which a

fire started is also indicated in the data set.

5.2.5 Cause of Fire

Binary variables indicating the cause of fire were considered. While not all of

these causes may be indicated in the regression tables in the following chapter,

the following variables were created and included in the service output model:

arson, trash, kitchen, chemical, gas leak, and flammable objects.

5.2.6 Exogenous Conditions

Exogenous conditions that may affect response time are included in the cleaned

data set, such as traffic and weather conditions. Using information about the

time of dispatch, a binary variable indicating rush hour traffic was defined as

times between 6−9 A.M. and 5−8 P.M. In the same vein, the seven days of a

week were also considered to account for heavy traffic. Continuous variables

such as temperature, humidity, and wind speed are present in the data set.

In particular, binary variables for very high and very low temperatures were

created.

5.2.7 Three Proxies for Outcome of a Fire

In order to measure the level of service output, a proxy must be chosen so

that the abstract notion of ex post firefighting power can be quantified in an

observable manner. Thus, it is inevitable that our measure of service output is
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chosen amongst different forms of outcome (consequence) of a fire. Recall that

the ultimate goal of a fire service is to protect the lives and property of citizens

in the case of a fire. To do so, the fire service aims to arrive at the fire scene

as promptly as possible and stop the fire from spreading further. In this sense,

the outcome of a fire incident can be considered in the following three aspects:

human lives, property, and fire spread. We will assess if each of these aspects

could be a measure of fire service output.

Human Lives

The data set contains information about the number of deaths and injuries due

to a fire. Some observations also contain information about the number of

persons who were evacuated or rescued by the fire services. Certainly, whether

casualty could be a measure of service outcome is highly questionable. The

argument of a proponent may be twofold. On one hand, one may argue that

this variable can measure the value of a fire service because it is possible to

measure the economic value of human life. For example, the value of a life lost

may be measured in terms of the income that would have been generated had

the person continued to live. However, the irreplaceability argument for human

life (Singer, 1995) presents a strong case against this claim because individuals

cannot be replaced by another being or a sum of money.

On the other hand, the proponent may argue that the number of lives saved

can represent the value of the life-saving activity. After all, this number does not

involve any quantitative evaluation of human life. However, one drawback is

that areas with high population density will always have more lives saved; there

are simply a larger number of people in these areas. Therefore, this measure
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fails to accurately capture the amount of work provided by firefighters.

For these two reasons, we conclude that neither the value nor the number

of human lives can be an effective measure of service outcome.

Property

Columns related to property include: real estate value, real estate damaged by

fire, movables value, and movables damaged by fire. The proportion of prop-

erty saved in relation to the total property may be the most objective indicator

of service outcome. This proportion would also be indicative of the ’outcome

of interest to voters’ (Duncombe and Yinger, 1993), which is the final form of

service output.

Unfortunately, a great deal of measurement error was found in these vari-

ables. For example, some observations seem to be missing three or six digits

of zeros. These errors were not systematic and thus could not be corrected.

Information in other observations were unreliable because their total monetary

value was less than the value of property destroyed. In short, variables relating

to monetary value were practically impossible to be used in our models. Al-

ternatively, the physical area of the original property and the area damaged in

km2 were considered as a proxy (Ignall, Rider, and Urbach, 1979).

Fire Spread

Also available in the data set is the information about the suppression point of a

fire. For residential fires, the suppression point variable consists of five different

entries, as shown in Table 5.6: object or room that caught on fire encoded as 1,
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entire floor as 2, other floors as 3, entire building as 4, and other buildings as

5. The variable indicates the specific location at which the residential fire was

suppressed.

In order to construct a measure of the severity of fire spread, we needed

Code Location of Fire

1 On object or in room

2 On entire floor

3 On other floors

4 On entire building

5 On other buildings

Table 5.6: Codes for Location of Fire (i, j)

a variable that would indicate the starting point of a fire based on a similar

metric. Unfortunately, such column was not readily available in the data set.

Thus, we chose to read through every single memo taken by the emergency call

dispatcher and extract the relevant information. Almost all memos contained

this information because citizens usually describe the fire when they make

emergency calls. We were fortunate to receive support from the provincial fire

headquarters not only because there were more than 7,000 residential fires, but

also because they allowed us to remain consistent throughout the recording

process. As a result, the starting point variable was constructed, which indicates

the location of fire at the time when the emergency call was received. These

entries were also encoded to integers ranging from 1 to 5.
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5.3 Construction of the Dependent Variable

Following Jaldell (2005), this section will delineate our strategy of constructing

the dependent variable for the service output model. This variable will consist

of three ordinal levels that indicate the quality of outcome. To do so, we begin

by establishing the notion of fire outcome.

5.3.1 Fire Outcomes

In previous sections, the phrase “outcome of a fire” was used as a general

synonym for the word consequence. However, the term fire outcome hereafter

will specifically refer to an indicator of fire spread. We claim that the degree

of fire spread is a proxy for the performance of firefighters, as it is directly

relevant to the output that is being produced. The degree of fire spread conveys

information about how good or bad the consequences of a fire were, without

taking into account the monetary value of the property. This was the argument

presented in Section 3.2 for establishing fire spread as an objective measure of

the amount of suppression activity produced by firefighters.

The variable fire outcome contains information about the location of a fire.

A fire outcome is denoted vi j where each of i and j are integers indicating the

starting point and suppression point of a fire, as shown in Figure 5.1. For

example, a fire outcome of v13 indicates that the fire was on the object or in the

room when the emergency call was made; and that it was suppressed when it

had spread to other floors. A total of fifteen fire outcomes can be considered, as

shown in Table 5.3.1.
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Figure 5.1: Possible Fire Outcomes (vi j)

5.3.2 Ordering of Fire Outcomes

The next step is to order these fire outcomes into three levels using a set of

ordering criteria. The primary criterion is the desirability of a fire outcome,

which can be assessed through inequality conditions between fire outcomes.

The secondary criterion is the level of suppression effort required to produce

such a fire outcome. Deciding which fire outcome is “harder” to achieve in-

volves subjective judgement. For this reason, we consulted firefighters and fire

experts who have the hands-on experience of suppressing a fire.

Primary Criterion: Inequality Conditions

Jaldell (2005) recognizes that the fifteen fire outcomes from Figure 5.1 can be

ordered both horizontally and vertically. On one hand, fire outcomes in each

row can be ordered as follows:



98 CHAPTER 5. MODELS AND DATA

v11 < v12 < v13 < v14 < v15

v22 < v23 < v24 < v25

v33 < v34 < v35

v44 < v45

where a “larger” fire outcome represents a more desirable one. For a given

starting point of fire, a fire that spreads out further is less desirable. Put differ-

ently, for a given i, a larger j represents a worse outcome.

On the other hand, fire outcomes in each column can be ordered as follows:

v15 < v25 < v35 < v45 < v55

v14 < v24 < v34 < v44

v13 < v23 < v33

v12 < v22.

For a given suppression point of fire, a fire that ended up spreading less implies

that the performance of firefighters was better. It is important to note that

response time is a component of this performance because we have defined

response time as an input for producing service output. For example, compare

the fire outcomes v14 and v44. The former indicates that the emergency call was

made when the fire was on an object or in a room and that the fire ended up

spreading to the entire building. In this case, the service provided was not

effective or powerful enough to stop the fire from spreading. In the case of

v44, however, the fire was already very severe when the emergency call was

made; it had spread to the entire building. The service provided was effective

(due to a prompt response to fire) and powerful (due to an adequate number

of firefighters and fire trucks) enough to prevent the fire from spreading out to
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another building. Thus, for given a j, a larger i represents a more desirable fire

outcome.

Although the primary criterion allows for a mathematical and thus objective

ordering of fire outcomes, the problem is that there remain combinations of fire

outcomes for which such comparison is not possible. For example, there is

no inequality condition available for v11 and v33. In such cases, the secondary

criterion was considered to order the fire outcomes.

Secondary Criterion: Suppression Effort

The secondary criterion for the ordering procedure is the level of suppression

effort that is generally required to produce such an outcome. Since our de-

pendent variable must reflect the amount of work produced by firefighters, it

is reasonable to consider how hard it would have been to obtain a certain fire

outcome in comparison to another.

In the case v11 and v33, both are desirable outcomes in the sense that the fire

was contained at the starting location. However, successfully preventing a fire

from transferring to the entire building will probably require more effort than

suppressing a fire on an object before it spreads out of the room. To make sure

that these judgements aligned with the reality that firefighters actually confront,

consultation of fire experts was conducted.

In applying the secondary criterion, different subgroups of residential fires

were considered depending on the height of the building. Even if a set of two

fires have the same fire outcome, the severity of the fire and the level of sup-

pression effort may have been very different. For example, a fire outcome of

v14 is likely to have been more destructive in a five-story building than in a
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single-story housing.

In the meantime, the floor on which the fire was located is also a crucial

determinant of the suppression effort. For example, consider an identical set

of two five-story buildings. A fire outcome of v22 would have involved a more

powerful firefighting power if the fire started and was suppressed on the fifth

floor, compared to a fire on the first floor. For this reason, the floor on fire was

considered after the fires were divided into subgroups by the building height.

5.3.3 Grouping of Fire Outcomes

Finally, we can construct the dependent variable for the service output model.

Based on the above ordering scheme, we now group the fire outcomes into

three levels. The levels are ordinal in nature where Y = 0 represents the worst

outcome and Y = 2 the best outcome. Fires with the worst outcome imply that

the level of firefighting power produced by a fire service was low, whereas those

with the best outcome indicate that a greater amount of suppression activity

was produced by firefighters. As a result, we have established our dependent

variable as an effective proxy for fire service output. The following section

ordered and grouped the fire outcomes of a particular subgroup of residential

buildings.

5.3.4 Example: A Subgroup of Buildings with 3+ Stories

The subgroup consists of 2,496 fires that occurred on three-story buildings or

higher, where the fire started on the second floor or higher. This subgroup was

chosen as an example because all fifteen fire outcomes are theoretically plausi-
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Figure 5.2: Ordering Example for Residential Buildings with 3+ Stories

ble. In single-story houses, the location of fire cannot equal 3 because there are

no “other floors” by definition. Meanwhile, the fact that the fire started on the

second floor or higher will involve a nuanced judgement that is worth demon-

strating in the body of this paper. The ordering procedure for other subgroups

is provided in Appendix A, in the form of STATA output.

Figure 5.2 shows how the 2,496 fires were grouped into three levels. For

visual purposes, the subscript is representing the starting point were ordered

horizontally, whereas js representing the suppression point were ordered verti-

cally. This grouping satisfies the first ordering criterion because it is consistent

with the inequality conditions presented in Section 5.3.2. This can be checked

by comparing the horizontal and vertical relationships.

In the meantime, since there are fifteen fire outcomes but only three levels,

some fire outcomes end up being treated the same, qualitatively speaking. For

example, even though it is clear that v13 is a better outcome than v15, these two

are placed in the same level of Y = 0. Our dependent variable does not differen-
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tiate between these two fire outcomes; v13 and v15 are “equally” bad. Although

this lack of discretization can certainly be a limitation of our dependent vari-

able, this is practically the best we can do with the given data set.

Another problem is that there are a disproportionately smaller number of

severe fire outcomes. One possible solution could be to break down the best

outcomes, Y = 2, into additional ordered levels. However, this distinction is

likely become too arbitrary and subjective. Therefore, we chose to follow the

three-level approach established by Jaldell (2005). While Jaldell (2019) also con-

siders a binary dependent variable, we chose not to take this approach so that

we can preserve as much information as possible.

The fire outcome v11 is categorized as the best outcome in the current exam-

ple, whereas it is given a Y = 1 value in the subgroup for single-story buildings.

Although putting out a fire before it spreads outside of the room is always

desirable, the difficulty of doing so may vary according to circumstances. As

far as output is concerned, we claim that a v11 on the third floor of a three-story

building “deserves more credit” than a v11 on a single-story house.



Chapter 6

Results and Discussions

Following the model specifications presented in Section 4.1, three models were

estimated. The models for response time and suppression time were estimated

using the Ordinary Least Squares procedure. For these models, a set of analyses

were conducted in order to check for the classical assumptions. Appendix B

provides three plots for each model: a residual versus fitted plot, a normal prob-

ability plot, and a histogram of the residuals. The plots confirm the conditions

relating to the error term. These analyses ensure that the OLS conditions were

met and that we can rely on the results of our estimation.

Meanwhile, service output is estimated using an ordered probit model, the

condition for which was briefly presented in Section 4.3.4. The proportional

odds assumption, also called the parallel regression assumption, is practically

impossible to check for. Therefore, we “assume” that the condition was met

and proceed to present our estimation results.

For all three models, robustness tests were conducted to analyze the sensi-

tivity of our results to different samples and selection of independent variables.
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The results are presented in Appendix D.

6.1 Response Time Model

The response time model was estimated for 49,164 fire dispatches that occurred

across the cities of Gyeonggi Province in the years between 2014 and 2018. The

adjusted R2 is 0.320, meaning that 32% of the variation in response time is ex-

plained by our regression equation.

Holding all else constant, an additional kilometer (or 0.621 mile) increase

in distance leads to a 0.905 unit increase in response time, which is equivalent to

54.3 seconds. Considering that fire trucks typically travel at 40-80 kilometers (or

25-50 miles) per hour, the coefficient makes practical sense. A more meaningful

analysis of the Distance variable will be provided at the end of this chapter.

Recall that StationPopDen refers to the population density per fire station.

The interpretation of the coefficient is that having 1,000 more persons within

a 1km2 of land reduces response time by 0.068 minutes, or 4.08 seconds. To

put this number into context, consider the two cities: Seoul, South Korea and

Wooster, Ohio, U.S.A. Each city has a population density of 16,000/km2 (or

42,000/mi2) and 623/km2 (or 1,613/mi2) according to 2020 census data. For the

sake of comparison, assume that our results can be generalized to other cities

and countries. Then, the time it takes a fire truck in Seoul to travel an additional

kilometer is expected to be shorter by 1.05 minutes compared to a fire truck

in Wooster. Considering that an average fire in our data set has a distance of

3.6km, the difference in response times of the two cities can amount to nearly 4

minutes.



CHAPTER 6. RESULTS AND DISCUSSIONS 105

Table 6.1: Response Time Model (OLS)

Variable Coefficient Std. Error P-Value

Distance 0.903∗∗∗ 0.032 0.000

StationPopDen −0.068∗∗∗ 0.008 0.000

RushHour 0.371∗∗∗ 0.115 0.001

SnowRain 0.468∗∗∗ 0.071 0.000

Commercial −0.752∗∗∗ 0.107 0.000

Residential −0.151 0.105 0.153

School −0.503∗∗ 0.213 0.018

Field 2.447∗∗∗ 0.189 0.000

Vehicle −0.713∗∗∗ 0.129 0.000

Electrical 0.171∗∗∗ 0.042 0.000

Monday 0.197∗∗ 0.079 0.013

Friday 0.141∗ 0.082 0.086

Saturday 0.232∗∗ 0.086 0.007

Constant 4.027∗∗∗ 0.139 0.000

Obs. 49, 164

Adj. R2 0.320

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

These results can also be understood in the context of population scale (Dun-

combe and Yinger, 1993). In regards with the intermediate output of interest,

response time, we observe an increasing returns to population scale. That is,

as population density increases, response time decreases, indicating that a fire

station can serve more citizens and produce greater (intermediate) output in the

form of shortened response time. Duncombe and Yinger (1993) present in their

findings a constant returns to population scale. We are not sure if this is due

to their lack of consideration for land size (in other words, the density aspect)
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or due to different output definitions. In their model, output is measured on

the basis of monetary damage on property; the inverse of insurance payout

is chosen as their proxy. In the present model, however, output is defined as

response time in minutes.

Next, we move on to interpret the impact of various external conditions

on response time. Snowy and rainy weather creates a half-minute delay in

response time. Also, being in rush hour traffic, which we defined as 6-9 A.M.

and 5-8 P.M, increases response time by 22.3 seconds. Mondays, Fridays, and

Saturdays are associated with 8 to 14 seconds of prolonged travel times, com-

pared to the Wednesday (base case). While not substantially large in magnitude,

the coefficient estimates are all statistically significant at the 10% level or lower.

These results can be useful when decision makers determine the times and days

when bus-only lanes begin to be available for public use. In South Korea, like in

many other urbanized places around the world, there are bus lanes designated

to public transports. Citizen drivers are not allowed to drive on these lanes

during certain hours of the day. In areas with particularly higher risks, the

decision maker may designate certain days or hours and limit the use of these

lanes for public transports and emergency vehicles.

We hypothesized that firefighters may respond to different types of fires

with different levels of urgency or tension, perhaps unknowingly. Indeed, fire-

fighters in our sample seem to have responded slightly more quickly to fires

in commercial buildings, schools, and on vehicles. Fires on open fields pose a

relatively low threat on the citizens and tend not to spread out severely. This

may be an explanation to why these fires take 2.5 more minutes to be responded

to, compared to miscellaneous fires (base case), controlling for all other vari-
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ables including distance. While we expected a more prompt response to fires

involving explosive or chemical materials, the coefficient estimates showed a

positive sign and were not statistically significant.

6.2 Suppression Time Model

The suppression time model was estimated for 36,084 fires and is shown to ex-

plain 26.4% of the variation in suppression time. The sample size is smaller than

the previous model by 13,137 because all fires that were either suppressed before

the arrival of firefighters (by911=0) or had a suppression time of 0 (SuppTime=0)

were dropped. Being an intermediate output, suppression time is not an ac-

curate measure of the quantity of work performed by firefighters, compared

to proxies such as fire spread or proportion of property damage. Despite this

limitation, suppression time does provide useful information about the duration

of service delivery, which is a key component of service output.

Recall that the starting point, i, takes one of the five integers between

1 and 5 which represents the location of fire. Fires that have already spread

out from a room to the entire floor (i = 2) take 5.6 more minutes to suppress,

compared to fires that were contained in the room (i = 1; base case). Fires

that have already spread out to the entire building (i = 4) take about 8.5 more

minutes to suppress, compared to the base case. The difference seems like an

underestimation; using common sense, fires that are burning down an entire

building should take much longer to suppress. This may be partially due to

our sample containing various types and sizes of buildings, even though we
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Table 6.2: Suppression Time Model (OLS)

Variable Coefficient Std. Error P-Value

StartPoint2 5.572∗∗∗ 0.821 0.000

StartPoint3 4.994 3.258 0.220

StartPoint4 8.521∗∗∗ 3.165 0.007

RespTime 0.874∗∗∗ 0.175 0.000

Fire f ighter 0.243∗∗∗ 0.084 0.004

Pumper 3.212∗∗∗ 0.443 0.000

Tank 1.227∗∗∗ 0.462 0.008

Ladder −0.673 0.873 0.441

Chemical 4.856∗∗∗ 0.909 0.000

RescueTruck −3.061∗∗∗ 0.630 0.000

Ambulance −2.062∗∗∗ 0.617 0.000

Helicopter 13.770∗∗ 6.063 0.023

ElectricGas 1.061∗∗∗ 0.291 0.001

Police 0.971∗∗∗ 0.291 0.000

CivilServant 0.347∗∗ 0.141 0.014

Hydrant −0.398∗∗∗ 0.053 0.000

StationDensity −0.032∗∗∗ 0.007 0.000

TempLow 7.131∗∗ 2.827 0.012

TempHigh −1.719 1.115 0.123

ElecObject −4.093∗∗∗ 0.474 0.000

Explosion 30.690∗∗∗ 4.830 0.000

Kitchen −1.289∗∗ 0.650 0.047

Commercial −3.725∗∗∗ 1.254 0.003

School −5.483∗∗ 2.150) 0.011

Industrial 3.213∗∗ 1.509 0.033

Residential −4.628∗∗∗ 1.181 0.000

Constant −13.400∗∗∗ 2.553 0.000

Obs. 36, 084

Adj. R2 0.264

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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did control for building types. When we estimate the same model on a sample

of residential fires only, the coefficient estimates of StartPoint2 and StartPoint4

increase to 9 and 16 each, with p-values still close to zero.

Next, we examine the impact of all other intermediate outputs on sup-

pression time. A prolonged response time will allow the fire to spread more,

resulting in more suppression work to be performed. Our results show that an

additional minute of delay in arrival leads to 52 more seconds of suppression

time, holding all else constant.

Having one more firefighter results in a 15-second increase in suppression

time. This is the opposite of what we expected. Our hypothesis was that having

more firefighters would increase the firefighting power and result in shorter

suppression time. Although this claim may be theoretically valid, our results

remind us of the endogeneity concern that emerged during the model speci-

fication for dispatch level. In Section 4.1, we explained that a larger number

of firefighters may be dispatched to the scene if the emergency call dispatcher

decides that the fire is very severe or if the initial crew requests for additional,

back-up crew. This is the strongest explanation that we can provide in response

to the positive sign of the Fire f ighter variable. Unfortunately, pumper, tank,

and chemical trucks seem to suffer a similar endogeneity problem. The coeffi-

cient estimate on helicopter is particularly large, which is not very surprising

given the fact that helicopters are typically dispatched in extremely severe fires.

Similarly, personnel and vehicles from other public services produce statisti-

cally significant results that are opposite to our expectations.

In the meantime, rescue trucks and ambulances are shown to reduce sup-

pression time, which is consistent with our expectation. Of course, the same
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argument could be made for these two variables as well; one may claim that

larger fires would involve more victims and patients, resulting in higher dis-

patch level for these emergency vehicles. However, our results show that rescue

trucks and ambulances shorten suppression time by approximately 3 and 2 min-

utes, respectively. The explanation would be that the presence of rescue and

paramedic squads allows firefighters to focus on fire suppression only and be

more productive in their firefighting activity.

The presence of one more fire hydrant per km2 in a city is associated with a

24-second decrease in suppression time. This information may be useful when

performing a cost-benefit analysis for installing additional fire hydrants in a

city. The density of fire hydrants across the cities of Gyeonggi Province varies

widely, ranging from 0.2 to 20 per km2. Our results suggest that having 5 more

hydrants in every 1km2 of land can result in about a two-minute reduction in

suppression time.

Recall that StationDensity represents the average service reach of a city’s fire

station:

StationDensity =
area

stations
.

This variable was included as a proxy for (the inverse of) density of the fire

stations; if service reach is smaller, then fire stations are more densely located

to each other, allowing additional units to arrive more promptly at fire scenes

that are not within their jurisdiction. Our results show that a 1km2 increase

in service reach leads to a 0.032 unit increase in suppression time. To put this

number into context, we can compare City 1 and City 3 from our data set. Each

city has a service reach 5km2 and 400km2. This 395km2 difference in service
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reach translates into a nearly 13 minutes longer suppression time in City 1. Fire

stations in City 2 have the advantage of being located in closer proximity to

each other, which can lead to faster fire suppression.

Temperature is available as a continuous variable in our data set. A few

different functional forms were tested for the model but the results were not

statistically significant. Instead, we categorized the variable into three groups:

high, medium, and low. A temperature above 30◦C (86◦F) was defined as high;

below -9◦C (16◦F); and anything in between as medium. As protective gears

tend to trap heat, higher temperatures may reduce the productivity of firefight-

ers. Meanwhile, low temperatures may create slippery surfaces and reduce the

agility of firefighters. Our results show that lower temperature does have a

negative effect on suppression activity, whereas the impact of higher tempera-

ture is statistically equivalent to zero.

Lastly, we interpret the results for the different causes and types of fires. All

other things being equal, an industrial fire takes 3.2 more minutes to suppress.

Fires that involve explosions take noticeably longer to suppress, requiring 30.6

more minutes than an average fire. Meanwhile, fires starting from the kitchen

take less time to suppress compared to a ‘miscellaneous’ fire, which is the base

case. Fires in commercial buildings, residential units, and schools also take less

time to suppress. While these results are all statistically significant at the 5%

level or lower, we are unable to provide a strong explanation and are left to

conclude that further investigation is needed.

Generally speaking, shorter suppression time is a desirable outcome be-

cause it implies that the duration of threat posed by a fire was shortened.

However, shorter suppression time does necessarily mean that a greater amount
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or better quality of work was performed. In fire incidents where initial severity

is very high, suppression time may be longer even if firefighters did an excellent

job. In these cases, it would be misleading to consider longer suppression time

as an indication of bad outcome. Of course, if we had data on a control vari-

able that “perfectly” captures the initial severity of fire, then suppression time

would suffice as a measure of service output. Since this is not possible, we need

another measure that reflects the nuanced differences between outcomes. We

claim that fire spread can be such a measure because it is directly related to the

quantity of suppression work. Another advantage of this variable as a proxy is

that it is independent of the monetary value of the property and thus can be a

more objective measure. Now, we proceed to estimate the service output model

using the ordered dependent variable we constructed in Section 5.3.

6.3 Service Output Model

Table 6.3 shows the estimation results for the service output model. An ordered

probit model was used due to the dependent variable being ordered and dis-

crete in nature. Recall that the dependent variable consists of three categories,

with Y = 0 indicating the worst outcome and Y = 2 the best outcome. As was

explained in Section 5.3, the dependent variable is constructed in a way that

captures both the desirability of a fire outcome based on spread level (primary

criterion) and the level of suppression effort required to obtain such an outcome

(secondary criterion).

It is crucial to note that the coefficient estimates should not be interpreted

in the OLS manner. Practically speaking, one should only check the signs of
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Table 6.3: Service Output Model (Ordered Probit)

Variable Coeff S.E. P-Value P.E.1 P.E.2 P.E.3

RespTime −0.077∗∗∗ 0.005 0.000 0.010 0.008 −0.018

SuppTime −0.015∗∗∗ 0.001 0.000 0.002 0.002 −0.004

Pumper −3.212∗∗∗ 0.019 0.000 0.024 0.021 −0.045

PumperSq 0.243∗∗∗ 0.001 0.004 −0.001 −0.000 0.001

Tank 0.002∗∗∗ 0.008 0.767 −0.000 −0.000 0.001

Ladder 0.673 0.047 0.000 −0.036 −0.031 0.067

Chemical −4.856∗∗∗ 0.040 0.003 0.015 0.013 −0.028

RescueTruck 3.061∗∗ 0.027 0.000 −0.008 −0.007 0.016

Hydrant 0.021∗∗ 0.009 0.032 −0.003 −0.002 0.005

Kitchen 0.823∗∗∗ 0.108 0.000 −0.065 −0.070 0.136

Trash 0.271∗∗∗ 0.083 0.001 −0.028 −0.027 0.056

Arson 0.177∗ 0.102 0.083 −0.020 −0.018 0.037

Injury 0.068∗∗∗ 0.021 0.001 −0.009 −0.007 0.016

Prevention 0.273∗∗∗ 0.077 0.000 −0.030 −0.028 0.058

Saturday 0.235∗∗∗ 0.070 0.001 −0.026 −0.024 0.050

StationDensity100 0.065∗∗ 0.0000 0.037 −0.0001 −0.0001 0.0002

PopDensity 0.032∗∗ 0.007 0.032 −0.0004 −0.0003 0.0008

Obs. 7, 275

Pseudo R2 0.264

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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the coefficient estimates and their p-values. To observe the partial effect of an

explanatory variable on the dependent variable, one must follow the procedure

explained in Section 4.3.4 (Equations 4.34 to 4.36). We produced the average

partial effects using the mfx command in STATA and presented the results in

the last three columns of Table 6.3. The columns titled P.E.1, P.E.2, and P.E.3

each indicates the partial effect of the explanatory variables on the number of

Y = 0, Y = 1, and Y = 2 outcomes.

To demonstrate how the partial effects are interpreted, we take the RespTime

variable as an example. A one-minute increase in response time results in a

1% increase in the number of Y = 0 outcomes, a 0.8% increase in the number of

Y = 1 outcomes, and a 1.9% decrease in the number of Y = 2 outcomes. Simply

put, an additional increase in response time results in more better outcomes and

fewer worse outcomes. To put these figures into context, consider that the num-

ber of Y = 0, Y = 1, and Y = 2 outcomes in our data set is 1018, 629, and 5626,

respectively. The partial effects suggest that a one-minute increase in response

time is expected to result in 10 more Y = 0 outcomes, 5 more Y = 1 outcomes,

and 107 less y=2 outcomes. In other words, we see a great deal of decrease in

favorable fire outcomes and a bit of increase in severe fire outcomes.

Suppression time has a similar impact on service output but to a smaller

degree. In fact, it makes logical sense that the partial effect of response time is

greater. Longer response time implies a delay in the very commencement of the

suppression activity. As a result, firefighters are faced with a more severe fire

to start with. On the contrary, the impact of a prolonged suppression time will

be spread across the entire duration of the suppression activity, the damage of

which will be relatively weaker.
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Unfortunately, the coefficient estimate on the Pumper variable shows to be

negative again, just as we observed in the suppression time model. It would

certainly be absurd to interpret this result in a literal sense and conclude that

fire trucks cause worse fire outcomes. Rather, we suspect that this is due to the

fact that severe fires that end up falling into the worst outcome category (Y = 0)

will involve more firefighters and fire trucks. This argument has already been

formulated when we specified the model for dispatch level in Section 5.1. It

seems that the service output model suffers the same endogeneity problem that

arose in the suppression time model.

The advantage of the model estimated by Jaldell (2005) is that a distinc-

tion is made between the number of initial crew and additional crew. In fact,

the paper reports positive coefficient estimates on the two firefighter variables,

OwnFiremen and ExtraFiremen, which is consistent with our theoretical under-

standing that increased firefighting power should lead to better fire outcomes.

Our data set does not contain this information. It would have been very useful

if our data set at least indicated the number of firefighters who arrived at the

scene within, say, 6 minutes. This would have allowed us to decompose the

contributions of the initial and the additional crew.

Given this limitation of our data, a series of robustness tests were carried

out. One of our modest findings is that the coefficients on the fire truck vari-

ables do become positive when the sample is reduced to observations with

Pumper < 4. Although the sample size drops to 1,031, we still confirm that an

additional fire truck creates better outcome. We also find evidence for dimin-

ishing marginal returns to capital. The details of this sensitivity analysis are
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presented in Appendix D1.

The results in Table 6.3 reinforce the common notion among fire experts and

managers that the rescue squad significantly contributes to better fire outcomes.

In South Korea, each city fire department has one rescue squad, consisting of

individuals with demonstrated physical abilities. A recruitment track exclusive

to former members of the special forces is certainly one factor that maintains the

competence of the rescue squad. Also, distinguished firefighters with strong

records on physical tests are often scouted to the rescue squad. Looking at our

results, the high productivity of these workers seem to have substantial impact

on the outcome of a fire. We conjecture that the RescueTruck variable is less

susceptible to the endogeneity problem because they exist in limited numbers

compared to pumper and tank trucks. This may have resulted in a positive sign

of the coefficient estimate.

Meanwhile, increased accessibility to fire hydrants is shown to increase the

number of better outcomes and reduce the number of worse outcomes. Recall

that we observed the positive role of hydrants in reducing suppression time in

the previous model, which seems to connect to producing better fire outcomes

with less severe fire spread.

Many of our results contradict our theoretical understanding of the relation-

ship between the variables. Increased mean service reach (multiplied by 1000

due to small decimal values) is associated with better fire outcomes. Specifi-

cally, an additional 1000km2 of service reach results in 11 more Y = 2 outcomes

1Another method of sensitivity analysis was to consider different subsets of the data based
on suppression time. That is, we estimated the service output model for fires with different
ranges of suppression time. However, we were unable to find evidence to support the claim
that more fire trucks lead to better outcomes.
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and 1 less Y = 0 outcome. While the magnitude of the impact is practically

negligible (considering that the average size of a city in Gyeonggi Province is

340km2), the positive sign is still unexpected. It may be the case that the αi

terms are overly aggregated. Ideally, a better way to control for the density of

the stations would be to compute the distance between fire stations and include

it in the model. Likewise, the ideal alternative of the PopDensity variable would

be disaggregated (individual) data on the distance between residential build-

ings. However, we did not have any information about these two variables.

We conclude this section with a brief discussion of our limitations and sug-

gestions for data collection. Our initial motivation for estimating the service

output model was to construct a production function for fire services, specifi-

cally their fire suppression activities. Unfortunately, we are only able to provide

explanation for certain independent variables. Although we have attempted

to interpret the coefficients on these variables to the best of our ability, the va-

lidity of our claims is threatened by the very fact that our interpretations hold

true only for certain variables. To improve the service output model, it seems

that having more information on the initial crew and additional crew will be

necessary. The truck variables, which are the key factor inputs for fire service

production, seems to suffer endogeneity problems. For future endeavors, we

suggest that decomposing the contributions of the initial and additional crew

will be necessary for establishing a more accurate and informative production

function.

Another great strategy of improving the service output model would be

to use a continuous dependent variable, which necessitates a more systematic

collection of data. When we introduced the composition of our data in Section
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5.2.7, we mentioned that there were data on the value of residential buildings

and movable property, as well as the degree of monetary damage incurred on

these two. However, measurement errors were too severe that these variables

became practically useless; there were unexpectedly many observations where

the original value of property was smaller than the monetary damage on the

property, which was a sign of inaccurate information. In South Korea, there

are designated officers whose responsibility is to investigate the cause and af-

termath of large fire incidents. It may be useful to establish a more unified

recording system so that measurement error becomes less prevalent in the data.

This will allow one to construct a model that uses a continuous dependent vari-

able, which will be greatly useful in that the method of analysis would not

be restricted to logit or probit models. From a production theory standpoint,

the availability of a continuous outcome variable will be particularly useful for

analyzing the marginal contributions of each factor inputs and investigating

the optimal level of dispatch level.
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Conclusions

The goal of our paper was twofold. First, we aimed to establish a coherent

theory of fire service production that is capable of defining ‘output’. As we

discussed in the introduction chapter, economic studies have defined and mea-

sured output in many ways, resulting in a confusion as to what constitutes

output in the case of fire services. By identifying the intermediate processes

involved in producing fire suppression service, we have established the theoret-

ical relationship between the inputs and the outputs. In particular, we defined

dispatch level, response time, and suppression time as intermediate outputs.

These outputs were then transformed into inputs to produce service output.

The second goal of the paper was to justify the status of response time as

a factor of production. While there exist studies that treat response time as an

input for producing fire services, the theoretical grounds were not sufficiently

established. Our strategy was to identify the particular economic activity that

‘produces’ response time. To do so, we considered the production of fire ser-

vices as a two-stage sequential optimization process. This allowed us to show

119
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that the second-stage decisions of the city fire departments result in the specific

locations of fire stations; and that these locations are actualized into varied re-

sponse times when fires occur. Now, we conclude this paper by summarizing

the main points of each chapter, while also recognizing the limitations of our

work and discussing further investigations that can be made.

In Chapter 1, we developed the novel idea of separating the ex ante and ex

post production of fire services. We identified the two ‘camps’ of thoughts that

differ over the definition of output. We introduced a way in which these two

camps could be integrated into a coherent theoretical framework, the details of

which followed in the next chapter.

In Chapter 2, the two stages of ex ante production were defined. The first-

stage agent was the provincial government who distributes budget to its cities

with the objective of attaining a desired level of social outcome. The second-

stage agent was the city fire department who spatially allocates its fire stations

with the goal of minimizing response time. As a result, varied stand-by levels

and expected response times were produced. In an ex post framework, these

outputs were each actualized into dispatch levels and response times. Under

the influence of external factors, the duration of the suppression activity was

determined. In our theoretical framework, all these factors eventually func-

tioned as inputs for producing service output. That is, we established dispatch

level, response time, and suppression time as factors of production.

In Chapter 3, we reviewed three papers that were relevant to our empirical

models. Duncombe and Yinger (1993) provided an understanding of different

returns to scale. In particular, the work revealed a connection between service

reach and economies to population scale. Jaldell (2005) provided a conceptual
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framework that defined response time as a factor input. The work also estab-

lished a statistical model of service output that defined response time as an

input. Jaldell (2019) presented a detailed list of control variables that could im-

prove the previous model. Extedning these two articles, we were able to show

that response time is indeed a factor input, on both theoretical and statistical

grounds.

In Chapter 4, we explained the statistical theory behind the three methods

that were considered for this paper. The ordinary least squares method was

introduced as an effective analytical tool that can derive the marginal contribu-

tion of an explanatory variable on the outcome variable. The probit model was

shown to be useful for modeling discrete outcome variables. The instrumental

variable approach emerged as a potential solution to our endogeneity problem,

however, we were unable to identify the appropriate instruments due to insuf-

ficient data.

In Chapter 5, we presented our model specifications and described our data

set. A total of four models were considered, the first three being the intermediate

outputs from our theoretical framework and the last being the service output.

Dispatch level, or the number of firefighters and fire trucks dispatched to a

fire scene, was shown to be dependent upon the emergency call dispatcher’s

perception of the severity of a fire. Also, dispatch level was affected by the

initial crew’s request for additional back-up. We identified these factors as a

potential source of endogeneity that may emerge in models involving dispatch

level as an explanatory variable. Then, we specified the models for response

time, suppression time, and service output as well. The rest of the chapter was

dedicated to describing our data set in great detail.
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In Chapter 6, we presented the estimation results of our regression models.

We observed an increasing returns to population (density) scale when response

time was defined as an output. Unfavorable weather and traffic conditions, as

well as being on weekends, showed to prolong response time. We hypothesized

that firefighters, perhaps unknowingly, may react more promptly to potentially

severe fires. The results showed that fires on commercial, residential, and public

buildings were responded 10-40 seconds more quickly than miscellaneous fires;

travel times to field fires were 2.5 minutes longer compared to miscellaneous

fires.

Meanwhile, we were cautious about reporting our results for the suppres-

sion time model. The reason was because dispatch level, particularly the pri-

mary responding units (firefighters, pumpers, and tank trucks), showed to

increase suppression time. We did not interpret this result as firefighters and

fire engines decreasing the efficiency of fire suppression; rather, we suspected

that the endogeneity concern discussed earlier was affecting our results. In

severe fires, a larger number of firefighters and fire trucks tend to be sent to the

scene, to begin with. This point was elaborated in the model specification for

the dispatch level.

With this limitation of the model in mind, we claimed that specialized ve-

hicles such as the ladder truck, rescue truck, and ambulance contributed to

reducing fire suppression time. Having a larger number of hydrants and fire

stations in a given area also had a similar effect. We suggested that considering

this ‘density’ aspect would be more appropriate (than considering the absolute

quantity of resources) when using indicators or predictors that are specific to

each city, rather than individual fires.
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Finally, we presented our estimation results for the service output model.

An ordered probit model was used, meaning that partial effects with respect to

each variable had to be derived. The results suggested that the rescue squad

plays an important role in producing better fire outcomes. This reinforced the

understanding of fire administrators and managers that the skilled labor and

physical qualifications of these members can have a strong, positive impact in

fire incidents. The two time-oriented factors of production, response time and

suppression time, showed to have a negative relationship with the severity of a

fire outcome. We found this reasonable because prolonged response time and

suppression time would allow the fire to spread out more and result in a worse

fire outcome.

As was observed in the suppression time model, the key fire engines,

pumpers and tank trucks, also showed to lead to worse fire outcomes in the

service output model. We suspected that the congestion of fire trucks could

be a reason, however, there was not enough evidence to support this claim.

Although we could not fundamentally remedy the endogeneity problem, a set

of robustness tests were conducted. In fires where less than 4 pumper trucks

are dispatched, fire engines did show to contribute to better fire outcomes.

This was consistent with our theoretical understanding that a larger number of

firefighters and fire trucks would produce greater firefighting power. We con-

cluded that an ideal solution to this endogeneity problem would be to consider

the initial crew and additional crew separately. Unfortunately, this information

was not available in our data set.

We conclude this paper by suggesting four directions in which this research

can be extended. First, we have only considered fire suppression activities in
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this paper. Another important aspect of fire service provision is fire prevention.

The theoretical framework should be expanded so that fire prevention efforts

are considered as part of the service provision. Second, it may be useful to de-

vise (or, practically speaking, collect data on) a continuous dependent variable.

This will allow one to perform a more systematic and informative analysis of

the factor inputs involved in the service output model. This will provide a

more accurate decision tool for policy makers as well. Third, service output has

been measured only in residential fires. In order to quantify the total output,

one must also consider service output for fires in industrial buildings, public

facilities, commercial spaces, forests, and so on. Lastly, it may be interesting to

collect experimental data on how individual dispatchers respond to different

emergency calls. With this information, the researcher may be able to mitigate

the endogeneity problem that was the primary obstacle to the present study.
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User: Alex Hwang

      name:  <unnamed>
       log:  /Users/alexhwang/Desktop/stata submit/hwang.smcl
  log type:  smcl
 opened on:  25 Mar 2020, 14:50:16

1 . use "/Users/alexhwang/Desktop/stata submit/house_depVar.dta",clear
(Written by R.              )

2 . 
3 .                 **************************************************
4 .                                 * Construction of output variable.
5 .                 **************************************************
6 . 
7 . * 1. Encode all spread outcomes.
8 . generate str y= "."

9 . replace y = "v11" if start_ordinal==1 & spread_ordinal==1
variable y was str1 now str3
(4,647 real changes made)

10 . replace y = "v12" if start_ordinal==1 & spread_ordinal==2
(571 real changes made)

11 . replace y = "v13" if start_ordinal==1 & spread_ordinal==3
(27 real changes made)

12 . replace y = "v14" if start_ordinal==1 & spread_ordinal==4
(172 real changes made)

13 . replace y = "v15" if start_ordinal==1 & spread_ordinal==5
(26 real changes made)

14 . replace y = "v22" if start_ordinal==2 & spread_ordinal==2
(920 real changes made)

15 . replace y = "v23" if start_ordinal==2 & spread_ordinal==3
(59 real changes made)

16 . replace y = "v24" if start_ordinal==2 & spread_ordinal==4
(542 real changes made)

17 . replace y = "v25" if start_ordinal==2 & spread_ordinal==5
(140 real changes made)

18 . replace y = "v33" if start_ordinal==3 & spread_ordinal==3
(30 real changes made)

19 . replace y = "v34" if start_ordinal==3 & spread_ordinal==4
(17 real changes made)

20 . replace y = "v35" if start_ordinal==3 & spread_ordinal==5
(11 real changes made)

21 . replace y = "v44" if start_ordinal==4 & spread_ordinal==4
(29 real changes made)

22 . replace y = "v45" if start_ordinal==4 & spread_ordinal==5
(83 real changes made)

23 . replace y = "v55" if start_ordinal==5 & spread_ordinal==5
(1 real change made)

24 . 
25 . * 2. Order these outcomes into ordinal levels
26 . 
27 . ***** 1-story buildings (2420 obs)
28 . generate str y1 = "." if stories_aboveground ==1 | stories_aboveground ==0

(4,871 missing values generated)

29 . replace y1="0" if y=="v15" | y=="v25" | y=="v14" 
(338 real changes made)

30 . replace y1="1" if y=="v11" | y=="v12" | y=="v24" | y=="v44" | y=="v45"
(5,872 real changes made)

31 . replace y1="2" if y=="v22"
(920 real changes made)

32 . gen y_levels = .
(7,275 missing values generated)

33 . replace y_levels = 0 if y1=="0"
(338 real changes made)

34 . replace y_levels = 1 if y1=="1"
(5,872 real changes made)

35 . replace y_levels = 2 if y1=="2"
(920 real changes made)

36 . 
37 . ***** 2-story buildings where floor_on_fire==1 (667 obs) 
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38 . generate str y2 = "." if stories_aboveground==2 & floor_on_fire==1
(6,609 missing values generated)

39 . replace y2="0" if y=="v13" | y=="v14" | y=="v15" | y=="v24" | y=="v25" | y=="v35" | y=="v45"
(1,001 real changes made)

40 . replace y2="1" if y=="v11" | y=="v12" | y=="v23" | y=="v34" | y=="v44" 
(5,323 real changes made)

41 . replace y2="2" if y=="v22" | y=="v33" 
(950 real changes made)

42 . replace y_levels = 0 if y2=="0"
(663 real changes made)

43 . replace y_levels = 1 if y2=="1"
(76 real changes made)

44 . replace y_levels = 2 if y2=="2"
(30 real changes made)

45 . 
46 . ***** 2-story buildings where floor_on_fire==2 (534 obs) 
47 . generate str y3 = "." if stories_aboveground==2 & floor_on_fire==2

(6,958 missing values generated)

48 . replace y3="0" if y=="v13" | y=="v14" | y=="v15" | y=="v24" | y=="v25" | y=="v35" | y=="v45"
(1,001 real changes made)

49 . replace y3="1" if y=="v11" | y=="v12" | y=="v23" | y=="v34" | y=="v44" 
(5,323 real changes made)

50 . replace y3="2" if y=="v22" | y=="v33" 
(950 real changes made)

51 . replace y_levels = 0 if y3=="0"
(0 real changes made)

52 . replace y_levels = 1 if y3=="1"
(0 real changes made)

53 . replace y_levels = 2 if y3=="2"
(0 real changes made)

54 . 
55 . ***** 3+ story buildings where fire started on the first floor (879 obs)
56 . generate str y4 = "." if stories_aboveground !=0 & stories_aboveground !=1 & stories_aboveground !=2 & floor_on_fire==1

(6,400 missing values generated)

57 . replace y4="0" if y=="v13" | y=="v14" | y=="v15" | y=="v24" | y=="v25" | y=="v34" | y=="v35" | y=="v45"
(1,018 real changes made)

58 . replace y4="1" if y=="v11" | y=="v12" | y=="v23" 
(5,277 real changes made)

59 . replace y4="2" if y=="v22" | y=="v33" | y=="v44"
(979 real changes made)

60 . replace y_levels = 0 if y4=="0"
(17 real changes made)

61 . replace y_levels = 1 if y4=="1"
(0 real changes made)

62 . replace y_levels = 2 if y4=="2"
(29 real changes made)

63 . 
64 . ***** 3+ story buildings where fire started on somewhere else than the first floor (2816 obs)
65 . generate str y5 = "." if stories_aboveground !=0 & stories_aboveground !=1 & stories_aboveground != 2 & floor_on_fire !=1

(4,476 missing values generated)

66 . replace y5="0" if y=="v13" | y=="v14" | y=="v15" | y=="v24" | y=="v25" | y=="v34" | y=="v35" | y=="v45"
(1,018 real changes made)

67 . replace y5="1" if y=="v12" | y=="v23"
(630 real changes made)

68 . replace y5="2" if y=="v11" | y=="v22" | y=="v33" | y=="v44"
(5,626 real changes made)

69 . replace y_levels = 0 if y5=="0"
(0 real changes made)

70 . replace y_levels = 1 if y5=="1"
(0 real changes made)

71 . replace y_levels = 2 if y5=="2"
(4,647 real changes made)

72 . 
73 . * Lastly, turn y_levels into labeled (ordinal).
74 . tostring y_levels, replace
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y_levels was float now str1

75 . encode y_levels, generate(y_level_final)

76 . drop y_levels

77 . rename y_level_final y_levels

78 . * My (final) dependent variable is called "y_levels".
79 . 
80 . log close

      name:  <unnamed>
       log:  /Users/alexhwang/Desktop/stata submit/hwang.smcl
  log type:  smcl
 closed on:  25 Mar 2020, 14:50:16
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Figure B.1: Residual Plot for Response Time Model

Figure B.2: Normality Plot for Response Time Model
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Figure B.3: Histogram of the Residuals for Response Time Model

Figure B.4: Residual Plot for Suppression Time Model
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Figure B.5: Normality Plot for Suppression Time Model

Figure B.6: Histogram of the Residuals for Suppression Time Model
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      name:  <unnamed>
       log:  /Users/alexhwang/Desktop/stata submit/hwang_models.smcl
  log type:  smcl
 opened on:  25 Mar 2020, 15:29:49

1 . use "/Users/alexhwang/Desktop/stata submit/fire_models.dta", clear
(Written by R.              )

2 . 
3 . *** Model 1-a. Response Time
4 . reg RespTime Distance PopDensity rushhour snowrain commercial complex school hazard industrial medical field residential vehicle explosion miscellaneous service elec
> _object rushhour##monday rushhour##tuesday rushhour##thursday rushhour##friday rushhour##saturday rushhour##sunday, r
note: 1.rushhour omitted because of collinearity

Linear regression                               Number of obs     =     49,164
                                                F(29, 49134)      =     308.04
                                                Prob > F          =     0.0000
                                                R-squared         =     0.3205
                                                Root MSE          =     4.2958

                                 Robust
         RespTime       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

         Distance    .9031843   .0319153    28.30   0.000     .8406299    .9657387
       PopDensity   -.0068329   .0007793    -8.77   0.000    -.0083605   -.0053054
         rushhour    .3709858   .1145414     3.24   0.001     .1464833    .5954884
         snowrain    .4679089   .0712413     6.57   0.000      .328275    .6075427
       commercial   -.7518831   .1070792    -7.02   0.000    -.9617597   -.5420065
          complex   -.0179504   .2181183    -0.08   0.934    -.4454649    .4095641
           school   -.5032182   .2127122    -2.37   0.018    -.9201367   -.0862997
           hazard    .0071402   .2778124     0.03   0.979    -.5373755     .551656
       industrial    .1999755   .1144469     1.75   0.081    -.0243419    .4242929
          medical   -.2591573   .3140498    -0.83   0.409    -.8746989    .3563842
            field    2.447058   .1893476    12.92   0.000     2.075935    2.818182
      residential   -.1506853   .1054753    -1.43   0.153    -.3574183    .0560477
          vehicle   -.7128221   .1293631    -5.51   0.000    -.9663753    -.459269
        explosion    .0755301   .1123284     0.67   0.501     -.144635    .2956952
    miscellaneous   -.1221508   .1070804    -1.14   0.254    -.3320298    .0877281
          service   -.7023661   .1044386    -6.73   0.000    -.9070672   -.4976651
      elec_object    .1713523   .0421362     4.07   0.000     .0887649    .2539397
       1.rushhour           0  (omitted)
         1.monday    .1970445   .0793677     2.48   0.013     .0414828    .3526062
                  
  rushhour#monday 
             1 1     -.345954   .1527483    -2.26   0.024    -.6453426   -.0465655
                  
        1.tuesday    .0306151   .0762675     0.40   0.688    -.1188701    .1801003
                  
 rushhour#tuesday 
             1 1    -.2104367   .1486843    -1.42   0.157    -.5018598    .0809863
                  
       1.thursday    .1044233   .0726533     1.44   0.151    -.0379781    .2468248
                  
rushhour#thursday 
             1 1    -.1232166   .2123072    -0.58   0.562    -.5393414    .2929082
                  
         1.friday    .1409641    .082141     1.72   0.086    -.0200334    .3019615
                  
  rushhour#friday 
             1 1    -.1898676   .1592601    -1.19   0.233    -.5020194    .1222841
                  
       1.saturday    .2322812   .0856242     2.71   0.007     .0644567    .4001057
                  
rushhour#saturday 
             1 1    -.4997934   .1597272    -3.13   0.002    -.8128607   -.1867261
                  
         1.sunday    .0973212   .0829785     1.17   0.241    -.0653177      .25996
                  
  rushhour#sunday 
             1 1    -.3640889   .1542229    -2.36   0.018    -.6663678   -.0618101
                  
            _cons    4.026786   .1386047    29.05   0.000     3.755119    4.298453

5 . 
6 . *** Model 1-b. Response Time with city fixed effects
7 . reg RespTime Distance snowrain commercial complex school hazard industrial medical field residential vehicle explosion prevention elec_object i.city_code_label, r
note: hazard omitted because of collinearity
note: field omitted because of collinearity
note: vehicle omitted because of collinearity

Linear regression                               Number of obs     =     29,764
                                                F(44, 29719)      =     180.03
                                                Prob > F          =     0.0000
                                                R-squared         =     0.3509
                                                Root MSE          =     3.7157

                               Robust
       RespTime       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
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       Distance    .9919508   .0699105    14.19   0.000     .8549231    1.128979
       snowrain    .5038471   .0861885     5.85   0.000     .3349138    .6727804
     commercial    -.200131   .0662828    -3.02   0.003    -.3300481   -.0702138
        complex    .4409606   .1950235     2.26   0.024     .0587059    .8232152
         school    .0755361   .1946027     0.39   0.698    -.3058937     .456966
         hazard           0  (omitted)
     industrial    .5268836   .0986944     5.34   0.000     .3334383    .7203289
        medical    .3108491   .3021664     1.03   0.304    -.2814103    .9031085
          field           0  (omitted)
    residential    .3044721   .0615759     4.94   0.000     .1837806    .4251637
        vehicle           0  (omitted)
      explosion   -.0346634   .1325123    -0.26   0.794    -.2943934    .2250666
     prevention   -.3076673   .0555479    -5.54   0.000    -.4165436   -.1987911
    elec_object    .1909326   .0488768     3.91   0.000      .095132    .2867331
                
city_code_label 
            10     -1.21988    .311672    -3.91   0.000    -1.830771   -.6089889
            11    -.4673277   .3485609    -1.34   0.180    -1.150522    .2158669
            12    -.8269891   .3412308    -2.42   0.015    -1.495816   -.1581619
            13    -.5491929   .3518796    -1.56   0.119    -1.238892    .1405066
            14    -.3175408   .2955701    -1.07   0.283    -.8968712    .2617897
            15    -.1134409   .3369012    -0.34   0.736     -.773782    .5469003
            16    -.4979733   .2874219    -1.73   0.083    -1.061333    .0653862
            17    -.7292897   .4017861    -1.82   0.070    -1.516808    .0582287
            18    -.1983765   .2410585    -0.82   0.411    -.6708618    .2741088
            19    -1.011266    .339746    -2.98   0.003    -1.677183   -.3453492
             2    -.4934712   .3153935    -1.56   0.118    -1.111656    .1247139
            20     .1501936   .3120488     0.48   0.630    -.4614357    .7618229
            21     1.199462   .2794754     4.29   0.000     .6516777    1.747246
            22    -.1224834   .2743556    -0.45   0.655    -.6602323    .4152656
            23    -.4584465   .4272114    -1.07   0.283      -1.2958    .3789067
            24    -.9733435   .3224857    -3.02   0.003     -1.60543   -.3412573
            25     .3095022   .2753873     1.12   0.261    -.2302689    .8492734
            26    -.5163569   .3472634    -1.49   0.137    -1.197008    .1642947
            27     .1596242   .3598547     0.44   0.657    -.5457069    .8649553
            28    -.4583297   .2728349    -1.68   0.093    -.9930981    .0764387
            29     .0606186   .3293698     0.18   0.854    -.5849607    .7061979
             3    -.3687803   .3874539    -0.95   0.341    -1.128207    .3906464
            30     .1726597   .2774757     0.62   0.534    -.3712048    .7165241
            31    -.6113588   .2908118    -2.10   0.036    -1.181363   -.0413549
            32    -.4457077   .2772019    -1.61   0.108    -.9890357    .0976202
            33     .1472117    .314485     0.47   0.640    -.4691928    .7636162
            34      .793691   .2908945     2.73   0.006     .2235251    1.363857
             4    -.7851696   .3377461    -2.32   0.020    -1.447167   -.1231724
             5    -.0178839   .2612103    -0.07   0.945    -.5298674    .4940997
             6    -.3478601    .342759    -1.01   0.310    -1.019683    .3239625
             7    -.8667904   .3105256    -2.79   0.005    -1.475434   -.2581467
             8    -.5970345   .2591726    -2.30   0.021    -1.105024   -.0890449
             9     .4976161   .2842117     1.75   0.080    -.0594512    1.054684
                
          _cons    3.467263   .4367753     7.94   0.000     2.611165    4.323362

8 . 
9 . 

10 . *** Model 2-a. Suppression Time
11 .         
12 .         * Exlude suppression time=0 fires
13 .         drop if supptime==0

(8,859 observations deleted)

14 .         * Also exclude fires suppressed before arrival
15 .         keep if by911=="1"

(5,454 observations deleted)

16 . 
17 . reg supptime start2 start3 start4 RespTime deptDensity_area firefighter electricgasofficers others_involved civilservant soldiers police pumper ladder tank chemical_

> truck rescue_truck ambulance helicopter HydrantDensity tempLow tempHigh humidity  injury  kitchen gasburn arson hazard_object elec_object trash explosion commercial 
> complex school hazard industrial medical residential vehicle miscellaneous service, r

Linear regression                               Number of obs     =     34,908
                                                F(40, 34867)      =      77.91
                                                Prob > F          =     0.0000
                                                R-squared         =     0.2630
                                                Root MSE          =     44.734

                                   Robust
           supptime       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

             start2    5.416935   .8355299     6.48   0.000      3.77927    7.054601
             start3    2.045943   3.091035     0.66   0.508    -4.012583     8.10447
             start4    8.953096   3.196576     2.80   0.005     2.687705    15.21849
           RespTime    .8949863   .1782079     5.02   0.000      .545693     1.24428
   deptDensity_area     .032836   .0074309     4.42   0.000     .0182711    .0474009
        firefighter    .2418158   .0854409     2.83   0.005     .0743489    .4092827
electricgasofficers    .9651545   .2986178     3.23   0.001      .379854    1.550455
    others_involved    .4297847    .231534     1.86   0.063    -.0240294    .8835987
       civilservant    .3404994   .1409482     2.42   0.016     .0642363    .6167624
           soldiers    .2095139   .1449894     1.45   0.148    -.0746699    .4936977
             police    .9328326   .2101828     4.44   0.000     .5208676    1.344798
             pumper    3.226054   .4563016     7.07   0.000     2.331689     4.12042
             ladder   -.6544145   .8981294    -0.73   0.466    -2.414777    1.105948
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               tank    1.285948    .481062     2.67   0.008     .3430507    2.228845
     chemical_truck     4.80149   .9211685     5.21   0.000      2.99597     6.60701
       rescue_truck   -2.994108   .6407477    -4.67   0.000    -4.249994   -1.738222
          ambulance   -2.114239   .5239188    -4.04   0.000    -3.141137   -1.087341
         helicopter    13.75188   6.162989     2.23   0.026     1.672222    25.83154
     HydrantDensity   -.3904553   .0545357    -7.16   0.000    -.4973471   -.2835635
            tempLow    7.116602   2.866705     2.48   0.013     1.497768    12.73544
           tempHigh   -2.133973    1.08417    -1.97   0.049     -4.25898   -.0089659
           humidity    .0133011   .0061213     2.17   0.030     .0013032     .025299
             injury   -2.105862   .3395531    -6.20   0.000    -2.771397   -1.440327
            kitchen   -1.448985   .6609029    -2.19   0.028    -2.744376   -.1535942
            gasburn   -14.14075   4.146888    -3.41   0.001    -22.26879   -6.012719
              arson   -2.528229   .8914891    -2.84   0.005    -4.275576   -.7808819
      hazard_object   -7.454278   1.822688    -4.09   0.000    -11.02681   -3.881751
        elec_object   -4.101868   .4788073    -8.57   0.000    -5.040346    -3.16339
              trash   -1.011262   .9342487    -1.08   0.279    -2.842419    .8198957
          explosion    30.87032   4.889384     6.31   0.000     21.28697    40.45367
         commercial   -3.794831   1.278958    -2.97   0.003    -6.301629   -1.288032
            complex   -.8229492   2.367336    -0.35   0.728    -5.463004    3.817106
             school   -5.554506   2.200598    -2.52   0.012    -9.867748   -1.241263
             hazard   -12.34503   9.887194    -1.25   0.212    -31.72425    7.034188
         industrial    3.086577   1.552524     1.99   0.047     .0435789    6.129574
            medical   -2.386058   1.720666    -1.39   0.166    -5.758619    .9865022
        residential   -4.542727   1.204607    -3.77   0.000    -6.903795   -2.181659
            vehicle   -3.765483   1.355098    -2.78   0.005    -6.421519   -1.109446
      miscellaneous   -.6249189   1.299105    -0.48   0.630    -3.171206    1.921368
            service   -3.463337    1.25075    -2.77   0.006    -5.914846   -1.011827
              _cons    -13.7478   2.611151    -5.27   0.000    -18.86574   -8.629864

18 . 
19 . *** Model 2-b. Suppression Time for only residential fires
20 . 
21 .         * Drop all other fires but residential
22 .         keep if areatype_legal=="Residential"

(28,158 observations deleted)

23 . 
24 . reg supptime start2 start3 start4  RespTime deptDensity_area firefighter electricgasofficers others_involved civilservant soldiers police pumper ladder tank chemical

> _truck rescue_truck ambulance helicopter Hydrants tempLow tempHigh humidity snowrain injury death kitchen gasburn arson hazard_object elec_object trash explosion, r

Linear regression                               Number of obs     =      6,757
                                                F(32, 6724)       =     348.31
                                                Prob > F          =     0.0000
                                                R-squared         =     0.2311
                                                Root MSE          =      19.65

                                   Robust
           supptime       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

             start2    8.973703   .7049928    12.73   0.000     7.591694    10.35571
             start3    8.200432   2.569119     3.19   0.001     3.164145    13.23672
             start4    16.20118   2.870155     5.64   0.000     10.57477     21.8276
           RespTime    .9458282   .0976369     9.69   0.000     .7544291    1.137227
   deptDensity_area    .0308327   .0078016     3.95   0.000     .0155391    .0461263
        firefighter   -.1532241   .0605392    -2.53   0.011    -.2719001    -.034548
electricgasofficers    1.215459   .4178301     2.91   0.004       .39638    2.034539
    others_involved    .4838874   .3042921     1.59   0.112    -.1126215    1.080396
       civilservant    1.335851   .6112037     2.19   0.029     .1376979    2.534004
           soldiers   -.0139798   .0279496    -0.50   0.617      -.06877    .0408103
             police    .2200836   .1471193     1.50   0.135    -.0683168     .508484
             pumper    1.707872   .2226768     7.67   0.000     1.271355    2.144389
             ladder   -2.536343   .4164104    -6.09   0.000    -3.352639   -1.720047
               tank    .1252997   .1897851     0.66   0.509    -.2467393    .4973386
     chemical_truck    2.053033   .6398636     3.21   0.001     .7986977    3.307369
       rescue_truck    .1334819    .365722     0.36   0.715    -.5834491    .8504129
          ambulance   -.4425119   .3191591    -1.39   0.166    -1.068165    .1831411
         helicopter    11.11681   6.202597     1.79   0.073    -1.042247    23.27586
           Hydrants   -.0033255   .0007365    -4.51   0.000    -.0047694   -.0018816
            tempLow    4.660909   1.896559     2.46   0.014     .9430534    8.378765
           tempHigh   -1.738088   .8593324    -2.02   0.043    -3.422652   -.0535239
           humidity    .0188535   .0080716     2.34   0.020     .0030307    .0346764
           snowrain    .0013039   .8336291     0.00   0.999    -1.632873    1.635481
             injury     .707843   .3016417     2.35   0.019     .1165297    1.299156
              death    5.129758   2.403806     2.13   0.033     .4175367     9.84198
            kitchen   -2.800691   .5344019    -5.24   0.000    -3.848288   -1.753094
            gasburn   -3.944186   2.602864    -1.52   0.130    -9.046623    1.158252
              arson   -2.645048   1.066657    -2.48   0.013    -4.736034   -.5540612
      hazard_object   -6.264681    3.01434    -2.08   0.038    -12.17374     -.35562
        elec_object   -2.785709   .6010867    -4.63   0.000     -3.96403   -1.607389
              trash   -3.252211   .6781984    -4.80   0.000    -4.581694   -1.922727
          explosion   -5.032721   1.642809    -3.06   0.002    -8.253148   -1.812295
              _cons    .0941246   1.212606     0.08   0.938    -2.282967    2.471216

25 . 
26 . * Open House Fire dataset again
27 . use "/Users/alexhwang/Desktop/stata submit/house_new2.dta", clear

(Written by R.              )

28 . 
29 . *** Model 3-a. Service Output
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30 . oprobit y_levels RespTime supptime pumper pumper_sq tank ladder chemical_truck rescue_truck HydrantDensity kitchen trash arson injury prevention saturday deptDensity
> _area PopDensity ambulance soldiers police volunteer electricgasofficers civilservant hazard_object elec_object   floor snowrain monday tuesday thursday friday satur
> day sunday rushhour

note: saturday omitted because of collinearity
Iteration 0:   log likelihood = -4998.3127  
Iteration 1:   log likelihood = -3766.9936  
Iteration 2:   log likelihood = -3708.4261  
Iteration 3:   log likelihood = -3706.1305  
Iteration 4:   log likelihood = -3706.0639  
Iteration 5:   log likelihood = -3706.0636  

Ordered probit regression                       Number of obs     =      7,275
                                                LR chi2(33)       =    2584.50
                                                Prob > chi2       =     0.0000
Log likelihood = -3706.0636                     Pseudo R2         =     0.2585

           y_levels       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

           RespTime   -.0769842   .0046463   -16.57   0.000    -.0860908   -.0678777
           supptime   -.0150568    .000887   -16.98   0.000    -.0167952   -.0133183
             pumper   -.1938398   .0186438   -10.40   0.000     -.230381   -.1572985
          pumper_sq    .0041158   .0010153     4.05   0.000     .0021259    .0061057
               tank    .0024426   .0082485     0.30   0.767    -.0137242    .0186095
             ladder    .2881778    .046534     6.19   0.000     .1969728    .3793827
     chemical_truck   -.1196123   .0399569    -2.99   0.003    -.1979264   -.0412983
       rescue_truck    .0641824   .0266296     2.41   0.016     .0119894    .1163755
     HydrantDensity     .020941   .0097765     2.14   0.032     .0017793    .0401026
            kitchen    .8228424   .1077427     7.64   0.000     .6116707    1.034014
              trash    .2711256    .083027     3.27   0.001     .1083956    .4338556
              arson    .1773681   .1023634     1.73   0.083    -.0232605    .3779966
             injury     .067928   .0205491     3.31   0.001     .0276524    .1082035
         prevention    .2726915   .0770438     3.54   0.000     .1216884    .4236947
           saturday    .2349427   .0696284     3.37   0.001     .0984735    .3714119
   deptDensity_area    .0006515   .0003125     2.08   0.037      .000039    .0012639
         PopDensity    .0032227   .0015034     2.14   0.032     .0002761    .0061693
          ambulance   -.0043295    .025805    -0.17   0.867    -.0549065    .0462474
           soldiers    .0025181   .0022954     1.10   0.273    -.0019808    .0070171
             police   -.0473147   .0075252    -6.29   0.000    -.0620638   -.0325656
     volunteer_fire    -.024595   .0043869    -5.61   0.000    -.0331931   -.0159968
electricgasofficers   -.0336012   .0113584    -2.96   0.003    -.0558634   -.0113391
       civilservant   -.0361656   .0170637    -2.12   0.034      -.06961   -.0027213
      hazard_object    .3702313   .1927183     1.92   0.055    -.0074896    .7479523
        elec_object    .0232451    .043724     0.53   0.595    -.0624524    .1089426
              floor    .0241839   .0076275     3.17   0.002     .0092342    .0391336
           snowrain    .1015896    .059516     1.71   0.088    -.0150596    .2182388
             monday    .0345423   .0686426     0.50   0.615    -.0999948    .1690793
            tuesday    .0657122   .0688488     0.95   0.340    -.0692289    .2006533
           thursday    .1121403   .0697473     1.61   0.108     -.024562    .2488426
             friday    .0368272   .0671115     0.55   0.583    -.0947088    .1683633
           saturday           0  (omitted)
             sunday     .134053   .0692244     1.94   0.053    -.0016243    .2697304
           rushhour    .0367414   .0433275     0.85   0.396     -.048179    .1216617

              /cut1   -7.308688   .4566901                     -8.203785   -6.413592
              /cut2   -2.617288   .1099216                     -2.832731   -2.401846
              /cut3   -2.132827   .1084331                     -2.345352   -1.920302

31 . 
32 . * Marginal effects
33 . mfx, predict(outcome(2))

Marginal effects after oprobit
      y  = Pr(y_levels==2) (predict, outcome(2))
         =  .06397641

variable       dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X

RespTime    .0096415      .00066   14.71   0.000   .008357  .010926   6.56964
supptime    .0018857      .00013   14.16   0.000   .001625  .002147   14.6121
  pumper    .0242765      .00237   10.23   0.000   .019626  .028927    5.8521
pumper~q   -.0005155      .00013   -4.07   0.000  -.000763 -.000267   40.0231
    tank   -.0003059      .00103   -0.30   0.767  -.002331  .001719   3.20619
  ladder   -.0360914      .00593   -6.09   0.000  -.047711 -.024472   .327148
chemic~k    .0149803      .00503    2.98   0.003   .005131  .024829   .188866
rescue~k   -.0080382      .00334   -2.40   0.016  -.014591 -.001485   1.30502
Hydran~y   -.0026226      .00123   -2.14   0.032  -.005024 -.000222   5.65955
 kitchen*   -.0654812      .00492  -13.31   0.000  -.075121 -.055841   .125636
   trash*   -.0283555      .00717   -3.96   0.000  -.042404 -.014307   .067491
   arson*   -.0195889      .00989   -1.98   0.048  -.038974 -.000204   .039038
  injury   -.0085073       .0026   -3.27   0.001  -.013608 -.003407   .122062
preven~n*    -.029941      .00736   -4.07   0.000  -.044358 -.015524   .180344
saturday*   -.0259317      .00675   -3.84   0.000  -.039168 -.012695   .146254
deptDe~a   -.0000816      .00004   -2.08   0.037  -.000158 -4.8e-06   49.0174
PopDen~y   -.0004036      .00019   -2.14   0.032  -.000773 -.000035   38.3167
ambula~e    .0005422      .00323    0.17   0.867   -.00579  .006875   1.22804
soldiers   -.0003154      .00029   -1.10   0.273  -.000879  .000248   .154777
  police    .0059257      .00095    6.24   0.000   .004064  .007788   3.20962
volunt~e    .0030803      .00057    5.45   0.000   .001973  .004188   1.01718
electr~s    .0042082      .00143    2.95   0.003   .001409  .007008   .712852
civils~t    .0045294      .00214    2.11   0.035   .000327  .008732     .1189
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hazard~t*   -.0349707      .01308   -2.67   0.008  -.060608 -.009334   .009622
elec_o~t*   -.0028847      .00538   -0.54   0.592  -.013424  .007654   .241237
   floor   -.0030288      .00096   -3.17   0.002  -.004901 -.001157   2.93443
snowrain   -.0127231      .00746   -1.70   0.088  -.027349  .001903   .086735
  monday*   -.0042442      .00827   -0.51   0.608  -.020459   .01197   .136907
 tuesday*    -.007943      .00803   -0.99   0.322  -.023677  .007791   .145567
thursday*   -.0132115      .00772   -1.71   0.087  -.028345  .001922   .142131
  friday*   -.0045227      .00808   -0.56   0.576  -.020358  .011313   .150241
  sunday*   -.0156065      .00748   -2.09   0.037  -.030269 -.000944   .142405
rushhour*   -.0045362      .00527   -0.86   0.390  -.014872    .0058   .243849

(*) dy/dx is for discrete change of dummy variable from 0 to 1

34 . mfx, predict(outcome(3))

Marginal effects after oprobit
      y  = Pr(y_levels==3) (predict, outcome(3))
         =  .08571365

variable       dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X

RespTime    .0082833      .00058   14.21   0.000   .007141  .009426   6.56964
supptime    .0016201      .00011   14.11   0.000   .001395  .001845   14.6121
  pumper    .0208566      .00213    9.81   0.000   .016689  .025025    5.8521
pumper~q   -.0004429      .00011   -4.02   0.000  -.000659 -.000227   40.0231
    tank   -.0002628      .00089   -0.30   0.767  -.002002  .001477   3.20619
  ladder   -.0310071      .00514   -6.04   0.000  -.041076 -.020939   .327148
chemic~k      .01287      .00432    2.98   0.003   .004395  .021345   .188866
rescue~k   -.0069059      .00288   -2.40   0.016  -.012542 -.001269   1.30502
Hydran~y   -.0022532      .00105   -2.14   0.033   -.00432 -.000186   5.65955
 kitchen*   -.0701319      .00654  -10.72   0.000  -.082958 -.057306   .125636
   trash*   -.0272128       .0077   -3.53   0.000  -.042304 -.012122   .067491
   arson*   -.0182355         .01   -1.82   0.068  -.037834  .001363   .039038
  injury   -.0073089      .00223   -3.28   0.001  -.011681 -.002937   .122062
preven~n*   -.0278875      .00745   -3.74   0.000  -.042487 -.013288   .180344
saturday*   -.0241076       .0068   -3.55   0.000  -.037435  -.01078   .146254
deptDe~a   -.0000701      .00003   -2.08   0.038  -.000136 -4.0e-06   49.0174
PopDen~y   -.0003468      .00016   -2.14   0.032  -.000665 -.000029   38.3167
ambula~e    .0004658      .00278    0.17   0.867  -.004976  .005907   1.22804
soldiers   -.0002709      .00025   -1.10   0.273  -.000755  .000214   .154777
  police    .0050909      .00083    6.15   0.000   .003469  .006713   3.20962
volunt~e    .0026464      .00048    5.47   0.000   .001697  .003595   1.01718
electr~s    .0036154      .00123    2.94   0.003   .001207  .006024   .712852
civils~t    .0038913      .00184    2.11   0.035    .00028  .007503     .1189
hazard~t*   -.0354553      .01586   -2.24   0.025  -.066535 -.004376   .009622
elec_o~t*   -.0024938      .00468   -0.53   0.594  -.011662  .006675   .241237
   floor   -.0026021      .00083   -3.15   0.002   -.00422 -.000984   2.93443
snowrain   -.0109308      .00642   -1.70   0.088  -.023507  .001646   .086735
  monday*   -.0036939       .0073   -0.51   0.613  -.017992  .010604   .136907
 tuesday*   -.0069882      .00723   -0.97   0.334  -.021168  .007192   .145567
thursday*   -.0118158      .00719   -1.64   0.100  -.025914  .002282   .142131
  friday*   -.0039376      .00713   -0.55   0.581  -.017912  .010037   .150241
  sunday*   -.0140611      .00707   -1.99   0.047  -.027924 -.000198   .142405
rushhour*   -.0039351      .00462   -0.85   0.394   -.01299   .00512   .243849

(*) dy/dx is for discrete change of dummy variable from 0 to 1

35 . mfx, predict(outcome(4))

Marginal effects after oprobit
      y  = Pr(y_levels==4) (predict, outcome(4))
         =  .85030994

variable       dy/dx    Std. Err.     z    P>|z|  [    95% C.I.   ]      X

RespTime   -.0179248      .00112  -16.07   0.000  -.020111 -.015738   6.56964
supptime   -.0035058      .00022  -15.61   0.000  -.003946 -.003066   14.6121
  pumper   -.0451331      .00429  -10.52   0.000  -.053545 -.036722    5.8521
pumper~q    .0009583      .00023    4.08   0.000   .000498  .001419   40.0231
    tank    .0005687      .00192    0.30   0.767  -.003196  .004333   3.20619
  ladder    .0670985      .01088    6.17   0.000   .045773  .088425   .327148
chemic~k   -.0278502      .00931   -2.99   0.003  -.046101 -.009599   .188866
rescue~k    .0149441       .0062    2.41   0.016   .002786  .027102   1.30502
Hydran~y    .0048758      .00227    2.14   0.032   .000417  .009334   5.65955
 kitchen*    .1356131      .01066   12.72   0.000   .114713  .156514   .125636
   trash*    .0555683      .01477    3.76   0.000    .02662  .084516   .067491
   arson*    .0378243      .01986    1.90   0.057  -.001094  .076743   .039038
  injury    .0158162      .00481    3.29   0.001    .00639  .025243   .122062
preven~n*    .0578285       .0147    3.93   0.000   .029016  .086641   .180344
saturday*    .0500393      .01347    3.72   0.000   .023642  .076436   .146254
deptDe~a    .0001517      .00007    2.08   0.037   9.1e-06  .000294   49.0174
PopDen~y    .0007504      .00035    2.15   0.032   .000065  .001436   38.3167
ambula~e   -.0010081      .00601   -0.17   0.867  -.012782  .010766   1.22804
soldiers    .0005863      .00053    1.10   0.273  -.000461  .001634   .154777
  police   -.0110166      .00175   -6.31   0.000   -.01444 -.007593   3.20962
volunt~e   -.0057266      .00104   -5.53   0.000  -.007756 -.003698   1.01718
electr~s   -.0078236      .00265   -2.96   0.003  -.013011 -.002636   .712852
civils~t   -.0084207      .00398   -2.12   0.034  -.016219 -.000623     .1189
hazard~t*     .070426      .02885    2.44   0.015   .013872   .12698   .009622
elec_o~t*    .0053786      .01005    0.53   0.593  -.014326  .025084   .241237
   floor    .0056309      .00177    3.18   0.001   .002157  .009105   2.93443
snowrain    .0236539      .01386    1.71   0.088  -.003513   .05082   .086735
  monday*    .0079381      .01557    0.51   0.610  -.022571  .038447   .136907
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 tuesday*    .0149312      .01526    0.98   0.328   -.01497  .044832   .145567
thursday*    .0250273       .0149    1.68   0.093  -.004167  .054221   .142131
  friday*    .0084602      .01521    0.56   0.578  -.021345  .038266   .150241
  sunday*    .0296677      .01453    2.04   0.041   .001196  .058139   .142405
rushhour*    .0084713      .00989    0.86   0.392  -.010913  .027856   .243849

(*) dy/dx is for discrete change of dummy variable from 0 to 1

36 . 
37 . * Treat as OLS for correlation matrix analysis
38 . reg y_levels RespTime supptime firefighter firefighter_sq pumper pumper_sq tank tank_sq ladder ambulance floor_on_fire snowrain casualty_binary prevention kitchen ar

> son trash monday tuesday thursday friday saturday sunday rushhour,r

Linear regression                               Number of obs     =      7,275
                                                F(24, 7250)       =     103.56
                                                Prob > F          =     0.0000
                                                R-squared         =     0.3157
                                                Root MSE          =     .59349

                               Robust
       y_levels       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

       RespTime   -.0409359    .003302   -12.40   0.000    -.0474088   -.0344629
       supptime   -.0101294   .0006263   -16.17   0.000    -.0113571   -.0089016
    firefighter    .0039661   .0016374     2.42   0.015     .0007562    .0071759
 firefighter_sq    .0000143   4.04e-06     3.53   0.000     6.34e-06    .0000222
         pumper    -.072183   .0080615    -8.95   0.000    -.0879859     -.05638
      pumper_sq    .0002121    .000427     0.50   0.619    -.0006249    .0010491
           tank   -.0159615   .0052096    -3.06   0.002    -.0261739    -.005749
        tank_sq    .0000804   .0000231     3.48   0.001     .0000351    .0001257
         ladder    .1356301   .0111497    12.16   0.000     .1137734    .1574867
      ambulance    .0065463   .0100302     0.65   0.514    -.0131158    .0262084
  floor_on_fire       .0047    .001275     3.69   0.000     .0022006    .0071995
       snowrain    .0550383   .0216015     2.55   0.011     .0126931    .0973835
casualty_binary   -.1089281    .029735    -3.66   0.000    -.1672173   -.0506388
     prevention    .0745619   .0135121     5.52   0.000     .0480742    .1010495
        kitchen    .1434153   .0137624    10.42   0.000     .1164369    .1703936
          arson    .1031693   .0325825     3.17   0.002     .0392981    .1670405
          trash    .0987752    .023205     4.26   0.000     .0532867    .1442637
         monday   -.0015022   .0280235    -0.05   0.957    -.0564364    .0534321
        tuesday    .0242564   .0265485     0.91   0.361    -.0277864    .0762991
       thursday    .0372375   .0264701     1.41   0.160    -.0146517    .0891267
         friday    .0027624   .0268387     0.10   0.918    -.0498494    .0553742
       saturday    .0741755   .0263239     2.82   0.005      .022573     .125778
         sunday    .0434275   .0267246     1.62   0.104    -.0089606    .0958156
       rushhour    .0071121   .0161192     0.44   0.659    -.0244863    .0387104
          _cons    4.270405    .035947   118.80   0.000     4.199938    4.340871

39 . 
40 . log close

      name:  <unnamed>
       log:  /Users/alexhwang/Desktop/stata submit/hwang_models.smcl
  log type:  smcl
 closed on:  25 Mar 2020, 15:30:27
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Appendix D

Robustness Tests

Additional explanations will be added to the appendix upon completion of the

oral examination for this thesis.
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3/25/20, 3:36 PM Page 1 of 3

User: Alex Hwang

      name:  <unnamed>
       log:  /Users/alexhwang/Desktop/stata submit/robustness1.smcl
  log type:  smcl
 opened on:  25 Mar 2020, 15:36:15

1 . 
2 . * Robustness test #1: Keeping only observations with Pumper < N
3 . forvalues x = 2(1)25{
  2. use "/Users/alexhwang/Desktop/Senior I.S./STATA/house_new2.dta", clear
  3. keep if pumper<`x'
  4. gen PopDensity = pop_density_city/100 
  5. quietly oprobit y_levels pumper pumper_sq tank tank_sq RespTime supptime  ladder chemical_truck rescue_truck HydrantDensity kitchen trash arson injury prevention 
> saturday deptDensity_area PopDensity ambulance soldiers police volunteer electricgasofficers civilservant   hazard_object elec_object   floor snowrain monday tuesday
>  thursday friday saturday sunday rushhour
  6. outreg2 using "/Users/alexhwang/Desktop/Robustness/pumper<`x'.doc", replace
  7. }
(Written by R.              )
(6,973 observations deleted)
/Users/alexhwang/Desktop/Robustness/pumper<2.doc
dir : seeout
(Written by R.              )
(6,589 observations deleted)
/Users/alexhwang/Desktop/Robustness/pumper<3.doc
dir : seeout
(Written by R.              )
(6,244 observations deleted)
/Users/alexhwang/Desktop/Robustness/pumper<4.doc
dir : seeout
(Written by R.              )
(5,578 observations deleted)
/Users/alexhwang/Desktop/Robustness/pumper<5.doc
dir : seeout
(Written by R.              )
(4,534 observations deleted)
/Users/alexhwang/Desktop/Robustness/pumper<6.doc
dir : seeout
(Written by R.              )
(2,536 observations deleted)
/Users/alexhwang/Desktop/Robustness/pumper<7.doc
dir : seeout
(Written by R.              )
(1,378 observations deleted)
/Users/alexhwang/Desktop/Robustness/pumper<8.doc
dir : seeout
(Written by R.              )
(686 observations deleted)
/Users/alexhwang/Desktop/Robustness/pumper<9.doc
dir : seeout
(Written by R.              )
(361 observations deleted)
/Users/alexhwang/Desktop/Robustness/pumper<10.doc
dir : seeout
(Written by R.              )
(166 observations deleted)
/Users/alexhwang/Desktop/Robustness/pumper<11.doc
dir : seeout
(Written by R.              )
(91 observations deleted)
/Users/alexhwang/Desktop/Robustness/pumper<12.doc
dir : seeout
(Written by R.              )
(46 observations deleted)
/Users/alexhwang/Desktop/Robustness/pumper<13.doc
dir : seeout
(Written by R.              )
(32 observations deleted)
/Users/alexhwang/Desktop/Robustness/pumper<14.doc
dir : seeout
(Written by R.              )
(21 observations deleted)
/Users/alexhwang/Desktop/Robustness/pumper<15.doc
dir : seeout
(Written by R.              )
(16 observations deleted)
/Users/alexhwang/Desktop/Robustness/pumper<16.doc
dir : seeout
(Written by R.              )
(13 observations deleted)
/Users/alexhwang/Desktop/Robustness/pumper<17.doc
dir : seeout
(Written by R.              )
(10 observations deleted)
/Users/alexhwang/Desktop/Robustness/pumper<18.doc
dir : seeout
(Written by R.              )
(8 observations deleted)
/Users/alexhwang/Desktop/Robustness/pumper<19.doc
dir : seeout
(Written by R.              )
(8 observations deleted)
/Users/alexhwang/Desktop/Robustness/pumper<20.doc
dir : seeout



3/25/20, 3:36 PM Page 2 of 3

User: Alex Hwang

(Written by R.              )
(6 observations deleted)
/Users/alexhwang/Desktop/Robustness/pumper<21.doc
dir : seeout
(Written by R.              )
(5 observations deleted)
/Users/alexhwang/Desktop/Robustness/pumper<22.doc
dir : seeout
(Written by R.              )
(3 observations deleted)
/Users/alexhwang/Desktop/Robustness/pumper<23.doc
dir : seeout
(Written by R.              )
(3 observations deleted)
/Users/alexhwang/Desktop/Robustness/pumper<24.doc
dir : seeout
(Written by R.              )
(3 observations deleted)
/Users/alexhwang/Desktop/Robustness/pumper<25.doc
dir : seeout

4 . 
5 . 
6 . * Robustness test #2: Treating observations with Pumpber > N the same
7 . forvalues x = 1(1)25{
  2. use "/Users/alexhwang/Desktop/Senior I.S./STATA/house_new2.dta", clear
  3. replace pumper=`x' if pumper>=`x'
  4. gen PopDensity = pop_density_city/100 
  5. quietly oprobit y_levels pumper pumper_sq tank tank_sq RespTime supptime  ladder chemical_truck rescue_truck HydrantDensity kitchen trash arson injury prevention 
> saturday deptDensity_area PopDensity ambulance soldiers police volunteer electricgasofficers civilservant   hazard_object elec_object   floor snowrain monday tuesday
>  thursday friday saturday sunday rushhour
  6. outreg2 using "/Users/alexhwang/Desktop/Robustness2/pumper=`x'.doc", replace
  7. }
(Written by R.              )
(6,973 real changes made)
/Users/alexhwang/Desktop/Robustness2/pumper=1.doc
dir : seeout
(Written by R.              )
(6,589 real changes made)
/Users/alexhwang/Desktop/Robustness2/pumper=2.doc
dir : seeout
(Written by R.              )
(6,244 real changes made)
/Users/alexhwang/Desktop/Robustness2/pumper=3.doc
dir : seeout
(Written by R.              )
(5,578 real changes made)
/Users/alexhwang/Desktop/Robustness2/pumper=4.doc
dir : seeout
(Written by R.              )
(4,534 real changes made)
/Users/alexhwang/Desktop/Robustness2/pumper=5.doc
dir : seeout
(Written by R.              )
(2,536 real changes made)
/Users/alexhwang/Desktop/Robustness2/pumper=6.doc
dir : seeout
(Written by R.              )
(1,378 real changes made)
/Users/alexhwang/Desktop/Robustness2/pumper=7.doc
dir : seeout
(Written by R.              )
(686 real changes made)
/Users/alexhwang/Desktop/Robustness2/pumper=8.doc
dir : seeout
(Written by R.              )
(361 real changes made)
/Users/alexhwang/Desktop/Robustness2/pumper=9.doc
dir : seeout
(Written by R.              )
(166 real changes made)
/Users/alexhwang/Desktop/Robustness2/pumper=10.doc
dir : seeout
(Written by R.              )
(91 real changes made)
/Users/alexhwang/Desktop/Robustness2/pumper=11.doc
dir : seeout
(Written by R.              )
(46 real changes made)
/Users/alexhwang/Desktop/Robustness2/pumper=12.doc
dir : seeout
(Written by R.              )
(32 real changes made)
/Users/alexhwang/Desktop/Robustness2/pumper=13.doc
dir : seeout
(Written by R.              )
(21 real changes made)
/Users/alexhwang/Desktop/Robustness2/pumper=14.doc
dir : seeout
(Written by R.              )
(16 real changes made)
/Users/alexhwang/Desktop/Robustness2/pumper=15.doc
dir : seeout



3/25/20, 3:36 PM Page 3 of 3

User: Alex Hwang

(Written by R.              )
(13 real changes made)
/Users/alexhwang/Desktop/Robustness2/pumper=16.doc
dir : seeout
(Written by R.              )
(10 real changes made)
/Users/alexhwang/Desktop/Robustness2/pumper=17.doc
dir : seeout
(Written by R.              )
(8 real changes made)
/Users/alexhwang/Desktop/Robustness2/pumper=18.doc
dir : seeout
(Written by R.              )
(8 real changes made)
/Users/alexhwang/Desktop/Robustness2/pumper=19.doc
dir : seeout
(Written by R.              )
(6 real changes made)
/Users/alexhwang/Desktop/Robustness2/pumper=20.doc
dir : seeout
(Written by R.              )
(5 real changes made)
/Users/alexhwang/Desktop/Robustness2/pumper=21.doc
dir : seeout
(Written by R.              )
(3 real changes made)
/Users/alexhwang/Desktop/Robustness2/pumper=22.doc
dir : seeout
(Written by R.              )
(3 real changes made)
/Users/alexhwang/Desktop/Robustness2/pumper=23.doc
dir : seeout
(Written by R.              )
(3 real changes made)
/Users/alexhwang/Desktop/Robustness2/pumper=24.doc
dir : seeout
(Written by R.              )
(3 real changes made)
/Users/alexhwang/Desktop/Robustness2/pumper=25.doc
dir : seeout

8 . 
9 . log close
      name:  <unnamed>
       log:  /Users/alexhwang/Desktop/stata submit/robustness1.smcl
  log type:  smcl
 closed on:  25 Mar 2020, 15:36:30
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