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Abstract

Santorini is a two player combinatorial board game. Santorini bears

resemblance to the graph theory game of Geography, a game of moving and

deleting vertices on a graph. We explore Santorini with game theory,

complexity theory, and artificial intelligence. We present David Lichtenstein’s

proof that Geography is PSPACE-hard and adapt the proof for generalized

forms of Santorini. Last, we discuss the development of an AI built for a

software implementation of Santorini and present a number of improvements

to that AI.
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1

Introduction

“The core of mathematics is problem solving. Games are the most joyous

excuse for problem solving.”

– Dr. Gordon Hamilton, Creator of Santorini

Everyone loves solutions. Solutions mean answers. Solutions mean

results. In board games, solutions mean winning. This paper is born out of a

desire to solve a complex board game, the game of Santorini. However, solving

board games can be notoriously difficult. While Tic-Tac-Toe is solvable by any

well-meaning, methodical individual with a piece of scratch paper and a few

minutes to spare, solutions become quite a bit more complicated with only

small increases in game complexity.

Despite the far-reaching goal of attaining a solution to Santorini being

fairly infeasible, this paper analyzes Santorini from three distinct mathematical

approaches. First, this paper explores the game theory concepts necessary to

understand Santorini and draws parallels between Santorini and other games

1



2 1. INTRODUCTION

studied by mathematicians and game theorists. This exploration includes an

overview of elementary graph theory concepts, definitions of a variety of

game theory terms, and a discussion of simplified variants of Santorini.

Second, this paper analyzes Santorini from a complexity theory standpoint,

both giving a brief introduction to the field of complexity theory and proving

an upper bound on the space (memory) complexity of finding a winning

strategy for Santorini. The complexity theory analysis also includes a number

of proofs that are indicative of the computational complexity of solving

several restricted, generalized variants of Santorini. Third, this paper explores

various artificial intelligence development practices and expounds on their

use in developing an AI for Santorini. It goes further to discuss this project’s

accompanying software implementation of Santorini and the AI developed in

accordance with it.

The purpose of this paper is to introduce one to the framework with which

board games are discussed and analyzed. Such a purpose stems from a

profound love of board games, and it is hoped that there is as much joy and

discovery in reading this paper as there was in writing it.



2

Santorini and its Rules

Santorini is an abstract strategy board game by designer and mathematician

Gordon Hamilton. Santorini was tested and revised over thirty years by

Hamilton [21] before settling into its final state in 2004. This first edition was

released with simple, abstract pieces and few thematic tie-ins. The game was

re-released through Roxley Games in early 2017 as a result of a highly

successful Kickstarter campaign, raising over $700,000 from 7,100 backers [21].

This new release brought in a lot of publicity and support for the game, and

has landed Santorini just outside of the board gaming website

BoardGameGeek’s fabled top 100 games, coming in at 108th overall [10].

Santorini was designed to be simple to learn and difficult to master. The

game is played on a 5 × 5 grid of open spaces where each space is considered

to be adjacent to the eight surrounding spaces. Each player has two identical

workers who serve as the focal points for moving, building, and winning. The

game begins with each player placing their workers, each on unique empty

spaces. From there, the players alternate turns being the active player. On any

3



4 2. SANTORINI AND ITS RULES

Figure 2.1: The board and pieces of the 2017 re-release [10]

given turn, a player must move one of their workers and then build with that

moved worker [13]. The game ends immediately, and the active player wins

when the active player manages to get one of their workers to the top of a

building of exactly height three. The game can also end if the active player is

unable to move [13]. In this case, the active player immediately loses. To

Figure 2.2: A guide to Santorini’s building pieces and a depiction of a winning
move [14]

move, the active player takes one of their workers and moves it to any of the
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adjacent spaces, provided that the space does not already contain a worker

and that that space does not contain a building of height four [13].

Figure 2.3: A visualization of a worker’s move options [14]

As well, the space that the worker moves to cannot have a height that is

more than one greater than the worker’s initial height [13]. In practice, this

means that a worker can only travel upwards a single unit of height in a single

move but may always move to the same height level or jump down to any

lower height level in a single move. An important note is that buildings do not

Figure 2.4: A visualization of a worker’s move options with an unreachable
adjacent space [14]

block movement along a diagonal. Consider this example: A given worker at
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height zero is being prevented from moving north or east because the

buildings to the north and east are of height two. While playing a physical

copy of the game, these buildings will appear to be blocking the ability to

move northeast, but, provided that the space to the northeast has a building of

height one or less, the northeast space is still a legal move for the worker. It is

still possible for a worker to be incapable of movement. If all adjacent spaces

(including diagonals) are either occupied (they contain a worker or a building

of max height) or have buildings with height at least two greater than the

workers current height, than the worker is incapable of movement. A worker

cannot be used if it cannot move, and thus it cannot build either [13]. As

previously mentioned, if both of the active players workers are incapable of

movement, the active player loses. After moving, the active player must then

build with the same worker who just moved. To build, the active player

chooses one of the adjacent spaces of the moved worker and raises the height

of that adjacent spaces building by one. One cannot choose to build upon a

space that contains a worker or upon a building of height four [13]. Unlike

moving, building is not restricted by height differences. A worker on a space

at height zero is allowed to build on empty (does not contain a worker or a

building of height four) adjacent spaces, even if the height difference between

the worker’s space and the build space is greater than one. As a clarification, it

is impossible for a worker to be capable of moving and yet incapable of

building. If a worker is capable of moving, it will always at least be able to

build on the space it just vacated, as that space is guaranteed to be free of

workers, not of maximum height, and adjacent to the space the worker moved

onto. After building, the turn is over and the other player becomes active.



2. SANTORINI AND ITS RULES 7

Figure 2.5: A visualization of a worker’s build options [14]

Play continues until either a player wins by reaching the required height with

a worker on their turn or a player loses because both of their workers cannot

move.

Santorini is normally played on a 5 × 5 grid where any surrounding spaces

are adjacent. This could be varied to provide different gameplay. The game

could be played on a 2 × 2 grid, or an n × n grid. Even more interestingly, the

game could be played with a different underlying structure than a grid. The

number of workers and the values for the winning height and the maximum

height of buildings could be varied as well. Each of these various factors could

dramatically influence the winning strategies and produce different gameplay.
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3

Relevant Mathematical Theory

With a firm understanding of the rules, there are now several important

mathematical avenues that we must explore to analyze Santorini. Graph

theory and game theory are two realms with pertinent information that we

must study.

3.1 Introduction to Graph Theory

Necessary to a more complete understanding of Santorini and the board upon

which it is played is an understanding of several elementary graph theory

concepts. Graph theory is, naturally, the study of graphs, and thus we are

brought to our first concept.

Definition 1. A graph is a set of points (which are interchangeably referred to as

vertices or nodes) connected by lines (which are referred to as edges or arcs) [2].

Graphs come in many forms, but we are mostly concerned with simple

graphs.

9



10 3. RELEVANT MATHEMATICAL THEORY

Definition 2. A simple graph is a graph with vertices where each pair is connected

by at most one edge [2].

There exist multigraphs and pseudographs which allow multiple edges

between vertices and self-loop edges between a vertex and itself respectively,

but these are not necessary to an understanding of Santorini [2]. Two vertices

Figure 3.1: A simple graph with 5 vertices

in a graph are said to be adjacent if there is an edge connecting them [2]. This is

useful because it allows us to turn the board of Santorini, a 5 × 5 grid of spaces

where orthogonal and diagonal spaces are said to be ”adjacent,” into a graph.

If we treat each space as a vertex, then the edges between them represent the

adjacencies, and we obtain the grid-like graph in Figure 3.2, which will be

henceforth referred to as a grid-graph. There are a few other interesting graph

concepts that pertain to Santorini’s grid-graph playing space.

Definition 3. The complete graph on n vertices, denoted Kn, is a simple graph in

which there is an edge connecting every distinct pair of vertices. [2]

The structure of the complete graph K4 is very similar to that of Santorini’s

grid-graph. K4 is a 2 × 2 grid graph, and if we affix many copies of it to itself in
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Figure 3.2: The board of Santorini in the form of a graph

a grid pattern, we obtain Santorini’s grid-graph. As previously mentioned,

variants of Santorini can be generated by using a different underlying graph to

represent the adjacencies between spaces. Relevant to these underlying graphs

is the concept of a subgraph.

Definition 4. A subgraph of a graph is a graph whose vertex set is a subset of the

larger graph’s vertex set and whose edge set is a subset of the larger graph’s edge set.

Each edge in the subgraph must connect vertices in the subgraph [2].

K4 is a subgraph of the 5 × 5 grid-graph that Santorini is played on.

Relevant to a later proof is the concept of a matching.

Definition 5. A matching of a graph G is a subgraph of G where no two edges share
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Figure 3.3: The complete graph on 4 vertices, K4

a vertex [2].

Matchings can be represented as sets of edges. Consider Figure 4. An edge

can be written as e1,3, denoting that it connects vertices 1 and 3. The set e1,2, e3,4

is a matching of K4, but the edge set e1,3, e3,4 is not a matching because the

edges share vertex 3.

Definition 6. A matching is a maximum matching of a graph G if the matching

contains the largest possible number of edges [2].

There can be many different possible maximum matchings, so long as they

all have the same largest number of edges. The matching number of G is the

size of a maximum matching on G. On K4, the edge set e1,2, e3,4 is a maximum

matching. Note that since each edge matches two vertices, the matching

number for any graph is always less than or equal to half the number of

vertices.
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3.2 Introduction to Game Theory

3.2.1 Brief History of the Field

Game theory is a relatively recent addition to the fields under the beautiful

umbrella of mathematics. It likely was not until 1928 that it even existed by

name, when John von Neumann published On the Theory of Games of

Strategy [18]. This paper proposed the fundamental theorem of game theory,

today known as the Minimax Theorem, which, informally stated, explains that

for any zero-sum, two-player game of finite length and complete information,

it is always possible to find an equilibrium set of strategies that neither player

should deviate from. Game theory’s true claim to fame came with von

Neumann’s following publication in 1944, Theory of Games and Economic

Behaviour [18]. This text is considered the birth of modern game theory, and

the field seemed to explode with life into the 1950s and the following decades.

These following decades saw rise to several big names in game theory,

most notably John Horton Conway, Richard K. Guy, and Elwyn Berlekamp.

The three collaborated often and introduced the concept of partizan (also

written as partisan) games in the 1960s, in contrast to the impartial two-player

games considered by John von Neumann [18]. Conway published his own

field defining classic, On Numbers and Games [8], in 1976. This book introduced

surreal numbers and their generalization to games. Together, the three

published Winning Ways For Your Mathematical Plays in 1982, which introduces

game analysis techniques and implements them on a variety of games [7].
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3.2.2 Terminology Relevant to Santorini

In their book, Winning Ways For Your Mathematical Plays, Berlekamp, Conway,

and Guy discuss and analyze a number of games that satisfy all or most of the

following eight conditions [7]:

1. There are two players, often called Left and Right.

2. There are several, usually finitely many, positions, and often a

unique starting position.

3. There are clearly defined rules that specify the moves that

either player can make from a given position to its options.

4. Left and Right move alternately in the game as a whole.

5. Both players know what is going on, i.e. there is complete

information.

6. There are no chance moves such as rolling dice or shuffling

cards.

7. In the normal play convention, a player unable to move loses.

8. The rules are such that play always comes to an end because

some player is be unable to move.

Berlekamp et al. outline a clever proof that, for games satisfying these

eight conditions, there must exist a winning strategy for either Right or Left.

The game of Santorini can be viewed in such a way that it complies with the

eight conditions, and thus it can be studied in a fashion similar to that used to

study the games in Winning Ways. Note that although Santorini has a win
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condition unrelated to a player being unable to move, if we add a simple

addendum to the rules with no influence on gameplay, it complies with this

condition. All we must say is that a player is unable to move if their opponent

has a worker on a building of winning height.

Conditions 5 and 6 are the requirements for a game to be considered

combinatorial.

Definition 7. A combinatorial game is a two-player game that satisfies the

following conditions:

1. The game is deterministic, meaning that there are no elements of chance or

randomization.

2. There is perfect information, meaning that both players know all information

about the state of the game and that nothing is hidden [7].

The well-known games of chess, Checkers, and Tic-Tac-Toe are combinatorial

games. They each are two-player deterministic games with perfect

information. A game of Texas Hold ’Em, on the other hand, is not

combinatorial as it fails both requirements. In Texas Hold ’Em, the deck of

cards is shuffled and dealt randomly, so it is not deterministic. As well, the

players’ hands and the remaining cards in the deck are kept private, so neither

player knows all the information about the state of the game.

Santorini is a combinatorial game, as it lacks chance elements and hidden

information. Every game that Berlekamp et al. analyze in Winning Ways For

Your Mathematical Plays is also combinatorial.

As mentioned earlier, the trio of collaborating game theorists Berlekamp,
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Conway, and Guy jointly introduced the concept of partizan games in the

1960s. Partizan games are simply games that are not impartial.

Definition 8. An impartial game is one where the set of options from any given

position is the same for all players [7].

As such, partizan games are ones where the players have different sets of

options from a given position. For example, Santorini is partizan because each

player is only allowed to move their own pieces, so the sets of options from

the same board state are different. In fact, most two-player games played

recreationally are partizan, including chess, Checkers, Go, and Tic-Tac-Toe.

Examples of impartial games include the game of Nim, the game of

Geography [7], and many other mathematically interesting games.

3.2.3 Game Trees

Many of the games studied in Winning Ways can be represented effectively

with the use of a game tree. The game tree depicts the board state at each node

of the tree, and the children of each node hold the board states that are

reachable from the parent node through a single move. When constructed in

this fashion for a turn-based game, each level of the game tree represents all of

one player’s options for a given turn. For example, in Figure 3.4, one can see

that the root node illustrates the board state on X’s turn. The three following

child nodes from that root represent the board states resulting from the three

moves that X can make. On that second level, any of the given board states

would be O’s turn, and the following level of the tree shows each of O’s legal

moves from each of those positions. This figure also depicts values assigned to
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Figure 3.4: A game tree for a particular board state of Tic-Tac-Toe [5]

each position. These values are assigned by giving a value of positive 1 to

states which result in X winning and giving a value of negative 1 to states

which result in O winning. Draws are given a value of 0. To achieve this

assignment across the whole tree, one must start from the bottom of the game

tree and work upwards. Positions where the game ends are assigned the

relevant value. Then, moving upwards to the previous level, the active player

finds either the max or the min (in this case, the max for X, the min for O) and

uses that max or min to represent the value of the current space. This is

repeated until reaching the top, dictating whether the position is a winning or

losing (or in the case of Tic-Tac-Toe, tying) position. In essence, this

assignment is a simplified form of the minimax algorithm which originates
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from John von Neuman’s Minimax Theorem. The algorithm (in pseudocode)

is found in Listing 3.1:

Listing 3.1: Minimax Algorithm [1]� �
1 minimax ( player , board )
2 {

3 i f ( game over in current board pos i t ion )
4 {

5 return winner
6 }

7 ch i ldren =
a l l l e g a l m o v e s f o r p l a y e r f r o m t h i s b o a r d

8 i f (max ’ s t u r n )
9 {

10 re turn
m a x i m a l s c o r e o f c a l l i n g m i n i m a x o n a l l t h e c h i l d r e n

11 }

12 e l s e ( min ’ s turn )
13 {

14 return minimal score of c a l l i n g minimax on a l l
the ch i ldren

15 }

16 }
 	
This algorithm is effective and easy to apply to a small game like

Tic-Tac-Toe. Since Tic-Tac-Toe has so few possible board states, this algorithm

can quickly evaluate the ”score” of any starting position and can predict who

will win (or whether they will tie) provided that players play optimally. In

fact, the game tree for Tic-Tac-Toe can be memorized and optimally navigated

by a few simple principles. This algorithm encounters trouble when we move

to more complex games like chess and Go. This is because the depths of the

game trees for chess and Go are much, much larger and there are not any rules

or procedures to easily simplify them. The computation time is incredibly
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high for games with deep game trees. We can’t possibly completely search the

game tree at the start of a game of chess because, at our current rate of

computation, ”by the time we finish analyzing a move the sun will have gone

nova and the earth will no longer exist” [5]. This is why any real AI only looks

a few moves ahead rather than searching to the end of the game tree. For a

game as deep as chess where victory is often many moves away, it is

important for an effective AI to be able to evaluate the board state so as to

select better moves along the way.
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4

Game Theory As it Applies to

Santorini

4.1 Generalizing the Gameplay Elements of

Santorini

Santorini’s core gameplay arises from its intuitive rules for moving and

building. However, finding a winning strategy in Santorini depends heavily

on the more contextual elements of the game: the number of workers, the

maximum height of the towers, the winning height for which one must move

up to, and the shape of the underlying graph structure that defines moving

and building. Each of these more contextual elements can be altered to form

variants of Santorini. Studying these variants can improve our understanding

of the base game to allow more reliable evaluation of given board states.

Let us first define a variant of Santorini that is impartial. Impartial Santorini

21
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is identical to the base game, except that ownership of the four workers is

shared. A player still wins if they are able to move onto a tower of the

appropriate winning height, and a player still loses if they are unable to move.

The only difference is that both players are allowed to make moves with any of

the four workers. As such, it becomes remarkably more difficult to set oneself

up to win without setting one’s opponent up. By similar logic, it is more

difficult to trap one’s opponent and make them incapable of moving, because

doing so also restricts one’s own movements.

A second avenue of variance is that of the number of workers. Regular

partizan Santorini has four workers, but it may be of interest to change this

number. Let n-worker Santorini be defined as the game played with n workers.

In partizan forms, each player has n/2 workers, and in impartial forms, the n

workers are shared. This allows for 1-worker impartial Santorini, a form which

bears resemblance to another combinatorial game, Geography, which is

discussed more explicitly in Chapter 5.

A third avenue of variance is twofold: that of the maximum tower height

and that of the necessary winning height. In terms of maximum height, things

are fairly straightforward. Let n-height Santorini be defined as the game played

with a maximum tower height of n. In terms of winning height, we will only

be considering variants where the winning height is either null or one less

than the maximum height. The in-between cases (where the winning height

differs from the max height by two or more) are frequently uninteresting and

differ from regular Santorini greatly enough that strategies do not translate

back effectively. As such, we treat the winning height as a binary variable

called Tower Win. A Tower Win game of Santorini allows players to win when
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moving onto a tower of one less than maximum height. A No Tower Win game

of Santorini only allows players to win by forcing their opponents into

positions where they can no longer move.

An additional line of variance we explore is that of the underlying graph

structure. Standard Santorini is played on a 5 × 5 undirected grid graph. For

an underlying directed graph structure, where adjacencies are one-way

relationships, we must be a little bit more precise in how we define the

building rules. Moving translates to directed graphs as one would expect; a

player can only move to an adjacent node following the directed edges of the

graph (and obeying the standard moving rules with regards to height

restrictions). Building on a directed graph is slightly counter-intuitive; a

player can only build on nodes that they could have moved from to reach their

current node. This mimics regular Santorini, where one is able to build on any

of the nodes adjacent to one’s current node, regardless of their height, as one

could have moved from them. As such, when building in directed Santorini,

one must follow along the edges opposite of their direction. Alternatively,

there exists a building stipulation for directed graphs that makes Santorini

more closely match the game of Geography. This building stipulation requires

that only the vertex that was just moved from be built on. As such, the

inclusion of this building stipulation is another variation on directed graphs.

A final variable rule in Santorini is the conditional movement based on

height. Regular Santorini requires that a piece’s destination cannot be more

than one height taller than the piece’s initial space. We can relax this

requirement and allow pieces to move to any adjacent, empty (not containing

a worker or a tower of max height) space as an additional variant of Santorini.
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For future reference, we represent any given variant of Santorini by the

abbreviation nWimH jkS, where n is the number of workers (W), i is either I or

P dictating either impartial or partizan, m is the maximum height (H), j is

either TW or NTW dictating the binary tower winning condition Tower Win or

No Tower Win, k is either D, D∗, U, or U∗, representing directed graphs,

directed graphs with the building stipulation, undirected graphs, and

undirected graphs with the building stipulation, and S stands for Santorini. We

also allow for SFM which refers to Santorini with free movement, meaning that

the height restriction on movement is removed. As such, regular Santorini

would be abbreviated as 4WP4HTWUS, whereas directed, impartial, one

worker, two height Santorini without tower wins, with free movement, and

with the building stipulation for directed graphs would be abbreviated as

1WI2HNTWD∗SFM.

4.2 Brute-Forcing Small Cases

This section results from fully exploring the game trees of variants of Santorini

on select small graphs and determining which player can force a win in each

case. Several of the simplified variants of Santorini are easy to solve in certain

circumstances.

For example, nWImHTWUSFM is an easy game. This is undirected,

impartial Santorini with Tower Wins and free movement, and the first player

to build to height m − 1 (the winning height) immediately loses as their

opponent can instantly move atop the freshly constructed tower. This

simplicity is true regardless of the graph that is being played on, the number
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of workers that are shared (unless it is equal to the number of vertices in the

graph), or the maximum height. This same principle applies to nWI2HTWUS

on any graph as well, as the first player to build simply loses. These two cases

apply to partizan Santorini on complete graphs as well. For nWP2HTWUS on

complete graphs, Left always loses, and for nWPmHTWUSFM on complete

graphs, the first player to build to height m − 1 loses.

Cycle graphs result in fairly simple games as well. 1WI1HNTWDS on a cycle

graph is won based on the parity of the number of nodes in the cycle. Left

wins even cycles, Right wins odd cycles. Note that the building stipulation

and the free movement rule have no affect on games played on directed cycle

graphs. If we increase the maximum height to an even value, then play loops

over the cycle an even number of times, turning odd cycles effectively into

even cycles so that Left always wins. If we allow tower wins on cycle graphs

then the win conditions simply flip. Right wins even cycles, Left wins odd

cycles, and Right always wins at odd maximum heights (heights where the

winning height becomes even).

Two worker partizan Santorini games on directed cycle graphs are also

easy to resolve. For max height 1, Right wins so long as they start on a node

less than or equal to the
⌊

n
2

⌋
+ 1 node where n is the number of nodes in the

cycle and the first node is where Left starts. Increasing max height flips the

win conditions for each increase of one, and adding tower wins at the same

max height maintains the status quo.

For example, in Figure 4.2, for C5, Right wins when starting at nodes 2 and

3 for odd maximum heights both with and without tower wins. For the 6 cycle

C6, Right wins under the same conditions except that they can also start at
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Figure 4.1: The cycles on 5 and 6 nodes, C5 and C6

node 4.

Any variant of Santorini on directed paths is also easy. At max height

greater than 1 (with or without tower wins), the player further from the end of

the path wins. At max height 1, the player further from the end of the path

will potentially be impeded by the builds left behind by the player closer to

the end of the path. In that instance, we must compare the closer player’s

distance to the end of the path with the further player’s distance to the closer

player’s starting position. Whoever has the larger distance in this instance

wins (taking turn order into account).



5

Introduction to Complexity Theory

As stated by Weizmann Institute of Science professor Oded Goldreich,

“Complexity theory is concerned with the study of the intrinsic complexity of

computational tasks” [12]. The field of study aims to determine the

complexity of given tasks but also to compare complexities and understand

the relations in complexity between various computational phenomena. There

has been little success in discovering absolute answers for the complexity of

specific computational phenomena, but there has been significantly more

success in identifying relations between computational phenomena [12]. In

short, the field has struggled to make definitive statements about a given

phenomenon’s complexity alone, but it is capable of making statements about

the phenomenon’s complexity relative to another phenomenon.

Consider the Boolean satisfiability problem, often simply called SAT. This

problem simply asks if the variables of a given Boolean formula can be

assigned with the values TRUE and FALSE to make the overall formula

evaluate to TRUE. A formula that has such an assignment is called satisfiable,

27
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whereas a formula without one is called unsatisfiable. For example, the formula

a ∧ b̄ is satisfiable with the assignment that a = TRUE and b = FALSE.

However, the formula a ∧ ā is unsatisfiable because there does not exist an

assignment that makes the formula evaulate to TRUE. In general, the overall

problem asks whether or not a given Boolean formula is satisfiable. This task

is of some computational difficulty. While the field does not have an answer as

to the specific and absolute value of the complexity of this task, it is able to

compare its complexity to other computational tasks, which, in a grander

scheme of things, might be more informative. For example, SAT has been

proven to have the same (in a sense) computational complexity as the problem

of determining whether the vertices of a graph can be colored red, green, and

blue so that no two adjacent vertices have the same color, called a proper

3-coloring [12]. As such, SAT and the 3-coloring problem are considered to be

of the same complexity.

Both the 3-coloring problem and the Boolean satisfiability problem are

decision problems, meaning that they have a binary output [6]. For the

3-coloring problem, the input is a given graph and the output is yes if the

graph has a three-coloring, and no otherwise. The Boolean satisfiability

problem takes a Boolean formula as an input and gives an ouput based on

whether or not it can be satisfied. Decision problems can also be represented

as formal languages. Inputs to the problem are encoded using an alphabet of

symbols, where the inputs that produce the yes output are considered

members of the language, and those inputs that produce the no output are not

members. Some kind of algorithm is used to determine whether the input is

accepted or not, and we can analyze and make judgments about those
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algorithms in order to compare the relative complexities of various problems.

Necessary to understanding the various complexity classes that arise from this

trail of analysis is an understanding of how we compare the functions that

define our algorithms.

5.1 Bachmann-Landau Notation

Necessary to understanding these function comparison tools is an

understanding of suprema and infima. Suprema are least upper bounds, and

infima are greatest lower bounds. Formally, supremum is defined as follows:

Definition 9. An upper bound of a subset A of a R is an element x ∈ R such that

x ≥ a∀a ∈ A. An upper bound x of A is a supremum if for all upper bounds y of A in

R, x ≤ y.

The definition of infimum is analogous for lower bounds, being the

greatest of the lower bounds for a set. With this understanding of bounds, we

can approach Bachmann-Landau notation.

Bachmann-Landau notation, more commonly known as big-O notation, is

a relation on functions that is used as a theoretical measure of the execution of

an algorithm (in terms of run-time or memory space) for a given problem of

size n [16]. Formally, it is defined as follows:

Definition 10. [16] f (n) = O(g(n)) if lim sup
n→∞

f (n)
g(n) < ∞

An equivalent definition that is more common among computer scientists

is f (n) = O(g(n)) if there exists c > 0 and there exists N such that for all
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n > N, f (n) ≤ c · g(n) [16]. In practice, this notation sets upper bounds on the

growth of a function, and is used to describe the efficiency of algorithms. It is

relatively easy to compute the simplest big-O form of a given function. One

only needs to consider the fastest growing term and can drop any attached

constants [16]. For example, the function f (n) = 3n2 + 2n is of similar order to

g(n) = n2, and thus it is expressed that f (n) = O(n2). Specifically, we can prove

that 3n2 + 2n is O(n2). We must simply find a constant c and a specific n

beyond which cn2
≥ 3n2 + 2n. If we let n ≥ 1, then for c = 5, cn2

≥ 3n2 + 2n.

Thus 3n2 + 2n is O(n2). This ability to drop constants has an additional

implication that may not be immediately apparent. It allows us to also ignore

the base of any logarithms. For example, consider the following:

f (n) = log2(n) =
log10(n)
log10(2) =

(
1

log10(2)

)
log10(n). Since 1

log10(2) is constant, log2(n) and

log10(n) differ by a constant factor and are thus big-O of each other. Thus,

when simplifying a function to its bound, logarithm bases can be completely

disregarded, and both log2(n) and log10(n) are simply referred to as being

O(log(n)).

Big-O notation is a part of a larger family of asymptotic notation invented

and improved upon by mathematicians Paul Bachmann, Edmund Landau,

and Donald Knuth [16]. This notation family also includes o(g(n)), Ω(g(n)),

ω(g(n)), and Θ(g(n)), each of which is defined as follows:

Definition 11. [16] f (n) = o(g(n)) if lim sup
n→∞

f (n)
g(n) = 0

Little-o serves as a stricter requirement than big-O, requiring not only that

f be bounded above asymptotically by g, but that f be dominated by g

asymptotically. The difference between big-O and little-o is similar to the
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difference between ≤ and <. For example, the function 2n2 is both o(n3) and

O(n3), but it is O(n2), but not o(n2).

Definition 12. [16] f (n) = Ω(g(n)) if lim inf
n→∞

f (n)
g(n) > 0

Big-Omega is the corresponding form of big-O from below. It states that f

is asymptotically bounded below be g. As such, the function 2n2 is Ω(n2) but

also Ω(n).

Definition 13. [16] f (n) = ω(g(n)) if lim inf
n→∞

f (n)
g(n) = ∞

Little-omega is the parallel form of little-o, requiring that g be dominated

by f . Thus the function 2n2 is ω(n) and yet is not ω(n2).

Definition 14. [16] f (n) = Θ(g(n)) if f (n) = O(g(n)) and f (n) = Ω(g(n))

Θ is an equivalence relation and requires that f be bounded asymptotically

both above and below by g. Our example function 2n2 is thus Θ(n2), and it is

not Θ(n) or Θ(n3).

5.2 Complexity Classes

A complexity class is defined by a model of computation, a resource, and a

function (the complexity bound) for that resource [6]. We are concerned with

the complexity classes defined by a machine-based model of computation, that

of the Turing machine [3]. The Turing machine is a hypothetical device

imagined by Alan Turing in 1936 [17]. The Turing machine presented here

(there are many equivalent variants) consists of an infinitely long piece of tape

upon which data is stored and a head which highlights a single square of the
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Figure 5.1: A representation of the tape of a Turing machine. The location of
the head of the machine is bold [17]

tape [17]. The Turing machine is capable of three different operations. It can

read the symbol under its head, write a new symbol or erase the symbol

currently under its head, or it can move the tape beneath it left or right one

square so it can read and write on a neighboring square [17]. The machine

simulates computation by following a set of instructions depending on its

state and on what symbol is read [17]. The machine is not always limited to

the symbols 1 and 0, but it is frequently of interest to consider the

computations capable by a Turing machine of a set number of symbols.

Despite its simplicity, given enough states, time, and tape, the Turing machine

is capable of fully simulating any computer algorithm [17]. Complexity classes

defined by a machine-based model of computation are defined in relation to

the two fundamental resources of the Turing machine: time and space. The

time used by a Turing machine is reflected in the number of operations (read,

write, move) it must do in order to complete a computation. The space used

by the Turing machine is reflected in the number of squares on the infinite tape

that it must use to store data to complete a computation. P is the class of

formal languages such that an input of size n can be solved (found to be either

a member of the language or not) by an algorithm in time O(nk) for some fixed

k [6]. As such, it is said that problems in this complexity class can be solved in

polynomial time. NP is nondeterministic polynomial time, and it is the class of
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problems for which a potential solution can be shown to be correct in

polynomial time, regardless of whether there exists a deterministic method for

generating solutions [6]. SAT and the 3-color problem are both in NP, and they

are in fact both NP-Complete, a property that we discuss later [12]. A natural

deduction from these definitions is that P ⊆ NP. Given a problem that is

solvable in polynomial time and thus in P, a solution can be verified in

polynomial time by simply solving the problem. This means that the problem

is in NP, and thus that P ⊆ NP [6]. One of the most important questions in

complexity theory deals with the question as to whether P = NP. If true, this

would indicate that any problem with a solution verifiable in polynomial time

would be fully solvable in polynomial time [6]. This problem is one of the

seven Millennium Prize Problems proposed by the Clay Mathematics Institute

and has a million dollar reward attached to proving it one way or the other [6].

It is widely believed that P , NP, and it seems to follow some intuitive logic

that checking if a solution is correct is easier than finding the solution from

scratch in the first place.

An additional complexity class can be defined in terms of the space used

by a deterministic Turing machine. This class, PSPACE, is the class of formal

languages such that an input of size n can be solved by an algorithm using

space O(nk) for some fixed k [6]. Complexity classes go beyond PSPACE. There

exists the class EXP (or EXPTIME) which solves problems in 2O(nk) time [6].

Similarly, EXPSPACE solves problems in 2O(nk) space [6]. Between them is

NEXP (or NEXPTIME), which is analogously related to EXP as NP is to P [6].

Encompassing all of these is the class of decision problems that are decidable

at all, which are proven to have an algorithm that provides an answer [4].
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Figure 5.2: An illustration of the hierarchy of the complexity classes [4].

Obviously beyond that is the class of decision problems that are undecidable,

where it has been proven that it is impossible to construct an algorithm that

returns an answer [4]. For the purposes of this thesis, we need only concern

ourselves with P, NP, and PSPACE. It has been proven that

P ⊆ NP ⊆ PSPACE, but it is still even possible that P = PSPACE [4]. This

would of course imply that P = NP and is thus even less likely to be true.

5.3 Reductions

An important accompaniment to the concept of complexity classes is the

notion of reducibility. Essentially, a problem Q can be reduced to the problem
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Q’ if any instance of Q can be “easily rephrased” as an instance of Q’ [9].

When that rephrasing is possible, the solution to the instance of Q’ provides

the solution to Q [9]. For example, the problem of solving linear equations can

be reduced to the problem of solving quadratic equations. The generalized

instance ax + b = 0 can be re-imagined as 0x2 + ax + b = 0, and the solution to

the quadratic equation provides the solution to the linear one [9]. As such,

when a problem Q is reduced to a second problem Q’, it is insinuated that the

first problem is not any harder to solve than the second problem (as long as

the reduction is sufficiently simple). In terms of formal languages, it is said

that a language L1 is polynomial-time reducible to a language L2 (written

L1 ≤P L2) if there exists a polynomial-time computable function

f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗, x ∈ L1 if and only if f (x) ∈ L2 [9].

Polynomial-time reductions provide the framework for comparing the

difficulties of different problems.

5.4 Completeness

The notion of completeness is important to complexity classes in that it

provides an understanding of equality of difficulty between various problems.

Informally stated, for a given complexity class C, a problem Q is said to be

C-complete if the problem Q is in C and the problem Q is as “hard” as any

problem in C. A problem satisfying only the second requirement is said to be

C-hard. Using the framework of reductions, we can compare the difficulties of

problems and thus make statements about the second requirement for

completeness. If there exists a polynomial-time reduction from some initial
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problem Qi (that has already been shown to be C-hard) to the problem Q, then

it can be said that Q is C-hard [9]. Because the technique of reduction relies on

having a problem already known to be C-hard in order to prove that a

different problem is C-hard, it is necessary to have an initial problem that is

known to be C-hard. The complexity classes NP and PSPACE have known

natural complete problems that are used in any such proof [9].

The known natural complete problem for NP is given by the Cook-Levin

theorem, which states that any problem in NP can be polynomial time reduced

by a deterministic Turing Machine to the previously mentioned Boolean

satisfiability problem (SAT) [11].

The quantified Boolean satisfiability problem (QSAT) is a generalization of

the Boolean satisfiability problem (SAT). In this generalization, existential and

universal quantifiers can be applied to each variable [15]. For example, the

following is a quantified boolean formula: ∃x∀y(x ∨ ȳ) ∧ (x̄ ∨ y). This formula

asks if there exists a value for x such that for all values of y the formula is true.

Whether a fully quantified Boolean formula is true or not is the prototypical

complete problem for PSPACE. Any fully quantified Boolean formula can be

rearranged into prenex normal form in polynomial time, which has all the

quantifiers at the front and has them alternate between existential and

universal [15]. This takes the form of ∃x1∀x2∃x3∀x4 . . .QnxnΦ(x1, x2, . . . , xn).

There additionally exists a polynomial time reduction which shows that

satisfying a three conjunctive-normal form (3CNF) Boolean formula is

PSPACE-complete, meaning that problems can be reduced to the 3CNF QSAT

problem to prove PSPACE-completeness. A formula in 3CNF is a conjunction

of clauses where each clause is a disjunction of three literals. For x1, x2, x3, x4, a
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formula in 3CNF might be (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x̄3 ∨ x4).
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Proving P-SPACE Completeness

6.1 QSAT Game and the Game of Geography

There exists a two-player game interpretation of QSAT, where players A and B

alternate turns assigning values to the variables. Player A assigns the value of

the existentially quantified variables and player B assigns the value of the

universally quantified variables. Player A wins if the formula is true, meaning

that the there is a strategy for assigning the existential variables such that the

formula is always satisfied. Player B wins if the formula is false. The formal

language that decides if player A wins the game is PSPACE-complete [15].

With a gamified version of the problem, it is one step closer to a reduction

to Santorini. An intermediate step is through a reduction to Generalized

Geography. The original game of Geography is played by two players naming

cities in the world. Play alternates, and each player must name a different city

in the world that begins with the same letter that the previously named city

ended with. The player unable to name such a city loses. This game (which

39
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Figure 6.1: The graph of the original game of Geography being played with city
names [11].

would usually end to due a player’s lack of knowledge) can be represented by

a directed graph. Each node is a city, the last-letter to first-letter one way

relationship is depicted by the directed edges, and each node is deleted after it

is visited. In the generalized graphical form of the game, the player unable to

move to a new node loses.

6.2 Proof that Geography is PSPACE-hard

Theorem 1. [11] The game of Generalized Geography is PSPACE-hard.

Proof. We will show the polynomial-time reduction from the quantified

boolean formula game to the game of Generalized Geography. The quantified

boolean formula can be assumed to be in prenex normal form, and the interior

formula Φ(x1, x2, . . . , xn) can be assumed to be in 3CNF. At this point, we

construct a directed graph for the game of Geography that emulates the

quantified boolean formula game. Each diamond structure in the graph

represents a player choosing the truth value of a variable. Players alternate
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Figure 6.2: A graph for a game of Geography that has an equivalent winning
strategy to the quantified boolean formula game [11]

these choices. At the bottom of the graph, each variable has been dictated, and

we move to the second portion of the quantified boolean formula game. In

this portion, Player 1 wins if Φ(x1, x2, . . . , xn) is true. Since Φ is in CNF, it is

composed of conjunctions of a number of clauses. As such, Player 1 wins only

if every clause is true. A clause is composed of disjunctions of literals. If any of

the literals are true, the clause is true. Thus, player 1 wins if there is at least one

true literal in every clause. Player 2 wins if there is a single clause in which all

the literals are false. This is exactly represented by the right side of the graph.

Player 2 makes the choice from the node c to a node ci. The ci nodes represent

the clauses. Each clause is connected to nodes representing its literals. Player 1
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thus makes a choice of node literal to move to. Each node literal points back to

the corresponding variable from the left diamond structure of the graph. As

nodes are deleted after they are visited, if a variable was selected as true then

any corresponding literal on the right side of the graph is a terminal node.

Thus Player 1 wins if they are able to select a node literal that was established

as true in the first part of the game, as Player 2 will be unable to move. If

Player 2 can choose a clause where all literals are false, then Player 1 will not

be able to select a node literal that is a terminal node, and thus Player 2 will be

able to make an additional move after Player 1’s selection which then results

in Player 1 being unable to move. As such, Player 2 wins the game of

Geography if there exists a clause for which all the literals are false. Player 1

only wins the game of Geography if every clause has at least one true literal,

because Player 2 is unable to select a clause with only false literals. This

exactly corresponds to the winning conditions of the formula game, and thus

there is a polynomial time reduction from the formal language that decides

who wins the formula game to the formal language that decides who wins the

game of Geography. Therefore, Generalized Geography is PSPACE-hard. �

6.3 Bridging the Gap to Santorini

Our goal is to perform a similar reduction for Santorini, taking a specific

instance of Santorini and showing that the winning strategy for player one also

serves as a winning strategy for player one in QSAT. If necessary, this can be a

sequence of reductions, from QSAT to Geography and then to Santorini. In

pursuit of this goal, we make reductions to variants of Geography that
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incorporate gameplay elements from Santorini. Consider that the game of

Geography is identical to one worker, impartial, one max height, No Tower

Win, directed Santorini, denoted 1WI1HNTWD∗S. As such, we want to explore

the Geography reduction by altering the aforementioned gameplay elements

to bring Geography closer to the game of Santorini. If we change the

maximum height to 2 and allow tower wins, then the reduction remains nearly

identical. As the shared piece progresses through the initial diamond chain

structure, nodes of height one are left behind (rather than effectively being

deleted). When play loops around back to the initial node literals after Player

2 has chosen the clause and Player 1 has chosen the node literal, the player

who normally would have lost (due to being trapped) instead wins because

they are able to move onto a tower of height one. This results in exactly

flipping the win condition, which can be easily flipped back by adding a buffer

node at the end of the loop that reverts the turns and ensures that Player 1

wins only in the appropriate context. Reductions stem from a specific instance

of one problem being able to solve any form of the other problem. As such,

this maximum height/Tower Win variant of Geography can be produced at

any max height, provided that we assume that all the nodes start at max

height minus two, and that the winning height is maximum height minus one.

This means that the game of 1WI4HTWD∗S is PSPACE-hard.

Consider another variant: two worker partizan Geography. In this variant

of Geography, players still win when their opponent can no longer move,

vertices are still deleted after they are moved from, but each player controls

their own worker and a single node cannot be shared by multiple workers.

This form of Geography is equivalent to 2WP1HNTWD∗S. The graph structure
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Figure 6.3: A graph for a game of partizan Geography that has an equivalent
winning strategy to the quantified boolean formula game

for partizan Geography holds several key differences from the regular

Geography reduction. Each player has their own diamond chain structure to

allow for the assignment of the boolean variables. This assignment is still done

in a proper turn sequence. At the bottom of these diamond chains is a joining

mechanism that allows Player 2 to select a single clause that Player 1 must

then move through. For n clauses, there is a subgraph of n nodes that forms

the complete graph Kn. The bottom of player 2’s chain connects to each of the

n nodes in the complete subgraph. Player 1 has a chain of n − 1 nodes at the

bottom of their diamond structure that delays their entry into the complete



6. PROVING P-SPACE COMPLETENESS 45

subgraph by n − 1 turns, giving Player 2 the opportunity to eliminate all of the

n clauses except one. This is equivalent to choosing which clause Player 1

must move through. The timing of this is tight. Immediately after Player 2

moves onto the second to last clause node, Player 1 is forced to move onto the

remaining clause node. Each clause node in the complete subgraph points to

an escape node that is intended for Player 2. Each clause node also points

directly to its literals’ opposite nodes in the diamond structures. For example,

a clause x1 ∨ x̄2 points to x̄1 and x2 nodes. At this juncture, it is Player 2’s turn

and both Player 1 and Player 2 are on clause nodes. Player 2 must then use the

labeled escape node or lose. If they choose to go to one of their clause’s

literals’ opposite nodes, then Player 1 can use the escape node and Player 2

will be trapped first. This self-entrapment happens similarly if Player 2

attempts to exit the complete subgraph before selecting all clause nodes except

one. After Player 2 moves to the escape node, Player 1 loses if all the literals

for their clause have been chosen to be false (because then all of his clause’s

literals’ opposite nodes in the diamond structures will have already been

deleted). Player 1 wins if any have been chosen to be true, because then they

can move to the appropriate opposite node which has not been deleted and

Player 2 is subsequently trapped on their escape node. As such, Player 1 wins

if there exists an assignment so that each every clause has at least one true

literal. This exactly corresponds to the winning conditions of the formula

game, and thus partizan Geography (2WP1HNTWD∗S) is PSPACE-hard.

Let us now discuss the building stipulation. We can remove this

stipulation by allowing a worker to build on any node it could have moved

from to reach its current node. For the game of Geography, this translates to
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deleting any of the nodes that point to the node one moved onto, not always

the node one moved from. This is essentially following the directional edges

backwards for building (deleting) purposes. At first glance, this appears to

throw a wrench into the regular Geography reduction. If one can delete any

node that points to the node one moved onto, then one can prematurely delete

nodes necessary for the second portion of the game. The variable xi nodes are

Figure 6.4: A graph for a game of Geography with Santorini’s building rules
that has an equivalent winning strategy to the quantified boolean formula game

pointed to by the clause nodes in regular Geography. This means that when

moving onto a variable node in the assignment phase of the game in the

diamond structure, one could delete a clause node. A second problem is that

the truth assignment decision is delayed by a turn. When Player 1 moves onto
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a variable node initially, their choice is irrelevant because the deletion occurs

when Player 2 moves to the bottom of the diamond and gets to choose which

variable node to delete (as they could have come from either). This second

problem is easily rectified by two simple parity switches possible through

buffer nodes: one at the start of the game and one before the clause selection

phase. The first problem is rectified by introducing a buffer chain between the

final variable selection nodes and the assigned variable nodes from the first

phase. This buffer has doubled nodes that each point to the assigned variable

to prevent all paths from being deleted, ensuring that the games plays out as

normal. The decisions and win conditions thus remain identical to the regular

Geography reduction, and thus 1WI1HNTWDS is PSPACE-hard.

We can extend this removal of the building stipulation to partizan

geography as well with slight modifications to the proof. The game begins as

normal: each player has a chain of diamonds that is used to decide the truth

values for the literals. Similar to the previous building stipulation proof, that

actual decision of truth assignment is not made while moving from the top of

the diamond but rather when moving onto the bottom of the diamond and

building on one of the two previous nodes. It is also necessary for each

variable chain (depicted on the right) to have a doubled end to prevent players

from restricting access to the node literals, similar to the doubled ends in the

previous proof. Player 1 once again has a delay chain of n − 1 nodes, where n

is the number of clauses, preventing them from picking a clause node before

Player 2 has eliminated all except one. Unlike the previous partizan

Geography proof, Player 2 does not have a complete graph to move through,

and instead has a chain of similar length to Player 1’s. Each clause node at in
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Figure 6.5: A graph for a game of partizan Geography with Santorini’s building
rules that has an equivalent winning strategy to the quantified boolean formula
game

the fan at the end of Player 1’s delay chain points to each node in Player 2’s

clause deletion chain. This allows Player 2 to build on the clause nodes as they

move through the clause deletion chain, without actually being able to reach

the clause nodes. Player 2 can choose not to build on the clause nodes and to

instead build on the vertices in their chain, but this only decreases their

chances of winning by allowing Player 1 more clauses to choose from, and

thus will never be done. At the end of Player 2’s clause deletion chain, Player

1 steps onto the remaining clause (effectively chosen by Player 2) and Player 2

moves onto their escape chain. The escape chain is also of n − 1 length to
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prevent Player 1 from moving onto Player 2’s clause deletion chain from their

clause node, as the length of the escape chain guarantees that Player 1 will run

out of moves first if they attempt this. Due to this necessity, each variable

chain must be of length n − 2 to ensure the proper victor after a variable is

selected. Despite the figure’s limitations, each clause node has variable chains

leading to each node literal of the clause. With all of these modifications, the

players once again decide back and forth the truth values of the literals, Player

2 selects a clause, and then Player 1 selects a variable and wins if the variable

is true. Thus the partizan form of Geography with the building stipulation

(2WP1HNTWDS) is PSPACE hard.

Potentially the largest gulf in gameplay to overcome between Geography

and regular Santorini is the jump from directed graphs to undirected graphs.

Santorini is strange in that is normally played on a grid-graph where edges

between nodes are conditionally directional. The grid-graph is, for the most

part, undirected, but this changes as the heights of the nodes change. When

the heights of two nodes differ by more than one, the edge between them

becomes directed (from the higher node to the lower node, of course).

Implementing this element is troublesome for the Geography reduction, as a

large part of the proof is predicated on the fact that the workers must travel

along a set path and cannot go backwards. Even more troubling is the fact that

undirected Geography is in P. In a game of undirected Geography (denoted as

1WI1HNTWU∗S), Player 1 has a winning strategy if and only if every maximum

matching of the graph covers the starting node [11]. The following is a proof

by contradiction.
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Proof. [11] Suppose that M is a maximum matching of G that covers v, the

current vertex. Player 1’s strategy is to move along an edge in M, which is

guaranteed to be possible because M covers v, so an edge in the matching has

v as one of its vertices. If Player 1 were to lose, then there would be a sequence

of edges e1, f1, e2, f2, ..., ek, fk such that v ∈ e1, ei ∈M, fi <M, and fk = (x, y) where

y is the current vertex and it is not covered by M. The e edges are Player 1’s

moves and the f edges are Player 2’s moves. This essentially is presuming that

there must exist a sequence of moves such that it is Player 1’s turn at a vertex

that is not covered by M. If this sequence of moves exists however, then if we

let A = e1, e2, ..., ek and B = f1, f2, ..., fk, then (M −A)∪ B is a maximum matching

of G that does not cover v. This is a contradiction as all maximum matchings

are assumed to cover v.

Suppose now that M is a maximum matching but it does not cover v.

Player 1’s move is (v,w), and w is guaranteed to be covered by M (otherwise M

is not a maximum matching, as the edge (v,w) could be in it). Thus it becomes

Player 2’s turn at w and w is covered by M. Player 2’s strategy is to move along

an edge in M, and an analogous contradiction exists here to show that Player 2

must have the winning strategy.

The problem of determining whether all maximum matchings of G cover v

is in P by virtue of a fairly simple test. The size of a maximum matching can be

found in O(n3) time (where n is the number of vertices). If the matching

number of G does not equal the matching number of G − v, then v must be

covered by every maximum matching of G. �

We can apply a similar proof to 1WI1HNTWUS, the undirected form of
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Geography without the building stipulation, again meaning that the vertex

moved from is not necessarily deleted, but rather any adjacent vertex to the

node that is moved onto. Player 1 simply adjusts their winning strategy to be

to move and delete a vertex along an edge in the maximum matching M.

When Player 2 goes, they must move along a nonmatched edge (just as

before), but they can potentially delete along a matched edge or along a

nonmatched edge. If they delete along a matched edge, it is guaranteed that

they did not delete the vertex they just moved from. In this case, Player 1

simply moves back to the previous vertex and removes the vertex they leave

behind. This forces Player 2 into effectively the same position as before. If

Player 2 on their turn had deleted along a nonmatched edge, then Player 1 is

guaranteed to be able to move and delete along a matched edge, and does so.

This allows Player 1 to win under the same conditions as before, meaning that

1WI1HNTWUS without the building stipulation is also in P.

6.4 Proof that Santorini is in PSPACE

Theorem 2. For fixed parameters, all discussed variants of Santorini are in PSPACE,

where the size of the underlying graph is the input size to the resolving algorithm.

Proof. The building nature of the game prevents any previous board state from

occurring again. Given the height restriction on nodes and the fact that a node

of maximum height cannot be moved or built onto, the game is of fixed length,

with an obvious upper bound on game length being h × n, where h is the max

height and n is the number of nodes in the graph.
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Let S = {〈G, x1, x2, ..., xi, y1, y2, ..., yi, h,L〉| P1 has a winning strategy for the

game Santorini played on the given instance of a graph G with max height h

with node height values described by L and P1’s pieces starting at nodes x1

through xi and P2’s pieces starting at nodes y1 through yi}. Let Bn describe the

board state given by G, x1n , x2n , ..., xin , y1n , y2n,...,yin ,h,Ln . To show that S ∈ PSPACE,

consider the following polynomial-space recursive algorithm M which

determines which player has a winning strategy. This algorithm works

whether the graphs are directed or not, and whether the building stipulation is

in place or not.

M(Bstart) :

1. If tower wins are enabled, check to see if nodes x1start through xistart have

height h − 2 or h − 1. If any do (or if free movement is enabled), check

their respective adjacent empty nodes to see if any have height 3. If any

do, return accept, as the active player has a winning move.

2. Construct a list of all possible board states reachable from Bstart by one

ply (a move and build from the active player): B1,B2, ...,Bk. This list

includes less than i × n2 board states, where i is the number of workers

the player has and n is the number of nodes in the graph, since every

piece has, at most, n − 1 move options with an accompanying maximum

n − 1 build options. So k ≤ i × n2. If the list is empty, return reject because

the active player has no move options and thus loses.

3. For each B j in the list B1, ...,Bk, call M(〈G, y1 j , y2 j , ..., yi j , x1 j , x2 j , ..., xi j ,L j〉).

4. If all of these calls return accept, then no matter what P1 does, P2 has a
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winning strategy, so return reject. If any of the calls return reject, then P1

has an option to deny P2 any winning strategies, so return accept.

The algorithm M decides S. The algorithm’s input contains several terms to

consider. Included is a graph G on n nodes, with a memory complexity of

maximum O(n2 log n), needed to store the adjacency list of each of the labeled

n nodes along with their labels. The next 2i terms, x1, x2, ..., xi, y1, y2, ..., yi, are

simply positions of the workers, each of which can be represented by a binary

encoding of some number less than or equal to the number of nodes n,

meaning that each requires space bounded by O(log n). The final term, L, is a

representation of each node’s height and can be bounded by the number of

nodes multiplied by the space required to store their height, so O(n log h).

Considering all the input terms, we have O(n2 log n + i log n + n log h). Given

that the number of workers per player i and the maximum height h are fixed

per game, this simplifies to O(n2 log n).

No operations within the algorithm besides its recursion use any

significant amount of space. The recursion, given the game’s maximum length

of h × n moves, has depth at most h × n. Since the space complexity of a

recursive algorithm is its depth multiplied by its input space, we find that the

space complexity of the entire algorithm is bounded by O(n3 log n). As such,

S ∈ PSPACE.

This algorithm can be simplified to resolve impartial games as well with

minimal changes. Simply omit the pieces represented by the y variables and

when recursively calling the algorithm M in the third step, make no changes to

the order of the pieces.
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7

AI Development Practices

7.1 Brief History of AI Development

In 1956, John McCarthy first used the term artificial intelligence in an

academic conference that he convened on the subject [20]. Since then, the term

has risen to popular usage and is often used to refer to machines that are

capable of approximating humans’ natural intelligence: that is, machines

which are capable of learning and problem solving [20]. An interesting

philosophical question is frequently posed about machines with artificial

intelligence. It is often asked as to whether they are capable of truly

understanding a subject. No one can refute a computer’s ability to process

logic, but many have been skeptical of a computer’s ability to think. It is

argued that since computers are always applying some form of rote fact

lookup, they are incapable of thinking. The imprecise definition of the word

and the different expectations on artificial intelligence become important in

determining whether a machine is ”intelligent” or not.

55
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This question was originally tackled by Alan Turing in a 1950 paper titled

Computing Machinery and Intelligence, just a few years before McCarthy’s

conference [20]. Within this paper is the definition of the famous Turing test,

an initial metric used to determine if a machine is sentient or not. The test is a

game of imitation, built on the premise that a machine capable of imitating

sentient human behavior would therefore itself be sentient [20]. The test

involves three participants: the machine, an interrogator, and a competing

person. The three are separated and are only allowed to communicate with

typed notes. The interrogator is allowed to pose questions to the human and

to the machine and is supposed to deduce which is which from the responses

he receives. There are problems with Turing’s test; opponents have claimed

that imitating a human is not a proof of intelligence, but rather just a difficult

problem [20]. Others have cited that intelligence may be possible without

being able to pass the Turing test. In either case, Alan Turing’s hope that the

test would be passed within 50 years did not come to pass [20]. The year 2000

came and went, and we have still not found success in constructing a machine

capable of passing the test.

7.2 Look-Ahead Algorithms and Heuristics

In other realms of “intelligence”, machines have had more success in the

intervening decades. Claude Shannon initially wrote about chess AI, dividing

them into two distinct categories. Type-A programs used brute force,

examining thousands of moves and utilizing a min-max algorithm similar to

the one explained in Chapter 3 [22]. Type-B programs used specialized



7. AI DEVELOPMENT PRACTICES 57

heuristics and were supposed to be the more intelligent, “strategic” AI. Type-B

programs were initially favored in the 50s and 60s due to hardware

limitations, but as machines grew faster and capable of storing more memory,

the “dumber” Type-A machines took over [22]. The famous Type-A program

Deep Blue coded by developers at IBM challenged and defeated chess world

champion Gary Kasparov in 1997 [19]. Deep Blue evaluated 200 million

positions a second and averaged an 8-12 turn search depth [19]. Brute force

programs like Deep Blue use a modified version of the minimax algorithm

that was discussed in conjunction with game trees. This modification, called

alpha-beta pruning, increases the depth to which a given machine can search

in a given amount of time [1]. At every level of the game tree, the regular

minimax algorithm explores a number of nodes that it does not need to.

Consider the game tree in 7.2. The minimax algorithm will explore the tree left

Figure 7.1: A tree on which the minimax algorithm is being executed [1]
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to right. It searches down to node D, which returns the maximum of its two

terminal child nodes. Normally, the minimax algorithm would continue and

explore the rest of the tree. With pruning in place, however, that maximum, 3,

is handed back to node B as a range limiter. Node B is trying to find the

minimum of its children, yet its children are finding maximums from their

respective children. Since node E is finding a maximum, if the value of the first

child E searches is greater than 3, then E would return a value greater than 3.

Node E’s second child does not need to be searched in this case, as node B

always returns the smaller value, which is thus guaranteed to be 3. These

maximum and minimum range values are handed back up the tree between

nodes (and reverse at each level of the tree) and are called alpha and beta

values (hence the name alpha-beta pruning) [1]. On the right side of this tree,

Figure 7.2: An example where the passed alpha-beta values allow the pruning
of a node [1]
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the pruning algorithm eliminates the search of a larger subtree. Node F returns

the maximum value of its children, 1 and passes that back to node C. Node C,

which is attempting to find minimum values, thus guarantees that the value it

passes back to A will be less than or equal to 1. Since A is a max node and B

has already been found to return 3, node G does not even need to be explored

at all. A would return 3 regardless of G’s contents. It is possible that the

Figure 7.3: An example where the passed alpha-beta values allow the pruning
of a subtree [1]

pruning algorithm does not prune any subtrees and that it runs in time

comparable to the standard minimax algorithm [1]. This only occurs when the

nodes are explored in the worst possible order, meaning that the best nodes are

found on the right side of the tree. On the other hand, there is also potential

that lots of pruning occurs and that the nodes are explored in the ideal order

so as to prune as much of the tree as possible. In this ideal case, the alpha-beta
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pruning algorithm can search twice as deep as the minimax algorithm in the

same amount of time [1]. In practice, this means that any efficient means of

ordering the nodes so the that best nodes are checked first is extremely

valuable. In a combinatorial game setting, even with alpha-beta pruning, it is

still intractable for a program to search to the end of the game tree for games of

sufficient difficulty (such as chess or Santorini). As such, this is where

heuristics come in. A heuristic is a function used during the search process

that evaluates nodes [1]. In a game tree where searching to the end of the game

is feasible, the only necessary heuristic is “does this move cause a win/loss?”

The minimax function works backwards from this point to determine the

sequence of moves that leads to the win (or loss). In games where the search

space is too large, a different heuristic is necessary so that nodes at the bottom

of the built game tree can be evaluated. For games like chess and Santorini, this

heuristic comes as an analysis of the board state. A heuristic in chess might be

the difference between the sums of the values of each players’ remaining

pieces. Heuristics can be combined and values adjusted by experimentation.

Programs using different heuristics can be compared by playing them against

one another over and over and observing the resulting win-rates [1].



8

AI in Santorini

This project includes a software implementation of the game of Santorini. The

software is configurable, enabling a user to play Santorini against another

human player, against an AI, or to have two AI play each other. The software

currently allows only for the play of partizan Santorini, but it does allow for a

number of the other variants discussed in this paper. The maximum and

winning heights are configurable, both two worker and four worker Santorini

are possible, and the underlying graph structure can be changed to a number

of different configurations.

8.1 Limitations of Look-ahead

The AI included in this software search the game tree of Santorini using the

minimax algorithm in conjunction with alpha-beta pruning to improve search

depth. Even with pruning, the search depth is not particularly high. This is

not surprising, as Santorini has an absurdly high number of choices per ply for

61
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a game that appears so simple. Assuming it is not being restricted by tower

heights, a worker in the middle of the board has 64 move options, and a player

has two workers. That means that it is possible for there to be up to 128

choices per ply. Chess averages 30 choices per ply [19]. When including the

board edges and the fact that the number of choices typically decreases as the

game goes on, Santorini’s average choices per ply comes down to about 60-80,

but this is still fairly problematic as the number of choices per ply increases the

size of the game tree exponentially. In addition, Santorini’s second win

condition (checking to see if the opponent is unable to move) requires

essentially an extra ply of search depth to evaluate the previous ply. Thus, the

AI included in this software are able to operate quickly at three-ply

look-ahead, but four and beyond cause difficulty for the average computer.

One-ply look-ahead is fairly obvious to understand: If there is a winning

move, the AI takes it. Two-ply look-ahead means that the AI prevents its

opponent from winning on their next turn, if possible. Three-ply look-ahead

means that the AI tries to set itself up to win on its own next turn, if possible.

If we limit ourselves to three-ply look-ahead, the AI is not particularly

impressive. A simple AI with three-ply look-ahead that otherwise makes

random moves has trouble getting itself into a position where it is two turns

away from victory and the look-ahead feature is actually useful. This is where

heuristics come in; heuristics evaluate the game board before the end of the

game, providing us with a way to choose “better” moves without necessarily

having the assurance that the move will lead to a victory (as we do when only

evaluating end-game positions). These heuristics are chosen in the hopes that

they lead the AI to positions where they are two turns away from victory and
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the basic form of the look-ahead algorithm can take over.

8.2 Valuable Heuristics in Santorini

An obvious necessity is a heuristic that prioritizes height, as this encourages

the AI to move its pieces upwards. Moving up is crucial to victory, as the

regular win condition requires stepping onto a space of height 3. In addition,

pieces that are higher up have more movement options, as pieces are allowed

to move downwards along height differences of greater than one but cannot

move upwards along them. Having more movement options helps a player

avoid becoming trapped and losing because they are unable to move. This

software first implements a simple heuristic that evaluates a game board by

summing the heights of the active Player’s 2 pieces. This is then extended into

a twofold heuristic that subtracts out the sum of the heights of the opponent’s

pieces, thus simultaneously encouraging moves that force one’s opponent to

move downwards (and thus away from victory). An example calculation of

this heuristic is demonstrated in Figure 8.1.

A second possible heuristic is dependent on the ”centricity” of the active

player’s pieces. Under most circumstances, it is strategically advantageous to

hold positions in the center of the board, as one can reach and interact with

more of the board in a single move. This software implements a heuristic that

evaluates the game board by summing the centricity values of each player’s

pieces and doing the appropriate subtraction. The middle space is given a

value of 2, the spaces in the inner 3 × 3 ring have value 1, and the border

spaces have value 0. An example calculation of this heuristic is demonstrated
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Figure 8.1: An example Santorini board where Player 1 (pieces represented by
A and B) has a height sum of 4 while Player 2 (pieces represented by X and Y)
has a height sum of 2. The evaluation of this board for Player 1 is thus 4− 2 = 2.

in Figure 8.2.

A third heuristic implemented in this software deals with distances

between pieces. A piece that is sufficiently separated from its opponent’s

pieces can potentially set itself up to win and then subsequently win on its

next turn without interference. If its opponents are close enough, after

attempting to set itself up, its opponent will be able to move and then build on

the tower of height 3 and thus prevent the piece from winning. As such, it is

valuable for a player to have both of the opponent’s pieces consistently within

reach of his own pieces in order to have the potential to make blocking moves
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Figure 8.2: An example Santorini board where Player 1 (pieces represented by
A and B) has a centricity sum of 3 while Player 2 (pieces represented by X and
Y) has a centricity sum of 1. The evaluation of this board for Player 1 is thus
3 − 1 = 2.

to prevent the opponent from winning. Consider the pieces A, B, X, and Y. A

and B belong to Player 1; X and Y belong to Player 2. There are four relevant

distances here: AX, BX, AY, and BY. Let the distance between two nodes be the

shortest path between them. To obtain Player 1’s distance from piece X, we

take the minimum of AX and BX. Similarly, Player 1’s distance from piece Y is

the minimum of AY and BY. We are trying to minimize the sum of these

distances, so lower numbers are actually beneficial. To correct the sign on

these values, we simply subtract the sum of minima from 8 (the highest

possible sum of the minimum distances) and use the resulting value for our
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Figure 8.3: An example Santorini board showcasing the distances between
pieces. We can evaluate Player 1’s position by subtracting from 8 the sum
of the minimum of the blue distances and the minimum of the red distances:
8 − (2 + 1) = 5.

evaluation. As such, Player 1’s position is evaluated as

8 − (min(AX,BX) + min(AY,BY)). Player 2’s position is analogously evaluated

as 8 − (min(AX,AY) + min(BX,BY)). An example calculation of this heuristic is

demonstrated in Figure 8.3. Unlike the other two heuristics, Player 2’s

evaluation changes when Player 1 makes a move. It might seem initially that

this heuristic is symmetric, but if one of Player 1’s workers is close to both of

Player 2’s workers while the other is far away, then Player 1’s sum of minima

is smaller than Player 2’s. This encourages the use of one piece to interfere

with one’s opponents and the other piece to set itself up for victory.
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8.3 Improvements Using a Genetic Algorithm

The use of each of these three heuristics individually results in three AIs that

are stronger than the basic three-move look-ahead AI that makes random

moves. Each of these three heuristics uses some domain-specific knowledge

derived from Santorini strategy. However, we still seek to improve the AI. A

human player would likely make game decisions based on a number of

strategic directives, considering multiple factors; an AI can emulate this by

considering linear combinations of the heuristic values. To further improve

this our AI, we would ask the AI to evaluate a game position using all three

heuristic functions and combine them linearly with coefficients to obtain an

overall value for the position. This evaluation function thus appears as:

e(x) = c1 × heightSum(x) + c2 × centricitySum(x) + c3 ×minDistancSum(x), where

x is a position in Santorini. The values for these coefficients could be

determined experimentally with the use of a genetic algorithm. In fact, the

values for the heuristics in general (the point distributions for centricity, the

values associated with each height level, and the values associated with

varying distances) could all be determined genetically. A genetic algorithm is

one inspired by Charles Darwin’s theory of evolution. The fittest individuals

of each generation are selected for breeding to create the strongest population.

With AI, those with the strongest winrates against the others are selected for

reproduction



68 8. AI IN SANTORINI



9

Conclusion

This project aimed to explore Santorini from three mathematical approaches.

In this thesis, we have discussed graph theory and game theory concepts and

investigated a number of variants of Santorini and brute-forced solutions to

those variants played on small graphs. Further, we discussed

Bachman-Landau notation, complexity classes, and attempted to prove that

Santorini is PSPACE-complete.

In this endeavor we fell short. This thesis was successful in the first

component of the proof: showing that finding a winning strategy in Santorini

is in PSPACE. It was not successful in proving that Santorini is PSPACE-hard.

Several proofs were made that took small steps from the proof that Geography

is PSPACE-hard to show that certain restricted variants of Santorini are

PSPACE-hard. Specifically, 1WInHTWD∗S, 1WI1HNTWDS, 2WP1HNTWD∗S, and

2WP1HNTWDS are all PSPACE-hard.

Beyond theoretical aspects of Santorini, this thesis investigated AI

development practices and implemented the minimax algorithm with

69
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alpha-beta pruning in an AI that plays Santorini in a built software

implementation of the game. This AI was capable of achieving three-ply

look-ahead and was subsequently modified with three distinct heuristics born

out of Santorini strategy.

The tri-pronged approach that this thesis took caused each area of analysis

to be more cursory than is preferred. Each direction of analysis could be

expanded significantly in the future. First, there is a considerable amount of

data contained within the brute-forced small cases of Santorini. With more time

to study the data and discern patterns, it is possible that larger generalizations

about strategy among the different variants of Santorini on the many different

graphs could be made. Second, one of this study’s primary goals was to prove

that finding a winning strategy in Santorini is PSPACE-complete. Having

come up short of this accomplishment, a priority in future work would be to

expand on the given proofs and combine all aspects of Santorini into a single

reduction from QSAT to Santorini to show the missing aspect of the proof, that

regular Santorini is PSPACE-hard. Third, in the realms of AI development, it

would be of interest to explore other heuristics than those used in this thesis

and to fully implement a genetic algorithm to determine what heuristics are

most important. Future work could take a different approach to the AI

development and use machine learning techniques and neural networks to

train an AI to play Santorini. Additionally, future work could consider worker

placement. This paper’s analysis of Santorini is founded on finding a winning

strategy for a given board state, but technically the first two turns in a

standard game of Santorini are spent placing the workers. This adds an

additional level of strategic depth that was not covered in this analysis.
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