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Abstract

Deep learning is becoming a steadfast means of solving complex problems that

do not have a single concrete or simple solution. One complex problem that fits

this description and that has also begun to appear at the forefront of society is

cheating, specifically within video games. Therefore, this paper presents a means of

developing a deep learning framework that successfully identifies cheaters within

the video game CounterStrike: Global Offensive. This approach yields predictive

accuracy metrics that range between 80-90% depending on the exact neural network

architecture that is employed. This approach is easily scalable and applicable to all

types of games due to this project’s basic design philosophy and approach.
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CHAPTER 1

Introduction

Cheating is a social construct that has been routinely discouraged and regulated

throughout human history. Cheating can be thought of as a means of gaining

advantages, goods, or other worldly possessions in an unfair and anti-competitive

manner.

1.1 Cheating in Video Games

Cheating exists within video games for a multitude of reasons. For example, it

can be used to simply win a game when a player otherwise cannot, to have fun

(that is to say, some players derive enjoyment through the use of cheats), and many

more depending on the game and the context. However, cheating is typically a

very damaging entity that can hurt the success of a game. Therefore, this lends

itself towards the creation of anti-cheat methods within video games that actively

prevent and prohibit players from being able to gain an unfair advantage over other

players. Currently for the majority of games within the first-person shooter genre,

cheating is very apparent. Therefore, there is a large need and desire to develop

better methods that successfully detect and combat cheats.

Cheats can be boiled down to two basic categories: knowledge-based cheats

and game assistance cheats. The former category focuses on players using cheat

1



2 1. Introduction

methods to gain otherwise unobtainable information/knowledge, while the latter en-

compasses players who utilize automated programs/software in order to ameliorate

their ability to play the game. Cheating methods typically involve the manipulation

of a game’s memory; this is due to the fact that all the relevant information about

the game state (i.e. where other players are, what items they have, etc.) is stored

within it. Therefore, the development of new anti-cheat methods that circumvent a

reliance on memory monitoring is essential.

1.2 Counter-Strike

Counter-Strike is a first-person shooter video game, which was originally released

in 1999. First-person shooters (FPS) are a genre of video games whereby players

are pitted against each other and incentivized to eliminate opponents in order to

win. First-person shooters typically allow players to use weapons such as guns

in order to eliminate the opposition. Due to this gameplay dynamic, most of the

cheats that are prevalent within the game revolve around the augmentation of

player accuracy, which allows players to have an unfair advantage in eliminating

enemy players. However, cheats do not stop there. Additionally, there are cheats

that allow players to access information that is otherwise not available to the player,

such as the location or exact health of enemies. The former cheat is typically called

an “AimBot,” since the task of aiming is giving to a “robot” or application rather

than being performed by the player-entity. The latter cheat is typically realized

through “WallHacks,” whereby players are able to visually see the enemy players

through walls. There are many more cheats within Counter-Strike, but these two are

the most renowned and prevalent within the game.
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1.3 Why is Cheat-Detection a Suitable Task for Ma-

chine Learning?

Cheating is typically compared to a game of cat and mouse. Developers of anti-

cheating software can fix exploits and other methods hackers/cheaters use to violate

the rules of the game and subsequently push out a game update. However,

eventually hackers/cheaters either find new exploits or find exploits within the

patches that the developers released. This continues ad infinitum, and eventually it

becomes less and less profitable for the game-developers to spend time, money, and

effort fixing issues and exploits that would eventually be circumvented.

This basic dynamic between cheaters and anti-cheat developers leads to the

research and creation of new anti-cheat methods that do not have these same

weaknesses. One of these involves the use of machine learning algorithms to

correctly identify when player-entities are cheating. This circumvents and avoids

all the vulnerabilities that are associated with having games stored in memory, since

we can instead evaluate players in real-time to determine whether they are cheating.

However, it raises concerns such as how to properly determine whether players are

or are not cheating, how to mitigate false-positives and false-negatives, and similar

concepts.

1.4 Outline of Remaining Chapters

This paper begins by outlining the fundamentals of the game of Counter-Strike, which

includes a high-level explanation of how the game is played and the objectives that

players have during the game. Additionally, we outline the two core interdependent

objects that this project’s data hinges upon, those being ticks and subsequently

demo files (which are large compilations of ticks).



4 1. Introduction

Next, in order to be able to understand the types of cheats that are being targeted

and studied under this project’s scope, it is essential to provide a baseline definition

of cheating. Therefore, Chapter 3 focuses on the means with which cheating presents

itself within Counter-Strike. This requires the introduction of cheat “families,” which

are two broad and distinct subgroups of cheats that are commonly found in Counter-

Strike as well as the majority of other first-person shooter video games. Finally, the

theory and implementation of the most common cheats within Counter-Strike are

presented in order to provide a theoretical background. This allows our solutions

to various cheats to be grounded on the theoretical underpinnings that these cheats

found themselves upon.

Following our discussion on cheating, we discuss deep learning on a theoretical

basis as well as the implementation that this project uses in order to tackle cheaters

within Counter-Strike. Therefore, we begin by outlining the various types of learning

that are present within machine learning and the biological influences that permeate

within the field of machine learning. Next, this paper covers recurrent neural

networks and why they are the most logical network structure for the task of cheat

detection within Counter-Strike.

The next chapter is this project’s use of graphics cards (GPUs) for neural network

training, which includes various differences between their functionality to that of

central processing units (CPUs). Additionally, this chapter includes the various

implementation specifics for this project.

Chapter 6 covers the data component of this project and its associated manipu-

lation and implementation. This includes discussion of the means by which data

is sourced, the method in which data is converted into meaningful and useable

representations of the data, and the crafting of metrics and features that allows the

network to efficiently extrapolate what cheating is and how it presents itself within

Counter-Strike.
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Finally, the following chapter is the results that this project attains. This includes

a multitude of different testing methods which all yield similar results. However,

some of these testing methods prove to be far more logical and efficient than others

in ways that are distinct from simply predictive accuracy.

The conclusion follows our results chapter and focuses on the future work

to be done within this field and this project. Additionally this chapter serves

to provide insight into various errors within the scope of this project as well as

potential improvements that could have ameliorated the results that this project

obtains.
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CHAPTER 2

Counter-Strike

Counter-Strike is a series of first-person shooters (FPS), whose first iteration, Counter-

Strike, was originally released in November 1999 (see Figure 2.1). The current game

in the series is Counter-Strike: Global Offensive; however, we refer to Counter-Strike:

Global Offensive as simply Counter-Strike. The game revolves around two basic

teams, attackers and defenders (labelled in-game as terrorists and counter-terrorists

respectively). The attackers typically have two objectives, which are delineated

and separated by game modes: destroy an objective or rescue a non-player entity

(labelled in-game as defuse and hostage-rescue respectively). These objectives are

determined by the game mode the user is playing. However, elimination of the

other team is often a plausible objective as well.

The game mode that is most popular and used competitively is defuse; therefore,

this project only sources data from this game-mode, as it is the most abundant. At

the beginning of a match, players are randomly assigned to either the attacking

team or defending team. The match is separated into rounds, whereby the attacking

team has a limited amount of time to attempt to succeed in fulfilling one of their

objectives. The defending team attempts to prevent them from accomplishing

their goals. Should the time run out for that current round, the defending team is

awarded the round-win, since they have successfully deterred the attacking team.

Otherwise, should one team attain one of their objectives, they are instead awarded

the round-win. The goal of this game mode is to be the first team to reach 16

7



8 2. Counter-Strike

Figure 2.1: In-game rendering of Counter-Strike

round-wins. Additionally, after 15 rounds are played, the teams switch roles, i.e. the

attacking team gets to defend for the next 15 rounds, while the defending team gets

to attack for the next 15 rounds. This means that the game is inherently symmetric.

One small caveat and difference between Valve Software’s matchmaking system

and other third-party systems is that the former does not allow for overtime, which

is an extension/addition of more rounds to decide who wins the match. Overtime

occurs when both teams reach 15 round-wins over the course of the match. Overtime

only differs from regular match-play in two ways. First, rather than being a best

of 30-round match, it is best of 6 rounds. This means that the first team to reach

4 round wins subsequently wins the entire game. The second difference is that

players start overtime with the maximum amount of in-game cash, which is typically

earned through completing objectives within each round during the regulation

period of the game. Cash can be used to buy items, which include Kevlar armor

to reduce the amount of damage a player sustains, weapons, and utility items

(e.g. smoke grenades, flash grenades, etc.). The most powerful items tend to

be the most expensive items within the game; therefore, overtime presents the

opportunity for players to buy and equip the best items. Finally, overtime still
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adheres to the inherent symmetric nature of regular match play by forcing players

to switch from the attacking team to the defending team and vice versa after the

first three rounds are played. This means that it is still possible for the game to be

tied after overtime, which, when this type of situation occurs, results in another

subsequent overtime. However, this system only typically occurs in third-party

matchmaking systems and large scale tournaments; therefore, when a match within

Valve Software’s matchmaking system ends in a tie, the match is terminated and no

winner is determined through overtime.

2.1 Ticks

A tick is a packet of information that is sent from the client to the server and includes

things such as player position, where the player is looking, what team the player

is currently on, etc. Counter-Strike has approximately 400 different game events,

whereby each game event is a structured packet of data that is sent to the server.

For example, the event player_hurt occurs when a player entity loses health points

within the game (see Listing 2.1). The event includes the in-game name of the hurt

client, the in-game name of the player who inflicted the damage, the remaining

amount of health for the hurt player, etc.

Within Counter-Strike, there are two possible tick-rates, which is the number

of times ticks are exchanged between clients and the server per second. The two

rates are 64-tick and 128-tick. For this project, it does not matter which type of

tick-rate the server uses, since the neural network considers each tick individually

and normalizes values across the entire demo. However, this does mean that two

matches of the same duration (e.g. 30 minute long games) that differ in tick-rate

have a large disparity in the amount of retrievable data from these matches (i.e.

large differences in the number of ticks). This means that 128-tick matches are
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objectively superior to those of 64-tick, in terms of the total feasible amount of

retrievable information.

However, it is important to note that the majority of matches that contain cheaters

are 64-tick games. This is due to the basic design infrastructure of Counter-Strike:

Global Offensive’s online matchmaking system. All online matches played on Valve

servers are 64-tick, while tournament matches, third-party matchmaking systems,

and community servers tend to use 128-tick servers. Additionally, there is typically

less incentive for cheaters to play on the latter and higher-tick servers due to their

lack of rewards and better anti-cheat methods; therefore, there is a higher propensity

to see players cheating on the lower tick-rate servers. This is something that is

inherently unavoidable due to the aforementioned reasons, but it should still be

acknowledged.

Ticks are the smallest incremental data point that this project uses. Ticks contain

important game-state meta-information that is used in the construction of an input

vector that is passed to the neural network. Ticks are the main reason why we can

avoid focusing on an anti-cheat implementation that focuses purely on how memory

is accessed and altered on a client’s computer, since we can instead analyze what

every player is currently doing in the game at any given point. This is analogous to

analyzing a video by going through every frame within the video.

2.2 Demo Files

Demo files are the means with which Counter-Strike saves matches for viewing

within the game. They are the compilation of all the ticks within the game. These

files come in an unreadable format, but in 2014, Valve released a GitHub repository

containing the means of creating a simple application that converts .dem files to

plain text documents [29].
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Demo files can be viewed and obtained in many different ways. For example,

every competitive match of Counter-Strike: Global Offensive is displayed upon one

of the game’s various dashboard elements with the option to save and download

the .dem file and re-watch the match. Additionally, there are many online forums

and services that save various demos. For example, all of the professional matches

that are played (online, on LAN, etc.) are stored on the match page on a site like

hltv.org.

� �
1 player_hurt
2 {
3 user id : s1mple ( id : 2 3 )
4 p o s i t i o n : 283 .655396 , −213.244171 , −0.403509
5 vecs : −168.293594 , −104.493011 , 0 .000000
6 t i c k b a s e : 109280
7 f a c i n g : p i t c h : 0 . 0 7 1 4 1 1 , yaw: 1 0 1 . 4 2 0 2 8 8
8 e n t i t y : 8
9 team : T

10 a t t a c k e r : ZywOo ( id : 2 1 )
11 p o s i t i o n : 75 .123627 , 455 .732880 , 0 .031250
12 vecs : 231 .874176 , −30.520855 , 0 .000000
13 t i c k b a s e : 109277
14 f a c i n g : p i t c h : 0 . 2 9 1 1 3 8 , yaw: 2 8 7 . 6 7 1 5 0 9
15 e n t i t y : 6
16 team : CT
17 heal th : 85
18 armor : 92
19 weapon : hkp2000
20 dmg_health : 15
21 dmg_armor : 7
22 hitgroup : 4
23 }
 	

Listing 2.1: A player_hurt event featuring the game’s most renowned professional players,
s1mple and ZywOo
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CHAPTER 3

Cheating

Cheating is the cornerstone that this project hinges upon. Therefore, it is essential

to thoroughly define cheating both in an abstract sense and within Counter-Strike

itself.

3.1 Cheating Theory

In order to understand cheating, we must first give a thorough definition that

provides the framework or foundation for later discourse. Thus we will define it as

follows:

Any behaviour that a player uses to gain an advantage over his peer players or achieve a

target in an online game is cheating if, according to the game rules or at the discretion of the

game operator (i.e. the game service provider, who is not necessarily the developer of the

game), the advantage or the target is one that he is not supposed to have achieved [21].

Cheating within the current personal computer era stems from the basic fact that

games are stored within memory on players’ personal computers. Since users have

free access to their own personal hardware, there is a multitude of different ways

for users to access and manipulate this memory. This lends itself to the creation

13
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of applications that utilize the memory related to the game in ways that both the

developers never intended and that the typical user never experiences.

Therefore, while our definition extends to methods of cheating that fall outside

the realm of the game world (i.e. collusion between teams or players, match-fixing,

etc.), we narrow the scope of that definition to cheating methods that rely on

exploitation of the game-state and its associated information. This hinges upon

the fact that those other aforementioned methods of cheating tend not to present

themselves within the game-state itself. For example, if a tournament fixes matches

in order to give one team favorable matches to win the tournament, the players

within each match do not exude any unnatural behavior or cheating-like behavior,

since they still have to necessarily play Counter-Strike in their typical fashion to win

the match. This inherently differs from a player who, for example, can see all the

enemy players through walls, since they change their play-style around the fact that

they have an atypical advantage.

3.1.1 Cheating “Families”

Based off our aforementioned narrowed scope in terms of cheating within Counter-

Strike, we can now define the basic “families” of cheats which exist within Counter-

Strike: mechanic assistance and knowledge assistance. However, it is also important

to note that Counter-Strikes’s Overwatch system breaks down cheating into three basic

categories: “Aiming Assistance,” “Vision Assistance,” and “External Assistance.”

Overwatch is an in-game system where users are given the opportunity to review

matches of players who are suspected of cheating. After the user finishes reviewing

the match, they are required to submit a verdict, which includes options to select

whether the cheater in question utilized any of the previously mentioned cheating

categories. These categories are not as precise and tend to be unwieldy due to

the fact that “External Assistance” is a catch-all category for all cheats that do not
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involve a player’s aim or vision. Therefore, we define and use more stringent

categories that avoid the potential nuances and pitfalls that are associated with

those of Counter-Strike.

3.1.1.1 Mechanic Assistance

“Game mechanics are methods invoked by agents, designed for interaction with

the game state” [24], where agents are simply players interacting with the game.

Mechanics can also be thought of as something analogous to different skills that

sports rely on. For example, one of the main mechanics that is present within

first-person shooters is obviously shooting. Players are given weapons that they can

aim with and fire. We can view this as something akin to how quarterbacks within

American football have the ability to throw the football. Therefore, we can think

of something like aim-assistance as some sort of application that aids the player in

shooting more accurately and effectively. This would be analogous to a quarterback

having some sort of technology that ameliorates his ability to accurately throw

passes to his receivers.

Therefore, we can define mechanic assistance as a family of cheats whereby players

use outside applications or software to improve the way in which they interact

with the game world. In general, this is a very large group of cheats within games

due to the fact that players are typically given many different ways to interact with

the game world. For Counter-Strike, the two main methods of interaction involve

moving/movement, and aiming. However, while those are the main two and are

typically involved with most cheats, there exist many different inputs that a player

can use to affect the game environment (e.g. destroy in-game objects, drop or pick

up in-game objects, open doors, etc.).
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3.1.1.2 Knowledge Assistance

The next family of cheating involves gaining an advantage and assistance over other

players with knowledge or information pertaining to the game state. Typically, the

most desirable information within Counter-Strike involves the locations of enemy

players on the map. This stems from the fact that one of the main objectives of

the game is to eliminate the opposition; therefore, knowing their exact coordinates

grants players massive advantages. This can take many forms and appearances.

Whether it be by rendering the enemy player models so that they are visible through

all objects (i.e. walls) within the game environment or by rendering the enemy

players to the in-game map of the game environment (see Figure 3.1), it is easily the

most prevalent form of knowledge assistance.

Figure 3.1: The radar or mini-map of Counter-Strike, with red dots being enemy players and blue
dots being teammates

3.2 Counter-Strike Specifics

While Counter-Strike is certainly not the first FPS game to exist, it has existed

long enough for all the hegemonic hacks, which are present within nearly every
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first-person shooter, to be created by outsider programmers/hackers. These are

“AimBot” and “WallHack,” which can be thought of as the representatives of the

two distinct families of cheats.

3.2.1 Aim Assistance - “AimBot”

“AimBot,” which is an abbreviation for “Aiming Robot,” is an application that

automatically corrects where a player-entity is aiming so that their crosshair falls

directly over top of an enemy player. The crosshair can be thought of as a visual

representation and visual aid that is rendered on the screen to help players determine

the exact pixel location of where they are looking within the game environment.

This cheating method requires a lot of math based upon trigonometry in order to

calculate these values.

First, Counter-Strike player entities are multi-dimensional entities, where the

principal values are their position in terms of an x, y, and z component, and their

pitch and yaw, which are the angles about which they are looking (see Figure 3.2).

Pitch, yaw, and roll are used within aeronautics and describe the axes with which a

plane rotate about.

Pitch can be thought of as the wing-to-wing axis, and rotations about this

axis alter the position of the plane’s nose in terms of an upward or downward

direction. Yaw is the axis defined through a vertical intersection of the aircraft, and

rotations about this axis alter the position of the plane’s nose in terms of side-to-side

directions (i.e. left and right). Finally, roll can be thought of as the nose-to-tail axis

and rotations about this axis result in barrel-roll type rotations, i.e. rotations that

alter to orientation of the cabin and crew of the plane. Roll is not an entity or value

that players can freely alter, since that would allow players to rotate themselves

into upside-down orientations and other strange positions.

All of these values, plus the location of the positions of the enemy players,
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Figure 3.2: Changing view orientation from looking at the ground to looking at the ceiling (i.e.
initial pitch and yaw as 89◦ and 0◦ respectively, and final values as −89◦ and 0◦).

are all the requisite components needed to calculate the proper pitch and yaw

in order to aim at the enemy/enemies. Therefore, we construct two vectors, one

for the player whose aim we are correcting, −→p = 〈xp, yp, zp〉 and the second for

an enemy player, −→e = 〈xe, ye, ze〉. From here we construct a difference vector,

which is simply the difference between each component of the two players position

vectors:
−→
d∆ = 〈xp, yp, zp〉 − 〈xe, ye, ze〉 = 〈xp − xe, yp − ye, zp − ze〉. Therefore, the

total distance between the two player entities is simply the magnitude of
−→
d∆, i.e.

||
−→
d∆|| =

√
(xp − xe)2 + (yp − ye)2 + (zp − ze)2. This is the first crucial value needed in

order to derive the pitch and yaw.

One essential idea is that this cheating method roots itself within basic trigonom-

etry by constructing/identifying various lengths and metrics associated with the
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two players and constructing two triangles, which are then used to derive the

necessary angles. Therefore, with the distance between the two players, and the

difference between the heights of the players (i.e. d∆z = zp − ze, which happens to

unconventionally be defined about the z-axis within Counter-Strike), we can use

arcsin
(

d∆z

||
−→
d∆||

)
= pitchp (see Figure 3.3).

This same method can be applied in order to derive the necessary yaw, but

instead we form a triangle based upon the differences in the x and y displacements

between the two players, and additionally use arctan
( d∆y

d∆x

)
= yawp.

Figure 3.3: Visualizing correcting a player’s aim to an enemy player-model

The last step for these calculations is properly bounding the values and converting

them to either degrees or retaining them as radians, which depends upon the storage
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and implementation of angles within the game. This is one of the most crucial

steps in this entire process, due to the nature of anti-cheat systems, since if we

improperly calculate the angle such that it lies outside the bounds of possible angles

that a player can have, then this will immediately trigger the anti-cheat system

and will result in a ban. For example, while we might typically envision turning

ourselves in the real world with bounds from 0 degrees (i.e. where we are currently

looking) all the way up to 360, which is an entire rotation that lands us back to where

we were originally looking, Counter-Strike bounds its yaw (i.e. side-to-side angles)

between −180 ≤ yawp ≤ 180. Additionally, the game does not allow players to look

completely up or completely down, which restricts pitch (i.e. down-to-up angles)

−89 ≤ pitchp ≤ 89. Therefore, after checking that our calculated and corrected pitch

and yaw values fall within the bounds of the game, we can rewrite the local memory

that is responsible for storing our players pitch and yaw values.

One important thing to note about this method is that it is inherently obvious

and quite easy to visually distinguish between players employing this method

and players who are not. This is due to the fact that the adjustment of pitch and

yaw values results in a linear adjustment (i.e. a straight line) between where the

player was originally aiming and where the enemy player currently is. It is obvious

that when players are naturally using a mouse they tend to exhibit more entropic

adjustments between those two aiming locations. Therefore, many of the more

advanced and prevalent “AimBot” cheats attempt to add entropy to the adjustment

to make it appear more human-like.

3.2.2 Knowledge Assistance - “WallHack”

“WallHacks” typically take on a plethora of different shapes and forms, but they

share the same core idea of accessing all of the enemy player’s locations and using

that information to render some visual guide to the cheater in order for them to
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see where the enemies are through walls. The simplest of these forms is a simple

bounding box that encapsulates the enemy’s player model, while the most complex

methods render complete outlines of the enemy player models with associated meta-

data. For example, one of the more prevalent complex methods of “WallHacking”

involves color-coding the outlines so that the cheater can determine how far away

enemies are based upon their outline color, or based upon how much health the

enemy has left (see Figure 3.4).

Figure 3.4: Wall hack with color-coded outlines 1.

3.2.3 Mechanic Assistance - “B-Hop”

“B-Hop,” which stands for “Bunny-Hop,” is a unique game mechanic that stems

from the physics within Counter-Strike (i.e. the Source Engine). In order to understand

a “Bunny-Hop,” we must first define strafing, which is the act of a player-entity

moving sideways in relation to where they are looking. The next important idea to

introduce is friction, which, when we consider Counter-Strike, is only ever applied to

1This source is available from the author upon request; it is redacted from this paper due to
concerns about raising awareness of illicit or otherwise dishonest content.
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player-entities that are physically touching the ground. This means that players that

are currently airborne either through jumping or falling do not experience any form

of friction, which can simply be conceived of as a slowing force within the game.

The final core idea that “Bunny-Hopping” founds itself upon is the basic

fundamentals of how movement operates within Counter-Strike. Players have two

main methods of interacting with the game-environment, which are moving and

looking around. When a player inputs movement through a keyboard press, their

player model accelerates in a certain direction within the game world. Likewise,

when a player presses two keys that correspond to movement within the game,

their player model moves at an angle that bisects the two angles, or no movement

should they be in opposite directions (see Figure 3.5).

Figure 3.5: Pressing the forward and right directional keys [13]

It is important to note that this acceleration value is a constant, and the maximum

speed with which a player-entity can move within Counter-Strike is 250 units per

second, where units is simply an arbitrarily defined distance within the game

environment. Next, the crux of “Bunny-hopping” is within how this bound is

calculated by the game’s engine. First, this speed bound is only calculated in the

direction that the player-entity is currently travelling. For example, if a player is

moving at 300 units per second in the forward direction and presses the forward

key, this key press has no effect since the player is already moving at a speed that

exceeds the maximum. Therefore, friction, our slowing force, is applied to reduce
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the player’s speed to a value that is less than the maximum value if the player

is touching the ground. However, the player can still freely augment their speed

with the other directional keys (i.e. within our example, the left and right keys

could be pressed to augment the speed in those directions). This stems from the

fact that Counter-Strike’s engine only considers players to have a single direction

of movement, which we denote as
−→
V . This is achieved through vector projections,

whereby given a players current velocity, denoted
−→
Vc, and the direction the player

currently wants to move in, denoted
−→
Vw, we (meaning the game engine) construct

the projection of
−→
Vc onto

−→
Vw, which we can denote Vp = ||

−→
Vc||· cosθ (see Figure 3.6)

[13]. This is all in relation to the orientation of the player, which is denoted as
−→
Vo.

Figure 3.6: Projecting Vc onto Vw to form Vp

Finally, we denote the direction with which a player accelerates as
−→
Va, with an

associated magnitude ||
−→
Va|| = a. This can be simply conceived of as a scalar. The

acceleration is then added to the magnitude of the projection, i.e. speed = ||
−→
Vp|| + a,

which yields another scalar, which is then truncated or reduced if it exceeds the

maximum speed. However, this convention now allows for
−→
Vc to exceed the
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maximum velocity, since the magnitude of its projection is checked rather than its

own magnitude. This stems from the earlier convention of players only having a

single direction of movement.

Therefore, a “B-Hop” is a culmination and combination of all of these aforemen-

tioned ideas. We can circumvent the cap that is placed on a player’s movement by

jumping in the air and strafing (i.e. clicking the side directional keys) and continually

changing the direction of movement that our player is moving in so that it coincides

with the direction key that we are pressing. This means that gradually looking

left while pressing the left directional key augments the magnitude of
−→
Vc while

circumventing the maximum speed cap within that specific direction, since the

magnitude of
−→
Vp is capped rather than

−→
Vc (see Figure 3.7). The final caveat to this is

that the source engine does not immediately apply friction to players when they

land on the ground. Instead players are given a short period of time (specifically

a single tick, which is between 0.0078125 or 0.015625 seconds depending on the

tick-rate of the server) before friction is applied. This allows players to input another

jump in order to avoid getting slowed down, and they subsequently gain speeds

that far exceed the maximum value imposed by the game engine. This behavior

results in its name “bunny-hopping,” since players who execute this technique are

constantly zigzagging and jumping around.

In terms of implementation, the prototypical method that cheaters employ is

artificially writing to the game’s memory to input a jump that coincides within the

small timeframe before friction is applied in order to easily achieve high speeds.

However, as Counter-Strike has evolved, the difficulty of “B-Hopping” has increased

dramatically, and at the game’s current release/state it is currently impossible to

consistently achieve this technique without cheats. This stems from the timeframe

to input a player’s next jump being too small to properly time. This means that

players who achieve consistent “B-Hops” are typically cheating, since it is entirely
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Figure 3.7: Difference between the unbounded current velocity vector and the bounded projection
velocity vector.

luck-based. However, it is important to note that it is not impossible to “Bunny-hop”,

it is just humanly impossible to consistently perform. In other words, players can

sometimes still string together multiple “Bunny-hops,” but it just relies entirely on

luck.

3.2.4 Forms of Cheating

While there are many different types of cheats which aid players in their ability to

perform and win within Counter-Strike, all earlier discourse ignores how players

actually cheat within the game. For example, if we were viewing a game, what does

cheating look like, and how does it present itself?

The first inherent problem with cheat detection through analysis of in-game

player behavior is that, for the most part, a lot of the more prevalent cheats within

Counter-Strike are not immediately obvious and/or visually apparent. Instead, and

particularly when a player is actively attempting to hide their usage of cheats, the
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determination of whether a player is cheating relies upon an understanding of the

game and how normal players would play given a specific set of scenarios within

the game. For example, one of the most suspicious types of behaviors that can be

seen with cheaters is how they always appear to be lucky, i.e. the player always has

their crosshair in the correct position, the player always predicts abnormal behavior

by opponents, etc. For players of every level (professionals included), this type of

behavior does not present itself for the entire duration of a game; instead it can

happen in spurts or bouts. However, it is obvious that abnormal luck is not an

immediate indication of whether a player is cheating. It is inherently conceivable

for a player to be extremely lucky and not be cheating. Therefore, it is essential to

admit and acknowledge the fact that when we consider this gradient of cheating, we

can only source and use data points that fall within the binary extrema of the game.

That is to say, while it may appear that a player is exuding behavior that is indicative

of cheating, unless there is evidence beyond a reasonable doubt, we cannot include

that data for the sake of preventing false-positives and false-negatives.

It might seem that we have devised an outlook and understanding of cheating

that includes only the most obvious forms of cheating, since we can only consider

the most visually blatant examples of cheating and non-cheating. However, this

problem can be circumvented through the creation of our own cheating methods to

obtain otherwise unobtainable data. Additionally, we can source data from willing

cheaters without succumbing to the potential of mislabeling data.

The second problem is that cheating is not inherently a binary behavior that

players exude; instead it can be conceived of as a gradient, whereby players can

cheat for some percentage of the game and subsequently play cleanly (i.e. without

cheats) for the remainder of the game. However, to further complicate this matter,

there are also degrees of cheating, which stems from the fact that multiple cheats

can be used in union or parallel to further ameliorate the players’ ability to win and
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complete game objectives. For example, a player could cheat for a single round (i.e.

potentially only 1
30 of the entire game) with only some form of knowledge assistance.

The cheater then continues to play cleanly from that point forward. However, later

in the game the cheater’s team is about to lose, which results in them deciding to

activate multiple different cheats to ensure that their team wins the match. This

example is meant to elucidate the sheer complexity that is associated with cheating

in first-person shooters.

The final problem that is associated with cheating is the fact that we, as outside

viewers of the game, do not see the visual components of various cheats. Cheats

alter the local players’ rendering of the game-state, meaning that we do not visually

see the game alterations that cheaters perform on their local memory when we

observe matches or view demo files. For example, when cheaters render the enemy’s

player-models through walls so that they always know their opponents’ locations,

we do not see the same renderings within demo files or when spectating the game

(see Figure 3.8).

Figure 3.8: Outsider’s view of a cheater versus the cheater’s local game render.

Overall, cheating is a very complex and multi-faceted problem that roots

itself within the ability to manipulate memory, which allows players to bend the

physics of the game engine to their will and artificially access information that is
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otherwise unobtainable. While this may seem to hinder our ability to properly

source and combat cheating, we can avoid most of the aforementioned problems by

breaking down the problem into smaller pieces that are more easily palatable and

understandable.



CHAPTER 4

Deep Learning

Machine learning is a subfield of artificial intelligence that attempts to develop

algorithms that mimic human abilities and capacities. Deep learning is, in-turn, a

subfield of machine learning, and can be conceived of as “a new take on learning

representations from data that puts an emphasis on learning successive layers of

increasingly meaningful representations” [7]. The addition of the word “deep”

within deep learning lends itself to confusion since it implies a form of deeper

understanding from machine learning algorithms. However, this is simply not the

case and is merely meant to highlight the fact that deep learning emphasizes neural

network constructions that utilize multiple layers of nodes, where neural networks

are simply the most common form of these aforementioned representations. We

can formally define neural networks as directed acyclic graphs that are composed

of layers of nodes or neurons that take in an input (i.e. data) to produce an output

(typically some form of prediction). For example, Chollet constructs a basic network

to predict the handwritten number that is depicted within an image, which uses

four successive layers before producing a final output value (see Figure 4.1).

Machine learning also encompasses multiple different learning strategies and

outlooks which each have their own benefits and consequences. The typical deciding

factor between which type of learning method to employ is based upon the dataset

and how it is organized and labeled. The three types of learning are unsupervised,

semi-supervised, and supervised. While the concept of “supervising” a neural

29
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Figure 4.1: Abstract network construction for predicting handwritten numbers [7]

network implies some sort of watching to insure it does not misbehave or produce

unwarranted results, “supervising” simply means whether the network has access

to the labels/targets for each input (i.e. what category the specified input falls into).

For example, if a given input image depicts a handwritten 4, then that image falls

into the target class 4. Therefore, to formally define the aforementioned types

of learning: unsupervised learning denotes the lack of class labels for each data

point/input, semi-supervised learning denotes that a portion of the input dataset

that is greater than zero but less than its entirety have associated target labels, and,

finally, supervised learning implies that all data points have an associated target

label.

It may initially seem that not giving the network the respective target class may

prevent the network from being able to correctly map inputs to output, but in the

cases where the network is not provided any labels, then the network attempts to

identify its own classes and thus subsequently places the inputs into the network’s

own defined classes. Each of these networks have their own niche, for example,

the internet boasts a large quantity of image sharing sites that contain images

without proper labels. This means that one can create an unsupervised machine

learning algorithm to grab a large quantity of images and attempt to group them

and organize them in some way. This is meant to demonstrate the fact that there

exist large datasets that do not have their labels readily available, which are the
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perfect partners for an unsupervised machine learning algorithm. Additionally,

there are cases where datasets are improperly labeled, which results in the inability

for networks to learn. This is yet another case where unsupervised learning is

beneficial, since we can instead consider the dataset without its labels and determine

whether this allows the network to properly identify and classify the data points.

This project uses supervised learning due to the fact that labeling the data points

for this project allows for the results to be meaningful. For example, if the dataset is

comprised of thousands of randomly selected unlabeled matches of Counter-Strike,

some with cheaters and some without, then we would be hard pressed to determine

how the network classifies all the different data points. We can abstractly think of a

unsupervised neural network as looking at data and clumping them together based

off of learned characteristics. However, it may be hard to determine what these

characteristics are, and these characteristics may even be irrelevant with regards

to cheating within Counter-Strike. It could be entirely possible that the network

groups players by which ones perform the best (which presupposes that cheaters

are inherently more successful than those who do not), or even inanely groups

the players by those who look most often at the sky or sun. Additionally, in order

to determine how the network groups these players, we are required to watch

the matches and attempt to synthesize out the meaning, which might take longer

than simply watching the match and determining whether the player is cheating.

Therefore, in order to circumvent all of these aforementioned problems, we utilize a

supervised learning approach, since this allows results to be easily understandable

and meaningful and coincides with the fact that matches must be watched at some

point in order to have a useful dataset.

The workflow for a neural network is as follows: First, the network receives

some sort of input X, which can be an image, a number, or practically anything

that is condensable into a readable format for the network. This input is mapped
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to an initial layer which is comprised of a specific number of nodes, where the

number of nodes is equal to the number of input variables (e.g. each pixel intensity

within the handwritten image in Figure 4.1). Each of these nodes within the layer

has a specific weight, which relates to how important a value is in relation to the

formation of a prediction by the network, and a bias which is a threshold value

for determining whether a specific input and weight are significant enough. For

example, if there exists a single pixel that immediately indicates that the image

being processed is a four then that pixel’s related node is weighted highly since it is

significant when considering inputs. After weights are applied to the input value,

new values are produced and passed along the network (see Figure 4.2). If there

exist more layers, then this process is repeated until all layers have applied their

weights and produced a new value.

Figure 4.2: A basic depiction of a neural network [18]

One important concept to note is the fact that neural networks base themselves

on an abstract understanding of the biology and functioning of neurons within the

brain. Electrical signals are passed between neurons in the brain, where neurons are

interconnected cells. Each specific neuron has criteria it uses in order to determine

whether a signal should continue to be passed through the brain (i.e. to the next

neuron). Therefore, we can use the terms nodes and neurons interchangeably in
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regards to machine learning, since nodes are comprised of a weight and bias which

are responsible for altering how a signal (i.e. an input) that passes through network

gets mapped to a specific output.

Therefore, we can formally define the algorithm for generating an output for a

specific neuron through:

n∑
i=1

wixi + b

where wi is the weight of the connection between some node and the current node,

xi is the activation value from node (i.e. an input value to the current node), and b is

the associated bias for our current node [18] (see Figure 4.3). Biases are analogous

and identical to a threshold value, meaning they determine the ease with which a

neuron activates [18].

output =


0 if

n∑
i=1

wixi + b ≤ 0

1 if
n∑

i=1

wixi + b > 0
[18] (4.1)

Since this value is added to the summation of the wixi terms the more negative

the bias is, the less likely the weighted sum exceeds 0. Likewise, the more positive

the bias is, the more likely the weighted sum exceeds 0. Additionally, the network

uses this as a learnable parameter, meaning that it attempts to find the optimal

values, which mitigates high values of loss.

Layers within neural networks are simply groupings of nodes which are not

connected to each other, but instead connected to every other node from the

immediately previous and following layers. Neural networks typically include a

multitude of different types of layers, which is dictated by the needs of the machine

learning task.
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Figure 4.3: A representation of a single neuron within a neural network, where each arrow
represents the associated weight between nodes [18]

Next, when considering these connections between nodes, it is necessary to

discuss activation values and activation functions. “Activation functions transform

the combination of inputs, weights, and biases. Products of these transforms are

[used as] input for the next node layer” [20]. These transformations typically involve

mapping these outputs to a specific bound. The typically bounds for the output

values are −1 ≤ output ≤ 1, or 0 ≤ output ≤ 1. However, many other bounds exist

for different purposes.

After the network maps an input to a specific output (i.e. makes a prediction),

the loss function evaluates its accuracy, which is based upon the difference between

the actual answer and the prediction. These typically take the form of a vector with

various probabilities for each class label. For example, a possible output vector from

the network based off the image of the four could be 〈0.1, 0.0, .03, 0.5, 0.0, ..., 0.0〉,

where each entry’s index correlates to the prediction for that specific number (i.e.

a 0.1 prediction of it being a zero and a 0.5 prediction for the image being a four)

[23]. This is meant to punish the network for producing guesses that span multiple

different class labels or targets. Finally, the network adjusts the weights of each

layer to improve its predictive accuracy, which is achieved through gradient descent.

Gradient descent is a method that adjusts the weights to a state with the lowest

possible loss associated with predictions (see Figure 4.4).
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Figure 4.4: Anatomy of prototypical neural networks [7]

4.1 Recurrent Neural Networks

Prototypical neural networks are feed-forward networks, which are simply networks

whereby “the output from one layer is used as input to the next layer” [18]. This

necessarily means that the information that is passed through the network only

flows forward, meaning once a layer produces an output, that output is then used

as input for the next layer, and that original layer no longer has any impact with

how that output is manipulated and used (i.e. an output from a single layer cannot

be reused as a input for that same layer). For many machine learning tasks, this

is not an issue and does not limit the network in anyway. This stems from the

fact that we can imagine each subsequent layer in these types of networks as

producing a “more meaningful representation” of the input (e.g. when processing

an image of a handwritten number, each layer synthesizes only the most important

information from the image in order to make a prediction and passes it forward).

While it may seem detrimental to not allow information to flow freely back and

forth, feed-forward networks tend to be more practical for a larger array of machine

learning tasks [18].
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Obviously, one of the main components that is missing from the typical neural

network (i.e. feed-forward) is a form of memory that allows it to use previous

inputs or outputs to alter and affect the current input. This lends itself to each

input being considered entirely on its own, which, depending on the task, can

be beneficial or detrimental. This lends itself towards recurrent neural networks,

which are networks that “process sequences by iterating through the sequence

elements and maintaining a state containing information relative to what it has

seen so far” [7]. Recurrent neural networks emulate the way humans typically

learn moreso than the typical feed-forward networks, since humans tend to process

information incrementally before conceptualizing the information in its entirety.

For example, whilst reading sentences, we consider each word individually as the

sentence progresses rather than all the words at once. This also hinges on the fact

that the order of the words affects the meaning of the sentence [18].

For the task of cheat-detection, a memory cache is intuitive and beneficial for

our goals. This stems from the fact that cheating is a multidimensional gradient,

whereby players can cheat in select circumstances with a broad range of different

cheating methods. Therefore, rather than considering a demo file in its entirety, we

can instead break down the demo into its own time steps (i.e. ticks) and allow the

network to consider these ticks individually but also concurrently. This means that

the network can view the match as its developing rather than in one entire dump.

This is intuitive because, while cheating presents itself in many different forms,

there are typically easily identifiable reasons why cheating occurs in matches. For

example, two of the most apparent cases within this project’s dataset are instances

of cheating where the cheater thinks that a player on the opposing team is cheating

and thus decides to enable their own cheats to combat that opponent, or, secondly,

there are instances where the cheater decides to enable their cheats because they are

about to lose the match and would rather win by cheating than to lose by playing
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fairly. While these are two small examples, this lends itself towards a belief and

outlook that supposes that the majority of cheating can be learned by analysis of

the game-state as it develops.

This is also representative of and similar to the manner with which Overwatch

cases are reviewed by agents, which is an in-game system whereby players (i.e.

Overwatch agents) are given demo files of suspicious players in order to review

and determine whether a specific player within the demo file is cheating. Within

Overwatch cases, agents are given a portion of a demo file to watch to submit

their judgement. However, this obviously includes visual components whereby

agents are watching the game-play and events of the match rather than analyzing

the specifics of the game-state. This is mitigated by giving the network the same

information that an agent would use in their determination of guilt or innocence.

It is important to note that while the network maintains a memory cache

throughout learning, the network still utilizes the idea of individual considerations

that are seen within the basic feedforward networks. This simply means that the

cache is reset with each new consideration of a distinct demo file, since considerations

about the previous match do not affect the likelihood of cheating within the

subsequent match.

4.2 Long Short-TermMemory (LSTM)

Long Short-Term Memory (LSTM) is the prototypical recurrent neural network that

is present within the Keras library. This is the network of choice for this project due

to the fact that this network is specifically designed to avoid the vanishing gradient

problem [7], which is a phenomenon within deep learning whereby as the number

of layers increases, the more untrainable the problem becomes. This is especially

apparent when considering recurrent neural networks, because they are mitigating
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multiple successive layers of nodes with repeated cached inputs into the same

nodes. While, they are quite complex in their construction (see Figure 4.5), they can

simply be thought of as a network that has a parallel conveyor belt that layers and

nodes can output values to in order to access at a later point during the learning

process [7].

Figure 4.5: Anatomy of an LSTM cell [7]

4.3 Network Construction

The network is constructed quite arbitrarily, since most of the values or construction

decisions that are used in the network are derived through trial and error. This

means that the values, activation functions, etc., that end up producing the best

results are the ones that are typically chosen. Therefore, the input size of our first

LSTM layer is obviously dependent on three things: the number of demos that the

network is going to be tested upon, the number of ticks within each demo file, and

the number of different values within each tick. However, the number of neurons

within an LSTM layer is one of the most important architectural design decisions that

should be highly optimized. This stems from the fact that the number of neurons

within the LSTM layer directly affects the network’s memory capabilities. When
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the memory capabilities prove to be too insufficient, the network fails to handle

long sequences due to its internal memory constraints. Figure 4.6 demonstrates the

relationship between the amount of memory and the network’s subsequent ability

to handle a sequence. When the network memory is insufficient, the network forms

its predicted probability of cheating within the first 100 timesteps and does not alter

it based upon the latter information from the sequence. Whereas in ideal situations,

the network is constantly adjusting its predicted probability of cheating based upon

what it is seeing within the file and what it previously saw. Therefore, in order to

allow the network to properly handle sequences, a sufficient quantity of neurons

needs to be allocated within the recurrent layers.

Figure 4.6: Comparison of a network’s memory capabilities depending on the number of neurons.

The next layer is a simple dense layer, which takes in the previous values that are

returned from the LSTM layer and produces a single output, which is the predicted

probability of whether or not the player is cheating. Dense layers implement

the prototypical neural network feed forward: output = activation(dot(input,

kernel) + bias), where output is the value produced by a neuron, input is the

activation value to be used from the previous neurons, kernel is all the associated

weights, and this value is then given to the activation function. The activation

function for this layer is the sigmoid function since we want the network to output
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a probability of that player cheating in order to see the probability of cheating

associated with various players.

4.3.1 Gradient Descent

Gradient descent is the means with which the algorithm is optimized in order to

improve its predictive accuracy and lower its loss (hence the term “optimization

function”). The most prevalent analogy for understanding gradient descent is

imagining some sort of object (preferably a ball or something that can roll) and a

landscape with slopes (i.e. hilly terrain, or even a simple cereal bowl) [18]. Gradient

descent is tasked with getting the ball to the bottom of the landscape (i.e. some sort

of valley, or the bottom of the cereal bowl). This is analogous to the network reaching

a local minimum in regards to the amount of associated loss (see Figure 4.7).

Figure 4.7: Visual representation of gradient descent [20]

The gradient of a function is the direction of steepest ascent, which is simply

the direction with the largest slope. The gradient is used in order to find this

aforementioned area of low loss (i.e. the local minimum). However, rather than

looking at the direction of steepest ascent, we instead consider the negative of the

gradient, which is the direction of steepest descent. Therefore, when considering
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individual vectors to adjust in order to travel in the direction of steepest descent,

we use the following formula [12]:

−→
x′ = −→x − ε∇−→x f (−→x )

Here, ∇−→x f (x) is “the gradient of f [which] is the vector containing all the partial

derivatives” for some associated vector −→x [12]. Additionally, ε is the learning

rate, which is a misnomer, since it describes the size of the step that is employed

in order for determining the new associated weights and biases. Going back to

the hilly landscape analogy, if we allow the network to make large adjustments

in the direction of steepest descent, we may accidentally end up in regions and

positions with higher associated loss. This stems from the fact that rather than our

hypothesis space being a simple three-dimensional bowl or valley, it is instead on

the dimensional magnitude of tens, hundreds, thousands, or even potentially more.

This means that it is quite hard to imagine the appearance of our loss landscape,

since it is not as simple as rolling down a bowl-like object to the local minimum.

Therefore, the typical philosophy that surrounds learning rate is using very small

values in order to more efficiently approach areas of low loss [12].

4.3.1.1 Adam

Adam is “an algorithm for first-order gradient-based optimization of stochastic

objective functions, based on adaptive estimates of lower-order moments,” [15].

Adam essentially uses baseline stochastic gradient descent (SGD) combined with

all the best features of all the other contemporary and common-place deep learning

optimizers (those being AdaGrad and RMSProp). One of the main problems that

is encountered in deep learning projects is optimizing the learning rate of the

optimizer. “The learning rate of SGD, as a hyperparameter, is often difficult to

tune, since the magnitudes of different parameters vary widely, and adjustment is
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required throughout the training process” [30]. Therefore, numerous optimizers

exist in order to tackle this very problem, with the earliest being AdaGrad and

RMSProp (and eventually Adam). “These algorithms aim to adapt the learning rate

to different parameters automatically, based on the statistics of gradient” [30].

Overall, [15] demonstrates that for a large number of deep learning problems,

Adam outperforms standard SGD in the rate of convergence. Additionally, due

to these aforementioned benefits, Adam is currently one of the fastest growing

optimizers within the deep learning community. Therefore, this project employs

Adam due to its inherent benefits and strengths.

4.3.2 Activation Functions

Activation functions are used to “propagate the output of one layer’s nodes forward

to the next layer” [20]. Additionally, activation functions are a means of introducing

“nonlinearity into the network’s modeling capabilities” [20]. Activation functions are

a cornerstone to deep learning because without them, neural networks are simply

linear regression models, since we are simply modeling a scalar response. Therefore,

careful considerations must be taken in the development and employment of

activation functions within deep learning projects due to their massive importance.

Additionally, there are many different flavors or types of activation functions which

each have a niche within various types of neural networks.

Sigmoid is the main activation function that is present within this project’s

neural network (see Figure 4.8). It is specifically seen within our dense output

layer, since sigmoid outputs values as a probability between 0 and 1. As the input

approaches negative infinity, the output approaches zero, while, conversely, as the

input approaches positive infinity, the output approaches one. This is an intuitive

function for our project, due to the fact that we interested in developing a neural

network which can correctly produce confident (i.e. high probability) predictions
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on demo files, which are labeled on the bounds of the range of the sigmoid function,

i.e. 0 and 1. These two schemes (i.e. our labeling scheme and the sigmoid output

scheme) intuitively mirror each other.

Figure 4.8: The sigmoid activation function [20]

4.3.3 Dropout

Dropout is a method that is employed in order to combat overfitting within machine

learning tasks. Overfitting is a phenomenon in which the network attains a high

predictive accuracy and/or a low associated loss, yet it performs poorly when given

data that it has not seen before. The most desirable trait for neural networks is

generalizability, which is the ability for the network to learn generalizable traits

and characteristics from the initial training dataset, that also present themselves in

data points that fall outside of the training dataset. For example, imagine a scenario

where all the data points for this project boast cheaters that always perform very well

in the game. This lends itself to the potential that our neural network generalizes

the trait that cheating requires players to be performing very well. This significantly
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hinders the networks ability to generalize what cheating is on a broader scope,

since it has mistakenly correlated cheating with in-game performance. Therefore,

if we were to pass the network data points where the cheater is doing poorly, it

would most likely surmise that the cheater is clean. While this example highlights a

deficiency within the dataset during training, this type of phenomenon can occur

even in situations where the dataset is properly representative of the problem as

a whole. For example, this same correlation between in-game performance and

the likelihood of cheating is still entirely possible when given a diverse dataset,

since there is the possibility that the local minimum that is found by gradient

descent relies heavily on neurons that represent the various metrics for a players

in-game performance. Therefore, this raises the question: How do we circumvent

the potential pitfall of the network relying on a select number of learned patterns

that may not be entirely representative of the problem as a whole?

Dropout is the quintessential method that is employed in order to combat

overfitting within machine learning tasks. Dropout is a method whereby nodes

and their related connections are dropped during the training process [25]. The

decision for which nodes to drop is typically random, which embeds a bit of entropy

during the learning process. This allows the nodes within the neural network to

avoid “co-adapting” [25], which is the aforementioned idea of the network having a

heavy reliance on a single select set of nodes. Overall, there are relatively few, if any,

consequences with using dropout for machine learning tasks, since they typically

improve the network’s accuracy and reduce the number of required calculations

(since certain nodes are no longer being considered). The only potential consequence

could be the introduction of randomness and entropy into the training, however,

this typically does not result in lower predictive accuracies or higher loss [25].
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4.3.4 Loss Function

Loss functions are a means of evaluating the magnitude of the difference between the

network’s predicted target for a given input and the actual target. The hegemonic

and standard loss function within contemporary machine learning, which is typically

used as an initial baseline, is cross-entropy.

The choice for a loss function is quite obvious for this project, since we are only

concerned with the binary choice of whether a single player is cheating or not.

Therefore, this project uses binary cross-entropy, since we only have two labels, which

is the exact scenario where binary cross-entropy is typically employed.

Binary cross-entropy with two class labels is defined as a log-loss function:

−y(log(p) + (1 − y) log(1 − p))

Here, y is a “binary indicator,” meaning whether the prediction by the network is

correct (where 0 indicates being incorrect, and 1 indicates being correct), and p is the

predicted probability from our network that the input falls into some target class

[10, 12].

4.4 Padding andMasking

The input size for a neural network must remain constant. Therefore, it is essential

to define an input vector that is composed of numerous features that subsequently is

passed to the network in order for it to learn. However, one thing that is immediately

apparent when interacting with and viewing demo files, or video game matches in

general, is the fact that they have variable lengths. Some matches of Counter-Strike

are very short and can last only 20 minutes, while other matches can go into multiple

overtimes and take hours. Therefore, this presents an interesting dilemma when
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considering how we should construct and organize the data to give to the network.

The first baseline approach is to normalize all the demos to the same tick-length,

either capping all demo files to only be as long as the shortest file or extending all

the demos to fit the length of the largest file. This first approach might seem more

logical and feasible, but it ignores the main stipulation of cheating that this project

founds itself upon, this being that cheating is a gradient. Therefore, should we

artificially cap all the demo files to fit the length of the shortest file, we may clip out

the rounds or instances where a player begins or initiates their cheating. Therefore,

our only choice is to artificially extend all the demos to insure that we are passing

a constant sized input vector to the neural network. We accomplish this through

the inclusion of a special value, which is simply a number. The special value can

be arbitrarily defined, but should typically be a value that is not present within

the input vector (i.e. any of the features). For example, since view angles within

Counter-Strike are capped between 180 and −180 for side to side angles, and −89

and 89 for up and down angles, then any value that exceeds those bounds would

be an ideal special value.

In terms of implementation, we utilize padding, which means we insert input

vectors (i.e. additional artificial timesteps) that have the special value for every

feature. For example, if one demo is only 500 ticks, while our longest is 10000,

then we pad the demo file that has 500 ticks with 9500 timesteps with the special

value as every entry. This allows the network to learn that timesteps that are

composed entirely of special values are useless data points and that they should not

be used when making predictions. This is a strategy that Chollet emphasizes in his

construction of Keras neural networks, since many datasets that are grounded in

the real world have missing data points [7].

However, one of the main problems that can arise with the use of padding is the

addition of noise within the padded data points, which results from the network
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treating the padded values as real values. This is usually avoidable, should the

amount of padding be low in comparison to the average length of data points (i.e.

when the difference between the average length of a data point and the longest data

point is small). For example, padding a demo with 500 ticks with 9500 additional

timesteps would hinder the network’s ability to efficiently use that specific data

point, due to all the added noise from padding.

All of the problems that arise with the use of padding can be avoided with the

use of masking, which is simply a means of indicating to the network that timesteps

that are comprised entirely of features equal to the special value can be ignored.

The main downside with this approach is the fact that this is inherently inefficient

when it comes to space considerations, since we are forced to arbitrarily bloat our

data points in order to produce meaningful results. However, within the scope of

this project, this provides one of the only means of effectively using variable length

sequences within a recurrent neural network.

4.5 Batch Sizes

Batches are small subsets of the training dataset that are incrementally fed into the

network during training. There are many different philosophies and approaches

surrounding the quantity of data that the network should see before calculating the

gradient for gradient descent. Stochastic gradient descent’s intended batch size is

one, but the typical real-world strategy is to train on batch sizes larger than one to

introduce a bit of entropy, produce averaged gradients, and decrease the number of

calculations required since weights and biases are not being updated after every

data point [20]. Following this strategy, there are also mini-batch optimizers (e.g.

RMSProp), which are intended for training on batch sizes that range from two data

points to the entire dataset. These are highly specialized optimizers that retain all the
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aforementioned benefits but are also designed specifically for mini-batches. Finally,

there is full-batch training, whereby the network sees the entire training dataset

and predicts upon it before making any adjustments to weights and biases. This is

typically employed when the dataset is very repetitive, there are few target classes,

or there are not many features to optimize. All of these different philosophies and

strategies have their place within the deep learning field and their own benefits and

consequences.

The strategy that yields the lowest consistent loss and highest predictive accuracy

across different training sessions within the scope of this project is online training.

Online training is the use of batch sizes that are equal to one, i.e. weights and biases

are adjusted after every prediction. This is intuitive, due to the fact that masking is

currently unsupported within Keras when training on a graphics card. As the batch

size increases, more padding needs to be added to data points in order to normalize

their lengths. Following this, as the amount of padding increases, the network has

an increasingly difficult time learning from the random noise that is added as a

result from padding. Therefore, while in an ideal scenario, we would utilize batch

sizes that are greater than one in order to reap the aforementioned benefits with

larger batch sizes, the consequences associated with large batches when training on

a graphics card are too detrimental to warrant their usage.
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Implementation Specifics

There is a large quantity of dependencies that this project uses in order to properly

function. First, this project is based almost entirely within Python, with the only

exclusion being the cheats we developed in C++ for use in our dataset. Additionally,

our dependencies can be broken down into two basic categories, frontend and

backend. Frontend entails libraries and functions that are tailored for simple user

interaction and alteration. This includes constructing our neural network model,

plotting the various performance metrics of our network, and data preprocessing

methods. Backend entails the low-level libraries and functions that our frontend

methods are built on top of, e.g. TensorFlow, which handles all the inner-network

calculations and all the other nitty-gritty details associated with our neural network.

This frontend-backend distinction is one of the main reasons why Keras is one

of the most popular deep learning libraries today. This stems from the fact that

practitioners can build streamlined neural network models with Keras’s simplistic

frontend and not have to worry about implementing their own gradient descent

optimizer or vice versa. This allows networks to be built quickly and easily and is

the main reason why we choose Keras.

Our entire list of dependencies is as follows:

• Python - 3.7

• TensorFlow - 2.10

49
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• scitkit-learn - 0.22.1

• matplotlib - 3.1.3

• CUDA - 10.1

• NVIDIA GPU Drivers - 441.87

• cuDNN - 7.6.5

5.1 Training on Graphics Cards (GPUs)

The current trend for training neural networks on large datasets is to utilize a

graphics card (GPU) rather than a computer’s central processing unit (CPU), since

GPUs are very efficient at parallelizing the calculations that are required for gradient

descent. This means that GPUs easily outperform standard CPUs in regards to

training time. However, many of the large-scale libraries and other supporting

mechanisms that allow GPUs to be used within deep learning projects are still in

their infancy and practically on the bleeding edge of deep learning, meaning that

there are various features whose support has not yet been ported over to their GPU

counterparts. Additionally, they are constantly being updated and altered, which

can stymie the ease with which deep learning practitioners can get their hands on

this technology.

5.1.1 Batch Loading

While demo files within our project undergo a conversion pipeline that removes

all the unnecessary information that they contain, they still remain relatively large

(on the scale of hundreds of megabytes). Therefore, it is impractical to attempt to

load the entire dataset into memory before training. This leads us towards the use
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of batch loading, which is a strategy that utilizes generators in order to load the

demo files from disk only when they are needed for training by the network. This

changes up the training architecture, since rather than having our data points be

the multi-dimensional input arrays for each demo, we instead create a list of all the

filenames for each data point, which is then used for loading when that demo is

required for training.

The Demo_Generator class inherits from Keras’s Sequence class, which is simply

the “base object for fitting to a sequence of data, such as a dataset” [8]. The majority

of our class is based off the basic skeleton Sequence class from [8]. In order for

our generator class to function properly it must have three functions, __init__(),

__len__(), and __get_item__().

The constructor __init__() is quite self explanatory, but it declares and initializes

all the data members for the class, which are demo_filenames, labels, batch_size,

and special_value (see Listing 5.1). The member demo_filenames contains the

names of all the filenames which we wish to use during the training process of our

neural network, with labels being their associated targets (i.e. 0 for non-cheating

and 1 for cheating). The member batch_size is self-explanatory but is required in

order for us to properly pad batches, since all data points within the same batch

must have the same sequence length. Finally, special_value is the value that we

use for padding the shorter data points (i.e. some value that typically falls outside

the bounds of our features).

� �
1 def _ _ i n i t _ _ ( s e l f , demo_filenames , l a b e l s , batch_s ize ,

s p e c i a l _ v a l u e ) :
2 s e l f . demo_filenames = demo_filenames
3 s e l f . l a b e l s = l a b e l s
4 s e l f . b a t c h _ s i z e = b a t c h _ s i z e
5 s e l f . s p e c i a l _ v a l u e = s p e c i a l _ v a l u e
 	

Listing 5.1: The __init__() function
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The function __len__() is responsible for returning the number of batches that

the network will train on for each epoch (see Listing 5.2). We intuitively take the

ceiling of the number of demo files divided by the batch size, since Keras expects

the single non-uniform sized batch to be placed at the end of the training session.

For example, if we had a dataset of 10 points and a batch size of 3, then, since we

want to train on all 10 data points, we would need 4 different batches with the last

batch only containing the last data point.

� �
1 def __len__ ( s e l f ) :
2 return ( np . c e i l ( len ( s e l f . demo_filenames ) / f l o a t ( s e l f .

b a t c h _ s i z e ) ) ) . astype ( np . i n t )
 	
Listing 5.2: The __len__() function

The function __get_item__() is foundational within our class, since it is respon-

sible for preparing the data points for the network (see Listing 5.3). The expected

return for this function matches the same exact format that is used if all the data

points were loaded into memory at once, except for the fact that this contains only

a subset of all the data points. For example, the format of a single demo file is as

follows: 

tick1_ f eature1 tick1_ f eature2 . . . tick1_ f eaturep

tick2_ f eature1 tick2_ f eature2 . . . tick2_ f eaturep

...
...

. . .
...

tickn_ f eature1 tickn_ f eature2 . . . tickn_ f eaturep


This means each tick is an array of length num_features, and we append each tick

into an array of ticks. Then, we subsequently append every demo file into a single

list to arrive at our tensor, or multidimensional input array, for our neural network.

Therefore, our means of organizing a demo file can be boiled down into a slightly

complex lists of lists, with the smallest list being an individual time step.
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� �
1 def __geti tem__ ( s e l f , idx ) :
2 batch_x = s e l f . demo_filenames [ idx ∗ s e l f . b a t c h _ s i z e : (

idx + 1) ∗ s e l f . b a t c h _ s i z e ]
3 batch_y = s e l f . l a b e l s [ idx ∗ s e l f . b a t c h _ s i z e : ( idx + 1)

∗ s e l f . b a t c h _ s i z e ]
4 max = 0
5 l o a d e d _ f i l e s = [ np . load ( f i le_name ) for f i le_name in

batch_x ]
6 for f i l e in l o a d e d _ f i l e s :
7 i f f i l e . shape [ 0 ] > max :
8 max = f i l e . shape [ 0 ]
9 Xpad = np . f u l l ( ( s e l f . batch_s ize , max , num_features ) ,

f i l l _ v a l u e=s p e c i a l _ v a l u e )
10 for s , x in enumerate ( l o a d e d _ f i l e s ) :
11 seq_length = x . shape [ 0 ]
12 Xpad [ s , 0 : seq_length , : ] = x
13 return_value = Xpad , batch_y
14 return return_value
 	

Listing 5.3: The __get_item__() function

The process for preparing a batch using the Demo_Generator class is as follows:

first, we are given an idx which corresponds to a position within the dataset

(i.e. an index into our demo_filenames). We splice demo_filenames based off the

batch_size and idx values. We mirror this same process to grab the corresponding

labels for the data points within the batch that we are preparing. Next, we can

do any of the necessary preprocessing methods in order to prepare the data for

the network. This obviously requires us to initially load the demo files from disk.

The only preprocessing method we employ is padding, which only alters our data

points should the batch_size be greater than one. In order to pad our files, we

first need to identify the longest sequence within our batch; therefore, we iterate

through the data points and compare their sizes (i.e. file.shape[0]). After we

identify the maximum number of timesteps, we create Xpad, which is our list

of padded demo files. This utilizes NumPy’s full() function, which creates a

list of multidimensional arrays, which all have the previously found maximum
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length with each individual timestep intuitively having a length of num_features.

Additionally, all values within these full multidimensional arrays are the special

value. Following this, we iterate through our batch, and we find the length of

each sequence (i.e. seq_length) and splice all the values from that sequence into

the corresponding padded multidimensional array in Xpad. This is an important

structure, since it follows the prototypical padding convention of having padded

values occur exclusively on the right-most side of sequences. This concludes all the

preprocessing methods; therefore, we must return the batch and its corresponding

labels as a tuple (when using generators, the __getitem__() function is expected to

return tuples, and returning it in any other format is prohibited).

Preprocessing should typically be avoided within generator classes due to the

fact that it inherently slows down training. This stems from the fact that generators

alter the training pipeline to account for the fact that we are using a GPU for training.

The CPU, within the GPU generator training pipeline, is responsible for preparing

batches to subsequently hand off to the GPU for predictions and training. Therefore,

having complex preprocessing methods within the generator class can bottleneck

training, since the GPU hangs while waiting for a new batch. Therefore, for optimal

performance it is essential to develop a __getitem__() function that allows for the

GPU to be under constant use.

This class can be modified (and potentially enhanced) with the inclusion of a

on_epoch_end() function, which is designed to manipulate the data in between

epochs. An epoch is one training cycle where the neural network trains on the

full training dataset. Therefore, epochs are simply the total number of times the

network sees the entire dataset during the course of training. The most common use

for this function is to shuffle the data in between epochs. However, more complex

methods can be employed to alter the training process between each epoch.
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5.1.2 cuDNN Library

“NVIDIA cuDNN is a GPU-accelerated library of primitives for deep neural networks.

It provides highly tuned implementations of routines arising frequently in (Deep

Neural Network) applications” [19]. cuDNN proudly boasts that it is able to

handle deep learning tasks more efficiently (in terms of training time and overall

performance) while simultaneously consuming less memory than all alternative

deep neural network approaches. However, the main problem with using the

cuDNN Library in its current form is the lack of documentation and associated

information for both configuring the cuDNN Library for use and how to optimize

network performance.

The setup process for the cuDNN Library can impede and prevent one’s ability

to easily use this powerful library. This stems from the fact that all of the different

software libraries that interact with each other have specific versions that only

properly function with specific versions of the other software libraries. For example,

at the time of writing, TensorFlow’s documentation page for GPU support lists the

software library dependencies as follows:

• “NVIDIA GPU Drivers -CUDA 10.1 requires 418.x or higher

• CUDA Toolkit -TensorFlow supports CUDA 10.1 (TensorFlow >= 2.1.0)

• CUPTI ships with the CUDA Toolkit

• cuDNN SDK (>= 7.6)

• (Optional) TensorRT 6.0 to improve latency and throughput for inference on

some models” [28].

This software library structure daisy chains all the requirements together and can

make it very difficult to get all the components to properly work, since if one

requirement is installed incorrectly the entire library ceases to function properly.
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Additionally, in order to properly benefit from this library, we must use the

cuDNN specific layers within our front-end deep learning library (i.e. Keras). This

means that rather than using the typical LSTM() layer within Keras, we must instead

switch to the cuDNNLSTM() layer. While the original LSTM() layer still appears to use

the GPU for training with the cuDNN Library installed, it only uses the memory on

the GPU rather than using it to perform calculations. Therefore, it is essential to use

all the cuDNN supported front-end layers and features in order to get the most out

of the cuDNN library.

5.1.3 Lack of supported features

When Keras is running on a CPU, it has all of the aforementioned features and

strategies. This includes dropout, recurrent dropout, masking, and padding.

However, all of these features barring only padding are currently unsupported

when training on a GPU. There is currently progress being made on this front, with

TensorFlow (which is this project’s backend for Keras) recently adding full fledged

support for variable length sequences, meaning that padding and masking are no

longer necessary [27]. However, these features have yet to be ported over to Keras,

meaning that there is an inherent trade-off between training on a CPU and GPU.

Nevertheless, the massive speed gains that can be acquired through the use

of GPUs far outweighs the relative learning gains that can be had using the more

complex features that are bound to CPU usage. This stems from the fact that the

network can be trained and altered and retrained on a GPU multiple times before

the first training session completes upon the CPU. For example, the first training

epoch with this project’s entire dataset on a CPU is estimated at 44 hours, while

training for 15 epochs on the GPU takes 30 to 45 minutes. Therefore, it is inherently

only worthwhile to use the CPU to train the network in the case where the GPU

training proves to be too ineffective (i.e. it cannot learn). However, it is important
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to reiterate that there is good potential that training upon the CPU yields results

that surpass those that can be attained through training on a GPU.



58 5. Implementation Specifics



CHAPTER 6

Data and Implementation

Data and the means with which we implement methods on top of it is the main

crux of this project. A neural network is only ever as good as the dataset that it is

given. Therefore, properly sourcing the data, extracting the relevant information

from it, and eventually giving it to the network form the heart of the task of cheat

detection within Counter-Strike

6.1 Sourcing Data

The data within this project is from a multitude of different places, each having their

own benefits, consequences and caveats. First, it is essential to identify the basic idea

that players who are actively cheating do not inherently want to “give themselves

up,” i.e. donate evidence of themselves actively cheating. This is obviously due to

the fact that it presents the possibility that their personal user-data is publicly known

and thus their account has the possibility of being banned for cheating. Therefore,

since we do not have much ability to retrieve data directly from the source (meaning

from cheaters themselves), we instead rely on Counter-Strike’s Overwatch system.

Overwatch is a system that flags various players who exhibit potentially suspi-

cious behavior or have been reported by multiple other players. The demo file of

their game is sent to trusted Overwatch members, who are tasked with watching

a portion of the demo file and subsequently submitting a feedback survey stating

59
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whether the user thinks the player is cheating. These files are anonymized and

given to users in a unreadable format that cannot be converted using the aforemen-

tioned demo-to-plain text conversion application. However, GitHub user takeshixx

created a repository that sources the demo files in their typical demo format and

downloads them to extract player information from the Overwatch case. This is

an immensely powerful and helpful tool that allows Overwatch users to identify

the account information associated with the suspected cheater. This means users

can verify whether the player has already been banned for cheating, which helps

provide Valve with more accurate survey data for Overwatch.

Some liberties have been taken with takeshixx’s codebase, and some mod-

ifications have been made in order to ameliorate it so it is more suited for this

project’s goals. The workflow for this method is as follows: First, download an

Overwatch case while takeshixx’s overwatcher application is running in order to

retrieve the user-information within the Overwatch case. The demo file is added

into the dataset directory in case it is needed for future use. One convention that

the demo files use is anonymous labeling of the players within the game. There is a

pool of potential names that are randomly given to each player within the demo.

However, takeshixx’s application circumvents this since it finds the original demo

files online and extracts relevant information from that. Additionally, the player

that is suspected of cheating is labeled as “The Suspect” within these demo files.

Therefore, one of the first crucial steps in labeling the demo file is identifying the real

username of “The Suspect.” This all stems from the fact that the Overwatch cases

are given to agents in an unreadable format that cannot be converted to plain text;

therefore, correctly correlating all the real usernames with the random anonymized

ones is quintessential to properly labeling the data, since we need to be able to

access the plain text format of the demo file in order to extract relevant information

about the game to subsequently be given to the neural network. Next, we view the
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demo file and label it, which boils down to either labelling the player as a cheater or

legitimate player.

This project uses 400 data points, with 200 of those points including cheaters

and the other 200 not containing any cheaters. We differentiate between demo files

and data points because demo files are from the point of view of the server, while

data points are our generated tensors that are through the point of view of the

player in question. During the data collection phase, more than 400 demos were

encountered, but many are unfortunately unusable due to a multitude of issues, the

most common being the incorrect game mode.

Additionally this project employs a labeling scheme for the various types of

cheating and non-cheating files within the dataset. The labels are as follows: −1

symbolizes that there is no cheating within the demo file, 0 means that there is no

conclusive evidence in regards to whether there is cheating or not, 1 is a catch-all

cheating label and implies that there is cheating within the demo file beyond a

reasonable doubt, and, finally, 2 symbolizes that the demo file seems to have cheating

within it, but it is not beyond a reasonable doubt.

6.2 Data Conversion Pipeline

The data within this project takes a lot of different forms before it eventually passes

through the network in order to be predicted upon. Thus, this project uses a data

conversion pipeline that synthesizes and filters the demo files down into a more

palatable form that can be used by our neural network.

6.2.1 Converting Demo Files to Text Files

Valve’s demoinfogo.exe application is the tool this project uses to convert demo

files to text files. However, these text files in their native/vanilla form lack a crucial
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detail that allows the maximum amount of data to be scraped from these files,

this being a means of identifying the correlation between a player’s username and

an entityID. Almost every object within a match is an entity with an associated

identification number (i.e. entityID), e.g. weapons, players, props, etc. These

numbers are immensely important because one of the main points of data within the

demo files are Entity Delta updates, which are packages of information distributed

between clients and the server that contain a change in various entity values (see

Listing 6.1). Entity values are things such as the x, y, z position, pitch, yaw, velocity

in the x, y, and z directions, and other similar values. The second caveat is that all

of the game events that are contained within the ticks between the clients and the

server are things within the game that produce a sound or alter the game-state in a

major way (e.g. weapon_fire produces a sound, while round_start commences a

round within the match). This means that if we only rely on the game events to

source information from the demo file, we miss all the events that players perform

that do not produce a sound. For example, players can move soundlessly in the

game if they hold the shift key, and additionally, players do not produce any sounds

when they adjust where they are looking. This entire schema means that relying

purely on game events significantly hinders the amount of information that we can

extract from the demo files. Therefore, the code library that generates and compiles

the demoinfogo.exe application has been modified to output every player’s entity

number and username at various points within the game.

� �
1 E n t i t y Delta update : username : Anonymous , id : 3 , c l a s s : 4 0 ,

s e r i a l : 8 3 9
2 {
3 Table : DT_CSPlayer
4 F i e l d : 1 , m_nTickBase = 4557
5 F i e l d : 2 , m_vecOrigin = −1566.161011 , 600 .366577
6 F i e l d : 4 , m_vecVelocity [ 0 ] = −3.104770
7 F i e l d : 5 , m_vecVelocity [ 1 ] = 55 .471664
8 F i e l d : 20 , m_angEyeAngles [ 0 ] = 353 .430176
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9 F i e l d : 21 , m_angEyeAngles [ 1 ] = 92 .186279
10 }
 	

Listing 6.1: Entity Delta Update

Additionally, all the game events within the game are modified to also include

all the necessary metadata associated with the player that performed that game

event. For example, since Entity Delta Updates include the velocity in the x, y, and

z directions for a player/entity, those values are also added to the game event.

Finally, there are a lot of organizational changes that are made to the

demoinfogo.exe application in order to bundle information more efficiently. For

example, game events take on a form that is similar to a JSON format/Python

dictionary (see Listing 6.2), therefore alterations are made to allow the Entity Delta

Updates to take a similar form.

� �
1 p l a y e r _ f o o t s t e p
2 {
3 user id : Anonymous ( id : 1 0 )
4 p o s i t i o n : 2971 .985107 , −122.186562 , 1613 .031250
5 f a c i n g : p i t c h : 0 . 6 7 0 1 6 6 , yaw: 2 1 3 . 1 8 9 6 9 7
6 e n t i t y : 9
7 team : T
8 }
 	

Listing 6.2: player_footstep game event

6.2.2 Synthesizing Important Information

Synthesizing important information from demo files is a crucial step in the pipeline

due to two reasons, first, demoinfogo.exe dumps all the information from the demo

file into a plain text document. The majority of the information from the demo

file is entirely useless for the purposes of this project, and these plain text files can

reach up to sizes of five or more gigabytes (when considering professional matches).
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Therefore, when we are considering a dataset that is of the magnitude of hundreds

of demo files, having files that are needlessly large is unwarranted and unwanted.

Therefore, we develop a intermediary parsing method to extract only the essential

information from each file in the dataset.

Therefore, building off the previous section, we want to extract all of the Entity

Delta Updates and game events since those are the two main hubs where information

is stored for a single match of Counter-Strike. However, this is easily the most difficult

step in the entire pipeline due to the basic structuring of demo files. This stems

from the fact that each event differs in the information it exchanges between clients

and the server, entityID values change constantly depending on which players are

currently connected to the server. If there are non-player entities (i.e. bots) who

join the server to replace players who disconnect unexpectedly, these bots are in

turn treated differently when compared to a normal player, and many more reasons.

Therefore, constructing methods that synthesize the important information and

that are also generalized enough to be able to handle all the different potential

cases that arise during matches of Counter-Strike is quite challenging. This project

accomplishes this feat through the Scrape_Demo class.

6.2.3 Organizing Scraped Information into Time Steps

The construction of our sequences is the single most important factor that enhances

or degrades the ability for our neural network to learn and identify the patterns

within our dataset. Our sequence is our aforementioned tensor; therefore, we use

these terms interchangeably. Each individual time step needs to be composed

of accurate metrics (i.e. features) that properly correlate with whether a player is

cheating. For example, a time step that only includes the names of all of the players

within the game is not something that allows the network (or even a human being)

to determine whether someone is cheating. Therefore, each time step is constructed
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and segmented into different portions that correlate with information that helps to

determine whether a specific player is using a single specific cheat.

6.2.3.1 Game-Assistance Based Cheats

We can break down game-assistance-based cheats into two basic categories that

are representative of the two main mechanics that cheaters employ assistance

applications with, those being movement based cheats and aim assistance cheats.

While there are other ways of interacting with the game environment outside of

moving and shooting, these directly influence the cheater’s ability to win games,

thus making them ideal candidates for the development of cheats.

6.2.3.2 Movement Based Cheats

In order to identify whether players are using movement based cheats, we have

to include values within each time step that model how the player is moving

through time. Therefore, the first values that are obvious to include are all of

the players’ positions within each time step. These values allow us to derive the

more important metrics such as the distances between the cheater and all other

players within the game. This is important because one of the most prevalent

cheats within Counter-Strike is denoted as “spinbotting,” which is a cheat whereby a

player employs aim-assistance, vision-assistance, and “B-Hop”-assistance, whilst

simultaneously spinning around in circles to make it hard for other players to

accurately hit them. This type of cheater is always moving towards enemy players

in order to eliminate them. Additionally, this allows us to create a metric that stores

the change in distance between all the other players and the cheater between each

time step.

The next obvious metric to include to combat movement-based cheats is the

velocity of the cheater throughout each time step. Players who are cheating and
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employing methods such as “B-Hop”-assistance have higher velocities than those

who do not employ those cheating methods. Much like the locations and distances

we also include the change in velocity between each time step, since players who are

using “B-Hop”-assistance are moving at high speeds, which means that the delta in

velocities between time steps is generally larger than that of non-cheating players.

6.2.3.3 Aim-Assistance Cheats

Aim-assistance cheats are some of the most researched cheats within the scholarly

world, therefore there is an abundance of possible metrics that we can employ in

order to aid our network in determining whether someone is cheating. The first

and baseline values that we pass to our network is where the cheater in question

is currently looking. This establishes a baseline and should help the network in

identifying “spinbotters,” since one of their main characteristics is that they are

looking at the ground and spinning around. Therefore, should the network see that

a player is constantly looking at the floor then they have a higher chance at being a

“spinbotter.”

Next, much like all the other metrics, we also use the delta or change in where the

player is looking at each time step. Cheaters who employ aim-correction applications

have larger deltas between time steps since aim correction applications rewrite

the cheaters current pitch and yaw with the requisite values to be looking/aiming

at an enemy player. Additionally, we can conceive of a velocity metric, which is

an analysis of the change in the pitch and yaw values over a certain number of

previous time steps. This helps in the aforementioned analysis of aim correction,

since this value will typically reach inhuman numbers/levels when players employ

aim-assistance.

The final and most important values are similar to the delta, but they are instead

the values for pitch and yaw that an aim-correction application would use based on
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the current positions of all the other players at that current time step. Much like the

velocity, we use this value over multiple time steps (typically adjacent ones), since

if the aim was corrected during the previous time step to that exact value, then we

know without a doubt that a cheat was used between the two time steps, because

we calculate these necessary pitch and yaw values in the same exact manner and

methods that cheaters employ when using aim-assistance.

6.2.3.4 Knowledge-Based Cheats

Knowledge-based cheats are the hardest to create metrics for determining whether a

player is cheating or not. This stems from the fact that it is typically the hardest type

of cheat to determine, since it is not something that is always visually blatant. For

example, if a player has a knowledge hack that renders the enemy players’ positions

on the in-game mini-map, the cheater has a general understanding of where the

opponents are, but not a pin-point location. However, the most visually blatant

knowledge-based cheat is wallhacks when the cheater is not actively attempting

to hide the fact that they are cheating. This is seen through the player constantly

looking and aiming at enemy players through walls. Therefore, the only metric that

we can use to determine whether a player is using knowledge-based cheats is use

of the same aforementioned delta analysis between where the cheater is currently

looking and the angles that are required for them to be looking at an enemy player.

6.3 Scrape_Demo Class

Scrape_Demo is the class that is responsible for storing/tracking various meta-values

for a demo file whilst iterating through it. These meta-values include the filename

for the demo, the desired output filename to write the scraped information, the

current tick value that the iteration/loop is at, a list of all the events within the demo
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file, a dictionary of all the players in the game, and a dictionary to convert names

to xuid values (which are special unique identifiers for accounts within the game

library, Steam, that houses Counter-Strike).

6.3.1 Scrape_Demo function

The Scrape_Demo function does the initial heavy lifting in order to properly convert

a bloated demo file into a smaller more palatable scraped demo file. The main

means with which it achieves this end is through the use of regular expressions.

The fundamental regular expression is:

((?:tick: ([0-9]+))|(?:Entity Delta update: name:([^\n]*?),

id:[0-9]+, class:[0-9]+, serial:[0-9]+ ({[^}]*\}))|

(?:([a-zA-Z]+[_ ][a-zA-Z]+)\r?\n\{\r?\n(?:.*?\}\r\n)))

The regular expression (REGEX) has three main match cases, the first being

(?:tick: ([0-9]+)), which simply matches the current tick value in a capture

group (see Listing 6.3).

� �
1 −−−− CNETMsg_Tick (12 bytes ) −−−−−−−−−−−−−−−−−
2 t i c k : 121782
3 host_computationtime : 11016
4 host_computat iont ime_std_deviat ion : 1317
5 h o s t _ f r a m e s t a r t t i m e _ s t d _ d e v i a t i o n : 86
 	

Listing 6.3: CNET message with associated tick

The next two cases that the REGEX matches are Entity Delta updates and game

events, which use:

1. (?:Entity Delta update: name:([^\n]*?), id:[0-9]+, class:

[0-9]+, serial:[0-9]+ ({[^}]*\}))
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2. (?:([a-zA-Z]+[_ ][a-zA-Z]+)\r?\n\{\r?\n(?:.*?\}\r\n)))

These two match cases mirror each other in their form, where we employ a non-

capture group to get the name of the event (i.e either an Entity Delta update or some

type of game event), and a capture group to grab all the important information

within the respective event. The main means with which they differ is through the

use of a capture group for the name of the player within the Entity Delta update,

which stems from the inherent structural constraints for Entity Delta updates (i.e.

we cannot easily mirror the fact that game events have the username field within

the event itself within Entity Delta updates).

Therefore, using Python’s re library, we compile the regular expression, open

the file which we wish to scrape, and use the findall() function in order to find all

the matches within the file (i.e. all the ticks, all the Entity Delta updates, and all the

game events). All of these matches are stored within a list which we parse through

to further remove unnecessary matches. The majority of Entity Delta updates and

game events differ in the amount of relevant information that they contain. For

example, some may include the new position that the player is currently in while

some may not, since there is potential that the player has not altered their position

between the previous time step and the current one. Therefore, one of the essential

tasks of this iteration through all the game events is to only retain the events that

contain at least one important metric (i.e. position, velocity, or pitch and yaw).

Since we have combined all the different cases we want to match into a single

regular expression, when we iterate through the list we have to check which match

groups actually contain matched information. The regular expression contains six

different match groups. The first is Group 0, which is the entire matched string (i.e.

the entire tick message, the entire Entity Delta update, or the entire game event).

Next, Group 1 contains the current tick value if matched, while Group 2 stores the

username of the current player in an Entity Delta update and 3 stores the respective
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content of that Entity Delta event. Finally, Group 4 contains the name of the game

event, while Group 5 contains the respective content for that game event. Therefore,

in a single iteration during our loop through all the scraped information in the

demo file, we simply check which match group is non empty in our event list that is

returned from the findall() function.

The next step is to extract the important information from the event, which

begins by declaring and initializing all of the desired values which we wish to extract

from an event (i.e. the position, velocities, and pitch and yaw). Then we utilize

event-specific regular expressions to match the aforementioned desired information.

For example, while game events present positional information as position: x, y,

z, Entity Delta updates store them as m_vecOrigin = x, y and m_vecOrigin[2] =

z. This means that we need specialized regular expressions in order to properly

extract the important information from the demo event (i.e. game events, Entity

Delta updates, or ticks).

Within the code block that is responsible for the extraction of information from

game events, we have specific and special game events that we treat differently

from all the other types of game events, these being: player info, player_team,

player_death, and player_hurt.

6.3.1.1 player info

player info events are the initial events that we iterate towards during our parse,

since these are typically the first events that human players incur within the

game. These allow us to determine which players are within the match, which we

subsequently use to append to the Scrape_Demo class’s player_list private member.

Additionally, this allows us to retrieve a player’s unique xuid, which is a unique

value given to every account within the game library that houses Counter-Strike (see

Listing 6.4). These are always preferable to use rather than a player’s username,
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since it is thoroughly defined as a number that begins with 76561198 and never

changes. This is contrasted by the fact that usernames can contain practically any

writable character, including special escape characters, and they can constantly

change throughout the match. For example, \r and \n are valid characters that

properly function within names, which allows for players to create usernames that

interfere with the way in which fields and entries are organized within demo files.

Fields and entries within Entity Delta updates and game events are delimited with

\r\n, meaning they take the form: position: x, y, z \r\n facing: pitch: p,

yaw: y \r\n.... Therefore, names that include those characters hinder our ability

to extract information.

� �
1 player i n f o
2 {
3 adding : t rue
4 xuid : 7 6 5 6 1 1 9 8 . . .
5 name : Anonymous
6 userID : 3
7 guid : STEAM_1 : 1 : . . .
8 f r iendsID : . . .
9 friendsName :

10 fakeplayer : 0
11 i s h l t v : 0
12 filesDownloaded : 0
13 }
 	

Listing 6.4: player info game event

6.3.1.2 player_team

player_team game events are the next game events that require special treatment,

due to the fact that they are responsible for players joining the match, leaving

the match, and switching teams. They have two main uses: first, determining

which players within the match are actual players and which ones are spectators or
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observers, and second, adding new bot names to Scrape_Demo’s player_list data

member when they join the server to replace a human player that disconnected.

Counter-Strike has two basic teams, the attacking team and the defending team,

however, there is an additional team specifically devoted to spectators. Spectators

can switch between all the players in the match and watch any player’s point

of view during the game. Additionally, there is the concept of observers, which

are analogous to cameramen within sporting events, since they are responsible

for dictating which player’s point of view is displayed to the audience during

tournaments and professional matches. Observers only appear in tournaments and

professional matches, meaning that the typical Overwatch case does not have any

observers (and rarely spectators either). Nevertheless, these players are treated

much like all the other real players within the match, since they can enact or induce

certain game events as if they were a real player. Therefore, it is essential to flag

and identify these players so that their game events are ignored.

Next, players often have unforeseen technical issues that result in them dis-

connecting from the match. Counter-Strike attempts to remedy these situations

by allowing a bot to take the place of the disconnected player. These bots can be

taken over by real players, basically acting as a second life for that specific player.

Therefore, in order for us to be able to properly handle this, we need to always

keep track of which players are currently connected and disconnected, which also

subsequently means we need to keep track of the bots that are currently within the

game as well.

The important metrics within a player_team event are the disconnect and

team fields (see Listing 6.5). disconnect can either be 0, meaning that the player

is reconnecting to the game (or connecting for the first time, in the case that it

is a bot replacing a player), or 1 meaning that the player or bot is disconnecting.

The team field indicates which team the player is switching to. This can be four
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different values: 0 for a player that is no longer in the game, 1 for spectators, 2 for

the attacking team, and 3 for the defending team.

� �
1 player_team
2 {
3 user id : Anonymous ( id : 3 )
4 t i c k b a s e : 450
5 f a c i n g : p i t c h : 1 . 4 2 2 7 2 9 , yaw: 3 2 9 . 2 7 6 7 3 3
6 e n t i t y : 3
7 team : 2
8 oldteam : 0
9 disconnect : 0

10 autoteam : 0
11 s i l e n t : 0
12 i s b o t : 0
13 }
 	

Listing 6.5: player_team game event

6.3.1.3 player_death

The player_death event is one of the most important events within this project

and Counter-Strike demo files as a whole. This is due to the fact that it involves

multiple players, which means we treat them as multiple different events (i.e. get

all the necessary metrics for all the players involved in the event). Additionally,

these allow us to analyze how the player is performing throughout the match in

terms of in-game performance (i.e. kills, deaths, assists, damage done, etc.).

Overall, we can treat a player_death event much like any other game event, just

with the added stipulation that we need to track which player died, which player

was the killer, and which player assisted, if there was one (see Listing 6.6). However,

this requires the creation of the Player class, in order to efficiently organize all the

pertinent information.

� �
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1 player_death
2 {
3 user id : Anonymous_2 ( id : 5 )
4 p o s i t i o n : −625.223145 , 711 .190857 , −33.999344
5 vecs : 33 .898331 , −94.573013 , 0 .000000
6 t i c k b a s e : 7545
7 f a c i n g : p i t c h : 3 5 4 . 8 3 0 9 3 3 , yaw: 1 9 . 6 0 5 1 0 3
8 e n t i t y : 4
9 team : T

10 a t t a c k e r : Anonymous ( id : 3 )
11 p o s i t i o n : 55 .030094 , 925 .404358 , 74 .876999
12 vecs : 0 . 0 0 0 0 0 0 , 0 . 0 0 0 0 0 0 , 0 .000000
13 t i c k b a s e : 7545
14 f a c i n g : p i t c h : 9 . 7 2 8 3 9 4 , yaw: 1 9 7 . 0 0 6 8 3 6
15 e n t i t y : 10
16 team : CT
17 a s s i s t e r : Anonymous_3 ( id : 9 )
18 p o s i t i o n : −18.733099 , 899 .216797 , 61 .064739
19 vecs : 0 . 0 0 0 0 0 0 , 0 . 0 0 0 0 0 0 , 0 .000000
20 t i c k b a s e : 7547
21 f a c i n g : p i t c h : 1 5 . 1 8 8 5 9 9 , yaw: 1 9 6 . 5 7 2 8 7 6
22 e n t i t y : 8
23 team : CT
24 a s s i s t e d f l a s h : 0
25 weapon : revolver
26 weapon_itemid : 17506698137
27 weapon_fauxitemid : 17293822569103491136
28 weapon_originalowner_xuid : 7 6 5 6 1 1 9 8 . . .
29 headshot : 0
30 dominated : 0
31 revenge : 0
32 wipe : 0
33 penetrated : 0
34 noreplay : 0
35 }
 	

Listing 6.6: player_death game event

6.3.1.4 Player class

The Player class is a very simple class that is only concerned with tracking the

various player statistics throughout the duration of a demo. Each player object has

11 data members, those being playername, xuid, kills, deaths, assists, adpr,
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headshots, total_shots, remove_player, num_game_events, and wallbangs (see

Listing 6.7). The majority of these are self-explanatory, except for adpr, total_shots,

and wallbangs. First, adpr is a metric that stands for average damage per round.

All of the various weapons within Counter-Strike that players can use vary in the

amount of damage that they inflict should the player accurately hit an enemy

player. Additionally, there are portions of the enemy player models that if hit, deal

more damage (i.e. receive a damage multiplier). Therefore, since cheaters typically

have augmented aim, they tend to receive the damage multiplier more often than

non-cheating players.

Next, total_shots is a slight misnomer but mimics that way in which Counter-

Strike calculates player-specific accuracy metrics (i.e. headshot accuracy). When

Counter-Strike estimates the relative accuracy of a player (i.e. the ratio of times they

receive the damage multiplier over the times that they did not), it only considers

the times in which the player accurately hits an enemy player. This is contrasted by

the true accuracy of a player, which would be the ratio of the number of shots that

accurately hit an enemy player over the total shots fired (i.e. those that hit enemies

plus those that do not). This mostly stems from the fact that there is a gameplay

tactic called spamming, in which a player attempts to blindly fire their weapon

at a map location that may or may not contain an enemy. Therefore, this would

artificially lower most players true accuracy and result in it not being representative

of the how often the player attempted to accurately hit an enemy.

A wallbang is a shot that penetrates an object in the game’s environment before

hitting an enemy player. The name stems from the fact that walls tend to be the

most penetrateable objects within maps. The wallbangs field tracks these. This is

one of the easiest metrics to determine whether a player is cheating or not due to

the fact that a lot of cheaters employ methods that allow them to know the locations

of enemies through walls. This in turn allows them to fire shots through these
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aforementioned walls and get hits/kills that a normal player would never get. A

wallbang is not something that is exclusive to cheaters; normal players can perform

them too, but they tend to receive far fewer and attempt far fewer than cheaters.

The num_game_events and remove_player data members are both metrics

designed to ease our ability to determine whether an entity within the game is a

real player rather than a spectator or observer. If a player joins the spectating team

during the demo, then we know that they are not one of the 10 real players within

the match, since the ability to join the spectating team is prohibited to those 10

players. Additionally, should that initial approach not remove all the unnecessary

players within the demo, we can analyze the total number of game events that

each player incurred during the match. Real players have heaps more game events

than spectators and observers (and even bots for that matter). Therefore, simply

comparing the total number of game events provides a supplementary method for

identifying the 10 real players within the match.

� �
1 c l a s s Player ( object ) :
2 def _ _ i n i t _ _ ( s e l f , playername , xuid ) :
3 s e l f . playername = playername
4 s e l f . xuid = xuid
5 s e l f . k i l l s = 0
6 s e l f . deaths = 0
7 s e l f . a s s i s t s = 0
8 s e l f . adpr = 0
9 s e l f . headshots = 0

10 s e l f . t o t a l _ s h o t s = 0
11 s e l f . wallbangs = 0
12 s e l f . remove_player = Fa lse
13 s e l f . num_game_events = 0
 	

Listing 6.7: The Player class
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6.3.1.5 player_hurt

The player_hurt game event is quite similar to player_death in terms of organi-

zation, but differs mostly in the terminology used for various fields (see Listing

6.8). For example, rather than specifying whether the shot that injured/hurt the

player was a headshot or not, it instead lists the hitgroup, which is the collection

of different body parts on the player models within the game. Additionally, the

player_hurt event provides us with the amount of damage the attacker applied to

the hurt player, which we can then use to update the various player performance

metrics. Finally, much like player_death, we can treat this as two separate events

for the two players involved. This is only possible with inbuilt functionality that

handles this specific event, since rather than using re’s search function to find

the first occurrences of position, velocities, and pitch and yaw, we must use re’s

findall function in order to properly extract all the relevant information.

� �
1 player_hurt
2 {
3 user id : Anonymous ( id : 1 0 )
4 p o s i t i o n : 1180 .895386 , −597.700012 , 132 .237579
5 vecs : −39.881027 , −52.565716 , 0 .000000
6 t i c k b a s e : 27146
7 f a c i n g : p i t c h : 3 . 0 9 2 6 5 1 , yaw: 1 8 2 . 2 7 9 6 6 3
8 e n t i t y : 9
9 team : CT

10 a t t a c k e r : Anonymous_2 ( id : 2 )
11 p o s i t i o n : 274 .065155 , −636.064331 , 96 .031250
12 vecs : 2 . 3 7 1 8 0 2 , −72.996651 , 0 .000000
13 t i c k b a s e : 27145
14 f a c i n g : p i t c h : 3 5 6 . 0 9 9 8 5 4 , yaw: 1 . 6 9 1 8 9 5
15 e n t i t y : 2
16 team : T
17 heal th : 51
18 armor : 92
19 weapon : ak47
20 dmg_health : 49
21 dmg_armor : 7
22 hitgroup : 1
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23 }
 	
Listing 6.8: player_death game event

6.3.2 Constructing Input

After a file is scraped, it must undergo the next part of the prepossessing pipeline,

which entails the conversion from the list of game events which was produced by the

Scrape_Demo function into a sequenced format (i.e. a bunch of multi-dimensional

arrays). The sequenced format is simply a special list with each entry being a time

step of the demo. Therefore, parsing of the game events is as follows. First, identify

the 10 players within the demo file and give each a unique identifier (an integer),

with the player of interest (i.e. the player being analyzed whether they are cheating

or not) getting identifier 0. The unique identifiers range from 0 to 9 and are used to

determine the indices of various features for each player. After all the players are

added to the list, we can begin crafting time steps, which means grouping all the

distinct game events that occur at the same tick into a single time step array. This is

a two part process. First, we must append all the game event information to the list

(i.e. all the players’ positions, pitches and yaws, etc. from the same tick). Then, after

all of the baseline information is added, we calculate the various aforementioned

cheat detection metrics (i.e. aim correcting angles, deltas between time steps, etc.).

After all the events are parsed, we write this to disk in order to use it for batch load

training for our neural network.

When analyzing a single event within the game events file, each has 20 different

entries: the tick number, the name of the game event, the player’s xuid or name

(should they be a bot), the x, y, and z positions, the velocities in the x, y, and

z directions, pitch, yaw, kills, deaths, assists, adpr, headshots, wallbangs,

total_shots, headshot_percentage, and wallbang_percentage (see Listing 6.9).
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When constructing the array for a single time step, we only need 17 out those 20

entries, since the tick number, event, and name are all irrelevant when it comes to

training our neural network.

� �
1 o f f s e t = p l a y e r _ l i s t _ [ curr_player_xuid ]
2 # e v e n t l i s t ’ s f o r m a t p e r e v e n t [ t i c k , event , name , x , y ,

z ,
3 # vec0 , vec1 , vec2 , p i t c h , yaw , k i l l s , d e a t h s , a s s i s t s ,

adpr ,
4 # h e a d s h o t s , wa l l bangs , t o t a l _ s h o t s , h e a d s h o t _ p e r c e n t a g e ,
5 # w a l l b a n g _ p e r c e n t a g e ]
6 i n i t _ v a l = o f f s e t ∗ 17
7 i tem_index = 3
8 while i n i t _ v a l < i n i t _ v a l + 1 6 :
9 i f ( item_index < 11) :

10 # raw v a l u e s from t h e f i l e ( i . e . d e c o d e t h e s e
b y t e s )

11 input_vector [ i n i t _ v a l ] = f l o a t ( item [ item_index ] .
decode ( ) )

12 e lse :
13 # a r t i f i c i a l l y c a l c u l a t e d v a l u e s ( i . e . no d e c o d i n g

)
14 input_vector [ i n i t _ v a l ] = f l o a t ( item [ item_index ] )
15 i n i t _ v a l += 1
16 i tem_index += 1
 	

Listing 6.9: Loop responsible for extracting values to be placed into the input array

Therefore, the first 170 entries within our crafted time step are these 17 values

that we grab directly from the game events list. Additionally, with the use of an

offset value to index into the proper position within the time step vector, all players

occupy subsequent length-17 partitions of the vector (i.e. entries 0-16 correspond to

player with unique identifier 0, 17-33 to player with unique identifier 1, etc.).

While looping through the list of game events, we keep an internal variable that

tracks the current tick. Once we encounter an event with a different tick, we know

that we have added all the possible players into the current time step vector (i.e.

the baseline 170 values), and we can then calculate all the supplementary cheat
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detection metrics (see Listing 6.10). After these values are calculated we can add

the crafted time step vector into a list of all the time steps. This is subsequently

followed by writing that list to disk in order to be used by our generator during the

training of our neural network.

� �
1 i f c u r r _ t i c k != item [ 0 ] and c u r r _ t i c k != ’ 0 ’ :
2 c u r r _ t i c k = item [ 0 ]
3 write = True
 	

Listing 6.10: Verifying that we are still iterating on the same time step

One of the design principles that is present within our construction of time steps

for the neural network is continuity of players in the game environment. This stems

from the fact that Entity Delta updates only provide us with deltas in player metrics,

meaning we only see the values that have changed for a single player between time

steps. This means that while an Entity Delta update may only provide us with, for

example, a new pitch and yaw value, we have to assume that the player is in the

same location as their previous time step. Therefore, when we build time steps, we

have to iterate through the entire vector, find any 0 or 0.0 values which indicate

that that value is not present within any of the game events or Entity delta updates

within that time step and replace those empty values with the non-empty ones from

the previous time step (see Listing 6.11).

Additionally, to ensure that the network does not learn how to distinguish

between 128 tick demos (which are primarily non-cheating files) and 64 tick demos

(which are primarily cheating files), we employ multiple tick reduction methods.

We achieve this through the use of reduce and mod_counter variables. The reduce

variable is the value by which we wish to reduce the amount of Entity Delta updates,

meaning if reduce is equal to 4, we reduce the amount of ticks within the demo

file by a factor of 4 (e.g. if there are 400 Entity delta updates, we reduce it to 100
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Entity Delta updates). The mod_counter variable counts the number of Entity Delta

updates that have occurred and is subsequently used in conjunction with reduce

and the modulus operator to employ synthetic tick reduction (see Line 1 in Listing

6.11).

� �
1 i f ( mod_counter % reduce == 0 and item [ 1 ] == b ’ E n t i t y �

Delta �update ’ ) or item [ 1 ] != b ’ E n t i t y � Delta �update ’ :
2 i f item [ 1 ] == b ’ E n t i t y � Delta �update ’ :
3 mod_counter += 1
4 for index , value in enumerate ( input_vector ) :
5 i f ( value == 0 . 0 or value == 0) and len (

l i s t _ o f _ t i c k s ) > 0 :
6 input_vector [ index ] = l i s t _ o f _ t i c k s [ len (

l i s t _ o f _ t i c k s ) − 1 ] [ index ]
 	
Listing 6.11: Implementing continuity of time steps and artificial tick reduction

6.3.3 batch_loader

The batch_loader function is the last main function within the Scrape_Demo class,

and it is primarily responsible for crafting a tensor containing all the filenames of

all the files that we want our network to train on. It has four parameters, including

suspects_json, cheating_labels, noncheating_labels, and num_demos. The

suspects_json parameter is the file containing all the information in order to craft a

datapoint (i.e. name of a potential cheater, a demo file, etc.). The cheating_labels

and noncheating_labels are lists containing the label for the various types of cheats

and noncheats that are present within the data set (i.e. WallHack, AimBot, SpinBot,

professional non cheater, non professional non cheater etc.). Finally, num_demos is a

metric that ensures that the same number of noncheating datapoints and cheating

datapoints are used within training (e.g. passing 50 means that 50 cheating demos

are used as well as 50 noncheating demos).

First, we open the JSON file containing all the information pertaining to the
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labeled dataset (see Listing 6.12). Then, we initiate a loop sequence for each entry

within that JSON file. For each entry, we grab the name of the demo file, the name

of the player with whom we are going to analyze, that players respective xuid,

and the label for that data point (i.e. the cheating variable in Line 13 in Listing

6.12). Additionally we declare and initialize the demofile_npy variable, whose

construction is very important. When using a batch loader, all the data points need

to have unique names for indexing. Therefore, since we have numerous demo files

that are used multiple times within training (e.g. multiple cheaters or non-cheaters

within the same game), we have to develop a naming schema that creates unique

names for each data point. We achieve this through the use of a player’s unique

xuid and the name of the demo file in conjuction (see Line 12 in Listing 6.12).

� �
1 with open ( suspects_ j son , ’ r ’ , encoding= ’ u t f 8 ’ ) as f :
2 data = f . read ( )
3 t r y :
4 data_ json = j son . loads ( data )
5 except Exception as e :
6 print ( e )
7 return
8 for s in data_ j son :
9 demofile = s [ ’demo ’ ]

10 name = s [ ’name ’ ]
11 xuid = s [ ’ xuid ’ ]
12 demofile_npy = xuid + ’ _ ’ + demofile [ : −3 ] + ’npy ’
13 cheat ing = i n t ( s [ ’ cheat ing ’ ] )
 	

Listing 6.12: Iterating through the JSON file

Next, after initializing and declaring all of the various variables, we analyze

the cheating label (see Listing 6.13). We check three basic conditions. First, if the

cheating label falls within one of our lists of cheating or non-cheating labels. This is

followed by checking whether we have already reached the desired number of data

points for that specific target class. If we fail any of these conditions, we continue

iterating through our list of data points. However, if we pass these conditional
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statements, then we check whether the file exists, and if so, we add that to our input

list of file names as well as adding the respective cheating label (i.e 0 or 1) to our list

of target labels for each data point.

� �
1 i f cheat ing not in c h e a t i n g _ l a b e l s and cheat ing not in

noncheat ing_ labe ls :
2 continue
3 e l i f cheat ing in c h e a t i n g _ l a b e l s and num_cheat_demos >=

num_demos :
4 continue
5 e l i f cheat ing in noncheat ing_ labe ls and num_clean_demos >=

num_demos :
6 continue
7 i f ( i s f i l e ( f ) ) :
8 f i l e _ l i s t . append ( f )
9 i f cheat ing in c h e a t i n g _ l a b e l s :

10 l a b e l _ l i s t . append ( 1 )
11 num_cheat_demos += 1
12 e lse :
13 l a b e l _ l i s t . append ( 0 )
14 num_clean_demos += 1
 	

Listing 6.13: Checking labels and building the file list for our batch generator
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CHAPTER 7

Results

This project employs numerous different testing methods to ensure the optimal

network environments and conditions are found. This includes initial baseline

testing methods with little to no optimization methods, L1 and L2 Regularizers,

subsampling with Truncated Backpropagation Through Time (TBTT), condensed

sequences, and k-fold cross-validation. The results are generally similar across all

the different fronts but most of the improvements are seen with general lack of

overfitting.

7.0.1 Standard Training and Testing

The standard approach we take within this project is the validation set approach.

“The validation set approach... involves randomly dividing the available set of

samples into two parts, a training set and a validation set or hold-out set. The model

is fit on the training set, and the fitted model is used to predict the responses for the

observations in the validation set” [14]. This method is the most straightforward

and requires little to no overhead, as this is the standard way of training and testing

networks using Keras.

However, this method is only proficient at providing baseline estimates of

network performance. This is due to a multiplicity of issues, first, “the validation

estimate of the test error can be highly variable, depending on precisely which

observations are included in the training set and which observations are included in

85
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the validation set” [14]. This can be seen within Figures 7.1, 7.2, and 7.3. Additionally,

the validation set error “may tend to overestimate the test error rate for the model

fit on the entire data set” [14]. Therefore, while this method allows us to generate

results in a simple and straight-forward manner with little to no overhead, it is

inherently important to utilize multiple different training and testing methods so

that we can get a full understanding of how the network performs.

The first step before building and training the network is to build the list of

filenames and associated targets (see Listing 7.1). This is straightforward, since

Scrape_Demo’s batch_loader() function returns a list of the training filenames, the

validation filenames, the training targets, and the validation targets.

� �
1 combined_l is t = Scrape_Demo ( ’ ’ , ’ ’ ) . batch_loader ( ’

master_suspects . j son ’ , [ 1 , 3 ] , [ −1] , 200)
2 X_tra in_f i lenames = combined_l is t [ 0 ]
3 X_val_f i lenames = combined_l is t [ 1 ]
4 y _ t r a i n = combined_l is t [ 2 ]
5 y_val = combined_l is t [ 3 ]
 	

Listing 7.1: Building the NumPy array of filenames

The next step is to build our Demo_Generator objects with the previously created

NumPy arrays of filenames and targets (see Listing 7.2).

� �
1 my_training_batch_generator = Demo_Generator (

X_tra in_f i lenames , y_tra in , b a t c h _ s i z e )
2 my_val idat ion_batch_generator = Demo_Generator (

X_val_fi lenames , y_val , b a t c h _ s i z e )
 	
Listing 7.2: Creating a Demo_Generator class object with our training and validation datasets

Finally, we can build our model with all of our desired layers and features and fit our

model to the training data (see Listing 7.3). Keras’s fit() function requires various

parameters when using a generator, such as validation_steps if a validation_data
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argument parameter is present (see Keras’s documentation for full usage). The

most important component of the fit() function is the history object which it

returns. The history object retains all the metrics associated with the model during

the training process (e.g. loss and accuracy metrics for each epoch). Therefore, this

object is essential in order to properly plot the network’s performance and analyze

it.

� �
1 model = Sequent ia l ( )
2 model . add (CuDNNLSTM( 2 5 0 , input_shape =(None , num_features ) )

)
3 model . add ( Dense ( 1 , a c t i v a t i o n= ’ sigmoid ’ ) )
4 adm = Adam( l e a r n i n g _ r a t e =0 .001)
5 model . compile ( opt imizer=adm, l o s s= ’ b inary_crossentropy ’ ,

metr i cs =[ ’ acc ’ ] )
6 H = model . f i t ( x=my_training_batch_generator , epochs=

num_epochs , v a l i d a t i o n _ d a t a=
my_val idat ion_batch_generator , verbose =2 ,
v a l i d a t i o n _ s t e p s=i n t ( num_val_demos / / b a t c h _ s i z e ) ,
steps_per_epoch =(num_demos / / b a t c h _ s i z e ) ,
max_queue_size =1)
 	

Listing 7.3: Building our neural network

Overall, without the inclusion of any additional complex features, i.e regu-

larization, dropout or recurrent dropout, and TBTT, our model is able to obtain

approximately .87 training accuracy, .87 validation accuracy, .35 training loss, and

.35 validation loss (see Figure 7.1).

7.0.1.1 L1 and L2 Regularizers

“Regularizers allow to apply [sic] penalties on layer parameters or layer activity

during optimization. These penalties are incorporated in the loss function that the

network optimizes” [8]. L1 regularization is called lasso regression, which stands

for least absolute shrinkage and selection operator. The core idea of this method

is the fact that it “shrinks some coefficients and sets others to 0, and hence tries to
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Figure 7.1: Plot 1 of network performance using the validation set approach

retain the good features of both subset selection and ridge regression” [22]. This

functionally means that during the training process, penalties are imposed that

result in the network dropping unimportant features (i.e. the idea of setting certain

feature’s coefficients to zero) [17]. This is an intuitive feature to add to our network

due to the quantity of features that we have. Not all 228 of our features are most

likely required for our network to determine whether someone is cheating or not.

Therefore, removing the least significant features can allow our network to form a

better and more comprehensive understanding of cheating.

L2 regularization is called ridge regression or better known as Tikhonov reg-

ularization. L2 regularization introduces a penalty term to the loss function that

punishes the network for utilizing large coefficients on a specific feature (i.e. “en-

courages the sum of the squares of the parameters to be small” [17]). This forces the

network to develop a coefficient and weighting scheme that spans multiple different
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features. For example, imagine that there exists a subset of cheating data points

within our dataset where a single feature’s weight, for example, the z position of the

7th player in the match (i.e. some random contrived feature that should not denote

whether the player in question is cheating or not), results in the network correctly

predicting that the player in question is cheating. Then, during the training process,

the network heavily weighs this inane feature while leaving other features relatively

low. In this example, the network heavily overfits since it is not properly developing

weights and biases that generalize the problem of cheating. L2 regularization would

incur massive penalties (in terms of the loss value) due to the network developing a

heavy reliance on a single feature.

Overall, Figure 7.2 displays the network’s associated training accuracy, validation

accuracy, training loss, and validation loss over 4 training sessions with both L1 and

L2 regularization. After 15 epochs, training accuracy approaches .9 while validation

accuracy lags slightly behind at .85.

7.0.2 Subsampling and Truncated Backpropagation Through Time

Subsampling and Truncated Backpropagation Through time (TPTT) is a training

approach whereby rather than training on individual sequences in their entirety,

sequences are broken down into smaller subsequences and trained in small batches

that iterate through each sequence. This method currently requires a large amount

of overhead within Keras, therefore, it should typically be avoided unless deemed

absolutely necessary.

This method entails the use of a rolling window, which is simply a subset of the

input tensor that moves during each training batch. For example, with a window

size of 20, sequences are broken down into sub-tensors of size 20 (which typically

form a partition of the original tensor), and after the network analyzes a subset, it

processes the subsequent 20-element window in the next batch.
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Figure 7.2: Compiled plot of predictive accuracy and loss over 4 training sessions

Additionally, this network architecture requires the use of stateful recurrent

neural networks. The parameter statefulwithin Keras’s LSTM layer is defined as,

“Boolean (default False). If True, the last state for each sample at index i in a batch

will be used as initial state [sic] for the sample of index i in the following batch”

[8]. This is an intuitive network construction due to the fact that subsampling is

breaking down a single demo file sequence into a partition of smaller sequences.

This means that there is a sense of continuity between batches, rather than treating

each batch as an entirely separate data point.

Overall, while this method was tested, the immense amount of overhead required

to implement this method stymied our ability to generate meaningful results. This

most likely stems from implementation errors, rather than poor training results.

However, this method could prove to be important in situations where sequences

are too long for a network to produce meaningful results.
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7.0.3 Condensed Sequences

Condensed sequences is an approach to avoid memory problems when attempting

to use the typical scraped input tensor (which still tends to be quite large). This

approach is defined by two basic components. First, tensor reduction, and subse-

quently training on the CPU. The former component entails the addition of a few

lines of code within our Demo_Generator class (see Listing 7.4). First, we use a

combination of NumPy’s round() and linspace() functions to get evenly spaced

indices across our sequence. The function linspace takes in as parameters start,

end, num, and dtype. The parameters start and end specify the starting and ending

indices of an array-like object, while num defines the desired number of samples

to extract from the array-like object. Finally, dtype defines the type of the output

array. This only yields evenly-spaced indices, therefore, following this, we have

to declare and initialize a new truncated array, which we denote as trunc_file,

with the previously found index values. Finally, we can append the truncated file

trunc_file to our batch of truncated files trunc_files.

� �
1 for f i l e in l o a d e d _ f i l e s :
2 i n d i c e s = np . round ( np . l i n s p a c e ( 0 , f i l e . shape [ 0 ] − 1 ,

5000 , dtype= ’ i n t ’ ) )
3 t r u n c _ f i l e = f i l e [ i n d i c e s ]
4 t r u n c _ f i l e s . append ( t r u n c _ f i l e )
 	

Listing 7.4: Grabbing evenly spaced indexes across the tensor

Additionally, since training is being done upon the CPU, we can employ dropout

and recurrent dropout in order to get the best potential performance out of this

network. This simply requires replacing our CuDNNLSTM() layer with LSTM() and

adding arguments dropout=.2 and recurrent_dropout=.2. Both of the dropout

arguments take in a float from 0.0 to 1.0, which symbolizes the percentage of neurons
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to be dropped during the course of training (e.g. .2 means 20% of neurons are

dropped during training).

Next, this method boasts similar predictive accuracy and loss values to our L1

and L2 regularizer results with approximately .82 training accuracy, .83 validation

accuracy, .33 training loss, and .33 validation loss. However, in general, the

corresponding training and validation metrics (i.e. training accuracy and validation

accuracy, and training loss and validation loss) tend to remain in close proximity

throughout all epochs, meaning the deltas between the these metrics within the

same epochs are quite small.

Figure 7.3: A CPU training session with dropout and recurrent dropout

Finally, analysis of individual sequences (i.e. individual matches) is quite simple

with this testing method due to the size of the data points. Therefore, Figure 7.4

presents a match where the cheater toggles (i.e. enables) cheats halfway through the

match. The cheater’s team loses 7 of the first 9 rounds of the game, which leads to
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them enabling all of their cheats on round 10. The cheater continues cheating until

round 19, with his team winning every round since then. At the start of round 20,

the opposing team calls a timeout, which within Counter-Strike halts the match for

one minute, and subsequently decides to forfeit the match. The network’s predicted

probability of cheating mirrors the exact aforementioned events of the game. For

the initial 1800 time steps, the networks predicted probability of cheating remains

well below .4. While in the following 1000 time steps, the network’s predicted

probability of cheating skyrockets, nearly reaching a predicted probably of 1.0 (i.e.

100%) at around time step 2500. The probability of cheating remains quite volatile

for the remainder of the match, but generally remains very high in comparison to

the initial 1800 time steps. Finally, within the final 500 time steps, the probability

stagnates and remains quite low, which is most likely due to the fact that the game

is paused.

Figure 7.4: Network analysis of a cheater who enabled their cheats midway through the game
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7.0.4 k-fold Cross Validation

“This approach involves randomly dividing the set of observations into k groups,

or folds, of approximately equal size. The first fold is treated as a validation set,

and the method is fit on the remaining k − 1 folds” [14]. Our implementation of

k-fold cross-validation is based upon [3, 9]. This involves altering the basic network

architecture in the following ways: First, we have to properly split the data into folds

(see Listing 7.5), which is achieved through scikit-learn’s StratifiedKFold function.

Stratified k-fold cross-validation differs from the prototypical k-fold cross-validation

method in that it “returns stratified folds. The folds are made by preserving the

percentage of samples for each class” [9]. This means that each fold is balanced in

terms of class representation. Next, we iterate through each fold that was returned

from the StratifiedKFold function and declare and initialize the training generator

and testing generator for each fold. Following this, we utilize the same network

construction methods that were previously outlined. The final two steps that differ

in this approach are how we evaluate the model on the testing generator. Keras’s

evaluate function “returns the loss value and metrics values for the model in test

mode” [8], which allows us to analyze the network’s performance on each subset

that was held-out. Overall, this method attempts to avoid all of the previously

mentioned weaknesses with the validation set approach as well as being well suited

for smaller datasets.

� �
1 kfold = S t r a t i f i e d K F o l d ( n _ s p l i t s =10 , s h u f f l e=True ,

random_state =1)
2 cvscores = [ ]
3 for t r a i n , t e s t in kfold . s p l i t ( X_tra in_f i lenames , y _ t r a i n )

:
4 my_training_batch_generator = Demo_Generator (

X_tra in_f i l enames [ t r a i n ] , y _ t r a i n [ t r a i n ] ,
batch_s ize , window_length )
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5 my_test ing_batch_generator = Demo_Generator (
X_tra in_f i l enames [ t e s t ] , y _ t r a i n [ t e s t ] , batch_s ize ,

window_length )
6 model = Sequent ia l ( )
7 model . add (CuDNNLSTM( num_neurons , input_shape =(None ,

num_features ) ) )
8 model . add ( Dense ( 1 , a c t i v a t i o n= ’ sigmoid ’ ) )
9 adm = Adam( l e a r n i n g _ r a t e =0 .001)

10 model . compile ( opt imizer=adm,
11 l o s s= ’ b inary_crossentropy ’ ,
12 metr ics =[ ’ acc ’ ] )
13 H = model . f i t ( x=my_training_batch_generator , epochs=

num_epochs ,
14 verbose =0 ,
15 steps_per_epoch =(num_demos − (num_demos

/ 10) ) ,
16 max_queue_size =1 , s h u f f l e=Fa lse )
17 H _ l i s t . append (H)
18 s c o r e s = model . evaluate ( my_test ing_batch_generator ,

verbose =0)
19 print ( "%s : �%.2 f%%" % ( model . metrics_names [ 1 ] , s c o r e s

[ 1 ] ∗ 1 0 0 ) )
20 cvscores . append ( s c o r e s [ 1 ] ∗ 100)
21 print ( " %.2 f%%� (+/−�%.2 f%%)" % ( np . mean( cvscores ) , np . s td (

cvscores ) ) )
 	
Listing 7.5: k-fold cross-validation implementation

k-fold cross-validation is a completely different testing and training scheme

from the validation set approach, meaning that we can employ any or all of the

previously mentioned supplementary testing methods on top of it in order to

produce better results. Therefore, we opt to employ a combination of the condensed

sequences approach and k-fold cross-validation due to the fact that this approach

boasts efficient and short training times as well as strong results. One of the main

drawbacks with k-fold cross-validation is that we are required to build and train

multiple different networks in order to evaluate a network through k-fold cross-

validation. This means that when k = 10, we have to build and train 10 networks

in order to complete the testing process. This is equivalent to running 10 test runs

using the validation set approach. Therefore, condensed sequences is the ideal
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candidate for this testing method due to the speed with which we can perform this

testing method.

The overall average across each fold equals 87.50% predictive accuracy upon

the held-out sets with standard deviation equal to 4.74% for the initial 10-fold cross

validation test. For the second 10-fold cross validation test, the average predictive

accuracy on the test sets is 89.00% with standard deviation equal to 6.14% (see

Tables 7.1 and 7.2).

Fold # Test Accuracy
1 82.50
2 82.50
3 90.00
4 90.00
5 87.50
6 77.50
7 92.50
8 92.50
9 90.00

10 90.00

Table 7.1: First test of 10-fold cross validation test

Fold # Test Accuracy
1 95.00
2 95.00
3 85.00
4 92.50
5 82.50
6 87.50
7 85.00
8 97.50
9 92.50

10 77.50

Table 7.2: Second test of 10-fold cross validation
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Additionally, the network’s training behavior mimics that of the validation

testing approach (see Figure 7.5). The network typically attains a predictive

accuracy between 90 to 95% on the training sets. The associated loss varies between

.1 and .3. It appears that slight overfitting begins to occur around epochs 12 to 13

for some of the folds, which can be seen through the volatility of the plots in epochs

after 13. However, this proved to not be detrimental to the testing results, therefore,

the “early stop” training method, which is a method in which you halt training

before convergence to combat overfitting, is not required.

Figure 7.5: Training results for each fold over 20 epochs, with blue being predictive accuracy and
green being loss
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CHAPTER 8

Conclusion

This project effectively sought and identifies a method for employing machine

learning to tackle the task of cheat detection within Counter-Strike. The solution

is rooted within two components, a network structure that imitates the natural

way with which humans review demo files (i.e. recurrent neural networks) and

designing metrics/features that can be used to properly classify cheating. The

predictive accuracy and associated loss for the trained network varies depending

on the training methods that are employed. Nevertheless, baseline accuracy varies

between 80-90% with little to no overfitting. This thus demonstrates an easily

scaleable and deployable method of combatting cheating within any video game.

8.1 Errors and Improvements

There are many things that are present and ingrained within this project that

complicate or impede our ability to improve various components of this project.

These include the original labeling scheme, data collection techniques, and hardware

limitations.

8.1.1 Labeling Data

One of the earliest decisions that this project is founded upon is the labeling scheme.

This project adopts a very simplistic labeling scheme whereby −1 symbolizes that

99
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there is no cheating within this data point (i.e. this is the quintessential no-cheating

label). Next, 0 means that this data point should not be used because there is

no conclusive evidence in regards to whether there is cheating or not. 1 is the

catch-all cheating label, meaning that this data point has cheating within it beyond

a reasonable doubt. Finally, 2 symbolizes that the data point seems to have cheating

within it, but it is not beyond a reasonable doubt.

Originally, these labels were sufficient, since these adhere to the basic goal of

developing an algorithm that could identify whether there is cheating as a simple

binary decision (i.e. yes or no in regards to the existence of cheating within a data

point). However, as the number of data points increased, it became more and

more apparent that there is a single specific type of cheat that presents itself more

often than all the other forms of cheating, which is “spinbotting.” Therefore, to

circumvent the potential over-saturation of a single type of cheat within the dataset,

the new label 3 was added, which is responsible for symbolizing that that data point

is “spinbotting.”

The main benefit of this scheme is that there is no requirement of knowing what

specific type of cheat is present within each individual demo. This is beneficial

since at the onset of the project, the entire hypothesis space (i.e. what cheating looks

like, and what types are present) was unknown. However, the main consequence of

this scheme is our lack of ability to determine which forms of cheating the network

is efficient at identifying and which forms the network is inefficient at identifying.

For example, the network may be very inefficient at identifying cheaters who only

employ wall hacks, since there are fewer metrics designed to target that specific

type of cheat. Despite of all this, developing individual labels and testing them

individually would only produce meaningful results should the dataset contain an

ample number of data-points per label. This is not an easy task, since some types of

cheats are very rare or more experimental. Additionally, this presupposes a sort of



8.1. Errors and Improvements 101

omniscience when it comes to the ability to identify which type of cheat is present

within the demo file, since it is very difficult to identify the exact type of cheat/cheats

being employed by a cheater. Therefore, while a more complex labeling scheme

would be ideal given a massive dataset and easier means of identifying cheats, the

simplistic labeling scheme that is currently employed is sufficient for the current

needs of the project.

8.1.2 Optimizing Data Collection

Throughout the development process of this project, many ways of ameliorating

and improving the speed and efficiency of the data collection methods were found.

First, the hypothesis space became better understood as the project progressed,

meaning that all the various types of cheats became easier to identify as the amount

of exposure to those cheats increased. This means that less time is required per

Overwatch case, which allows the reviewer to iterate through more cases in a more

efficient manner.

Additionally, takeshixx’s code base underwent many quality-of-life changes

that significantly improved our ability to interact with the demo files from Overwatch

cases. This initially entailed improvements to the parser to allay the difficulties

associated with correlating the anonymized players in the Overwatch case with their

non-anonymized counterparts. However, at this project’s climax, its functionality

and subsequent workflow for classifying and labeling data transformed to better

accommodate speedy data collection. Overall, in terms of the total quantity of

data collected within the scope of this project, the majority of files skew towards

being collected in the latter half of this project’s timeline due to the optimizations

that were made at various parts of the project. Therefore, this point mostly speaks

upon the lack of documentation and information about the major cheating methods

within Counter-Strike, since if more research and information had been present at the
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onset of this project, these optimizations could have occurred much sooner within

this project’s timeline.

8.1.3 Automating Data Collection and Training

One key feature that could improve overall network efficiency is increasing the

number of demo files. Deep learning tasks typically become easier in some regards

as the quantity of data increases. Obviously there is an upper bound to the potential

gains from metrics such as prediction accuracy and loss as the the quantity of data

points increase, but the main idea is the fact that overfitting becomes substantially

harder once the dataset reaches a certain threshold. This stems from the fact

that as a dataset gets larger, the individual nuances that can be present within

specific/individual data points become less apparent and important. For example,

if this project uses cheating files that feature cheaters who only play in a specific

manner, our network would most likely overfit to account for that. This would, in

turn, demonstrate that the network is not able to generalize what cheating is and

instead is only able to identify a specific type of cheat. This lends itself towards

the basic deep learning philosophy that the more data a deep learning project has,

the more likely it is able to succeed in its goals, since the dataset becomes more

representative of the problem as a whole.

Additionally, one of the greatest ways of expediting the data collection process is

to remove any human components of it (i.e. complete automation). This approach

would require our neural network to attain an above average prediction accuracy

on untrained data points (i.e. be decently proficient at generalizing its conception

of cheating), since it would take the role of reviewing Overwatch cases. This would

mean that the network would be labeling its own data points to use for later training.

While this could seem inherently disastrous, since if the network does not have a
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sufficiently high prediction accuracy (i.e. sub 80%) it could heavily mislabel data.

However, the automation process can be broken down into two phases.

First, automation would take place once the network achieves a baseline predic-

tive accuracy of 60%. This is slightly above the network randomly guessing, but it

would still indicate that it achieves some basic understanding of cheating. Thus, we

would first employ scripts to automatically grab demo files from new Overwatch

cases. Next, we would properly preprocess the demo and give it to the network for

a prediction. Specifically, this would entail the use of Keras’s predict() function,

which feeds a data point into a network and returns the predicted label. This means

that the internal weights and biases of the network are not altered. We then use

the predicted label to determine our verdict for the associated Overwatch case (i.e.

whether the Overwatch case presented a cheater or not). This automation system

is immensely beneficial and ideal for a multitude of reasons. First, Overwatch

favors Overwatch agents who submit large quantities of verdicts as well as those

who are the most accurate with their verdicts. “Favor” within this context means

that Overwatch tends to send more Overwatch cases to the agents that it favors.

Therefore, we can significantly increase the amount of demo files within our dataset

by developing an automated system that can always respond to Overwatch cases.

One of Overwatch’s main caveats is the fact that there are often large deltas in

the amount of time between the reception of Overwatch cases. This delta can be on

the scale of minutes or hours. Therefore, data collection tends to be inconsistent,

however, this can be remedied through our use of an automated Overwatch system.

However, this initial stage of automation is only attempting to bridge the gap (i.e.

deltas) between demo files, since our network is unreliable at this stage (i.e. only

boasts a 60% or more predictive accuracy). This unreliability means that demo files

would still need to be hand labeled and viewed, in order to actually be used within

the training dataset.
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Stage two of automation would entail having a network with a minimum

predictive accuracy of 80% (ideally this would be 90%). At this stage of automation,

the network is proficient and reliable enough to completely remove all human

aspects of training. This would mean that the network would label the Overwatch

cases as it sees fit without any human intervention. The main caveat with this

approach is that the network would most likely fail to improve itself and stagnate at

its initial accuracy value, just due to the basic design architecture in this approach.

However, this multistage automation process would allow this project to attain a

massive dataset in a relatively short amount of time while minimizing the overall

human cost within the project.

8.1.4 Hardware Limitations

One of the major limitations that this project faces is hardware, specifically memory

limitations. Before the various modifications to the library that builds and compiles

demoinfogo.exe, each data point within the project was quite small, since each

only contained game events rather than having both game events and Entity Delta

updates. Therefore, large portions of the dataset could be loaded into memory for

testing and training at this project’s onset. However, after the inclusion of Entity

Delta updates within the data points, the size of the dataset exploded, making it

impossible to load it into memory. However, even after methods such as batch

generators were employed, the network architecture (e.g. number of neurons) was

always constrained by the amount of available memory. Therefore, this project

would have benefited from larger-scale enterprise-level systems that circumvent all

the hardware limitations. Nevertheless, these limitations proved to not completely

impede this project’s ability to attain tangible results, however, there is potential for

performance gains (i.e. in predictive accuracy) if the network architecture is not

constrained.



8.1. Errors and Improvements 105

8.1.5 New and Unique Cheats

During the development of this project, three new cheats that fall slightly outside the

typical cheating “families” were discovered, these being: “anti-aim,” “backtracking,”

and deep learning based cheats. The former cheat method is a technique that

desynchronizes the visible part of a player model and the hittable portion of a player

model (called the hit-box). This means that while a player may appear to occupy a

certain space within the game environment, they are instead occupying a different

space. The difference between the real space and the fake space is typically seen

solely through a rotation of the player model (see Figure 8.1).

Figure 8.1: Demonstration of “anti-aim,” where green denotes the actual hit-box and red denotes
what other players can see 1.

1This source is available from the author upon request; it is redacted from this paper due to
concerns about raising awareness of illicit or otherwise dishonest content.
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Additionally, “backtracking” mimics the behavior resulting from the online mul-

tiplayer phenomenon of rubberbanding, which is a phenomenon where players

within the game environment appear to move in twitchy, spasmodic, and shaky

manners. This is typically accredited to poor internet connection between that

specific client and the server. This behavior also results in discrepancies between

where that player thinks they are in the game environment and where they actually

are. This allows other players to seemingly spot and attack them while they are not

physically visible. For example, perhaps a player ducks behind a corner, however,

due to rubberbanding, their real player model still appears out in the open and

away from the corner, which allows other players to easily spot them and attack

them.

“Backtracking” removes the requirement of a poor internet connection and,

additionally, allows other players to force the rubberbanding behavior upon their

enemies. This means that cheaters who employ this method can seemingly see

and attack enemy players in places that they previously occupied (e.g. the place

before the player hid behind a corner), thereby switching the basic dynamic of

rubberbanding (see Figure 8.2).

Finally, there are numerous deep learning based cheating methods that are

growing in popularity due to their inherent characteristic of being hard to detect.

These methods are trained using the play styles and aiming strategies employed

by real players. These methods are very deceiving and could pose a large threat

to Counter-Strike. However, these still appear to be in their infancy and in the

development phase, which means that they are not as common place within the

cheating community as “WallHack” and “AimBot.”

Overall, these cheats were rarely ever encountered during data collection (if

at all), meaning that developing specific metrics to target these cheating methods

would not yield large benefits in terms of predictive accuracy. Additionally, more
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Figure 8.2: Demonstration of “backtracking,” where green denotes places where the player
previously occupied and blue denotes where the player is currently occupying 2.

research would have been required in order to determine whether these types of

cheats present themselves in meaningful ways within demo files.

8.1.6 This Project’s Cheats

This project also developed cheats in order to understand the fundamentals of

many of the cheats that are present within Counter-Strike as well as use them as a

potential source for data. However, there was little need to use these cheats for

our own dataset, since we were able to achieve meaningful results without them.

Additionally, there are some potential caveats associated with the use of our own

personal cheats that could have presented themselves within the dataset. First, most

of these self-sourced cheating demo files would predominately feature bots versus

a select number of real players. This type of scenario is not representative of the

typical match within Counter-Strike; therefore, using these within our dataset could

result in the network learning how to distinguish between bot matches and non-bot

2This source is available from the author upon request; it is redacted from this paper due to
concerns about raising awareness of illicit or otherwise dishonest content.
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matches rather than distinguishing between cheating matches and non-cheating

matches. However, the development of these cheats proved to be essential for the

crafting of metrics, since they allowed us to get a better understanding of how

cheats would present themselves within demo files. Therefore, we would have used

our own cheating methods to source data had it been easier to source an ample

number of willing participants to replace the bots within these matches.

8.1.7 Normalization

Normalization is one component of this project that could have undergone a more

rigorous testing regime. This project adopted the use of the most straightforward

normalization approach by normalizing all values within each feature within each

demo file to fall between 0 and 1. However, one normalization scheme that could

improve network performance is normalizing the same features across all the

different players in conjunction (typically the player performance features). For

example, one data point within this project boasts a cheater who finishes the match

with approximately 70 kills (an inhuman feat), while every other player within the

game remains at approximately 0 kills and 0 average damage per round. All of

the cheater’s performance features swamp all of those of the other players within

the match. However, with normalization reducing all of the players performance

features to fall between 0 and 1, the magnitude of this discrepancy in performance

between players is lost. Therefore, the use of either a normalization scheme that

normalizes all of the same features across all the players or the development

of new comparative performance features could prove to improve the network

performance.
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8.2 FutureWorkWithin the Field

Machine learning as a means of combating cheating within games boasts significant

promise for the future of anti-cheat methods. Not only does it circumvent all the

associated problems with current and contemporary anti-cheats, such as relying

on memory surveillance, but it also can be used in parallel with contemporary

anti-cheat measures to further strengthen a game’s overall security. For the majority

of games, this responsibility falls upon the game creators rather than third party

services or entities, since data collection and preparation is far more easily attained

by the developers who maintain the game. This project is only possible for the

most part due to the Overwatch system and the abundance of demo files within

the sphere of the Counter-Strike community. This means that for other third-party

entities who wish to employ similar anti-cheat tactics within their game, data must

generally be easy to obtain and process with little overhead. Nevertheless, the

methods outlined within this paper are applicable to any anti-cheating project for

any game. The main stipulations are that network construction needs to be tailored

to properly account for the format of the data, and that individual cheating metrics

must be identified and crafted in order to allow the network to properly identify

cheating.

Additionally, third-party matchmaking services for Counter-Strike have already

began implementing anti-cheat methods based upon this approach. As of late 2019,

third-party matchmaking service FaceIt announced its use of HestiaNet, which is a

neural network that follows a very similar architectural scheme as the one presented

within this paper. Therefore, it is easy to see that there is a slow trend towards the

adoption of this type of anti-cheat system to combat cheating within Counter-Strike.
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