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Abstract

Midway: Meeting Place Finder is a web application which allows users to supply

three or more locations and provides them with a place to meet that minimizes

their total driving time. Using techniques from graph theory, an algorithm is

developed in order to make this service possible. Then, using Python, this algorithm

is implemented into the backend of the web application along with a simple,

user-friendly interface. This application has exciting potential to be continually

expanded and improved in the future beyond this initial version.
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CHAPTER 1

Introduction

When meeting up with groups of friends or family, it can often be challenging

to decide where a meeting should take place. Ultimately, the goal is to minimize

the total amount of time it takes for everybody to reach the meeting place, but

currently there are few, if any, readily available tools capable of finding such places.

Current applications are sufficient for pairs of individuals but not for groups. For

example, one could easily estimate a halfway point using a routing service such as

Google Maps or a dedicated meeting-place-finding service such as meetways.com.

Attempting to accomplish this with three or more points would not be easy; it

would require guessing and checking with Google Maps and is not even offered by

meetways.com. Thus, the goal of this thesis is to create a web application capable of

providing this service.

There are two goals that must be accomplished in order to provide a meeting-

place-finding service: an algorithm that finds the meeting place and a web appli-

cation that can take inputs for the algorithm and communicate its results. The

most mathematically intensive part of this problem is creating the algorithm, which

requires knowledge of graph theory. In particular, this project utilizes Dijkstra’s

single-source shortest path algorithm. Our meeting-place-finding algorithm is able

to take a minimum of three input addresses and successfully output a meeting

location that minimizes the total driving time from the input addresses. On the flip

side, creating a web application requires significant amounts of programming in

1
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2 1. Introduction

order to create a front-end user interface as well as a back-end which is connected to

the algorithm itself. The front-end is able to provide users with a way to give input

addresses and display the results of the algorithm in a way that is easy for users

to interpret. The responsibility of the back-end is to process the user input, run

the algorithm, and provide the result of the algorithm to the front-end. Midway:

Meeting Place Finder is an application which successfully completes each of these

goals and serves as the primary product of this thesis.

First we discuss important mathematical details which are relevant to the

creation of this application. Specifically we discuss topics related to graph theory,

quasimetrics, Dijkstra’s algorithm, and the Floyd-Warshall algorithm. Then we

go into detail about the software tools necessary for the development stage of the

project. This includes the programming language and web framework used, as

well as necessary packages and supplementary resources. After that, we give a

detailed account of several algorithms that are capable of finding meeting places,

including step-by-step descriptions and analysis of their runtime and accuracy. Next,

we describe the process of developing the application itself and some challenges

that were faced. We also include the final product of the development process.

Finally, we conclude with a discussion on future ways that this application could be

expanded or improved.



CHAPTER 2

Mathematical Background

2.1 Graph Theory

At the most basic level, a graph is a collection of nodes and edges, where edges

represent connections between two nodes. More formally, a graph G has a set V

containing nodes, also known as vertices, and a set E containing pairs of nodes

which represent edges. For example, in Figure 2.1, the vertices are A, B, C, D, E, and

F, while the edges are U, V, W, X, Y, and Z. Elements of the set E can be either ordered

or unordered pairs. If the pairs are unordered, then the edges are considered to be

undirected, which means that the edges can be travelled in either direction. For

example, if the edges are undirected, then the edges (u, v) and (v,u) both represent

the edge between the vertices v and u so only one of them needs to be included in E.

Alternatively, the elements of E can be ordered pairs, in which case the edges are

considered to be directed, meaning they can only be travelled in one direction. If a

graph has directed edges, the element (u, v) ∈ E represents an edge going from u to

v, while (v,u) is an edge going from v to u. A graph with directed edges is known

as a directed graph or a digraph [25]. An example of this type of graph is shown in

Figure 2.2.

Another relevant type of graph is a planar graph. A planar graph is a graph that

3



4 2. Mathematical Background

Figure 2.1: An unweighted, undirected graph

Figure 2.2: An unweighted, directed graph
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Figure 2.3: A weighted, directed graph

“has the property that no two edges cross except at vertices of the graph” [25]. This

means that all of the graphs we have seen so far are also planar graphs. One useful

attribute of planar graphs is that they cannot have more than 3n − 6 edges, where n

is the number of nodes in the graph [9].

The primary way this project uses graphs is by traversing along the edges, which

is done by creating paths. A path is defined as a sequence of alternating vertices and

edges that represent a way to travel from a source vertex to a destination vertex

without repeating any edges or vertices [10]. For a graph as described above, the

distance of a path is the number of edges on the path. However, for our problem

weighted graphs are more relevant. A weighted graph is a graph where every edge

has a number associated with it, called a weight. Figure 2.3 provides an example of

a weighted graph. These weights can represent different things depending on what

the graph represents, but one common use for weights is to represent distances.

When working with a weighted graph the distance, or length, of a path is the sum

of weights on the edges of the path.



6 2. Mathematical Background

2.2 Metrics and Quasimetrics

In Chapter 4, the problem we introduce is given a more formal definition in order

to express it in mathematical terms. To do this, we use a concept with strong roots

in real analysis and topology: quasimetrics. This section first introduces metrics

in general before outlining what a quasimetric is and why this metric variant is

necessary in the context of this thesis.

Given a set X and a function d, the pair (X, d) is a metric space if:

1. d(x, y) ≥ 0

2. d(x, y) = 0 if and only if x = y

3. d(x, y) = d(y, x)

4. d(x, z) ≤ d(x, y) + d(y, z).

Here, the function d is called a metric or distance function. The general idea is that d

represents distance, which makes the properties easy to interpret. Distances are

nonnegative, a point is only zero distance away from itself, and the distance from

point x to point y is the same as the distance from y to x. The last property is the

triangle inequality, which dictates that the sum of the length of any two sides of a

triangle must be greater than the length of the third side.

A simple example of a metric space is the set of real numbers, R. In this case, R

has a metric of:

d(x, y) := |x − y|.
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From here, the first three properties of metric spaces are trivial to verify. The triangle

inequality can also be verified without much trouble:

d(x, z) = |x − z|

= |x − y + y − z|

≤ |x − y| + |y − z|

= d(x, y) + d(y, z),

thus showing that d(x, z) ≤ d(x, y)+d(y, z), which satisfies the triangle inequality [18].

This basic definition of a metric is a necessary starting point for the development

of a more formal definition of our problem, but it represents a more ideal scenario

than what one would find in the real world. To better encapsulate our problem, we

need to work with a quasimetric. A quasimetric follows the same properties as a

metric with one key exception: In order for a pair (X, d) to be a quasimetric [27],

it does not necessarily need to be true that d(x, y) = d(y, x). That is, any metric is

also a quasimetric, but quasimetrics also describe cases where d(x, y) , d(y, x). This

definition is useful in the context of our problem because road networks include

one-way streets. In the case of one way streets, the distance from a point x to a

point y might not be the same as from y to x because they might be required to take

different roads due to the existence of one-way streets.

Given that we are working with graphs which represent road networks, it is

important for us to verify that these definitions still apply when working with

graphs. Now, given an undirected graph, G, we define distance d(u, v) as the length

of the shortest path from u to v on G. This information allows us to trivially conclude

the first three criteria for a metric: d(u, v) ≥ 0, d(u, v) = 0 if and only if u = v, and

d(u, v) = d(v,u) for all u, v ∈ V(G), where V(G) is the set of all vertices in G. The last

step to showing that d is a metric is verifying that it satisfies the triangle inequality.
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If we consider P1 to be the shortest path from u to v and P2 to be the shortest path

from v to w, then the path P1 followed by P2 produces path from u to w of length

d(u, v) + d(v,w). Since we can find a path such that d(u,w) = d(u, v) + d(v,w), we can

guarantee that d(u,w) ≤ d(u, v) + d(v,w), which satisfies the triangle inequality [7].

If G is directed, as real-life road networks are, the only one of these properties that

is violated is symmetry, which means that for a directed graph our definition of a

quasimetric is satisfied.

2.3 Important Algorithms

Here, we introduce some important graph algorithms. These algorithms solve

problems similar to what we intend to solve and can be used as starting points for

determining how to solve our problem. Note that these algorithms use weighted

graphs that can be either directed or undirected.

2.3.1 Dijkstra’s Algorithm

The single-source shortest path (SSSP) problem is the problem of finding the shortest

path from a single vertex to all the remaining vertices in the graph. Dijkstra’s

algorithm is an iterative algorithm that successfully solves the SSSP.

The algorithm begins by selecting a source vertex s. Then, the neighbors of s are

labeled with the weights of the edges from s, s is labeled with 0, and the rest of the

vertices are labeled as infinity. The neighboring vertex with the smallest distance to

s is added to the set of visited vertices. After that, the algorithm iteratively visits

the vertex with the smallest distance that has not yet been visited and repeats the

process. Once the algorithm concludes, it has found the shortest path from s to each

of the other vertices in the graph [10]. Dijkstra’s algorithm has a runtime complexity

of O(V log V + E log V), where V is the number of vertices and E represents the
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1 Input : G(V, E , w) / / A weighted graph with source ver tex s
2 Output : D[ n ] / / Distances from source to v e r t i c e s
3
4 / / I n i t i a l i z e d i s t a n c e and predecessor ( seen ) arrays
5 p [ s ] <− 0
6 S <− ∅
7 foreach v in V − s :
8 p [ v ] <− ∞
9

10 Q <− V / / L i s t of v e r t i c e s to observe
11 while Q i s , ∅ :
12 u <− min (Q) / / u i s the ver tex in Q with the s m a l l e s t d i s t a n c e
13 S <− S ∪ { u } / / add u to seen v e r t i c e s
14 foreach v in Neighbors(u) :
15 / / w( u , v ) = weight on edge from u to v
16 i f p [ v ] > p [ u ] + w( u , v ) :
17 p [ v ] <− p [ u ] + w( u , v )
18
19 r e tur n p

Listing 2.1: Dijkstra’s algorithm

number of edges in the graph. A pseudocode implementation of this algorithm can

be seen in Listing 2.1.

We can prove the correctness of Dijkstra’s algorithm by proving that for each

vertex v in the graph S, at any time during the execution of the algorithm, the path

Ps,v found by the algorithm is the shortest path between the source s and the vertex

v. This proof is done using induction. There is a graph G with non-negative edge

weights, a set of vertices V, a set of visited vertices S, and a source vertex s. We

denote the distance to a vertex v found by Dijkstra’s algorithm to be d(v) and we

denote the weight of the shortest path from s to v to be δ(v).

Proposition 1. d(v) = δ(v) for all v at the end of the algorithm.

Proof. The base case is when S = {s}. The claim is trivially true because the triv-

ial path from s to itself has length 0, which must be the shortest path. Thus,

d(v) = δ(v) = 0.

For our inductive hypothesis, assume that for all vertices v ∈ S that d(v) = δ(v).
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Now, we need to show that for an arbitrary vertex a < S, d(a) = δ(a). For the sake

of contradiction, assume the shortest path from s to a is Ps,a and that:

length(Ps,a) < d(a).

Since a < S, we know that Ps,a must start in S but eventually leave the set in order to

get to a. We pick an edge bc to be the first edge on Ps,a that leaves S. Since b ∈ S, we

know that d(b) = δ(b), which means the path Ps,b is the shortest path between the

vertices. Thus, we know:

length(Ps,b) + length(bc) ≤ length(Ps,a),

d(b) + length(bc) ≤ length(Ps,a).

Since c is adjacent to b, d(b) must have been updated by the algorithm, so we know:

d(c) ≤ d(b) + length(bc).

The vertex a was picked by the algorithm which means it must have the smallest

distance label, which implies:

d(a) ≤ d(c).

Translating these inequalities in reverse gives us:

d(a) ≤ d(b) + length(bc)

d(a) ≤ length(Ps,a)

Earlier, we assumed:

length(Ps,a) < d(a),
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Figure 2.4: Graph for Dijkstra’s algorithm example

giving us,

d(a) < d(a),

which is clearly a contradiction.

Thus, it must be true that for all vertices v ∈ G, d(v) = δ(v). This means that

Dijkstra’s algorithm successfully finds the shortest path from the source vertex s to

all other vertices in the graph. �

Now, to demonstrate this algorithm, we use the graph from Figure 2.4 with

source vertex A. Consider our list of distances to be p and our list of seen vertices

to be S. Initially, the first entry in p, which represents the vertex A, is zero and the

remaining entries, representing vertices B through I, are infinity. Here, S contains

only the vertex A. Now, we find the distances from A to its neighbors, which are B,
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C, and I. The distances to each of these vertices are 5, 2, and 3 respectively; these

distances are now added to p. Since the shortest distance is to vertex C, we go there

next. Next, we add to p the distances to C’s neighbors: 3 to D, 7 to E, and 8 to H.

Now we are finished with C, so it is added to S and we move on to I. The only

neighbor of I is H, which, when traveling through I, is a distance of 6 from A. Since

6 is less than 8, the current value for H, the value stored in p becomes 6. The next

step is to add I to S and then go to vertex B. Its only neighbor is D, and in this case

the distance is 6, which is less than the distance currently stored for D, so we add B

to S and do not change p. Now we go to D because it has the shortest distance in p

among vertices not in s. Here we add 7 to S for vertex F and add D to s. Next we go

to H where we add a value of 9 to G’s position in p while also adding H to s. After

that we go to E; we cannot find a shorter path to E’s neighbors so we do not change

p, and we add E to S. Last, we visit F and then G, finding in each case that there is

no change in p. We have now completely run the algorithm, our final value for S is:

S = [A,C, I,B,D,H,E,F,G],

which represents the order we have visited the vertices in the graph. We have also

calculated the distances from the source vertex to each other vertex:

d(S) = p = [0, 2, 3, 5, 3, 6, 7, 7, 9].

This means that we started at the node A with distance d(A) = 0, travelled to C with

distance d(C) = 5, then I, with d(I) = 2 and so on. Table 2.1 shows the intermediate

values of S and p throughout the algorithm.
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Step S p
0 [A] [0,∞,∞,∞,∞,∞,∞,∞,∞]
1 [A] [0, 2, 3, 5,∞,∞,∞,∞,∞]
2 [A,C] [0, 2, 3, 5, 3, 7, 8,∞,∞]
3 [A,C, I] [0, 2, 3, 5, 3, 6, 7,∞,∞]
4 [A,C, I,B] [0, 2, 3, 5, 3, 6, 7,∞,∞]
5 [A,C, I,B,D] [0, 2, 3, 5, 3, 6, 7, 7,∞]
6 [A,C, I,B,D,H] [0, 2, 3, 5, 3, 6, 7, 7, 9]
7 [A,C, I,B,D,H,E] [0, 2, 3, 5, 3, 6, 7, 7, 9]
8 [A,C, I,B,D,H,E,F] [0, 2, 3, 5, 3, 6, 7, 7, 9]
9 [A,C, I,B,D,H,E,F,G] [0, 2, 3, 5, 3, 6, 7, 7, 9]

Table 2.1: Step-by-step values for Dijkstra example

2.3.2 Floyd-Warshall Algorithm

Similar to the SSSP problem, there also exists the all-pairs shortest path (APSP)

problem. This is the problem of finding the shortest distance between every pair of

vertices in the graph. While this can be done by performing Dijkstra’s algorithm on

every vertex in the graph, that would result in occasions where the same paths are

evaluated multiple times; the Floyd-Warshall algorithm is a more efficient method

for solving this problem.

At the beginning of the algorithm we define D(0) to be an n×n matrix representing

the initial paths between every pair of vertices. Similar to Dijkstra’s algorithm, if

there is no direct path between two vertices, their entry in D(0) is infinity. Then, from

k = 1 to n we calculate D(k) where k represents the new vertex that paths may travel

through. Here, every ordered pair of vertices (i, j) is observed in order to calculate

d(k)
i j , which represents the distance of the shortest path from i to j. We can define d(k)

i j

as:

di j =


wi j k = 0

min
(
d(k−1)

i j , d(k−1)
ik + d(k−1)

kj

)
k ≥ 1.

Once we reach k = n, the algorithm outputs the matrix D(n), which represents the

lengths of the shortest path between each pair of nodes in the graph. This algorithm
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1 Input : G(V, E , w) / / A weighted graph
2 Output : D[ n , n ] / / Distances between p a i r s of v e r t i c e s
3
4 / / I n i t i a l i z e D
5 f o r i = 1 to n :
6 f o r j = 1 to n :
7 i f (i, j) in E :
8 / / w( i , j ) = weight on edge from i to j
9 D[ i , j ] <− w( i , j )

10 e l s e :
11 D[ i , j ] <− ∞
12
13 f o r k = 1 to n :
14 f o r i = 1 to n :
15 f o r j = 1 to n :
16 i f D[ i , k ] + D[ k , j ] < D[ i , j ] :
17 D[ i , j ] <− D[ i , k ] + D[ k , j ]
18
19 r e tur n D

Listing 2.2: Floyd-Warshall Algorithm

Figure 2.5: Graph for Floyd-Warshall algorithm example

is an example of dynamic programming because it takes advantage of disjoint

subproblems to find a solution [8]. It has a run-time complexity of O(V3), where

V is the number of vertices in the graph. A pseudocode implementation of this

algorithm is shown in Listing 2.2.

Next, we demonstrate this algorithm using the graph shown in Figure 2.5. First,
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we create our initial matrix:

D(0) =



0 4 2 ∞ ∞

4 0 1 ∞ 5

2 1 0 1 2

∞ ∞ 1 0 ∞

∞ 5 2 ∞ 0


.

Now, we let k = 1 and calculate D(1). In the case of this example, D(1) = D(0) because

vertex 1 cannot be used to reach any vertices except 2 and 3, which are already

connected to it. Next we need to calculate D(2) by observing paths that go through

vertex 2. Here, we see that by going through vertex 2 we can create a path from 1 to

5 with a weight of 9. This is the only new path we can create that is shorter than

paths that have already been found, so

D(2) =



0 4 2 ∞ 9

4 0 1 ∞ 5

2 1 0 1 2

∞ ∞ 1 0 ∞

9 5 2 ∞ 0


.

Continuing through the problem, we now look at k = 3. By incorporating vertex 3

we can create several shorter paths than we could before. We can now create paths

from vertex 1 to vertices 4 and 5 and from vertex 2 to vertex 4. Additionally, we

find shorter paths between vertices 1 and 2 and vertices 2 and 5, which gives us a
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new D matrix of

D(3) =



0 3 2 3 4

3 0 1 2 3

2 1 0 1 2

3 2 1 0 3

4 3 2 3 0


.

Looking ahead to k = 4 and k = 5, we can see that they do not create any new or

shorter paths between vertices. Thus, the algorithm exists with an output matrix of

D = D(3).



CHAPTER 3

Application Development Environment

Choosing an application development environment is one of the first steps in the

software development process. The application development environment is the

collection of software tools that are used to create the application. In the world of

web development, there are many languages and frameworks that can be used,

each with their own positives and negatives. This chapter introduces the language,

framework, and libraries that are used in this project and why they are chosen.

3.1 Python

Choosing a programming language is a critical first step in any software engineering

project. There are many languages out there, and there is not always an objectively

correct choice for a particular project. Several factors are considered in this choice,

including applicability to the problem at hand, ability to interact with other tools,

and developer familiarity. Deciding to develop a web-based application narrows

down the options significantly, as only a few languages are widely used in web

development: JavaScript, Python, Java, Ruby, and PHP. Among these, JavaScript

and Python are by far the most loved by developers; conversely, PHP and Java are

among the least liked, according to a 2019 survey by hired.com [1]. This, combined

with the extensive documentation and resources for both Python and JavaScript

17

hired.com
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narrows the choice down to these two languages. At this point, either language is

likely to be equally good, so Python is used because of developer familiarity.

Python is a modern programming language that is one of the most popular

programming languages in the world. It is known for being one of the easiest

languages to learn as well as one of the most versatile. Additionally, it has extensive

documentation and an extensive library of packages that are easy to install and

can help save time and energy. There are two versions of Python currently used

by developers: Python 2 and Python 3. However, as of January 1, 2020, Python

2 is no longer officially supported, which means that it is no longer suitable for

new projects. As a result, this project uses Python 3. Python also has several web

frameworks to choose from and is known for being a great back-end programming

language [29].

3.2 Django

Along with choosing a programming language, it is important to pick a web

framework to use when developing a web-based application. Web frameworks

are software “that provides a way to build and run web applications” [26]. This

allows the programmer to worry only about code that is unique to their application,

instead of dealing with the hassle of writing code has already been written for

countless other applications. Web frameworks are typically associated with a

specific programming language, and Python has several options including Django,

Flask, and Pyramid. Among these options, Django stands out as the best choice for

this project.

Django is the most popular Python web framework [22], and it is used in many

popular websites including Pinterest, The Onion, and BitBucket [2]. It is a full-stack

framework, which means that it “supports the development of back-end services,
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front-end interfaces, and databases” [22]. Additionally, Django is free and very

easy to install; it is available on the Python package manager, pip, and initializing

a project requires only one terminal command [13]. The main draws to using this

framework are its speed, scalability, and popularity. As mentioned, it is incredibly

easy to start a project using Django, and the framework provides extensive starter

code to help get development rolling. Django applications also scale easily. This is

an important feature for any web application, because this ensures that it will be

able to handle any number of users that may want to use it. While popularity is not

and should not be the main factor when determining what tools to use, Django’s

popularity means that is has extensive documentation and tutorials across the web,

making it easy to learn and get help when necessary. Additionally, its popularity

makes it a useful tool to learn.

3.3 Python Packages

When developing software, it is usually best practice to avoid writing code that has

already been written. Doing so makes development take longer and can take away

from the overall quality of the software product. Packages are pieces of software

that have already been written to provide some sort of functionality that might

be needed for many different projects. Similar to using a web framework, using

packages allows developers to focus on what really makes their project unique.

This project utilizes several Python packages, and this section gives some details on

what they are and what functionality they provide.

3.3.1 NetworkX

In this project, it is necessary to be able to analyze road systems in order to find

meeting places. These networks are best interpreted as graphs, and to work with
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them it is necessary to have an implementation of graphs in Python. NetworkX

is a package that provides this functionality. It is designed for the “creation,

manipulation, and study of the structure, dynamics, and function of complex

networks” [20]. While this project does not use NetworkX to manually create

graphs, that is done in OSMnx (mentioned below), NetworkX is used to traverse

through and analyze the graphs that are created. More specifically, NetworkX is

used to store graphs, analyze node and edge attributes, and access the connections

stored within graphs.

3.3.2 OSMnx

As mentioned before, this project uses NetworkX to interact with graphs, but in

order to do so there needs to be a way to acquire the necessary graphs representing

street networks. This is done using the OSMnx package. Created by urban

planning professor Geoff Boeing, “OSMnx is a Python package for downloading

administrative boundary shapes and street networks from OpenStreetMap” [5].

OpenStreetMap is an open-source database of global map data that is freely available

and used by many developers. OSMnx was originally created in the context of

analyzing street networks in the context of urban planning and analysis, but that has

a common requirement with this project: the ability to create a graph representing

the road network in some geographical area. It allows this to be done using several

different ways of defining the desired area. A user may ask for a location by name,

by address, by defining a bounding box of latitude and longitude values, or by

providing a specific latitude and longitude. The package is able to do this by

querying OpenStreetMap. Once the data is acquired from OpenStreetMap, OSMnx

uses NetworkX to create graphs that contain all the relevant data including road

names, road types, and speed limits. Figure 3.1 is a visualization of a graph created

by OSMnx that represents the street network of Wooster, Ohio.
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Figure 3.1: OSMnx graph of Wooster, Ohio road network
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3.3.3 Geopy

Geopy is a Python package that is used for geocoding. It allows developers to find

the geographical coordinates of text addresses, which is useful in this application

for creating graphs and locating nodes on a graph closest to the user-given locations.

This package is a client for several geocoding services, but the particular one used

by this application is Nominatim, which is also used by OSMnx. Additionally, this

package enables reverse geocoding, which allows conversion from coordinates to

an address, which is useful for describing where a meeting place is, since most users

would presumably not want to receive geographic coordinates [12].

3.4 ClassicWeb Development Tools

Web frameworks help to do most of the heavy-lifting when it comes to web

development, but they cannot quite do everything. There are a few web development

tools that are essentially inescapable when creating web applications. Here, we

briefly introduce the ones that are necessary for this project.

3.4.1 JavaScript

JavaScript is a programming language that was created specifically to be used on the

web. It follows a Java-like expression syntax, but it does not have static typing and

tends to be a much more free-form programming language than Java. JavaScript

is particularly useful for allowing developers to make webpages interactive [15].

The language provides convenient access to elements on a webpage, and it enables

developers to define functionality for different events that may be given by the user.

This functionality cannot be done using Python, which is why this project must

utilize some JavaScript. Listing 3.1 shows a hello world program in JavaScript.
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1 / / Log " Hello world ! " to the console
2 console . log ( " Hello world ! " )
3
4 / / Display " Hello world ! " in a popup on a webpage
5 a l e r t ( " Hello world ! " )

Listing 3.1: JavaScript Hello World

1 <!DOCTYPE html>
2 <html>
3 <body>
4
5 <h1>Hello World This i s my t i t l e < / h1>
6 <p> And t h i s a some content . </p>
7
8 </body>
9 </html>

Listing 3.2: HTML Hello World

3.4.2 HTML and CSS

Hyper-text markup language, or HTML, is the base for most websites on the internet.

It is a formatting language that provides structuring for website content. HTML

consists of a series of elements, which enable developers to define how things should

look [14]. Django interacts well with HTML files and even gives the developer

the ability to pass information from their Python code to HTML files. Essentially,

HTML is used to visualize the application and give users the ability to interact with

it, but it plays no role in the actual inner-workings of the application. A hello world

HTML page can be seen in Listing 3.2.

Cascading style sheets (CSS) go hand-in-hand with HTML and are a method

of further refining the visual aspect of a web page. CSS allows developers to

define specific attributes for types of HTML elements and the individual elements

themselves. These attributes include color, font, alignment, and size, among other

things [30]. While this project does not involve much development with CSS, it is

important to note that there is CSS under the hood in order to make the application

look aesthetically pleasing. The CSS used to format pop-ups in our application

(which will be discussed later) can be found in Listing 3.3.
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1 . mapboxgl−popup {
2 max−width : 200px ;
3 }
4
5 . mapboxgl−popup−content {
6 t e x t−a l i g n : c e n t e r ;
7 font− family : 'Open Sans ' , s a n s− s e r i f ;
8 }

Listing 3.3: CSS for formatting pop-ups

3.4.3 Bootstrap

HTML and CSS are great resources, but creating a professional looking website using

these tools alone is difficult and time consuming. Since the focus of this project is the

back-end component and not the front-end interface, it is necessary to utilize tools

that streamline the process of creating a nice user interface. This is where Bootstrap,

“one of the most popular front-end frameworks . . . in the world” [21], comes in. As

a front-end framework, Bootstrap has created a system of CSS and JavaScript files

that allows developers to quickly assemble nice-looking web pages. The ability to

quickly create quality interfaces combined with extensive documentation makes

Bootstrap a valuable resource for this project.
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Meeting-place Algorithm

4.1 Problem in Context

In the Introduction, we discussed the problem in a broad sense. Here, we discuss

it in a more formal and mathematical context. To do this we recall quasimetrics,

which we discussed in Section 2.2. We use a quasimetric because, for road networks

it is not necessarily true that d(x, y) = d(y, x). For example, in a city with one way

streets there may be an edge beginning at x and ending at y but no such edge from

y to x. In this case, traveling from y to x may require traveling along several edges,

which would likely not take the same time as traveling along the edge from x to y.

To create a quasimetric that describes our problem, we must decide how to

quantify the distance between two nodes. Here, there are two logical options: the

distance traveled on the path from x to y, or the amount of time it takes to travel

the path from x to y. Using the distance of the path from x to y would be useful

in finding a meeting place that is geographically central, but it is more practical

for users to receive the point that takes the least collective amount of time to reach.

Hence, we quantify the distance from x to y as

d(x, y) = the amount of time to travel from x to y.

25
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Quantifying the distance between nodes is necessary for formalizing our problem,

however this value alone does not sufficiently describe the problem at hand. To do

this, we need to create a function describing the cumulative distances between our

starting points xi and an arbitrary node y. If we let n ≥ 3 be the number of places

the user wishes to find a meeting place between, then we can define our function D

to be:

D(y) =

n∑
i=1

d(xi, y),

where y is an arbitrary node. Our problem then, is to minimize this function. We

can define our ideal meeting place m to be a node such that

D(m) ≤ D(y) for all y ∈ V,

where V is the set of all nodes in our graph. An alternative measure that could be

used would be to sum the squares of the distances. This would penalize nodes that

are farther away from one or more of the initial locations, and would find meeting

places that take a roughly equal amount of time to reach from each of the initial

locations. We do not use the square of the distances because our objective is to

minimize the total time without attempting to make the times to the meeting place

equal. However, this alternative measure could be worth implementing in future

research.

4.2 Brute ForceMethod

A common first step in solving a problem algorithmically is to first come up with a

brute force solution. This type of solution is meant to solve the problem without

accounting for efficiency. It is typically the simplest way to solve the problem and

helps to provide a starting point for future algorithmic optimization.
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1 # Input : G, s tar t_nodes Graph and l i s t of s t a r t i n g nodes
2 # Output : Node represent ing meeting place
3
4 d i j k s t r a _ r e s u l t s = [ ]
5 f o r node in i n i t i a l _ n o d e s :
6 d i j k s t r a _ o u t p u t = nx . s i n g l e _ s o u r c e _ d i j k s t r a ( graph , node , weight=g e t _ t r a v e l _ t i m e )
7 d i j k s t r a _ r e s u l t s . append ( d i j k s t r a _ o u t p u t [ 0 ] )
8
9 minimum_node = ( None , math . i n f )

10 f o r node in graph . nodes ( ) :
11 node_sum = 0
12 f o r r e s u l t in d i j k s t r a _ r e s u l t s :
13 i f node in r e s u l t :
14 node_sum += r e s u l t [ node ]
15 e l s e :
16 node_sum = math . i n f
17 i f node_sum < minimum_node [ 1 ] :
18 minimum_node = ( node , node_sum )
19
20 r e tur n minimum_node [ 0 ]

Listing 4.1: Brute force algorithm

For this particular project, the brute force method utilizes Dijkstra’s algorithm.

Dijkstra’s algorithm is performed on each of the given starting nodes, with the

distances to each node being stored. Then, the algorithm iterates through every

node of the graph and calculates the sum of the values found by Dijkstra’s algorithm

for each node. The node with the minimum sum has the shortest combined distance

from the starting nodes. The Python code for this algorithm is shown in Listing 4.1.

4.3 Optimization Techniques

Clearly, using a brute force technique is not an ideal solution because it requires

going through the entire set of nodes multiple times. Here, we discuss some

methods that may be used to improve the performance of the algorithm.

4.3.1 Contraction Hierarchies

One method of optimizing graph algorithms is by creating a contraction hierarchy.

This technique takes an already created graph and does some preprocessing of it in

order to enable algorithms to run faster. It takes advantage of the hierarchical nature
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Figure 4.1: Simple node contraction example [28]

of road networks to create shortcuts between nodes, which allows algorithms to

check fewer nodes while still obtaining an accurate result.

The process of creating a contraction hierarchy centers around contracting nodes

from the graph. When a node is contracted, we remove it from the graph in such

a way that all shortest paths are preserved. To ensure this, whenever a node v is

being contracted, we run Dijkstra’s algorithm on every predecessor ui of v while

ignoring v. This allows us to check if there exists a path from ui to some successor,

w, of v that bypasses v and has a length less then length(ui, v) + length(v,w); such

paths are referred to as witness paths. If this is the case, then there does not need to

be a shortcut from ui to w because the shortest path between those nodes does not

go through v, otherwise we construct a shortcut from ui to w before we remove v

from the graph. It is crucial that we do this, otherwise too many shortcuts will be

added to the contraction hierarchy, which will result in slower queries.

Figure 4.1 shows a simple example of one step of the node contraction process.

On the right we see the original graph and on the left we see the graph when the

node C is contracted. In order to do this, shortcuts need to be added from A to E

and from A to B because the shortest paths between those pairs of nodes travel

through C. No shortcut needs to be added from B to E because the shortest path

between those nodes does not include C [28].
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While we need to check for witness paths, running Dijkstra’s algorithm multiple

times on every node of a large graph would be too cumbersome to implement

in reality, which means we need to find ways to limit the number or depth

of searches that are performed. There are two common ways of doing this:

stopping Dijkstra’s algorithm early and limiting the number of hops. When

performing Dijkstra’s algorithm, if we encounter a node x such that length(ui, x) >

length(u, v) + length(v,w), then we can stop the Dijkstra search because it is not

possible for a witness path to exist assuming there are no negative edge weights.

This is an assumption that must be made for Dijkstra’s algorithm to work in the first

place, and, given the nature of road networks, this assumption is always true in

the context of our problem. A hop in this context is the action of traveling through

an edge. Limiting the search to k hops means that we only consider shortest paths

that go through at most k edges. Choosing a value for k is a tradeoff between the

amount of preprocessing time and the size of the final contracted graph. A smaller k

value results in faster preprocessing but an increased number of edges in the graph.

Conversely, a larger k makes the preprocessing take longer, but there are fewer edges

in the final graph. An unbounded k value would result in the smallest possible

graph but would not provide any optimization for the preprocessing phase [19].

Better contraction hierarchies can be created if node ordering is used. While

not necessary for correctness, good node ordering improves both preprocessing

and query time. Node ordering is implemented by keeping nodes in a priority

queue with decreasing importance, where importance is a value calculated using a

heuristic. On each iteration, the least important node is contracted; however, prior

to being contracted its importance value is updated and if the node is no longer the

least important, it is put back into the queue with an updated importance value.

Once the least important node is identified, it is contracted.

The importance metric is a heuristic function may consider several criteria. We



30 4. Meeting-place Algorithm

discuss four popular criteria, but developers could experiment with any number of

criteria to improve their heuristic. The first criterion is called edge difference. If we

consider s(v) to be the number of shortcuts added when contracting a node v, in(v)

to be the incoming degree of v and out(v) to be the outgoing degree of v, then edge

difference is

ed(v) = s(v) − in(v) − out(v).

It is ideal to contract nodes that have a small edge difference because that helps

to minimize the number of edges in the final graph. Another criterion is simply

the number of contracted neighbors; it is preferable to contract nodes with fewer

contracted neighbors. Next, we consider a metric called the shortcut cover. The

shortcut cover of a node v, denoted sc(v) is defined as the number of neighbors, w,

of v such that we must create a shortcut to or from w when we contract v. A larger

shortcut cover means that more nodes depend on v, which makes v an important

node. We want to contract important nodes later, so we start by contracting nodes

with a smaller shortcut cover. Finally, the node level criterion, L(v) is an upper

bound on the number of edges in the shortest path from any s to v in the contracted

graph. Initially, L(v) = 0; once a node v is contracted, for any neighbor u of v,

L(u) = max(L(u),L(v) + 1). Again, it is preferable to contract nodes with a small

node level. Now that we have observed some different criteria, we can define the

importance of a node to be [19]:

I(v) = ed(v) + cn(v) + sc(v) + L(v).

The weights on each of the criterion can be adjusted to improve the metric.

An example of an “important” node in a road network would be a point where

one highway merges into another [19]. This type of node is important because many

paths must travel through it and to get from one highway to the other, traveling
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through this node is unavoidable. Our importance criteria would consider this

type of node to be important because contracting a node like this would require

many additional shortcuts because it is the only way to travel between these two

highways. The high number of additional shortcuts causes the edge difference,

shortcut cover, and node level to increase, resulting in the node being contracted

later.

Unfortunately, it is not possible to implement this system within the timeframe

of this project. Performing the contraction hierarchy algorithm requires obtaining

the entire graph for the problem. Attempting to collect this data is unable to be

done due to the size of the data representing the road network for the entire United

States. There must be a way to collect this data in a manageable way, but no such

method was found during the timeframe of this project.

4.3.2 Dijkstra Optimizations

As is the case with many algorithms, choices in data structures can help Dijkstra’s

algorithm run faster. In our earlier discussion on this algorithm, we used lists

to describe how we stored the vertices of the graph. Using a priority queue

can speed things up immensely. NetworkX, the package used for working with

graphs, implements Dijkstra’s algorithm using the a package called heapqwhich

implements this data structure. Figure 4.2 shows the time it takes to run the brute

force algorithm using a non-optimized Dijkstra implementation and the time it

takes using NetworkX’s optimized version under eight different test inputs. Based

on this graph, we see that for most test cases the optimized Dijkstra algorithm

resulted in the entire brute force algorithm running ∼ 20 − 30 times faster than with

the non-optimized version. For test cases 3 and 8, which take longer to run due to

increased distance in between starting points, this improvement was magnified to

be ∼ 100 − 200 times faster than with a non-optimized Dijkstra implementation.
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Figure 4.2: Comparison of optimized and non-optimized Dijkstra’s algorithm run-time

The reason behind this speedup is the use of a priority queue to store the nodes

that need to be observed. A priority queue, also known as a heap queue, implements

a binary tree data structure where every parent has a value less than or equal to

the values of its children. This method of storing nodes means that the node with

the smallest value is always at the top of the tree. Having the smallest node at

the top is a huge advantage for Dijkstra’s algorithm because at every iteration the

smallest remaining node is required. By using a priority queue, this node becomes

readily available which makes finding it a constant-time operation. The cost of

being able to do this is that inserting nodes into the queue takes O(log V) time;

however, the query speedup far outweighs the additional time to insert elements.

In contrast, when using a simple list to store nodes, finding the minimum node is a

O(V) operation because it is possible that the minimum node is the last element of

this list. When working with graphs that have tens or hundreds of thousands of

nodes, the ability to immediately find the smallest node at every iteration is a huge

advantage, resulting in the incredibly faster run-time, as seen through our test cases.
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4.3.3 Heuristic Algorithms

It is possible that our brute force algorithm is the best way to guarantee finding

the meeting place that takes the minimum amount of time to reach. However,

its accuracy alone does not guarantee that it is the best algorithm to use for our

application. We must also consider the potential time benefits of using a heuristic

algorithm. By definition, a heuristic is a “set of rules which, if followed, may achieve

a solution but cannot guarantee doing so” [3]. The reason to use heuristics is that

they have the potential to be much faster while producing a result that is good

enough. Here we introduce some potential heuristic algorithms for this problem.

For this section consider n to be the number of initial locations provided by the user.

GeographicMean

The simplest algorithm that could be used to solve this problem is finding the

geographic mean of the user-given locations. Finding the geographic mean only

requires finding the average latitude and longitude of the given locations, which is

an O(n) operation, where n is the number of initial locations. Then, it finds the node

in the graph closes to this coordinate and determines that node to be the meeting

point. Clearly, this is the fastest conceivable algorithm for solving this problem;

however, it is likely to have poor accuracy since it does not consider how long

it takes to reach this point, which is the overall goal of the algorithm. Also note

that we do not consider the curvature of the Earth, as we do not expect its effect to

be significant enough to be worth the time it would take to account for it. Figure

4.3 shows the geographic mean point (marked in green) between The College of

Wooster, Walmart Supercenter in Wooster, and the Wayne County Schools Career

Center (marked in blue). The Python code for this algorithm is shown in Listing 4.2.
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Figure 4.3: Example of a geographic mean point

1 # Input : graph , l i s t of i n i t i a l ( l a t , long ) coordinates , l i s t of i n i t i a l nodes
2 # Output : Node represent ing meeting place
3 import osmnx as ox
4
5 lat_sum = 0
6 long_sum = 0
7 num_locations = len ( i n i t i a l _ l o c a t i o n s )
8 f o r l o c a t i o n in i n i t i a l _ l o c a t i o n s :
9 lat_sum += l o c a t i o n [ 0 ]

10 long_sum += l o c a t i o n [ 1 ]
11
12 mean_coordinate = ( lat_sum / num_locations , long_sum / num_locations )
13 middle_node = ox . get_nearest_node ( graph , mean_coordinate )
14
15 r e tur n middle_node

Listing 4.2: Geographic mean
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GeographicMean Path Traversal

Beginning by following the steps of the geographic mean algorithm, this heuristic

takes advantage of the structure of the graph to improve the accuracy of the meeting

point found. It does this by performing Dijkstra’s algorithm on the geographic

mean point. Then, it determines the minimum number of nodes on a path from the

geographic mean to one of the initial locations. Using the paths found by Dijkstra’s

algorithm, it determines the next node on each path. If a majority of the paths have

the same next node, then the algorithm slides down to that node and checks if

the paths still match. In cases where there is no majority, the algorithm uses the

geographic mean as the meeting point. The algorithm runs until it reaches the point

where there is no similar node contained by a majority of paths or the end of one

of the paths is reached. At this point, the last node reached by the algorithm is

determined to be the meeting node. The code for this algorithm can be seen in

Listing 4.3.

To demonstrate why this algorithm is effective, observe the graph in Figure

4.4. In this example, the vertices A, B, and C are our initial starting locations. The

geographic mean point is labelled accordingly and is the point where the algorithm

begins. Here, we see that the path from the geographic mean to A travels to E and

then to A. The path to B travels to F, then D, then B; and the path to C goes to F

and D before reaching C. Since the paths to both B and C first require going to F,

and two points represents a majority where there are three total initial points, the

algorithm travels to F. Then, since the paths to B and C both travel to D next, the

algorithm also goes to vertex D. At this point the paths to B and C diverge, so the

meeting point found by the path traversal algorithm is D.

We know this algorithm has better accuracy than the geographic mean algorithm,

because it prevents similar paths from being traveled multiple times when it is not

necessary. If we left the geographic mean point as the meeting point, then the path
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1 # Input : graph , l i s t of i n i t i a l ( l a t , long ) coordinates , l i s t of i n i t i a l nodes
2 # Output : Node represent ing meeting place
3 import osmnx as ox
4 import networkx as nx
5 from c o l l e c t i o n s import Counter
6
7 lat_sum = 0
8 long_sum = 0
9 num_locations = len ( i n i t i a l _ l o c a t i o n s )

10 f o r l o c a t i o n in i n i t i a l _ l o c a t i o n s :
11 lat_sum += l o c a t i o n [ 0 ]
12 long_sum += l o c a t i o n [ 1 ]
13
14 mean_coordinate = ( lat_sum / num_locations , long_sum / num_locations )
15 middle_node = ox . get_nearest_node ( graph , mean_coordinate )
16
17 dis tances , paths = nx . s i n g l e _ s o u r c e _ d i j k s t r a ( graph , middle_node , weight=

↪→ g e t _ t r a v e l _ t i m e )
18
19 p a t h s _ t o _ s t a r t = [ ]
20 s h o r t e s t _ p a t h _ l e n g t h = math . i n f
21 f o r node in i n i t i a l _ n o d e s :
22 path_to_node = paths [ node ]
23 p a t h s _ t o _ s t a r t . append ( paths [ node ] )
24 i f len ( path_to_node ) < s h o r t e s t _ p a t h _ l e n g t h :
25 s h o r t e s t _ p a t h _ l e n g t h = len ( path_to_node )
26
27 i f s h o r t e s t _ p a t h _ l e n g t h < 2 :
28 meeting_node = middle_node
29 e l s e :
30 f i r s t _ s t e p s = [ path [ 1 ] f o r path in p a t h s _ t o _ s t a r t ]
31 most_frequent_step = Counter ( f i r s t _ s t e p s ) . most_common ( 1 )
32 previous_step = most_frequent_step [ 0 ]
33 most_frequent_step = most_frequent_step [ 0 ]
34 c u r r e n t _ s t e p = 1
35
36 # while a major i ty of the paths fol low the same next s tep
37 # and the end of the path with the fewest edges hasn ' t been reached
38 h a l f = ( len ( i n i t i a l _ n o d e s ) / 2 )
39 while most_frequent_step [ 1 ] > h a l f and c u r r e n t _ s t e p + 1 < s h o r t e s t _ p a t h _ l e n g t h :
40 next_s teps = [ path [ c u r r e n t _ s t e p + 1] f o r path in p a t h s _ t o _ s t a r t ]
41 previous_step = most_frequent_step
42 most_frequent_step = Counter ( next_s teps ) . most_common ( 1 ) [ 0 ]
43 c u r r e n t _ s t e p += 1
44
45 meeting_node = previous_step [ 0 ]
46
47 r e tur n meeting_node

Listing 4.3: Geographic mean path traversal
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Figure 4.4: Path traversal algorithm example graph

Figure 4.5: Example for path traversal proof

D to F to the geographic mean would be traveled twice: once by the person coming

from B and again by the person coming from C. By sliding the meeting point over

to D, this path is only traveled once. In this case it is traveled by the person coming

from A, who travels that path in reverse.

Using Figure 4.5 as a reference, we can prove a result that supports our conclusion

that path traversal is more accurate than geographic mean.

Proposition 2. Assuming an underlying undirected graph, the majority of paths from the

initial nodes to an optimal meeting point will never travel along the same edge incident to

the meeting point.

Proof. Let the edge AG be traveled by a majority of paths from starting nodes to

node G. This means that if there are k starting nodes, there must be m > k
2 starting

nodes whose paths to G go through A. Similarly, there must be n < k
2 starting nodes

whose paths to G bypass the node A. Note that n < m and n + m = k. Now, let |M|

be the sum of all path lengths from the m majority nodes to A. Let |N| be the sum of

path lengths from the n minority nodes to G. Finally, let |AG| be the length of the
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path between A and G. Using these values, we can calculate the total sum of the

path lengths from the starting nodes to both A and G:

Sum(Paths to G) = |M| + |N| + m · |AG|

Sum(Paths to A) = |M| + |N| + n · |AG|.

If G is the meeting point, then each of the m nodes which first travel to A must

traverse the path AG. If A is the meeting point, then the n nodes which travel to G

first must traverse the path AG. Since m > n we can conclude that Sum(Paths to G) >

Sum(Paths to A). This means that the majority of paths from the initial nodes to an

optimal meeting point will never travel along the same edge incident to the meeting

point. �

GeographicMean NeighborWalk

This heuristic algorithm idea also builds on the geographic mean algorithm. Starting

at the geographic mean node, it searches through all the neighbors of this node

to see if any of them have a smaller cumulative time. If a better node is found,

then the neighbors of that node are searched. This process repeats until either a

node is reached which does not have any neighbors that are better or a maximum

depth is reached. If this algorithm is performed on the graph in Figure 4.6, where

the geographic mean in marked in blue, it first searches its neighbors, which are

marked in green. Then it would search the appropriate green or white nodes

corresponding to the neighbors of the minimal neighbor of the geographic mean

node. Unfortunately, Dijkstra’s algorithm must be run on each of the points in order

to find the cumulative time it takes to reach them. For this reason, this heuristic

algorithm is actually slower than brute force because it requires so many Dijkstra

calls. A potential way to make this algorithm run faster than brute force would be to
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Figure 4.6: Graph for neighbor walk example

use the A* searching algorithm. The A* search algorithm might make this algorithm

usable because it has a maximum time complexity of O(E) where E is the number

of edges in the graph. This is a much faster runtime than Dijkstra’s algorithm, so

running this many times may be better than running Dijkstra’s algorithm only a few

times. Unfortunately, NetworkX does not implement this algorithm on graphs that

can have multiple edges between two nodes, so this is not currently a viable option.

Midpoint Intersection

The first step performed by this heuristic is to find the geographic means of subsets

of the starting coordinates, which we call midpoints. For example, if there are four

coordinates, then for each one its corresponding midpoint is the mean of the other

three coordinates. For each of the initial locations, the midpoint of all other initial

locations is found. Then, the path from the initial location to the midpoint is found.

Figure 4.7 is an example of a midpoint and a path from its corresponding initial

node. In this example we find the midpoint (colored red) corresponding to the node

(1,−5) and draw the appropriate path. Note that this is a simplification, and that

each of these nodes would be part of a much larger graph.

Once this process is performed for each initial location, the heuristic checks if

there are any points that are common between at least two of the paths and finds
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Figure 4.7: Example of a midpoint in the midpoint intersection algorithm

the cumulative time it takes to reach each of these points. If no such point exists,

then the cumulative time to each midpoint and the geographic mean is calculated.

In either case, the point with the minimum cumulative sum is considered to be the

meeting point. As was the case in the neighbor walk algorithm, this heuristic relies

on Dijkstra’s algorithm to find paths to midpoints, resulting in more Dijkstra calls

than the brute force algorithm, making it slower. Again, using A* could enable this

algorithm to be faster than brute force, but that is not currently possible. Ultimately,

this means that the neighbor walk and midpoint intersection algorithms are not

beneficial since they are both slower and less accurate than the brute force method.

4.4 Algorithm Analysis and Comparison

Here we discuss the time complexity of the brute force, geographic mean, and

path traversal algorithms as well as the accuracy and actual runtime of each as

determined by data gathered by running the algorithms over a set of test cases. This

analysis enables us to make more informed decisions about the pros and cons of

each algorithm and helps us to determine which of them is the best choice for use

in our application.
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4.4.1 Complexity Analysis

Recall from Chapter 2 that the runtime of Dijkstra’s algorithm isO(V log V + E log V)

where V is the number of vertices and E is the number of edges. We can further

refine this runtime by taking advantage of the fact that planar graphs have no more

than 3V − 6 edges. This fact can be used because our road network is approximately

a planar graph, since we define our vertices to be the intersection between two

roads. This means that for the most part no two edges cross over each other except

for at a node. Using this allows us to determine the runtime of Dijkstra’s algorithm

to be O(V log V + (3V − 6) log V) = O((4V − 6) log V) = O(V log V). Now, we use

this to help analyze the runtime complexities of our algorithms. Recall that n is the

number of initial locations.

Brute Force

Determining the complexity of this algorithm is fairly simple. We break this

algorithm down into two steps: obtaining distances and calculating sums of distances.

To obtain distances from the input locations to all other nodes on the graph we

perform Dijkstra’s algorithm on each of the input locations. Thus, the complexity

of this portion of the algorithm is n ∗ V log V because we run Dijkstra’s algorithm

n times. Next, the algorithm finds the sum of distances for every node in the

graph. This requires finding V sums; finding each of these sums requires n addition

operations, resulting in a time complexity of n ∗ V for this portion of the algorithm.

Since we can keep track of the minimum sum as we calculate the sums, finding the

minimum is a constant time operation which adds nothing to our time complexity.

With this information, we determine that the time complexity of the brute force

algorithm is:

O(nV + n((4V − 6) log V)) = O(nV log V).
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GeographicMean

We briefly mentioned the complexity of this algorithm when it was introduced; here

we reiterate its complexity and justify how we came to that conclusion. The step of

finding the geographic mean coordinate has a complexity of O(n), where n is the

number of user-given locations. Doing this requires traversing through the list of

initial locations exactly one time. Since this list has length n, the time complexity of

this step of the algorithm must be O(n). The complexity of finding the node in the

graph is O(V), because coordinates of each of the nodes in the graph must be found

in order to determine which is the closest. This means that the overall complexity

of the algorithm is O(V + n). For very large graphs, the number of initial locations is

insignificant compared to the number of nodes in the graph, so in these cases the

runtime complexity is O(V).

GeographicMean Path Traversal

This algorithm begins with the geographic mean algorithm, so its first step has a

complexity of O(V). Then, it performs Dijkstra’s algorithm one time, which has a

time complexity of O(V log V). Finding the number of nodes in the path with the

fewest edges is anotherO(n) operation, because it only requires checking the lengths

of n paths. The process of traversing paths to find improved meeting places is

iterative. At each iteration, finding the next steps for each path is an O(n) operation,

and finding which of the steps is the most common is also O(n). This means that

each iteration has a complexity ofO(n). Further analysis could be done to determine

how many iterations we would expect to need on average; however, it is clear that

the dominant part of the runtime complexity of this algorithm is running Dijkstra’s

algorithm. This means that we can consider the overall complexity of this algorithm

to be O(V log V).
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Figure 4.8: Algorithm efficiency factor comparison: 3 starting points

4.4.2 Accuracy and Runtime

In order to more concretely determine which of these algorithms performs best, we

need to perform some data analysis. To do this we use a program which randomly

generates test cases with varying numbers of starting points, locations, and distances

between starting locations. This program then tests each algorithm by running it

twice on each test case and collecting data on how long it takes to run. The first

factor we look at is how fast each algorithm runs. We know that geographic mean

and path traversal should run faster than brute force, but we need to determine

how much faster they arre. As a way to provide some normalization between test

cases, we call our “speed” metric efficiency factor and set it to be one plus the

difference of the the runtime of the algorithm and the runtime of the brute force

algorithm divided by the runtime of the brute force algorithm for the same test

case. This means that the brute force algorithm always has an efficiency factor of

1. Any algorithm faster than it has an efficiency factor of greater than 1, and the

maximum possible efficiency factor is 2. A higher efficiency factor corresponds to a

faster runtime.
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Figure 4.8 shows the graph of the efficiency values for each algorithm as they

relate to the number of nodes in the graph. We use the number of nodes for the

x-axis because it provides a better description of the size of the problem than a

measurement such as the distance between the initial locations. This is because

the algorithms must traverse through many nodes and edges on the graph, and

the number of these that exist on the graph does not solely depend on the distance

between the initial locations. Here we see that the geographic mean algorithm

approaches the maximum efficiency factor of two. Additionally, the efficiency factor

of the path traversal algorithm is consistently hovering around 1.75. It is slower

than geographic mean, which is expected, but is still a significant improvement on

brute force.

Next we must analyze the accuracy of these algorithms. The first step towards

this is determining what it means to be accurate. In this case, we define accuracy of

an algorithm as the difference between cumulative time from the initial locations

to the meeting point found by the brute force method and the same time found

by the algorithm being analyzed. To provide normalization, we calculate accuracy

as one plus the difference of the time found by the algorithm and the time found

by the brute force method divided by the time found by the brute force algorithm.

Again, this results in the brute force algorithm always having an accuracy of 1 and

a maximum possible value of 2. In this case, a value closer to one corresponds to a

more accurate algorithm while, values greater from one correspond to less accuracy.

The graph in Figure 4.9 shows the accuracy of each algorithm as a function of

the number of nodes in the graph. By definition, the accuracy of the brute force

algorithm is always 1, which is expected because brute force finds the absolute best

meeting point. This graph shows us that the geographic mean algorithm is far less

accurate and its accuracy also varies wildly. The accuracy of the path traversal

algorithm is similarly variable. However, the path traversal algorithm shows a
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Figure 4.9: Algorithm accuracy comparison: 3 starting points

consistent improvement on the geographic mean algorithm and even finds the same

meeting point as the brute force algorithm on some occasions.

While both speed and accuracy are necessary metrics to analyze these algorithms,

in order to truly clarify which is “best” we must define a metric that encapsulates

both measurements. Since we have already normalized the efficiency factor and

accuracy, it is fairly simple to come up with a metric that uses both. In this case,

we multiply the efficiency factor of the algorithm by two minus its accuracy. This

formula is used because it maintains a baseline value of one for the brute force

algorithm, it rewards efficiency and accuracy equally, and it accounts for the fact

that higher accuracy is bad and higher efficiency is good. Values greater than one

correspond to an algorithm having better overall performance than the brute force

algorithm while values less than one correspond to an algorithm having a worse

overall performance.

In Figure 4.10, we can see the performance of each algorithm. This graph

indicates that both the geographic mean algorithm and the path traversal algorithm

consistently outperform the brute force algorithm. The degree to which they
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Figure 4.10: Algorithm performance comparison: 3 starting points

outperform brute force varies and there is no clear indication as to which cases

enable these algorithms to perform better. Additionally, it is unclear which algorithm

performs better between geographic mean and path traversal.

Before we can conclude our analysis, we must acknowledge that, while our

current measurement of performance values speed and accuracy equally, users may

value accuracy over efficiency. To account for this, we can change our formula

for performance by taking the two minus the accuracy term of the algorithm and

raising it to the third power. Raising to the third power is an arbitrary number,

and further studies can be done to determine what the best adjustment would be.

This does not change the baseline performance of the brute force algorithm, but it

penalizes poor accuracy more than our previous method. We can see the result up

this update performance formula in Figure 4.11.

When we make this change to our measurement of performance there is a

noticeable change in results. The geographic mean and path traversal algorithms

still perform better on average, but there are now cases where brute force outper-

forms them. Additionally, it now appears as though the path traversal algorithm
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Figure 4.11: Algorithm performance comparison with additional weight on accuracy: 3 starting
points

outperforms the geographic mean algorithm in most cases, and there are fewer

cases of the path traversal algorithm performing worse than brute force.

Before making a final conclusion, we analyze these algorithms with both four

and five initial points, to see if the results change. Figures 4.12 through 4.19 show

the relevant data for doing this analysis. In the future, it would be useful to analyze

the effects of adding even more initial points.

These figures show that the performance of the geographic mean algorithm

remains steady with an increase in the number of starting points. However, the

performance of the path traversal algorithm varies slightly. In particular, it appears

that path traversal performs better with five initial locations than it does with four

when we observe the weighted performance of the algorithms. This is likely due

to a decrease in accuracy with four starting points. It makes some sense that this

algorithm would perform worse with an even number of starting points than it does

with an odd number of starting points. When there is an even number of starting

points, it is more difficult for there to be a true majority of paths going in the same
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Figure 4.12: Algorithm efficiency factor comparison: 4 starting points

Figure 4.13: Algorithm efficiency factor comparison: 5 starting points
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Figure 4.14: Algorithm accuracy comparison: 4 starting points

Figure 4.15: Algorithm accuracy comparison: 5 starting points
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Figure 4.16: Algorithm performance comparison: 4 starting points

Figure 4.17: Algorithm performance comparison: 5 starting points
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Figure 4.18: Algorithm performance comparison with additional weight on accuracy: 4 starting
points

Figure 4.19: Algorithm performance comparison with additional weight on accuracy: 5 starting
points
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direction. Thus, with an even number of starting points the path traversal algorithm

is more likely to determine the geographic mean point as the meeting point, which

decreases the accuracy of the algorithm. We can also see that with five starting

points, path traversal outperforms geographic mean more than it did before. This

indicates that the geographic mean algorithm likely becomes less accurate as the

number of initial locations increases, although further testing is needed to confirm

this hypothesis. Overall, there is no runaway best choice among the three algorithms

we observe. However, given that it appears to become better than geographic mean

as the number of starting locations increases, the path traversal algorithm is likely

the best choice if one algorithm must be chosen. Fortunately, integrating multiple

algorithms into the web application is possible, so we can allow users to choose

whether to prioritize speed or accuracy.



CHAPTER 5

Midway: Meeting Place Finder

5.1 Implementation

This section discusses the process of developing the web application, Midway:

Meeting Place Finder. In particular, it highlights the setup of the development

environment and the development of the back-end of the application.

5.1.1 Creating the Development Environment

The development for this application is done using the PyCharm Community

Edition Integrated Development Environment (IDE), which is chosen for developer

familiarity as well as being free to use. Before doing any coding, a Django project

needs to be created using the command line. To do this, Django needs to be

installed which is done simply using pip: python -m pip install Django [13].

Once Django is installed, creating a project is able to be done with a single line in

the terminal, once the developer navigates to the directory where the code needs

to be stored: django-admin startproject {project name}. This does an initial

set-up of a Django project, creating several files that provide necessary functionality

for a Django application. However, this does not yet allow the developer to do very

much; in order to start building something useful a Django app needs to be created

53
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within the project. This structure is used so that Django can allow developers to

include multiple apps within a single project. Again, creating an app is a simple,

one-line process: python manage.py startapp {app name}. The manage.py file

is created by the startproject command and is used for all project management

tasks such as creating apps and running the development server.

Once an application is created, the developer can get started with the coding part

of developing the web app. To do this, necessary packages need to be installed. For

most packages, this is a simple process using pip or done through the PyCharm IDE.

However, the OSMnx package cannot be installed properly using these methods;

there is a bug that causes the package to not be installed correctly when using

pip. Instead, it must be installed using Anaconda, a Python platform for data

science which can also be used to create virtual environments. Anaconda has its

own website, where the software can be obtained. Once Anaconda is installed, the

terminal must be restarted; then, a virtual environment may be created. Creating

an environment that supports OSMnx takes two lines in the terminal:

conda config --prepend channels conda-forge

conda create -n ox --strict-channel-priority osmnx.

This creates a virtual environment called ox that supports OSMnx. All other

packages can be installed easily using conda install {package name}. This

environment can be activated using conda activate ox. At this point, the program

can be run like any other Python program and the virtual environment provides it

access to necessary packages.

5.1.2 Working with Django

When Django creates an application, it creates several files which serve as the core

of the application; a few of these files are in the outer, project directory, and the
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others are in the application directory, which is contained in the project directory. In

the project directory, the only changes that need to be made are small adjustments

to the settings and URL files. The settings file contains information that Django

uses to configure the website. Django initializes this file with default settings, so

there are not many changes that need to be made. For this project, the changes

made to the settings file helped to set up logging, form templates, and email. The

urls file determines what URLs to use on the website; in the project directory this

only specifies the path to the URLs of a specific application. Since this project only

includes a single application, the only URL is an empty URL that directs Django to

the URLs of our application.

The application directory is where most of the functionality of the website is

created. This directory also contains a urls file where we specify all of the URLs for

our application. Django makes this simple by creating a function called path that

allows the developer to pass the URL, a view for the URL, and a name. Views are

what actually dictate what happens in the application. When the URL is entered,

the view given by the path dictates a function that will be called whenever that URL

is accessed. These views are created in their own Python file named views. All

view functions take a parameter called request, which is an instance of Django’s

HttpRequest class. When a page is requested, Django creates an instance of this

class that contains metadata storing information such the path or method of the

request [13].

Depending on the purpose of the view, it can be as simple as one line of code or

much more complex. For example, this application has an about page, which is just

a static webpage with some information on the website. The function for this view

is trivial as it requires just a single line of code, as seen in Listing 5.1. All it needs to

do is return a call to the render function, which takes the request and a filename

and displays the given HTML file.
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1 def about ( request ) :
2 r e turn render ( request , ' about . html ' )

Listing 5.1: “About” view

Our application has three view functions that are not trivial: index, results,

and contact. The index view is the front page of the website, and its view function

needs to handle the form for users to enter locations. There are two cases that need

to be handled; the first is the case where the user submits the form, and the other

where the blank form is being displayed. When the user submits the form, the

request has a method attribute with the value POST, so we can check for this case

using an if statement. In this case, the data from the form needs to be collected,

then checked to ensure it is valid. Once the data is validated, the view redirects

to the results view, which handles what to do with the data. If the view needs to

display the blank form, it creates an instance of the Form class, which is discussed

later in this section, and returns a call to the render function, passing it the HTML

file for the view and the necessary form. The view also needs to check if there are

any errors because, if any error occurs when trying to find a meeting place, the user

will be redirected back to this view. To do this, we check to see if there is a value in

request.session['error']. The request.session object is a dictionary that gets

passed along with requests that allows variables to be used across views. This is

how the locations are made accessible to the results view, and it is also how error

messages are made accessible to the index view. If there is no key 'error' in this

dictionary, the view returns the blank form with no error message. Otherwise, a

blank form is returned and an error message is displayed at the top of the page.

This view function, omitting import statements, is shown in Listing 5.2.

The results view handles what the user sees once they submit their locations. It

is responsible for calling the function that runs the meeting-place-finding algorithm

as well as compiling the names and coordinates of all relevant locations and passing
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1 def index ( request ) :
2 LocationFormSet = f o r m se t _ f a c t o ry ( SingleLocationForm ,
3 formset=BaseLocationsFormsSet )
4
5 i f request . method == 'POST ' :
6 e nte r_ l oca t io ns_ fo rm = EnterLocationsForm ( request . POST)
7 l o c a t i o n _ f o r m s e t = LocationFormSet ( request . POST)
8 i f en ter _ lo ca t ion s_ f orm . i s _ v a l i d ( ) and l o c a t i o n _ f o r m s e t . i s _ v a l i d ( ) :
9 l o c a t i o n s = [ address [ ' l o c a t i o n ' ] f o r address in l o c a t i o n _ f o r m s e t . c leaned_data ]

10 request . s e s s i o n [ ' l o c a t i o n _ i n p u t ' ] = l o c a t i o n s
11
12 r e turn HttpResponseRedirect ( ' / r e s u l t s ' , { ' l o c a t i o n s ' : l o c a t i o n s } )
13 e l s e :
14 e nte r_ l oca t io ns_ for m = EnterLocationsForm ( )
15 l o c a t i o n _ f o r m s e t = LocationFormSet ( )
16 i f ' e r r o r ' in request . s e s s i o n :
17 r e turn render ( request ,
18 ' mpf / index . html ' ,
19 { ' e n te r_ loc a t i ons _ fo rm ' : enter_ locat ions_form ,
20 ' l o c a t i o n _ f o r m s e t ' : loca t ion_formset ,
21 ' e r r o r ' : request . s e s s i o n [ ' e r r o r ' ] } )
22 e l s e :
23 r e turn render ( request ,
24 ' index . html ' ,
25 { ' e n te r_ loc a t i ons _ fo rm ' : enter_ locat ions_form ,
26 ' l o c a t i o n _ f o r m s e t ' : l o c a t i o n _ f o r m s e t } )

Listing 5.2: “Index” view

them to the HTML page. First, it goes through all of the user-given locations and

attempts to find their geographic coordinates; if it is unable to do so then it redirects

the user back to the home page with an error message telling them which address

was invalid. Then, it runs the meeting-place-finding algorithm. Once that returns, it

does a reverse geocode on the coordinates of the meeting place in order to give the

user an address. Once all of this information is found, the view displays a page with

a map that has markers at each of the user-given locations as well as the meeting

place. These markers each have labels with their address, and are created using

JavaScript. The code for this view is shown in Listing 5.3.

5.1.3 Algorithm Implementation

While pseudocode for Dijkstra’s algorithm and the meeting-place finding algorithms

were provided in previous chapters, there were several challenges to actually

implementing them within the application. The first of these challenges was to

determine how to weight the edges in order to maximize the effectiveness of
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1 def r e s u l t s ( request ) :
2
3 l o c a t i o n s = request . s e s s i o n [ ' l o c a t i o n _ i n p u t ' ]
4
5 l o c a t o r = geopy . geocoders . MapBox( mapbox_access_token )
6 locat ion_geocodes = [ ]
7 f o r l o c a t i o n in l o c a t i o n s :
8 try :
9 loca t ion_code = l o c a t o r . geocode ( l o c a t i o n , timeout =60)

10 except exc . GeocoderTimedOut :
11 t ry :
12 loca t ion_code = l o c a t o r . geocode ( l o c a t i o n , timeout =60)
13 except exc . GeocoderTimedOut as e :
14 request . s e s s i o n [ ' e r r o r ' ] = e . message
15 r e turn HttpResponseRedirect ( ' / ' )
16 i f loca t ion_code i s None :
17 logger . warning ( " I n v a l i d l o c a t i o n s p e c i f i e d : { } " . format ( l o c a t i o n ) )
18 request . s e s s i o n [ ' e r r o r ' ] = " I n v a l i d l o c a t i o n : { } " . format ( l o c a t i o n )
19 r e turn HttpResponseRedirect ( ' / ' )
20
21 locat ion_geocodes . append ( loca t ion_code [ 1 ] )
22
23 t ry :
24 meeting_place = f ind_meet ing_place ( locat ion_geocodes )
25 except In va l i dL oc a t io nE rr or as e :
26 r e turn render ( request ,
27 ' mpf / index . html ' ,
28 { ' form ' : EnterLocationsForm ( ) ,
29 ' e r r o r ' : e . message } )
30
31 locat ion_geocodes . append ( ( meeting_place [ ' y ' ] , meeting_place [ ' x ' ] ) )
32
33 meet ing_place_text = l o c a t o r . reverse ( ( meeting_place [ ' y ' ] , meeting_place [ ' x ' ] )

↪→ ) . address
34 l o c a t i o n s . append ( meet ing_place_text )
35
36 mapbox_private_token = # This i s a s s o c i a t e d with your account with the mapbox

↪→ api
37
38 r e turn render ( request ,
39 ' mpf / r e s u l t s . html ' ,
40 { ' mapbox_private_token ' : mapbox_private_token ,
41 ' l o c a t i o n _ l i s t ' : l o c a t i o n s ,
42 ' locat ion_geocodes ' : locat ion_geocodes } )

Listing 5.3: ”Results” view
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Road Type Default Speed Limit (mph)
Motorway 55

Trunk 55
Primary 45

Secondary 45
Tertiary 35

Unclassified 30
Residential 25

Motorway Link 45
Trunk Link 45

Primary Link 35
Secondary Link 35

Tertiary Link 25
Living Street 15

Table 5.1: Table of default speed limits

the application. Our objective is to minimize total driving time, but the edges

provided by OSMnx do not contain an approximated time to drive along an edge.

Conceptually, the estimation of driving time is simple; multiplying the length of

the road segment and the speed the car is traveling and converting to the proper

units gives us a good approximation of the amount of time it takes to drive along a

particular road. Luckily, OSMnx has data for the length of every edge in the graph,

which can be easily accessed and subsequently used for calculations. However,

estimating the speed of travel along the edge is not quite as simple. The easiest

way to estimate the speed is to assume that the car is traveling at exactly the

speed limit. The problem with this is that speed limit data is not available for

every edge. To combat this problem, we take advantage of the fact that OSMnx

does define an edge type for every edge. Additionally, there are descriptions

online as to what type of road these edge types refer to. For example, we assume

that a motorway has a speed limit of 55 miles per hour, and a residential has a

speed limit of 25. A complete list of road types and descriptions can be found

at https://wiki.openstreetmap.org/wiki/Key:highway and a table of the road

types used for reference within the application can be found in Table 5.1. In cases

https://wiki.openstreetmap.org/wiki/Key:highway
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where the road type is not one of the ones listed, the speed limit is assumed to

be 25 miles per hour. This was chosen because roads with higher speed limits

are typically more significant and thus are more likely to already have a defined

road type. Using this information, it is possible to write a function that assigns

speed limits based on edge types to each edge that does not already have one. This

solution is implemented by writing a larger function that estimates the travel time

of any given edge and passing every edge to this function.

5.2 Results

The implementation described succeeds in building a functioning web application.

This application accomplishes the goals of the project, with its ability to successfully

find meeting places between 3+ locations and display these results in a manor that

is easy for the user to understand. In cases where the distances between initial

locations are small, the application displays results in approximately 2-3 seconds.

For larger test cases, it could take up to 30 seconds to find a meeting point, and if

meeting places are too far apart, the application may not be able to find a meeting

place. “Too far apart” refers to cases where initial locations are several states apart,

in which case the amount of data required to find a meeting place takes too long to

download.

Now, we go through an example usage of this application step-by-step to

demonstrate its capability. Note that this application is not deployed on the internet,

and this example is using a server hosted on a personal computer and is only

accessible via this computer. The first thing a user sees is the index page, which

is shown in Figure 5.1; this page corresponds to the code from Listing 5.2. This

page includes instructions for the user, and the interface is fairly self-explanatory

by design. Following the instructions given, users enter their starting locations,
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Figure 5.1: Initial page of Midway: Meeting Place Finder

using the + button to add additional locations as needed. They also use a slider to

indicate how much they want to prioritize speed versus accuracy. Depending on

the user’s selection, the application uses either the brute force, geographic mean,

or path traversal algorithm. An example of a user input is in Figure 5.2. In this

example the brute force algorithm is used to find the meeting point because the user

chose to put the maximum possible weight on accuracy. The full addresses in the

input are: 1761 Beall Ave, Wooster, Ohio, 1917 Millersburg Rd, Wooster, Ohio, 3883

Burbank Rd, Wooster, Ohio, and 515 Oldman Rd, Wooster, Ohio.

At this point, the user presses the blue Go button, which initiates the algorithm

and sends the user to the results page. This results page is dictated by the code

from Listing 5.3 and can be seen in Figure 5.3. Each of the user-given locations is

indicated by a dark blue marker, while the meeting location has a green marker.

Additionally, the address of the meeting place is written out for the user, and the

address of each location can be seen by clicking on its marker. An example of this

feature can be seen in Figure 5.4.

In addition to this primary functionality, the application has a few other note-

worthy features. First is the About page, which is a static page including some
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Figure 5.2: Example user input

Figure 5.3: Results page
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Figure 5.4: Results page with marker clicked

additional information about the app. This page can be seen in Figure 5.5. There is

also a Contact page, which allows users to send emails with questions or feature

requests via the app. Figure 5.6 shows a screenshot of the contact form. Last, there

is a Help page, which is used as an FAQ page to assist users if they encounter any

common problems; this can be seen in Figure 5.7.

Figure 5.5: About page
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Figure 5.6: Contact page

Figure 5.7: Help page



CHAPTER 6

Conclusions and FutureWork

This project resulted in the successful implementation of Midway: Meeting Place

Finder, a web application capable of solving the problem of finding a meeting place

between three or more user-given locations. Within the timeframe available we

accomplished a set of minimal goals necessary for success. While this thesis ends

with a positive result, there are also many ways in which it could be improved or

extended. To complete our discussion, we review the necessary goals which were

accomplished in addition to areas where further research can be done.

6.1 Completed Goals

The following goals were requirements for a successful application, all of which

were completed:

• The application is capable of finding meeting locations between at least three

locations specified by the user.

• The user interface is clean and simple, making it easy for the user to interact

with the application.

• All locations relevant to the user’s search are able to be displayed on a map.

Clearly, the ability to find meeting locations is the minimal requirement for the

application, because this functionality is the purpose driving the development of

65
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the application. However, if this functionality is not implemented with a clean user

interface then it is rendered useless, thus necessitating a quality and easy-to-use

interface. Given that the application deals with location and map data, it is only

logical that a user would like to view the locations on a map. While this feature is

not technically necessary for a functioning application, it serves to help users better

contextualize the meeting place specified by the program.

In addition to these primary goals, Midway: Meeting Place Finder successfully

implements the secondary objective of generalizing for use with an arbitrary number

of input locations. Naturally, this is beneficial because the ability to handle more

input locations creates additional use cases for the application which is beneficial to

users. When beginning development the difficulty of generalizing was unknown;

however, the algorithm does not require any changes for generalization, and the

most difficult step towards generalizing is receiving a variable number of inputs

from the front-end of the web application.

6.2 FutureWork

6.2.1 Optimizations

Future optimizations will center around determining ways to speed up the process

of creating the graphs necessary for running the algorithm. The algorithm created

is capable of finding a meeting place in under a minute even on test cases where the

input locations are hundreds of miles apart. However, this is overshadowed by the

fact that creating a graph can take minutes. Ideally, the solution to this problem is

to find a way to download the graph of the entire continental United States. This

proved to be too much data to download during this project. In the future, finding a

way to download this data, or retrieve the data faster than the application currently

does, would significantly improve the performance of the application.
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In addition to reducing the amount of time it takes to create a graph, downloading

the data and storing it locally would enable the implementation of a contraction

hierarchy as described in Chapter 4. After completing the preprocessing required to

create the contraction hierarchy, it is likely that it would enable the algorithm to run

in an amount of time on the order of a few milliseconds. This would be incredibly

beneficial to the app because users have come to expect quick response times, which

the app currently does not provide in all scenarios.

Another optimization worth considering is implementing the geographic mean

neighbor walk and midpoint intersection algorithms using the A* search algorithm.

When using Dijkstra’s algorithm, these two heuristics are rendered useless because

they are slower than the brute force algorithm. If a good enough heuristic could be

found, the A* search algorithm could enable these two algorithms to become useful

in approximating a meeting place.

6.2.2 Features

While Midway: Meeting Place Finder is capable of solving the problem at hand,

there are still several ways it could be improved in the future. Some potential ideas

for new features are:

• Providing users with estimated times to the meeting point

• Allowing users to specify a type of meeting place

• Listing multiple potential meeting places for the user to choose from

• Enabling users to export directions to a meeting place

• Including alternative forms of transport such as walking and bicycling.

The ability to provide estimated times is helpful to the user because it is an

additional piece of information that can help them make plans more effectively.
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Specifying a type of meeting place means allowing users to choose to meet at

specific locations such as restaurants or gas stations. Currently, if a user wants to

meet at a specific type of place, they need to manually search for places around the

meeting place given by the app. Listing different meeting places is helpful because

it provides users with multiple options that they can easily search through to find

the one that best suits their needs. Creating a way for users to export directions is

helpful because if they want to go to the meeting place they need to find out how to

get there, and it is convenient for them to do it through this application instead of

going to another one. Alternative forms of transport can be useful for people who

intend to use them; this feature serves to enable additional use cases which makes

the app more useful for everybody.

In order to allow users to specify types of meeting places, additional constrains

need to be programmed into the algorithm to ensure that the meeting place selected

is of the proper type. Additionally, this requires the dataset to include information

on the types of places. Listing multiple meeting places requires searching the map

for additional nodes within some sort of radius of the meeting place found by the

original algorithm. This likely would not be particularly difficult, although it would

be important to ensure that the application supports this while still maintaining

a clean and easy-to-use interface. Exporting directions would likely be an easier

extension, as the directions should be found in the process of finding the meeting

place itself. Then, we only need to translate the directions into a human-readable

format. Alternative forms of transport would require a shift in datasets being used.

The same algorithm will be usable across transportation methods, but the actual

paths that are available would be different. It is unknown how difficult it is be to

handle different modes of transport within the application.

As a whole, these features are non-essential for a functioning application, which
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is why they are not implemented yet. However, they all add additional benefits to

users and are worth implementing in the future.
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6. Andrej Brodnik and Marko Grgurovič. Practical Algorithms for the All-Pairs
Shortest Path Problem, pages 163–180. Springer International Publishing, Cham,
2018. ISBN 978-3-319-77510-4. doi: 10.1007/978-3-319-77510-4_6. URL
"https://doi.org/10.1007/978-3-319-77510-4_6".

7. Gary Chartrand and Ping Zhang. A First Course in Graph Theory. Dover, 2012.

8. Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.
Introduction to Algorithms. MIT Press, 2009.

9. Reinhard Diestel. Graph theory. Springer, 2018.

10. Kayhan Erciyes. Guide to Graph Algorithms: Sequential, Parallel and Distributed.
Springer Nature, 2019.

11. Dominique Feillet, Pierre Dejax, Michel Gendreau, and Cyrille Gueguen. An
exact algorithm for the elementary shortest path problem with resource
constraints: Application to some vehicle routing problems, Aug 2004. URL
https://onlinelibrary.wiley.com/doi/epdf/10.1002/net.20033.

71

https://hired.com/page/state-of-software-engineers/hottest-coding-languages/#most-loved-languages
https://hired.com/page/state-of-software-engineers/hottest-coding-languages/#most-loved-languages
https://www.shuup.com/django/25-of-the-most-popular-python-and-django-websites/
https://www.shuup.com/django/25-of-the-most-popular-python-and-django-websites/
https://www.researchgate.net/publication/309738462_OSMnx_New_Methods_for_Acquiring_Constructing_Analyzing_and_Visualizing_Complex_Street_Networks
https://www.researchgate.net/publication/309738462_OSMnx_New_Methods_for_Acquiring_Constructing_Analyzing_and_Visualizing_Complex_Street_Networks
https://www.researchgate.net/publication/309738462_OSMnx_New_Methods_for_Acquiring_Constructing_Analyzing_and_Visualizing_Complex_Street_Networks
https://geoffboeing.com/2016/11/osmnx-python-street-networks/
"https://doi.org/10.1007/978-3-319-77510-4_6"
https://onlinelibrary.wiley.com/doi/epdf/10.1002/net.20033


72 References

12. Geopy. URL https://geopy.readthedocs.io/en/stable/#.

13. Getting Started With Django. https://www.djangoproject.com/start/.

14. HTML basics. URL https://developer.mozilla.org/en-US/docs/Learn/
Getting_started_with_the_web/HTML_basics.

15. JavaScript Documentation. URL https://developer.mozilla.org/en-US/
docs/Web/JavaScript/Guide/Introduction.

16. Jake Kronika and Aidas Bendoraitis. Django 2 web development cookbook: 100
practical recipes on building scalable Python web apps with Django 2. Packt
Publishing, 2018.

17. Nacima Labadie. Metaheuristics for Vehicle Routing Problems. Wiley, 2016.

18. Jiri Lebl. Basic Analysis I: Introduction to Real Analysis, Volume I. CREATESPACE,
2018.

19. Michael Levin. Contraction hierarchies. URL
https://www.coursera.org/learn/algorithms-on-graphs/lecture/
HV35U/highway-hierarchies-and-node-importance.

20. NetworkX Documention - Overview. URL https:
//networkx.github.io/documentation/networkx-1.10/overview.html.

21. Mark Otto and Jacob Thornton. Bootstrap documentation. URL
https://getbootstrap.com/docs/4.3/about/overview/.

22. Yana Petlovana. Top 13 Python web frameworks to learn in 2020, Oct 2019.
URL https:
//steelkiwi.com/blog/top-10-python-web-frameworks-to-learn/.

23. G. Ramalingam and Thomas Reps. An incremental algorithm for a
generalization of the shortest-path problem, May 1996. URL https:
//www.sciencedirect.com/science/article/pii/S0196677496900462.

24. Arun Ravindran. Django design patterns and best practices: industry-standard web
development techniques and solutions using Python. Packt Publishing, 2018.

25. Fred S Roberts and Barry Tesman. Applied Combinatorics. Mar 2009. doi:
10.1201/b12335.

26. Alexander Ryabtsev. Web frameworks: How to get started, Oct 2019. URL
https://djangostars.com/blog/what-is-a-web-framework/.

https://geopy.readthedocs.io/en/stable/#
https://www.djangoproject.com/start/
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/HTML_basics
https://developer.mozilla.org/en-US/docs/Learn/Getting_started_with_the_web/HTML_basics
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Introduction
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Introduction
https://www.coursera.org/learn/algorithms-on-graphs/lecture/HV35U/highway-hierarchies-and-node-importance
https://www.coursera.org/learn/algorithms-on-graphs/lecture/HV35U/highway-hierarchies-and-node-importance
https://networkx.github.io/documentation/networkx-1.10/overview.html
https://networkx.github.io/documentation/networkx-1.10/overview.html
https://getbootstrap.com/docs/4.3/about/overview/
https://steelkiwi.com/blog/top-10-python-web-frameworks-to-learn/
https://steelkiwi.com/blog/top-10-python-web-frameworks-to-learn/
https://www.sciencedirect.com/science/article/pii/S0196677496900462
https://www.sciencedirect.com/science/article/pii/S0196677496900462
https://djangostars.com/blog/what-is-a-web-framework/


References 73

27. Lynn Arthur. Steen and J. Arthur Jr. Seebach. Counterexamples in Topology. Holt,
Rinehart, and Winston, 1970.

28. Michael Tandy. Contraction hierarchies path finding algorithm, illustrated
using three.js, 2015. URL
https://www.mjt.me.uk/posts/contraction-hierarchies/.

29. Paragyte Technologies. How good is Python for web development? - an
analysis, Jun 2017. URL https://medium.com/@paragyte2/
how-good-is-python-for-web-development-an-analysis-41a5cb4e88fc.

30. What is CSS? URL https://developer.mozilla.org/en-US/docs/Learn/
CSS/First_steps/What_is_CSS.

https://www.mjt.me.uk/posts/contraction-hierarchies/
https://medium.com/@paragyte2/how-good-is-python-for-web-development-an-analysis-41a5cb4e88fc
https://medium.com/@paragyte2/how-good-is-python-for-web-development-an-analysis-41a5cb4e88fc
https://developer.mozilla.org/en-US/docs/Learn/CSS/First_steps/What_is_CSS
https://developer.mozilla.org/en-US/docs/Learn/CSS/First_steps/What_is_CSS

	Developing A Web-Based Application for Finding Meeting Places
	Recommended Citation

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Mathematical Background
	Graph Theory
	Metrics and Quasimetrics
	Important Algorithms
	Dijkstra's Algorithm
	Floyd-Warshall Algorithm


	Application Development Environment
	Python
	Django
	Python Packages
	NetworkX
	OSMnx
	Geopy

	Classic Web Development Tools
	JavaScript
	HTML and CSS
	Bootstrap


	Meeting-place Algorithm
	Problem in Context
	Brute Force Method
	Optimization Techniques
	Contraction Hierarchies
	Dijkstra Optimizations
	Heuristic Algorithms

	Algorithm Analysis and Comparison
	Complexity Analysis
	Accuracy and Runtime


	Midway: Meeting Place Finder
	Implementation
	Creating the Development Environment
	Working with Django
	Algorithm Implementation

	Results

	Conclusions and Future Work
	Completed Goals
	Future Work
	Optimizations
	Features


	References

