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Abstract

This Independent Study is concerned with examining the diagrammatic algebra

known as the planar rook algebra CPn. Using the tools of representation theory, we

decompose CPn into the direct sum of Pn-invariant irreducible subspaces. We look

to further expand the topic by edge-coloring the diagrams in CPn. Different results

arise when coloring CPn with finite abelian versus finite non-abelian groups.
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"No no no no no. What?! But no. But yes! Yes yes yes, I see."

- Péter Hermann, at least once per lecture
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Preface

The purpose of this Independent Study is to explore the diagrammatic algebra

known as the planar rook algebra.

Notes on Notation

Mathematicians often use different notation to represent the same concept. So, it is

necessary for us to address some "ambiguous" notation. First, Dn represents the

dihedral group of order 2n, not of order n. For example, D4 is the symmetries of

the square, not D8. Second, the term "binary operation" implies closure. Third, we

maintain throughout that 0 <N. Fourth, we will multiply left to right, unless work-

ing with the composition of functions (including permutations). Other common

notation may be found in the following table.

ix



Notation Meaning

H ≤ G H is a subgroup of G

H < G H is a proper subgroup of G

H C G H is a normal subgroup of G (not necessarily proper)

Z(G) the center of G

CG(g) the centralizer of g in G

(G on Ω) the action of G on Ω

βG the orbit of β under the action of G

Gβ the stabilizer of β in G

βg the image of β under the action of g

o(g) the order of g

Tr(M) the trace of a matrix M

Sym(Ω) the symmetric group on Ω

dim(A) the dimension of a vector space or algebraA

x



CHAPTER 1
Topics in Algebra

We assume knowledge up to the level of completion of introductory courses

in group theory and linear algebra. That is, we expect understanding of concepts

such as cyclic groups, normal subgroups, homomorphisms, determinant, vector

space, etc. To truly understand this Independent Study, however, we need even

more background. Many of the examples and theorems in this chapter (especially in

Section 1.2) were homework problems from "Advanced Abstract Algebra," a course

that ran in the Spring of 2019 through Budapest Semesters in Mathematics.

1.1 Algebraic Structures

Throughout, we will need to call upon a variety of algebraic structures. Algebraic

structures are generalizations of systems familiar to most budding mathematicians,

such as the integers considered with integer addition and multiplication or continu-

ous functions considered with function addition and composition. Essentially, an

algebraic structure consists of a set together with a collection of operations satisfying

a list of axioms. Groups and rings are some of the most familiar algebraic structures.

A knowledge of groups and vector spaces is assumed, but we will now introduce

rings and soon cover other, perhaps more abstract, algebraic structures.

1



1. Topics in Algebra 2

Definition 1.1 Let (R,+, ·) be a nonempty set R together with two binary operations

+ and ·, which are "addition" and "multiplication," respectively. We say that (R,+, ·)

is a ring if

1. a + b = b + a, for all a, b ∈ R.

2. (a + b) + c = a + (b + c), for all a, b, c ∈ R.

3. There exists 0 ∈ R such that a + 0 = a, for all a ∈ R.

4. For each a ∈ R, there exists −a ∈ R such that a + (−a) = 0.

5. (a · b) · c = a · (b · c), for all a, b, c ∈ R.

6. For a, b, c ∈ R, a · (b + c) = (a · b) + (a · c) and (a + b) · c = (a · c) + (b · c).

Typically, we write a · b as ab and (R,+, ·) as R.

Note that while we require addition to be commutative in R, we do not require

multiplication to be commutative. If multiplication is commutative, however, then

we say that R is a commutative ring. We have an additive identity 0, but lack the

requirement of a multiplicative identity. In the case that R has a multiplicative

identity 1, we call R a ring with unity, a ring with a 1 (read "ring with a one"), a

ring with identity, or simply a ring with i.d. In the case that multiplicative inverses

exist for the nonzero elements in R, we call R a division ring. The multiplicative

inverse of a ∈ R is denoted a−1. Clearly, a division ring is necessarily a ring with i.d.

[3].

Considering the first four ring axioms and the binary operation +, we see that a

ring is really just an abelian group with a second binary operation · that satisfies

properties 5 and 6 in Definition 1.1.

Example 1.1. A good first example of a ring isZwith the usual operations of integer

addition and multiplication. This ring is a commutative ring with i.d., but is not a

division ring, as it lacks multiplicative inverses.
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Example 1.2. Consider Z[i] = {a + bi | a, b ∈ Z} with the usual complex addition

and multiplication. The ring Z[i] is called the Gaussian integers and is in fact an

algebraic structure more specific than a ring: Z[i] is an integral domain.

Definition 1.2 Let D be a commutative ring with i.d. Then, D is an integral domain

if, for every a, b ∈ D such that ab = 0, we have that either a = 0 or b = 0 [3].

At first glance, this seems standard. In many cases, such as in R, we have that

ab = 0 implies either a = 0 or b = 0. Consider, however,Z15, which is not an integral

domain (but is a commutative ring with i.d.). In Z15, we have that 3 · 5 = 0, and

neither 3 nor 5 is equal to 0. In this case, 3 and 5 are what are called zero divisors,

nonzero elements that multiply to be 0. Thus, an equivalent way to think about an

integral domain is to consider it as a commutative ring with i.d. that has no zero

divisors.

We can essentially combine all of our previous axioms to acquire a field. A field

is a commutative division ring (and necessarily an integral domain). Common

fields include Q, R, C, and Zp, where p is prime. The field Zp is often denoted Fp.

The characteristic of a field is the least positive integer n such that n · 1 = 0. In the

case that there is no such n, we say that the field in question has characteristic zero.

Definition 1.3 Let R be a ring with multiplicative identity 1. A left R-moduleM is

an abelian group under addition together with a binary operation · : R ×M→M

such that for all r, s ∈ R and v,w ∈ M, we have that

1. r · (v + w) = r · v + r · w,

2. (r + s) · v = r · v + s · v,

3. (rs) · v = r · (s · v),

4. 1 · v = v.
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An analogous definition applies to a right R-module.

These axioms should look somewhat familiar. A module is really just a "vector

space" over a ring with identity. Of course, "vector space" is very intentionally put

in quotes here. Vector spaces are, by definition, over fields. However, if we ignore

this requirement, we can understand modules. We can think of a vector space as a

type of module, as all fields are rings with identity. Furthermore, a vector space is

both a left and a right module, as multiplication is commutative in fields. In the

case thatM is both a left and right R-module, we simply callM an R-module.

Example 1.3. Every abelian group G is a Z-module. We know that Z is a ring with

identity 1, and the module axioms hold. To see this, consider our group operation

with additive notation. Certainly, for a, b ∈ Z and g, h ∈ G,

1. a · (g + h) = a · g + a · h,

2. (a + b) · g = a · g + b · g,

3. (ab) · g = a · (b · g),

4. 1 · g = v.

Note that the requirement that G is abelian is very much needed, given that,

otherwise, the first module axiom would not necessarily hold.

Definition 1.4 Let F be a field and V be a vector space over F. Let · be a binary

operation from V × V to V. We say that V is an algebra over F if, for all ~u, ~v, ~w ∈ V

and α, β ∈ F,

1. (~u + ~v) · ~w = ~u · ~w + ~v · ~w,

2. ~u · (~v + ~w) = ~u · ~v + ~u · ~w,

3. (α~u) · (β~v) = (αβ)(~u · ~v).
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Example 1.4. Take Mn×n(R), the collection of n × n matrices with entries in R. This is

a real vector space, and matrix multiplication satisfies the algebra binary operation

in Definition 1.4, as for A,B,C ∈Mn×n(R) and α, β ∈ R,

(A + B) · C = A · C + B · C,

A · (B + C) = A · B + A · C,

and

(αA) · (βB) = (αβ)(A · B).

Example 1.5. Take the group algebra of a group G over C. This is defined as

CG = C-span
{
~xg | g ∈ G

}
,

with multiplication defined by ~xg~xh = ~xgh. These xi are abstract vectors indexed by

elements of the group G. From linear algebra, we are familiar with the concept of

R-span, or just span. Now, we are going beyond real coefficients and using complex

coefficients.

Choosing G = D3, for example,

CD3 = C-span {xe, xr, xr2 , xs, xsr, xsr2} .

Elements of CD3 look like

λ1xe + λ2xr + λ3xr2 + λ4xs + λ5xsr + λ6xsr2 ,

where λi ∈ C for all i.

We have seen what happens when we impose axioms on algebraic structures,
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going, in a sense, beyond groups, but what happens if we start to take away from a

group some of its axioms?

Definition 1.5 A monoid M is a nonempty set with an associative binary operation

that contains an element e such that for all m ∈M, we have that em = me = m.

Unlike elements of groups, elements of monoids are not required to have

inverses.

Example 1.6. A good first example of a monoid is (Z+, ·), where Z+ is the positive

integers and · is integer multiplication. The product of two positive integers is a

positive integer, integer multiplication is associative, and 1 is the identity element.

A monoid of particular interest to us is the rook monoid Rn, which consists of

the set of n × n matrices with entries in F2 such that there is at most one 1 in each

column and in each row together with matrix multiplication [1]. For example,

R2 =


 1 0

0 1

 ,
 1 0

0 0

 ,
 0 1

0 0

 ,
 0 0

0 1

 ,
 0 0

1 0

 ,
 0 1

1 0

 ,
 0 0

0 0


 .

Of course, the identity matrix In is the identity element of Rn, and matrix multipli-

cation is associative. The operation is indeed binary, meaning that Rn is, in fact, a

monoid.

The rook monoid is so named because of the positioning of the 1’s in the elements

of Rn. If we think of d ∈ Rn as an n × n chessboard and the 1’s as rooks, then d is a

chessboard of rooks and empty spaces (0’s) in which no two rooks are attacking

each other.

Algebraic structures are places in mathematics "where things happen." However,

as we will see in the next section, they can also "make things happen."
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1.2 Actions

Group actions are fundamental aspects of group theory. Given a group G and a

set Ω, the elements of G act on the elements of Ω in that the group elements "do

something" to the set elements. Perhaps g ∈ G maps β1 ∈ Ω to β2 ∈ Ω. The concept

of group actions is extremely abstract and will become clearer through example.

While we will introduce actions by way of groups, it is important to keep in mind

that actions may be performed by other algebraic structures, as well.

Definition 1.6 Let G be a group and Ω a nonempty set. Let β ∈ Ω and g1, g2 ∈ G.

Let φ : G ×Ω→ Ω be a map denoted by φ(g1, β) := βg1 such that

1. βe = β, where e is the identity element of G, and

2. βg1 g2 = (βg1)g2 .

Then, the map φ is a group action of G on Ω. We say that G acts on Ω and denote

the action of G on Ω by (G on Ω).

We will immediately jump into an example in an attempt to clarify, as this

definition is more abstract than what is covered in most introductory algebra

courses.

Example 1.7. Consider Ω = {1, 2, 3, 4}, the set of vertices of a square, and look at

D4 = {e, (13), (24), (1432), (1234), (12)(34), (14)(23), (12)(24)}.

Each element of D4 acts on Ω as a function. For example, (1432) acts on 1 by sending

it to 4, 2 by sending it to 1, 3 by sending it to 2, and 4 by sending it to 3 (Figure 1.1).

The dihedral groups are special examples of permutation groups. The symmetric

group on Ω, denoted Sym(Ω), is the set of all permutations of the elements of Ω
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Figure 1.1: (1432) acting on {1, 2, 3, 4}

together with composition as the group operation. A permutation group is any

subgroup of a symmetric group.

A group G acting on a set Ω induces a homomorphism G → Sym(Ω), as each

element of G permutes the elements of Ω. This, for example, is justification for

Cayley’s Theorem.

The object that a group acts on need not be merely a set.

Example 1.8. Let G act on itself via conjugation. That is, for g, h ∈ G, gh = h−1gh.

Groups are closed under conjugation by their own elements, and certainly ge =

ege = g. For g, h, k ∈ G, we have that

ghk = (hk)−1g(hk) = k−1h−1ghk = k−1ghk = (gh)k.

Thus, conjugation is indeed a group action.

Other group actions include the trivial action, in which βg = β for all g ∈ G and

β ∈ Ω, and the left action of G on the cosets of a subgroup H of G, in which, for

a ∈ G, we set (aH)g = gaH. An analogous definition applies to the right action of G

on the cosets of H.

Example 1.9. The left regular action is one of the easiest group actions to understand,

as it is essentially the operation of the acting group. Letting G act on itself via left
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multiplication, for g, h ∈ G, we have that gh = hg. An analogous definition applies

to the right regular action.

When a group G acts on a set Ω, it sends elements of Ω to other elements of Ω.

Different elements of G often map an element β ∈ Ω in different ways. Looking at

how different elements of G map β ∈ Ω, we encounter the notion of orbits.

Definition 1.7 Let G act on Ω. Let β ∈ Ω. The orbit of β under the action of G is the

set

βG = {α ∈ Ω | there exists g ∈ G such that βg = α}.

Example 1.10. Let G act on itself via conjugation, as in Example 1.8. Then, the orbit

of g ∈ G under the action is

{h ∈ G | h−1gh = g}.

This set is called the conjugacy class of g in G. In general, the orbits of G acting

on itself via conjugation are the conjugacy classes of elements in G, or simply, the

conjugacy classes of G.

Just as cosets of a subgroup of a group G partition G, orbits of an acted-upon set

Ω partition Ω.

Theorem 1.1.

Let G act on Ω. Then, the orbits of the action partition Ω [4].

We will not prove Theorem 1.1, but it is important to keep in mind.

The identity element of an acting group G fixes all elements it acts upon. Other

elements of G may behave similarly.

Definition 1.8 Let G act on Ω. The stabilizer of an element β ∈ Ω is the set

Gβ = {g ∈ G | βg = β}.
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Example 1.11. Continuing from Example 1.10, where the action was conjugation, we

have that for g ∈ G,

Gg = CG(g) = {h ∈ G | hg = gh},

where CG(g) is called the centralizer of g in G.

Stabilizers are not only subsets of the acting group, but subgroups. This is easy

to check and will be not be covered here.

Orbits and stabilizers reveal a great deal of information about their associated

action. They allow us to see where elements of the acted-upon set are mapped.

They are also related to the order of the acting group.

Theorem 1.2 (Orbit-Stabilizer).

Let G be a group, and let Ω be a finite set. Let G act on Ω, and let β ∈ Ω. Then,∣∣∣βG
∣∣∣ =

∣∣∣G : Gβ

∣∣∣.
Proof. Consider F : G → βG defined by F (g) = βg. The map is surjective by

definition of orbit.

As Gβ ≤ G, we have that F (g1) = F (g2) if and only if g1g−1
2 ∈ Gβ. That is, g1 ≡ g2

mod Gβ. Then, there exists a well-defined bijection between G/Gβ :=
{
gGβ | g ∈ G

}
and βG. This bijection is given by gGβ 7→ βg. Hence,

∣∣∣βG
∣∣∣ =

∣∣∣G/Gβ

∣∣∣ =
∣∣∣G : Gβ

∣∣∣, as

desired [4]. �

We have looked at examples of group actions. We now move to look at types of

group actions. There are many types of group actions: ones which have large orbits,

ones which partition the acted-upon set in interesting ways, and so on.

Definition 1.9 Let G act on Ω. If, for all β ∈ Ω, we have that βG = Ω, then we say

that the action is transitive and that G acts transitively on Ω.

Example 1.12. The left and right regular actions are transitive.
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Note that if the orbit of any single element of Ω is equal to the entirety of Ω, then

for every β ∈ Ω, we have that βG = Ω. Thus, Definition 1.9 could be equivalently

expressed by changing "for all...we have that" to "there exists...such that."

Definition 1.10 Let G act transitively on Ω. A block B is a proper subset of Ω such

that |B| ≥ 2 and given g ∈ G, either Bg = B or Bg
∩ B = ∅.

The set of all blocks is called a system of blocks. A system of blocks forms a

partition of Ω.

Definition 1.11 Let G act transitively on Ω. If there exists a system of blocks, we say

that G acts imprimitively on Ω. Otherwise, we say that G acts primitively on Ω.

Example 1.13. Let G act on Ω. If |Ω| is prime, then G acts primitively.

Proof. As a system of blocks partitions the set being acted upon, and |Ω| is prime,

there are only two ways to partition Ω, either as the set itself or as |Ω| singletons.

Neither of these partitions can form a block system, by definition of a block. Hence,

G acts primitively. �

Example 1.14. Consider the action of the dihedral group Dn on the vertices of a

regular n-gon. This action is transitive. We claim that Dn acts primitively if and

only if n is prime.

Proof. (⇐) By Example 1.13, we have that if n is prime, then Dn acts primitively.

(⇒) We proceed by contrapositive. Suppose n is not prime. Let n = pq, where

neither p nor q is equal to 1. Then, we can partition the vertices of the n-gon

into p many sets Bi, where each |Bi| = q, and each Bi contains vertices that form a

regular q-gon (Figure 1.2). By the way it is defined, the action of the dihedral group

preserves this partition of the vertices. That is, the Bi’s form a system of blocks,

meaning that the action is imprimitive.

This completes the proof. �
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Figure 1.2: A regular 12-gon with its vertices partitioned into 3 regular 4-gons

Transitive and primitive actions affect the stabilizers of the elements of the

acted-upon set.

Theorem 1.3.

Let G act transitively on Ω. Then, the stabilizers are conjugates of each other. That is, for

Gα and Gβ, there exists g ∈ G such that Gα = gGβg−1.

Proof. Let h ∈ Gα. Then, αh = α. As G acts transitively, there exists g ∈ G such that

αg = β. Then, βg−1
= α. Thus,

βg−1hg = βg−1(hg) = αhg = (αh)g = αg = β.

Hence, g−1hg ∈ Gβ. That is, h ∈ gGβg−1.

The proof of the reverse direction is similar. �

Theorem 1.4.

Let G act transitively on Ω. Then, G acts primitively if and only if Gβ
max
< G (stabilizers are

maximal subgroups) [4].

We leave Theorem 1.4 without proof.



1. Topics in Algebra 13

Example 1.15. Consider the left regular action of a finite group G on itself. This

action is primitive if and only if |G| is prime.

Proof. By Theorem 1.4, we know that the action is primitive if and only if the

stabilizer of any element of G is a maximal subgroup of G. In the left regular action,

the stabilizer of any element of G is simply {e}. Then, {e} is a maximal subgroup of G

if and only if |G| is prime, by Cauchy’s Theorem. �

Definition 1.12 Let G act on Ω. Let g ∈ G such that βg = β for all β ∈ Ω. If g = e is

the only such g, then we say that G acts regularly on Ω.

The previous definition says that a regular action behaves like a function from

Ω ×Ω to G. Each (α, β) ∈ Ω ×Ω has only one element in G to which it corresponds.

That is, for any two elements (not necessarily distinct) α and β of Ω, there exists a

unique g ∈ G such that αg = β. As βe = β for all β ∈ Ω, we can see that the stabilizers

of a regular action are trivial. Indeed, this is why the left and right regular actions

are named as they are.

We will be interested in the actions of monoids on algebras later in this thesis.

Thus, it may be of use to provide an example here.

Example 1.16. Let the monoid (Z+, ·) (Example 1.6) act on the group algebra CG for

some abelian group G (Example 1.5) by

(
~xg

)z
= ~xzg,

where zg is written in the additive notation. The action of (Z+, ·) endows CG with a

module-like structure. Thus, we may refer to CG as a Z+-module.
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1.3 Direct Sums

Direct sums help us understand algebraic structures as the sums of their parts, which

simplifies our work in many cases. We will introduce direct sums in the language of

vector spaces, but it is important to keep in mind that there are analogous notions

for other algebraic structures.

Definition 1.13 Let {Vi}i∈I be a collection vector spaces. Define addition in the

Cartesian product ×i∈IVi componentwise and scalar multiplication by α(~v, ~w) =

(α~v, α~w). Under these operations, ×i∈IVi is a vector space. Denote ×i∈IVi defined in

this way by ⊕
i∈I

(ex) Vi.

We call
⊕

i∈I (ex) Vi the external direct sum of the Vi’s.

Example 1.17. In terms of groups, we can think of an external direct sum as a direct

product. That is, the external direct sum of groups G and H is G ×H.

Definition 1.14 Let V be a vector space and {Ui}i∈I be a collection of subspaces of V

such that for all i , j ∈ I,

Ui ∩U j =
{
~0
}
,

and for all ~v ∈ V, there exist ~ui ∈ Ui such that

∑
i∈I

~ui = ~v.

We may then write V as the sum of the subspaces Ui. Denote V as this sum by

V =
⊕

i∈I

(in) Ui.

We call V the internal direct sum of the Ui’s.
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Example 1.18. Let W be an n-dimensional vector space. Let
{
~u1, . . . , ~uk

}
be a basis for

a subspace U of W. Then, we can extend this to a basis for W:

{
~u1, . . . , ~uk, ~v1, . . . ~vn−k

}
.

Consider V = span
{
~v1, . . . ~vn−k

}
. The ~vi’s are linearly independent, so

{
~v1, . . . ~vn−k

}
is

a basis for the subspace V of W. The subspace V has dimension n − k, as the basis

for W must have n vectors, and the basis for U has k vectors.

We claim that W = U ⊕ (in)V. To see this, note that U ∩V = {~0}, as U and V share

no basis vectors. If there were a nonzero vector ~w ∈ U ∩V, then it would be a linear

combination of ~ui’s and a linear combination of ~vi’s, which would lead to (without

loss of generality) ~ui’s being written as ~vi’s, a contradiction.

Also, U + V = W, because every vector in W is a linear combination of ~ui’s and

~vi’s, as seen in the basis for W

{~u1, . . . , ~uk, ~v1, . . . ~vn−k}.

Hence, W = U ⊕ (in)V.

The internal direct sum is the more appropriate way to think of direct sums as

they appear is this thesis. However, will mainly be working with finite direct sums,

and in this case, the internal and external direct sums are equivalent. As such, we

will use
⊕

without specifying (in) or (ex).

We are used to working with a vector space in terms of a basis. Not all modules

have bases, but those that do are called free modules. IfM is a free R-module, then

M is isomorphic to the direct sum of isomorphic copies of R. This, for example, is

justification for the fact that finite-dimensional vector spaces of dimensions m and n

over a field F are isomorphic if and only if m = n, as they are isomorphic to Fm and

Fn, respectively.
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1.4 Representations

Matrix groups are seen throughout algebra, being introduced in a first course in

linear algebra and then developed over further study. Given a group, we may be

able to represent it as a matrix group and use tools from linear algebra to obtain

information. As when introducing actions, we will work in the language of groups,

but representation theory is applicable to other algebraic structures, as well.

Example 1.19. Consider S3 = {e, (12), (13), (23), (132), (123)}. Here, for example, the

element (123) maps 1 to 2, 2 to 3, and 3 to 1. Another way of thinking about the way

that an element in S3 behaves is via matrices. Take not (123), but


0 1 0

0 0 1

1 0 0

 .

Starting from I3, we look at how (123) changes the entries:


1 0 0

0 1 0

0 0 1


(123)
−→


0 1 0

0 0 1

1 0 0

 .

In the first row of I3, the 1 moves to the second position, in the second row, the 1

moves to the third position, and in the third row, the 1 moves to the first position.

The matrix on the right is a valid way to represent the element (123) in GL3(F2).

Furthermore, the homomorphism ϕ : S3 → GL3(F2) defined by
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i.d. 7→


1 0 0

0 1 0

0 0 1


(12) 7→


0 1 0

1 0 0

0 0 1


(13) 7→


0 0 1

0 1 0

1 0 0



(23) 7→


1 0 0

0 0 1

0 1 0


(132) 7→


0 0 1

1 0 0

0 1 0


(123) 7→


0 1 0

0 0 1

1 0 0



is a representation of S3 over F2. This representation of S3 is called the natural

representation and is but one instance of a much broader idea.

Definition 1.15 Let G be a group and V a vector space over a field F. A homomor-

phism ϕ : G→ GLn(V), n ≥ 1, is called a representation of G on V.

Note that GLn(V) and GL(Vn) are closely related. The former is a matrix group,

while the latter is a group of bijective linear transformations. The two are isomorphic

when a fixed ordered basis for Vn is chosen. We will use language associated with

both GLn(V) and GL(Vn), keeping in mind the subtle differences between the groups

[5].

The natural representation of Sn is defined analogously to that of S3 (Example

1.19). Other common representations include the trivial representation, in which

every element of G maps to the identity matrix, and the alternating representation

of Sn, in which even and odd σ map to (1) and (−1), respectively. The map of the

alternating representation may also be thought of as ϕ(σ) = (−1)n, where n is the
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number of transpositions that make up σ; equivalently, where n is the minimum

number of row swaps needed to put the natural representation of σ into reduced

row echelon form (in this case, the identity matrix).

Example 1.20. IfA is an algebra, then a representation ofA is anA-module.

From studying linear algebra, we know about linear transformations. If T is a

linear transformation on a vector space V (that is, T : V → V) and W is a subspace

of V, we can look at T -invariance. The subspace W is called T -invariant if for all
−→w ∈W, we have that −→wT ∈W. A similar notion appears in the language of group

representations.

Definition 1.16 Let ϕ be a representation of G on a vector space V. Let W be a

subspace of V. Then, W is called G-invariant if W is gϕ-invariant for all g ∈ G.

Since gϕ ∈ GLn(V), we have that gϕ is a linear transformation from Vn to Vn.

This is justification for our use of the term "invariant" here.

Example 1.21. Let ϕ be the natural representation of S3 over F2 (Example 1.19).

Consider W := {(α, α, α) | α ∈ C}. This is a one-dimensional subspace of the vector

space C3. The subspace W is S3-invariant, as (α, α, α)gϕ = (α, α, α) for all gϕ, since

permutation of the entries of (α, α, α) is irrelevant.

Fix k ∈ C. The subspace {(α, β, γ) | α + β + γ = k} of C3 is also S3-invariant.

Elements of the representation of S3 merely permute α, β, and γ. The sum of the

three entries is always k.

Definition 1.17 A representation ψ : G→ GLn(V) is called irreducible if there do

not exist any non-trivial proper G-invariant subspaces of V with respect to ψ.

This definition is not all-encompassing. We will allow for "GLn(V)" to be replaced

with other spaces, such as C. Furthermore, the term "representation" will be used

rather generally.
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Example 1.22. Any 1-dimensional representation is irreducible, as such a repre-

sentation cannot contain a non-trivial proper subspace, let alone a G-invariant

one.

Example 1.23. The irreducible complex representations of Zn (that is, the representa-

tions ψ : Zn → C) are the maps 1 7→ ξ, where ξ is an nth root of unity (a complex

root of the polynomial xn
− 1).

Example 1.24. For t ∈ Z, let ϕ(t) :=

 1 0

t 1

. The map ϕ : Z → GL2(C) is a

non-irreducible representation of Z.

Proof. The map ϕ is indeed a representation, as

ϕ(a)ϕ(b) =

 1 0

a 1

 ·
 1 0

b 1

 =

 1 0

a + b 1

 = ϕ(ab).

Consider {(α, 0) | α ∈ Z}, a subspace of C2. Under any element of the representation,

(α, 0) is equal to itself:

(α, 0) ·

 1 0

t 1

 = (α, 0).

Thus, {(α, 0) | α ∈ Z} is an invariant subspace, meaning that ϕ is not irreducible. �

Showing that a given representation is reducible or irreducible is generally a

difficult task. To show that a representation is reducible, we need to find a non-trivial

proper G-invariant subspace. This can be easier said than done, especially in the

case that we are working with an infinitely large algebraic structure. To show

that a representation is irreducible, we often assume the contrary and reason to a

contradiction, rather than perform case-exhaustive computation. These approaches

will be used later in this thesis and are important to producing some key results.

Before ending our introductory chapter, we present two very powerful theorems
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− one of Maschke and one of Artin-Wedderburn. Maschke’s Theorem is a powerful

tool in representation theory, giving us a way to break down certain representations

into direct sums of subrepresentations. The proof is beyond the scope of this

Independent Study, so we leave Maschke’s Theorem without it (a proof may be

found in [5]). Maschke’s Theorem has multiple formulations, three of which are

provided in Theorem 1.5.

Theorem 1.5 (Maschke).

1. If V is a complex representation of a finite group G with W a subrepresentation, then

there exists a subrepresentation U of V such that V = W ⊕U.

2. Let F be a field of characteristic k. Every representation of a finite group G over F such

that k - |G| is a direct sum of irreducible representations.

3. If G is represented on Cn and W is G-invariant with respect to this representation, then

there exists a subspace Z of Cn such that Z is G-invariant and Cn = W ⊕ Z [4].

The Artin-Wedderburn Theorem is also given without proof and will be useful

in showing the main results of the second and third chapters.

Definition 1.18 Let A be an algebra and K be a structure that acts on A. If A

decomposes as the direct sum of irreducible K-invariant subspaces, then we say

thatA is semisimple.

Theorem 1.6 (Artin-Wedderburn).

For an algebraA of finite dimension over a field F, the following are equivalent:

1. A is semisimple;

2.
∑

i dim(Vi)2 = dim(A), where the Vi’s are irreducible representations ofA;

3. A is isomorphic to the direct sum of matrix algebras with entries in F;

4. Any finite dimensional representation ofA is completely reducible;

5. The regular representation ofA is completely reducible.
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We are generally concerned with semisimplicity, and one formulation of

Maschke’s Theorem tells us about the semisimplicity of group algebras. The-

orem 1.7 will be useful in showing the existence of a certain collection of semisimple

subalgebras.

Theorem 1.7 (Maschke).

Let G be a finite group and K a field of characteristic k. If k - |G|, then KG, the group algebra

of G over K, is semisimple.



CHAPTER 2
The Planar Rook Algebra

In this chapter, we construct the planar rook algebra from the planar rook monoid.

Using tools from representation theory and the study of actions, we decompose

the planar rook algebra into the direct sum of Pn-invariant irreducible subspaces,

which helps us attain the main result of the chapter, that the planar rook algebra is

isomorphic to the direct sum of matrix algebras.

A good amount of the material in this section comes from [1], although we will

still make a point to cite [1] when necessary.

2.1 The Planar RookMonoid

We looked briefly at the rook monoid. We now explore the planar rook monoid.

Recall that the rook monoid Rn is the set of n × n matrices with entries in F2 such

that there is at most one 1 in each column and in each row together with matrix

multiplication.

For example,

R2 =


 1 0

0 1

 ,
 1 0

0 0

 ,
 0 1

0 0

 ,
 0 0

0 1

 ,
 0 0

1 0

 ,
 0 1

1 0

 ,
 0 0

0 0


 .

22
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To each element of Rn we associate a rook diagram d, which is a bipartite graph

on two rows of vertices, where the specified independent sets are the top vertices

and the bottom vertices. We require that each vertex has degree at most 1. An

example of a rook diagram in R4 can be seen in Figure 2.1.

s
s

s
s

s
s

s
s

Figure 2.1: A diagram in R4

To associate a matrix to a rook diagram, we first label the top vertices of the

diagram from left to right with the numbers 1 to n, and then do the same to the

bottom vertices. If vertex i on the top is adjacent to vertex j on the bottom, then

the (i, j)-entry of the corresponding matrix will be a 1. Otherwise, it will be a 0. For

example, the matrix that corresponds to the rook diagram in Figure 2.1 can be seen

in Figure 2.2. 
0 0 0 0
0 1 0 0
1 0 0 0
0 0 0 1


Figure 2.2: The matrix associated to the diagram in Figure 2.1

The diagram in Figure 2.1 is part of the rook monoid Rn, but it is not part of the

planar rook monoid Pn, a submonoid given by the set of all planar rook diagrams.

A planar rook diagram is akin to a planar graph: it must be drawn without crossed

edges and without drawing an edge outside of the rectangle bounded by the vertices

labeled 1 and n. In terms of matrices,

Pn = {M ∈ Rn |M is semi-echeloned}.
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A semi-echeloned matrix M is one that is almost in reduced row echelon form, but

not quite: we only require that the 1’s in M are all to the left of any 1’s below them.

Figure 2.3 shows three planar rook diagrams and their associated matrices.

s
s
s

s ↔

(
0 0
1 0

)
s
s

s
s

s
s ↔

 1 0 0
0 1 0
0 0 1


s

s
s

s
s

s
s

s ↔


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


Figure 2.3: Three planar rook diagrams and their associated matrices

In Pn, as well as in Rn, matrix multiplication corresponds to diagram stacking.

That is, if d1, d2 ∈ Rn and M1 and M2 are the associated matrices for d1 and d2,

respectively, then M1M2 is the matrix associated with d1d2, where d1d2 is obtained

by stacking d1 on top of d2, deleting "dead ends," and connecting complete paths.
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Example 2.1. In R3, let

d1 =

r
r
r

r
r
r

d2 =

r
r

r
r

r
r

M1 =


1 0 0

0 0 1

0 1 0


M2 =


0 0 0

0 1 0

1 0 0

 .

Then,

d1d2 =

r
r
r

r
r
r r
r

r
r

r
r

=

r
r

r
r

r
r

M1M2 =


0 0 0

1 0 0

0 1 0

 .
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Example 2.2. If we restrict ourselves to P3, we can look at

d1 =

r
r
r

r
r
r

d2 =

r
r

r
r

r
r

M1 =


0 1 0

0 0 0

0 0 0


M2 =


0 1 0

0 0 1

0 0 0

 .

Then,

d1d2 =

r
r
r

r
r
rr
r

r
r

r
r

=

r
r

r
r

r
r

M1M2 =


0 0 1

0 0 0

0 0 0

 .

Example 2.2 illustrates that if d1 and d2 are planar rook diagrams, then d1d2 is

a planar rook diagram, just as the product of semi-echeloned matrices is again a

semi-echeloned matrix. Matrix multiplication is associative, and certainly the n × n

identity matrix In is a semi-echeloned matrix. Together, these facts show that Pn is

indeed a submonoid of Rn.
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Theorem 2.1.

The cardinality of Pn is

|Pn| =

n∑
k=0

(
n
k

)2

=

(
2n
n

)
.

Proof. The first equality is the easier to see. Given an empty diagram in Pn, we have

n top vertices and n bottom vertices. We may choose either 1, 2, . . ., or n vertices

on the top to have degree 1 and the same number on the bottom to have degree 1.

That is, we have
(n

k

)
vertices on the top with degree 1 and

(n
k

)
vertices on the bottom

with degree 1. Because d is planar, there is only one way to draw the edges. This is

because the matrix associated with d must be semi-echeloned. Thus,

|Pn| =

n∑
k=0

(
n
k

)2

.

The second equality takes a bit more thinking. Suppose we are choosing equal-

sized teams from a pool of 2n people. We may choose n people to be on team red,

and the remaining n people are then forced to be on team blue. This is represented

as
(2n

n

)
. An equivalent way to choose the teams is to first split the participants into

equal sets of n people. Then, from the first n, choose k to be on team red and put the

other n − k on team blue. From the next n, choose k to be on team blue and put the

other n − k on team red. Then, each team has n members. We can do this with k

equal to 1, 2, . . ., or n. This is represented by

n∑
k=0

(
n
k

)2

.

Thus,
n∑

k=0

(
n
k

)2

=

(
2n
n

)
.
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Hence,

|Pn| =

n∑
k=0

(
n
k

)2

=

(
2n
n

)
.

�

We end this section with a recording of the full sets of diagrams in P2 and P3

(Figures 2.4 and 2.5, respectively). We will not give P4 and above, as |Pn| grows

rather quickly − already, |P4| =
(2×4

4

)
= 70. The sequence an =

(2n
n

)
is called the

sequence of central binomial coefficients and is sequence A000984 in The On-Line

Encyclopedia of Integer Sequences [6].

P2 =

{ r
r
r

r ,

r
r

r
r ,

r
r

r
r ,

r
r
r

r ,

r
r
r

r ,

r
r

r
r

}

Figure 2.4: The elements of P2

P3 =



r
r

r
r

r
r ,

r
r

r
r

r
r ,

r
r

r
r

r
r ,

r
r

r
r

r
r ,

r
r
r

r
r
r ,

r
r

r
r
r

r ,

r
r
r

r
r
r ,

r
r

r
r
r

r ,

r
r

r
r

r
r ,

r
r

r
r

r
r ,

r
r

r
r

r
r ,

r
r

r
r

r
r ,

r
r

r
r

r
r ,

r
r

r
r
r

r ,

r
r

r
r
r

r ,

r
r
r

r
r
r ,

r
r
r

r
r
r ,

r
r
r

r
r

r ,

r
r

r
r

r
r ,

r
r

r
r

r
r


Figure 2.5: The elements of P3

http://oeis.org/A000984
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2.2 The Action of Pn

We are working toward a definition of the planar rook algebra. The next step is to

look at how Pn acts on a set. To do so, we need to introduce some notation.

Let d ∈ Pn. The set τ(d) is the set is vertices in the top row of d that have degree 1.

Similarly, β(d) is the set of vertices in the bottom row of d that have degree 1. As

long as d is a planar rook diagram, τ(d) and β(d) uniquely determine d (of course,

this is not the case if d is not planar).

Example 2.3. Consider d ∈ P5 such that β(d) = {1, 2, 5} and τ(d) = {1, 3, 4}. The only

diagram in Pn that satisfies these top and bottom sets is

d =

r
r

r
r

r
r

r
r

r
r .

Essentially, a planar rook diagram d is an injective function from β(d) to τ(d). If

we take the diagram in Example 2.3, we get

d(1) = 1

d(2) = 3

d(5) = 4

as the corresponding injective function. Keep in mind that the injective functions

corresponding to the diagrams map from bottom to top and not from top to bottom.

The relationship between β(d) and τ(d) is helpful in defining an action of Pn. The

following definition is not the final action for which we are going, but it is indeed

an action.

Definition 2.1 Let S = {s1, s2, . . . , sk} ⊆ {1, 2, . . . ,n}. If d ∈ Pn and S ⊆ β(d), we define

d(S) = {d(s1), d(s2), . . . , d(sk)}.
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If S is not a subset of β(d), then d(S) is left undefined.

Example 2.4. Let

d =

r
r
r

r
r
r

r
r
r

r and S = {2, 4}.

Then, d(S) = {1, 5}.

Using diagrams as injective functions, we can look at the action of Pn on an

abstract vector space. Let Vn be the 2n-dimensional complex vector space with basis

{
~vS | S ⊆ {1, 2, . . . ,n}

}
.

The basis vectors of Vn are indexed by subsets of {1, 2, . . . ,n}, which is why Vn has

dimension 2n, as there are 2n such subsets. For example, ~v{1,3,4} and ~v{1,2} are basis

vectors of V4.

From linear algebra, we are used to the fact that the span of the basis of a vector

space is equal to the entire vector space. However, we are usually only considering

the real span, or theR-span. Here, we will consider the complex span, or theC-span.

That is,

Vn = C-span
{
~vS | S ⊆ {1, 2, . . . ,n}

}
.

Simply put, our scalars are coming from C, rather than from R.

We can see that Pn acts on Vn in a natural way. An element d ∈ Pn acts on the

basis elements of Vn by

(
~vS

)d
=


~vd(S), if S ⊆ β(d)

~0, otherwise.
(2.1)

This action extends linearly to general elements of Vn. This means that it behaves
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like a linear map. Let ~w ∈ Vn. Then,

~w =
∑

S⊆{1,2,...n}

λS~vS

is some linear combination of the basis elements of Vn. Because the action extends

linearly, if we have d ∈ Pn acting on ~w, then

(
~w
)d

=

 ∑
S⊆{1,2,...n}

λS~vS


d

=
∑

S⊆{1,2,...n}

(
λS~vS

)d
=

∑
S⊆{1,2,...n}

λS
(
~vS

)d
=

∑
S⊆{1,2,...n}

λS~vd(S).

Example 2.5. Let us look at a concrete example of this action. Consider V3, which

has basis {
~v∅, ~v{1}, ~v{2}, ~v{3}, ~v{1,2}, ~v{1,3}, ~v{2,3}, ~v{1,2,3}

}
.

Let d =

r
r

r
r

r
r . Here, τ(d) = {2, 3} and β(d) = {1, 2}. Then,

(~v∅)d = ~v∅

(~v{1})d = ~v{2}

(~v{2})d = ~v{3}

(~v{3})d = ~0

(~v{1,2})d = ~v{2,3}

(~v{1,3})d = ~0

(~v{2,3})d = ~0

(~v{1,2,3})d = ~0.

Given a basis vector ~vS, a diagram d such that S ⊆ β(d) will only map ~vS to a basis

vector ~vT with |T| = |S|. It follows that if we restrict S to a certain size, say k, and
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look at

Vn
k = C-span

{
~vS | S ⊆ {1, 2, . . . ,n} and |S| = k

}
,

then we get a Pn-invariant subspace of Vn. It is a subspace because the sum of ~w

and ~z in Vn
k can be written in terms of the basis vectors ~vS, as vector addition does

not alter |S|. That is, if

~w =
∑

ωS~vS and ~z =
∑

ζS~vS,

where ωS, ζS ∈ C, then,

~w + ~z =
∑

ωS~vS +
∑

ζS~vS

=
∑

(ωS + ζS)~vS,

where all sums run over S ⊆ {1, 2, . . . ,n}with |S| = k. Similarly, scalar multiplication

does not alter |S| in the basis vectors ~vS. The subspace is Pn-invariant because the

action of d ∈ Pn does not change |S| for S ⊆ β(d). That is, |d(S)| = |S| for S ⊆ β(d). This

is a result of the fact that d can be thought of as an injective function from β(d) to

τ(d). Thus, Vn
k is Pn-invariant.

Theorem 2.2 ([1]).

For all n ≥ 0 and 0 ≤ k ≤ n, we have

1. As Pn-modules, Vn
k � Vn

m if and only if k = m,

2. Vn
k is irreducible,

3. Vn decomposes as

Vn �
n⊕

k=0

Vn
k ,

with each Vn
k appearing exactly once.

Proof. 1. We know that, as vector spaces, Vn
k � Vn

m if and only if k = m, as Vn
k and
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Vn
m are finite-dimensional vector spaces. Thus, Vn

k and Vn
m are not isomorphic

as Pn-modules if k , m.

The initial reaction is that the claim holds because of the variation in dimension

of the different Vn
k ’s. However, recall that

(n
k

)
=

( n
n−k

)
, so Vn

k and Vn
n−k are of

equal dimension. Thus, we need a different approach, as even if Vn
k and Vn

m

are isomorphic as vector spaces, they may not be isomorphic as Pn-modules.

For Vn
k and Vn

m to be isomorphic, the way that Pn acts on each subspace must

be the same. It does not make sense for, say, the Klein four-group K4 and

Z2 ×Z2 to behave differently under the action of a group G, as, regardless of

what they are called, they are the "same" group.

Consider the following element of Pn:

p` =

r
r

r
r · · ·

r
r︸             ︷︷             ︸

` vertical edges

r
r · · ·

r
r

r
r ,

where p` has ` vertical edges between the first ` pairs of vertices and is empty

everywhere else. The set of p` for 0 ≤ ` ≤ n acts differently on Vn
k and Vn

n−k. If

` ≥ k, then p` acts like the identity diagram on all ~v ∈ Vn
k . However, if ` < k,

then p` acts on ~v ∈ Vn
k by sending it to ~0, because S * β(p`) when ` < |S| = k.

Essentially, we are trying to fit a finite set into a smaller finite set, which cannot

be done. Thus, as Pn does not act on Vn
k in the same way that it acts on Vn

n−k,

we have that Vn
k and Vn

n−k are not isomorphic as Pn-modules.

2. We want to show that Vn
k is irreducible. That is, we want to show that it has

no non-trivial proper Pn-invariant subspaces. To do so, we show that any

non-trivial Pn-invariant subspace W of Vn
k contains all basis vectors of Vn

k ,

meaning that W = Vn
k .
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Suppose that Vn
k is not irreducible. Then, there exists a non-trivial proper

subspace W of Vn
k that is Pn-invariant. Let ~0 , ~w ∈ W, and consider ~w as a

linear combination of basis vectors:

~w =
∑
|S|=k

λS~vS,

where λS ∈ C. As ~w is non-zero, we have that there exists S such that λS is

non-zero. Denote this S by S∗. Let d ∈ Pn be the unique planar rook diagram

with β(d) = τ(d) = S∗. Then, we have that (~w)d = λS∗~vS∗ . This equality is a

little tricky to see. Remember that for all ~vS ∈ W, the size of S is k. We also

know that (~vS)d = ~0 in all cases that S * β(d). Because we are working with d

such that β(d) = τ(d) = S∗, there is only one ~vS that does not map to ~0 under d,

namely ~vS∗ . Moreover, ~vS∗ is mapped to itself.

The fact that (~w)d = λS∗~vS∗ implies that ~vS∗ ∈ W, as W is Pn-invariant and we

can easily undo the multiplication by non-zero λS∗ .

Now we show that we can act on ~vS∗ to obtain the rest of the basis vectors.

We do this similarly to how we obtained ~vS∗ ∈ W. Let T ⊆ {1, 2, . . . ,n} such

that |T| = k, and let b be the unique planar rook diagram with β(b) = S∗ and

τ(b) = T. Then, (
~vS∗

)b
= ~vb(S∗) = ~vT.

Thus, ~vT ∈ W. Hence, all basis vectors of Vn
k are elements of W, implying

W = Vn
k . Therefore, Vn

k is irreducible.

3. Note that each ~vS appears exactly once in the Vn
k ’s, because of the variation in

the value of k. The isomorphism is the one that maps ~vS ∈ Vn to ~vS ∈
⊕n

k=0 Vn
k .
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That is, letting ϕ be the map,

ϕ(~vS) = ~0 + ~0 + . . . + ~0 + ~vS + ~0 + . . . + ~0 + ~0︸                                        ︷︷                                        ︸
n+1 terms

.

The bases are put in bijection by this map, as~0+. . .+~0+~vS +~0+. . .+~0 ∈
⊕n

k=0 Vn
k

is mapped to by ~vS ∈ Vn, and if~0+. . .+~0+~vS+~0+. . .+~0 = ~0+. . .+~0+~vT+~0+. . .+~0,

then ~vS = ~vT. The map ϕ is also a homomorphism, as

ϕ(~vS) + ϕ(~vT) = (~0 + . . . + ~0 + ~vS + ~0 + . . . + ~0) + (~0 + . . . + ~0 + ~vT + ~0 + . . . + ~0)

= ~0 + . . . + ~0 + ~vS + ~vT + ~0 + . . . + ~0

= ϕ(~vS + ~vT).

The structure of the module is preserved, as well, considering

λϕ(~vS) = λ(~0 + . . . + ~0 + ~vS + ~0 + . . . + ~0)

= ~0 + . . . + ~0 + λ~vS + ~0 + . . . + ~0

= ϕ(λ~vS).

Thus, the result holds:

Vn �
n⊕

k=0

Vn
k .

�

2.3 The Planar Rook Algebra

With fairly comprehensive knowledge of the planar rook monoid, we can look at

the algebra that arises from Pn.
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Consider

CPn = C-span {d | d ∈ Pn} =

∑
d∈Pn

λdd | λd ∈ C

 .
We call CPn the planar rook algebra, and it is a vector space of dimension

|Pn| =
(2n

n

)
. The planar rook algebra consists of all linear combinations of planar rook

diagrams. We know how to multiply diagrams, and can extend this linearly, but

the ideas of addition and scalar multiplication make little sense geometrically and

must be allowed to be abstract. The element (2 + 3i)d, for example, where d ∈ Pn,

is not to be drawn, but understood simply by its definition: the scalar multiple of

d by (2 + 3i). Similarly, there is no geometric equivalent to d1 + d2. It is only to be

considered in the abstract. That being said, nd, where n ∈N, is equivalent to

d + d + . . . + d + d︸                ︷︷                ︸
n times

.

The planar rook algebra is indeed an algebra, as it is a vector space and the

algebra’s binary operation is stacking. Recall that a vector space satisfies 8 properties,

which CPn does:

1. Commutativity of vector addition

2. Associativity of vector addition

3. Existence of an additive identity

4. Existence of additive inverses

5. Associativity of scalar multiplication

6. Distributivity of scalars over vectors

7. Distributivity of vectors over scalars
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8. Existence of a scalar identity

Items 1 and 2 are naturally satisfied. As we stated earlier, there is no geometric

equivalent to d1 + d2. It is only to be considered in the abstract. The zero vector is

the additive identity. Item 4 is satisfied by noting that for ~v ∈ CPn, we have that −~v

is its additive inverse. The scalars are complex numbers, and because λ~v is in its

most simplified form, α(λ~v) = (αλ)~v. We will not go through 6 and 7, but note that

they also follow. The scalar identity is 1.

We now have that CPn is a vector space. The criteria for CPn to be an algebra are

met by definition. That is, we have constructed CPn in such a way that it satisfies

the axioms of an algebra.

It is important to note the distinction between the diagram with no edges in

CPn (the empty diagram) and the zero vector ~0 of CPn. The empty diagram is a

basis element of CPn, while ~0 is the linear combination of vectors where all scalars

involved are zero.

As CPn and Pn are very much related, the latter being a basis for the former, we

can look at how they interact. Let d ∈ Pn and ~v ∈ CPn. There is a natural action of Pn

on CPn given by

(~v)d = d~v = d

∑
b∈Pn

λbb

 =
∑
b∈Pn

λbdb.

The rank of a planar rook diagram d is the number of edges in d. Equivalently, it

is the number of ones in the associated matrix of d. If d1, d2 ∈ Pn, we have that

rank(d1d2) ≤ min(rank(d1), rank(d2)).

This property, that rank does not increase through multiplication, should be fairly
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intuitive. Given d1, d2 ∈ Pn, the number of edges in d1d2 is the size of the set

β(d1) ∩ τ(d2), and we know from basic set theory that |A ∩ B| ≤ min(|A|, |B|).

We can use the non-increasing rank property to find Pn-invariant subspaces of

CPn. Consider

Xn
k = C-span{d ∈ Pn | rank(d) ≤ k}.

Each Xn
k is a Pn-invariant subspace of CPn. We can also see, however, that

Xn
0 ⊆ Xn

1 ⊆ . . . ⊆ Xn
n−1 ⊆ Xn

n.

While these are Pn-invariant subspaces, the fact that they form such a chain

shows us that they are not irreducible.

The basis {d | d ∈ Pn} of CPn is the most obvious one and the one we used to

define CPn in the first place. However, to obtain our desired result, that the planar

rook algebra is isomorphic to the direct sum of matrix algebras, we must change

basis. To do so, we need a little bit of terminology and notation.

Definition 2.2 Let d1, d2 ∈ Pn. We say d1 ⊆ d2 if the edges of d1 are a subset of the

edges of d2; equivalently, if

[M1(i, j)] ⊆ [M2(i, j)],

where

[Mk(i, j)] = {(i, j) | the (i, j)-entry of Mk is 1},

and Mk is the rook matrix associated with dk.
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Example 2.6. For example,

d1 =

r
r

r
r

r
r

r
r
r

r ⊆
r
r

r
r

r
r
r

r
r

r = d2,

with

[M1(i, j)] = {(2, 2), (5, 4)} ⊆ {(1, 1), (2, 2), (4, 3), (5, 4)} = [M2(i, j)].

If d1 ⊆ d2, we denote rank(d2)−rank(d1) by |d2\d1|. This, of course, is the difference

in edge count between d1 and d2.

For d ∈ Pn, define

xd =
∑
b⊆d

(−1)|d\b|b. (2.2)

Example 2.7. Let

d =

r
r

r
r
r

r .

Then

xd =

r
r

r
r
r

r −

r
r

r
r
r

r −

r
r

r
r
r

r +

r
r

r
r
r

r .

We claim that {xd | d ∈ Pn} forms a basis for CPn. Rank gives us a way to partially

order planar rook diagrams. That is, d2 ≤ d1 if rank(d2) < rank(d1). More generally,

a partial ordering on a set is an ordering that satisfies the reflexive, transitive, and

antisymmetric properties. We are familiar with the first two from equivalence

relations. An ordering � is antisymmetric if, given a � b and b � a, we have that

a = b.

A total ordering on a set is one that is antisymmetric, transitive, and connex.

Connex means that given any two elements of the set a and b, we have that a � b or

b � a. Intuitively, this is why the ordering is total, because any two elements are

related in some way.
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Given a partial ordering on a finite set, we can extend it to a total ordering, often

in multiple ways. We simply need to declare that elements that were previously

unrelated now have some sort of relation so as to satisfy connexity.

Example 2.8. Take the power set of {1, 2, 3} ordered by subset inclusion. This is a

partial ordering. To extend to a total ordering, declare that

∅ � {1} � {2} � {3} � {1, 2} � {1, 3} � {2, 3} � {1, 2, 3}.

This ordering is total and preserves the partial ordering given by subset inclusion.

We claim that if we extend the partial ordering on Pn given by rank to any

total ordering, then a transition matrix M from {d | d ∈ Pn} to {xd | d ∈ Pn} is upper

triangular and has eigenvalue 1 with multiplicity
(2n

n

)
. Note that we specifically said

a transition matrix, as the transition matrix based on one total ordering may not be

the same as the transition matrix based on another total ordering.

Before we prove our claim, let us recall from linear algebra the notion of a

transition matrix. The standard basis for R3 is


1

0

0

 ,


0

1

0

 ,


0

0

1




,

denoted {~e1, ~e2, ~e3}. Note that




2

0

1

 ,


0

3

0

 ,


0

0

−1







2. The Planar Rook Algebra 41

is also a basis for R3, as

~e1, ~e2, ~e3 ∈ span




2

0

1

 ,


0

3

0

 ,


0

0

−1




.

If we denote our new basis {~k1, ~k2, ~k3}, then

~k1 = 2~e1 + ~e3

~k2 = 3~e2

~k3 = −~e3.

Thus, the transition matrix from our basis of ~ei’s to our basis of ~ki’s is

M =


2 0 1

0 3 0

0 0 −1

 ,

as M~ei = ~ki.

Theorem 2.3 ([1]).

The set {xd | d ∈ Pn} forms a basis for CPn. Furthermore, if we extend the partial ordering

on Pn given by rank to any total ordering, then a transition matrix M from {d | d ∈ Pn} to

{xd | d ∈ Pn} is upper triangular and has eigenvalue 1 with multiplicity
(2n

n

)
.

Proof. We begin by showing that {xd | d ∈ Pn} forms basis for CPn. Certainly, the

xd are linearly independent. Consider, noting that the next sum runs over proper

subdiagrams,

xd = d +
∑
b⊂d

(−1)|d\b|b.
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Thus,

d = xd −

∑
b⊂d

(−1)|d\b|b = xd −

∑
b⊂d

xb.

Thus, d ∈ {xd | d ∈ Pn}. This shows that {xd | d ∈ Pn} is a basis for CPn.

The fact that M is upper triangular follows from the partial ordering given by

rank. For d ∈ Pn, the expansion xd is a sum/difference of diagrams with ranks less

than or equal to d. As

xd = d −
∑
b⊂d

(−1)|d\b|b,

we have that each diagonal entry in M is a 1. As each diagram not equal to d in

xd has rank less than that of d, nonzero entries in the transition matrix must only

occur above the 1’s on the diagonal. Thus, M is upper-triangular. Hence, M has

eigenvalue 1 with multiplicity
(2n

n

)
, the size of Pn and the size of the matrix.

�

Example 2.9. Let us work through an example in P3. We will look at a transition

matrix from {d | d ∈ P3} to {xd | d ∈ P3}. First, we must extend the partial order given

by rank and determine xd for each d ∈ P3. Remember that there are
(2·3

3

)
= 20 such d.

Thus, we will end up with a 20× 20 matrix. We will order as follows (di ≤ d j if i ≤ j).

The xd for each d ∈ P3 are
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d1 =

r
r

r
r

r
r 7→ d1 = xd1

d2 =

r
r

r
r

r
r 7→ d2 − d1 = xd2

d3 =

r
r

r
r

r
r 7→ d3 − d1 = xd3

d4 =

r
r

r
r

r
r 7→ d4 − d1 = xd4

d5 =

r
r
r

r
r
r 7→ d5 − d1 = xd5

d6 =

r
r

r
r
r

r 7→ d6 − d1 = xd6

d7 =

r
r
r

r
r
r 7→ d7 − d1 = xd7

d8 =

r
r

r
r
r

r 7→ d8 − d1 = xd8

d9 =

r
r

r
r

r
r 7→ d9 − d1 = xd9

d10 =

r
r

r
r

r
r 7→ d10 − d1 = xd11

d11 =

r
r

r
r

r
r 7→ d11 − d3 − d2 + d1 = xd11

d12 =

r
r

r
r

r
r 7→ d12 − d4 − d3 + d1 = xd12

d13 =

r
r

r
r

r
r 7→ d13 − d4 − d2 + d1 = xd13
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d14 =

r
r

r
r
r

r 7→ d14 − d6 − d2 + d1 = xd14

d15 =

r
r

r
r
r

r 7→ d15 − d7 − d2 + d1 = xd15

d16 =

r
r
r

r
r
r 7→ d16 − d5 − d4 + d1 = xd16

d17 =

r
r
r

r
r
r 7→ d17 − d7 − d4 + d1 = xd17

d18 =

r
r
r

r
r

r 7→ d18 − d6 − d5 + d1 = xd18

d19 =

r
r

r
r

r
r 7→ d19 − d8 − d7 + d1 = xd19

d20 =

r
r

r
r

r
r 7→ d20 − d13 − d12 − d11 + d4 + d3 + d2 − d1 = xd20
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Thus, the transition matrix from {d | d ∈ P3} to {xd | d ∈ P3} is



1 −1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1 1 1 −1

0 1 0 0 0 0 0 0 0 0 −1 0 −1 −1 −1 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 0 0 −1 −1 0 0 −1 −1 0 0 1

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 −1 0 −1 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 −1 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1 0 −1 0 −1 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 −1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



.

We now look at the action of Pn on CPn with respect to our new basis {xd | d ∈ Pn}.

This action is similar to the one defined in Equation 2.1.
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Let b, d ∈ Pn. Then,

(xb)d =


xdb, if τ(b) ⊆ β(d),

~0, otherwise.
(2.3)

This action is clearly related to Equation 2.1, in which (~vS)d = ~vd(S). When

τ(b) ⊆ β(d), we have that τ(b′) ⊆ β(d) for all b′ ⊆ b. As d distributes over xd, it maps

each b′ to db′. Thus, we are mapping xb to xdb, as desired.

Example 2.10. Consider

b =

r
r
r

r
r

r and d =

r
r

r
r
r

r in P3.

Then,

db =

r
r

r
r
r

rr
r
r

r
r

r
=

r
r
r

r
r
r

xb =

r
r
r

r
r

r −

r
r
r

r
r

r −

r
r
r

r
r

r +

r
r
r

r
r

r

(xb)d =

r
r

r
r
r

rr
r
r

r
r

r
−

r
r

r
r
r

rr
r
r

r
r

r
−

r
r

r
r
r

rr
r
r

r
r

r
+

r
r

r
r
r

rr
r
r

r
r

r

=

r
r
r

r
r
r −

r
r
r

r
r

r −

r
r
r

r
r
r +

r
r

r
r
r

r
= xdb.

If τ(b) * β(d), we can look at why (xb)d = ~0. Let i ∈ τ(b) such that i < β(d). There
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must exist such an i by our supposition. Define pi ∈ Pn by

pi =

1 2r
r

r
r · · ·

i-1 i i+1r
r

r
r

r
r · · ·

n-1 nr
r

r
r .

That is, pi is the identity diagram in Pn with the ith edge deleted. Because i < β(d),

we have that pd
i = d. Furthermore, we have that

pixb = pi

∑
b′⊆b

(−1)|b\b
′
|b′

=
∑
b′⊆b

(−1)|b\b
′
|pib′

=
∑
b′⊆b

i∈τ(b′)

(−1)|b\b
′
|pib′ +

∑
b′⊆b

i<τ(b′)

(−1)|b\b
′
|pib′.

If i < τ(b′), then pib′ = b′. When i ∈ τ(b′), we have that pib′ is b′ with the edge adjacent

to the ith top vertex deleted. It is a simple combinatorial argument that there is a

bijection between {b′ | i ∈ τ(b′)} and {b′ | i < τ(b′)} given by adding/removing the ith

edge, that is, by multiplying by pi. Because we are adding/removing an edge, |b\b′|

changes by a factor of −1. Thus,

∑
b′⊆b

i∈τ(b′)

(−1)|b\b
′
|pib′ +

∑
b′⊆b

i<τ(b′)

(−1)|b\b
′
|pib′ = ~0.

Hence, (xb)d = (pixb)d = ~0.

Example 2.11. Consider

b =

r
r
r

r
r

r and d =

r
r

r
r
r

r in P3.
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Then, 2 ∈ τ(b) and 2 < β(d). So,

(p2)d =

r
r

r
r
r

rr
r

r
r

r
r

=

r
r

r
r
r

r = d

xb =

r
r
r

r
r

r −

r
r
r

r
r

r −

r
r
r

r
r

r +

r
r
r

r
r

r

p2xb =

r
r

r
r

r
rr

r
r

r
r

r
−

r
r

r
r

r
rr

r
r

r
r

r
−

r
r

r
r

r
rr

r
r

r
r

r
+

r
r

r
r

r
rr

r
r

r
r

r

=

r
r
r

r
r

r −

r
r
r

r
r

r −

r
r
r

r
r

r +

r
r
r

r
r

r
= ~0.

Thus, (xb)d = (xb)dp2 = (p2xb)d = ~0.

What really makes this result come out to ~0 is the associativity of the action:

(p2xb)d = dp2xb =


(dp2)xb = dxb = xdb = (xb)d,

d(p2xb) = d~0 = ~0.

For b, d ∈ Pn, we have that rank(b) = rank(db) if and only if τ(b) ⊆ β(d). So, from

the action of Pn on {xb | b ∈ Pn}, we have that (xb)d = ~0 if rank(b) , rank(db). So,

Wn,k = C-span{xb | rank(b) = k}

is a Pn-invariant subspace of CPn. Furthermore, the action of d on xb does not alter
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β(b) if τ(b) ⊆ β(d). Then,

Wn,k
T = C-span{xb | rank(b) = k, β(b) = T} (2.4)

is also a Pn-invariant subspace ofCPn for each such T. In fact, for any T′ ⊆ {1, 2, . . . ,n}

such that |T′| = |T| = k, we have that

Wn,k
T � Wn,k

T′ .

Finally, we see that

Wn,k
T � Vn

k ,

because the action of Pn on xd in CPn is equivalent to that of Pn on ~vτ(d) in Vn . Let

S,T ⊆ {1, . . . ,n}, where |S| = |T|. Define xS,T = xd, where d is the planar diagram with

τ(d) = S and β(d) = T. Recall that τ(d) and β(d) completely determine d, meaning

that d is unique. Then, the isomorphism between Wn,k
T and Vn

k is given by xS,T 7→ ~vS.

This map is certainly one-to-one, as if ~vS1 = ~vS2 , we have that S1 = S2, implying

xS1,T = xS2,T. It is also onto, considering if ~vS ∈ Vn
k , then xS,T will map to it. Indeed,

the map is also a homomorphism due to linearity. Thus, the claim of isomorphism

holds.

Theorem 2.4 ([1]).

The decomposition of CPn into Pn-invariant subspaces is given by

CPn =

n⊕
k=0

Wn,k =

n⊕
k=0

⊕
|T|=k

Wn,k
T �

n⊕
k=0

(
n
k

)
Vn

k :=
n⊕

k=0

(
Vn

k + Vn
k + . . . + Vn

k

)
︸                    ︷︷                    ︸

(n
k) times

.

Proof. The first equality is fairly clear. Certainly, Wn,k = Wn,k′ if and only if k = k′.

Summing the Wn,k’s accounts for all possible values of k, resulting in CPn.
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The second equality will be shown if we can justify that

Wn,k =
⊕
|T|=k

Wn,k
T .

Here, we can see that Wn,k
T = Wn,k

T′ if and only if T = T′. Summing over all T’s with

size k is equivalent to looking at Wn,k, because all T’s being accounted for is the

same as looking at all xd with rank(d) = k. So, the second equality is justified.

The isomorphism
n⊕

k=0

⊕
|T|=k

Wn,k
T �

n⊕
k=0

(
n
k

)
Vn

k

remains to be shown. We need only show that

⊕
|T|=k

Wn,k
T �

(
n
k

)
Vn

k

to get our result.

Consider

∑
λ1xd1 +

∑
λ2xd2 + . . . +

∑
λ(n

k)xd(n
k)
∈

⊕
|T|=k

Wn,k
T ,

where
∑
λixdi ∈Wn,k

Ti
. Here, |Ti| = k and Ti = T j if and only if i = j. Our indices run

from 1 to
(n

k

)
because

(n
k

)
is the number of different T’s with |T| = k (from n vertices

in a diagram d, we choose k vertices to be β(d)).

Consider ∑
ω1~vS1 +

∑
ω2~vS2 + . . . +

∑
ω(n

k)~vS(n
k)
∈

(
n
k

)
Vn

k ,

where
∑
ωi~vSi ∈ Vn

k . Our indices run from 1 to
(n

k

)
, as there are

(n
k

)
copies of Vn

k .

In both summations, we are leaving out some notation. The
∑

’s run over their

own indices, and this is left out with the understanding that (1) they are implied
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and (2) including them would simply make things more crowded, as we would

have to introduce a number of subscripts.

The isomorphism, then, is defined by

∑
λ1xd1 +

∑
λ2xd2 + . . . +

∑
λ(n

k)xd(n
k)
7→

∑
λ1~vS1 +

∑
λ2~vS2 + . . . +

∑
λ(n

k)~vS(n
k)
.

Showing that the map is a bijection is simple and omitted. That our map is a

homomorphism holds due to linearity. Thus, the isomorphism holds. �

Theorem 2.5 ([1]).

The set
{
Vn

k | 0 ≤ k ≤ n
}

is a complete set of irreducible CPn-modules.

Proof. Theorem 2.2 tells us that
{
Vn

k | 0 ≤ k ≤ n
}

forms a complete set of irreducible

subspaces. Theorem 2.4 tells us that the Vn
k ’s are CPn-modules. �

We now know what CPn looks like in terms of the Vn
k ’s. By Theorems 2.2 and 2.4,

we have that the planar rook algebra is semisimple (Definition 1.18). While the Vn
k ’s

are familiar from reading this particular thesis, we would like to relate the structure

of CPn to something even more familiar.

Theorem 2.6 ([1]).

Let S,T,U,V ⊆ {1, 2, . . . ,n} such that |S| = |T| and |U| = |V|. Then,

xS,TxU,V =


xS,V, if T = U,

~0, otherwise.

Proof. Recall that for b, d ∈ Pn, we have that

(xb)d =


xdb, if τ(b) ⊆ β(d),

~0, otherwise.
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This was Equation 2.3 and essentially implies the theorem. If T , U, then either

there exists i ∈ T such that i < U or j ∈ U such that j < T. The same argument that

showed Equation 2.3 holds shows that

xS,TxU,V =


xS,V, if T = U,

~0, otherwise,

holds, as well. �

Example 2.12. Consider

x{1,3},{2,3} =

r
r

r
r

r
r −

r
r

r
r

r
r −

r
r

r
r

r
r +

r
r

r
r

r
r ,

x{2,3},{1,2} =

r
r

r
r

r
r −

r
r

r
r

r
r −

r
r

r
r

r
r +

r
r

r
r

r
r ∈ P3.

Then, x{1,3},{2,3}x{2,3},{1,2} =

( r
r

r
r

r
r −

r
r

r
r

r
r −

r
r

r
r

r
r +

r
r

r
r

r
r

) ( r
r

r
r

r
r −

r
r

r
r

r
r −

r
r

r
r

r
r +

r
r

r
r

r
r

)

=


r

r
r
r

r
r

 x{2,3},{1,2} −


r

r
r
r

r
r

 x{2,3},{1,2} −


r

r
r
r

r
r

 x{2,3},{1,2} +


r

r
r
r

r
r

 x{2,3},{1,2}

=

r
r

r
r
r

r −
r
r

r
r
r

r −
r
r

r
r
r

r +

r
r

r
r
r

r − ~0 − ~0 + ~0

= x{1,3},{1,2}.

The last three products are zero because τ(b) * β(d), as described in the action
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of d on xb. That is, {2, 3} is not a subset of the bottom sets of any of the last three

diagrams with which it is multiplied, meaning that the products are all zero.

When expressed in this manner, the behavior of xd multiplication looks familiar.

Theorem 2.6 tells us that xS,T behaves like Ei, j, the square matrix with a 1 in the

(i, j)-entry and zeros everywhere else. That is, Ei, j × Ek,` = Ei,` when j = k and zero

otherwise. For example, in M3×3,

E1,2 × E2,3 =


0 1 0

0 0 0

0 0 0




0 0 0

0 0 1

0 0 0

 =


0 0 1

0 0 0

0 0 0

 = E1,3,

whereas

E1,2 × E1,3 =


0 1 0

0 0 0

0 0 0




0 0 1

0 0 0

0 0 0

 =


0 0 0

0 0 0

0 0 0

 .

Theorem 2.7 ([1]).

The planar rook algebra CPn is isomorphic to
⊕n

k=0 Mat
((n

k

)
,
(n

k

))
, the algebra of

(n
k

)
×

(n
k

)
complex matrices. That is,

CPn �
n⊕

k=0

Mat
((

n
k

)
,

(
n
k

))
.

Proof. Certainly, |CPn| =
∣∣∣∣⊕n

k=0 Mat
((n

k

)
,
(n

k

))∣∣∣∣, as they are of equal dimension. The

basis of CPn is {xd | d ∈ Pn}, which has size

(
2n
n

)
=

n∑
k=0

(
n
k

)2

.

The basis for Mat(
(n

k

)
,
(n

k

)
) at which we are looking is

{
Ei, j | i, j ∈

{
1, . . . ,

(n
k

)}}
. This has
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size
(n

k

)2, as this is the number of possible entries in which to place a single 1 in I(n
k).

Thus, a basis for
⊕n

k=0 Mat
((n

k

)
,
(n

k

))
has

n∑
k=0

(
n
k

)2

elements.

The isomorphism comes from the fact that CPn and
⊕n

k=0 Mat
((n

k

)
,
(n

k

))
are of

the same dimension and have the same relations, a concept found in the study of

(group) presentations. Essentially, we are working with words written in some

generating set. The way that we determine equivalence between two words is via a

relation. A relation in a group may be that g5 = e or that ab = ba. The relation in⊕n
k=0 Mat

((n
k

)
,
(n

k

))
is that Ei, j × Ek,` = Ei,` if and only if j = k, else ~0. The relation in

CPn is the same in the sense that if we replace E with x and i, j, k, ` with S,T,U,V,

respectively, nothing has really changed (allowing that × refers to multiplication as

defined in whichever space we are working). This fact, that two algebraic structures

with the same dimension and relations are isomorphic, proves the theorem. �

In this chapter, we decomposed the planar rook algebra into the direct sum of

Pn-invariant irreducible subspaces, showing that CPn is semisimple. Alternatively,

by using Theorem 2.7 in conjunction with Theorem 1.6 (3), we get that the planar

rook algebra is semisimple.



CHAPTER 3
G-Edge-Coloring CPn

In this chapter, we look at what happens when we color the edges of the diagrams

in CPn. Coloring an edge simply means assigning a label x to an edge, so that

the edge in question may be thought of as having color x. Specifically, we will be

coloring edges with elements of some group G. This allows us to redefine diagram

multiplication, work toward a decomposition of the colored CPn in the case that G

is finite abelian, and observe the nature of the planar rook algebra when colored by

finite nonabelian groups. The majority of the content in this chapter comes from [2],

especially that which is in Section 3.3.

3.1 Coloring CPn

Let G be a group, and let

Pn(G) =
{
d ∈ Pn | d is colored by G

}
.

Previously, our rook diagrams only had edges of one color. Now, we allow more

colors, one for each element of G, and we distinguish between diagrams that are

colored differently. Letting G = Z2 be our "palette", we have that P2(Z2) consists

55
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of the diagrams in Figure 3.1, where the color z ∈ Z2 is noted on the top vertex

incident to the edge that it colors.

r
r
r

r ,

0r
r

r
r ,

0r
r
r

r ,

0r
r
r

r ,

0r
r

r
r ,

0 0r
r

r
r ,

1r
r

r
r ,

1r
r
r

r ,

1r
r
r

r ,

1r
r

r
r ,

1 1r
r

r
r ,

0 1r
r

r
r ,

1 0r
r

r
r

Figure 3.1: The elements of P2(Z2)

When we are coloring d ∈ Pn, we are, in a sense, creating functions. A diagram

is itself a function d : β(d)→ τ(d), and a coloring c is a function c : β(d)→ G, where

G is our palette group. We could just as easily have defined c to have domain τ(d).

It is important to keep in mind that while the colors are placed above top vertices,

they color edges and not vertices.

Theorem 3.1.

The cardinality of Pn(G) is

|Pn(G)| =
n∑

k=0

|G|k ·
(
n
k

)2

.

Proof. We know that

|Pn| =

n∑
k=0

(
n
k

)2

.

For a diagram of rank k, each edge may colored by any element of G, meaning that

there are |G| options to color each of the k edges. �

Diagram multiplication now needs to be redefined to incorporate the operation

of our palette group, and it is done so in a natural way. We will still stack diagrams.
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To determine the color of a newly formed edge, we simply multiply the colors of

the component edges. A few examples in P2(Z2) are

1 1r
r

r
r ×

1 0r
r

r
r =

0 1r
r

r
r ,

1r
r
r

r ×

1r
r
r

r =

0r
r

r
r ,

1r
r
r

r ×

1r
r
r

r =

0r
r

r
r .

The fact that G is abelian does not imply that multiplication in Pn(G) is commu-

tative, as can be seen in this example. However, whether or not G is abelian does

determine some results, and this will be explored Section 3.3.

Consider the group of units of P2(Z2). These are all the elements of P2(Z2) that

have multiplicative inverses. The multiplicative identity is

0 0r
r

r
r ,

and the units are 0 0r
r

r
r ,

1 1r
r

r
r ,

0 1r
r

r
r ,

1 0r
r

r
r .

We will call this group P2(Z2)∗. It should be apparent that P2(Z2)∗ � Z2 ×Z2. In fact,

we have the following theorem.

Theorem 3.2.

Let G be a group. Then,

Pn(G)∗ � G×n = G × G × . . . × G︸             ︷︷             ︸
n times

,
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where Pn(G)∗ is the group of units of Pn(G).

Proof. The multiplicative identity in Pn(G) is

e er
r

r
r · · ·

e er
r

r
r︸                 ︷︷                 ︸

n times

,

where e is the identity of G. Recall that for d1, d2 ∈ Pn, we have that

rank(d1d2) ≤ min(rank(d1), rank(d2)).

Together with the fact that the multiplicative identity has rank n, we have that the

units of Pn(G) must have rank n. Let d be a colored diagram of rank n with coloring

c. Then, the inverse of d is the rank n diagram with coloring k such that k(i) = c(i)−1.

Thus, d ∈ Pn(G) is a unit if and only if rank(d) = n.

The map ϕ is clear. Given a diagram d in Pn(G)∗ with edges colored g1, g2, . . . , gn

(where the gi’s are not necessarily distinct), d maps to (g1, g2, . . . , gn) ∈ G×n.

One-to-one: Let (g1, g2, . . . , gn) = (h1, h2, . . . , hn) ∈ G×n. Then gi = hi, for all

i ∈ {1, 2, . . . , |S|}. The diagrams d and b in Pn(G)∗ that are colored (g1, g2, . . . , gn) and

(h1, h2, . . . , hn), respectively, are then colored in exactly the same way. Thus, b = d.

Onto: For (g1, g2, . . . , gn) ∈ G×n, we have that the diagram colored (g1, g2, . . . , gn)

maps to it.

Homomorphism: Let d, b ∈ Pn(G)∗ such that d is colored (g1, g2, . . . , gn) and b is

colored (h1, h2, . . . , hn). Then,

ϕ(d)ϕ(b) = (g1, g2, . . . , gn)(h1, h2, . . . , hn) = (g1h1, g2h2, . . . , gnhn) = ϕ(db),

as desired.
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Thus, ϕ is an isomorphism, and we have that

Pn(G)∗ � G×n = G × G × . . . × G︸             ︷︷             ︸
n times

.

�

We now wish to generalize further. Define

Pn(G)[S] =
{
d ∈ Pn | τ(d) = β(d) = S ⊆ {1, . . . ,n}

}
.

The elements of Pn(G)[S] are simply the diagrams in Pn(G) with top and bottom

sets both S. That is, they look like subdiagrams of unit elements of Pn(G).

Example 3.1. The group P3(Z3)[{1, 3}] consists of the elements in Figure 3.2.

0 0r
r

r
r

r
r ,

0 1r
r

r
r

r
r ,

0 2r
r

r
r

r
r ,

1 0r
r

r
r

r
r ,

1 1r
r

r
r

r
r ,

1 2r
r

r
r

r
r ,

2 0r
r

r
r

r
r ,

2 1r
r

r
r

r
r ,

2 2r
r

r
r

r
r

Figure 3.2: The elements of P3(Z3)[{1, 3}]

Note that Pn(G)[{1, . . . ,n}] is just Pn(G)∗. In general, we have the following

theorem.
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Theorem 3.3.

Let G be a group. Then,

Pn(G)[S] � G×|S| = G × G × . . . × G︸             ︷︷             ︸
|S| times

.

Proof. The mapϕ is the one described in Theorem 3.2. Given a diagram d in Pn(G)[S]

with edges colored g1, g2, . . . , g|S| (where the gi’s are not necessarily distinct), d maps

to (g1, g2, . . . , g|S|) ∈ G×|S|.

One-to-one: Let (g1, g2, . . . , g|S|) = (h1, h2, . . . , h|S|) ∈ G×|S|. Then gi = hi, for all

i ∈ {1, 2, . . . , |S|}. The diagrams d and b in Pn(G)[S] that are colored (g1, g2, . . . , g|S|)

and (h1, h2, . . . , h|S|), respectively, are then colored in exactly the same way. Thus,

b = d.

Onto: For (g1, g2, . . . , g|S|) ∈ G×|S|, we have that the diagram colored (g1, g2, . . . , g|S|)

maps to it.

Homomorphism: Let d, b ∈ Pn(G)[S] such that d is colored (g1, g2, . . . , g|S|) and b

is colored (h1, h2, . . . , h|S|). Then,

ϕ(d)ϕ(b) = (g1, g2, . . . , g|S|)(h1, h2, . . . , h|S|) = (g1h1, g2h2, . . . , g|S|h|S|) = ϕ(db),

as desired.

Thus, ϕ is an isomorphism, and we have that

Pn(G)[S] � G×|S| = G × G × . . . × G︸             ︷︷             ︸
|S| times

.

�

Inside Pn(G), we have found
(n

k

)
copies of G×k for k ∈ {1, . . . ,n}, one for each

choice of rank k diagram with equal top and bottom sets of vertices.
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Recall (from the end of Chapter 1) that we have information on the semisimplicity

of group algebras. Given our groups Pn(G)[S], we can apply Theorem 1.7.

Theorem 3.4.

The complex span of Pn(G)[S], denoted CPn(G)[S], is semisimple.

Proof. By Theorem 3.3, Pn(G)[S] � G×|S|. Thus, CPn(G)[S] � CG×|S| is a group algebra

(Example 1.5). Of course, C has characteristic zero. By Theorem 1.7, CPn(G)[S] is

semisimple. �

We have thus found a collection of semisimple subalgebras of the colored planar

rook algebra CPn(G). However, the groups Pn(G)[S] are only a small part of CPn(G).

In the next section, we look at the potential semisimplicity of CPn(G) itself.

3.2 CPn(G) and Semisimplicity: A Mirrored Approach

In decomposing CPn(G), we are looking to mirror the approach to decomposing the

uncolored version of CPn (Chapter 2). This section is devoted to what we believe to

be the closest mirror and why an approach too similar to that which we used with

uncolored CPn does not work.

We start by mirroring Section 2.2, "The Action on Pn." We want to look at how

Pn(G) acts on a set, as Pn did in Definition 2.1. We can still define τ(d) and β(d) for a

diagram d ∈ Pn(G). However, these no longer uniquely determine the diagram, as

there are |G|k possible colorings of d, where k = rank(d).

Now, a planar rook diagram d is not an injection from β(d) to τ(d), considering that

there is no longer a bijection between diagrams and pairs
(
β(d), τ(d)

)
, where |β(d)| =

|τ(d)|. However, taking τ(d) and β(d) together with a color scheme (g1, g2, . . . , gk),

where gi is the color of the ith left-most edge of d, we have that d is uniquely

determined. This is somewhat cumbersome, so to simplify we extend the set from
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which we are taking subsets on which d may act. Previously, we let S ⊆ {1, . . . ,n}.

Now, working in Pn(G), define

S(G)n = {1i, 2i, . . . ,ni | i ∈ G} .

That is, we are looking at subsets of the set that consists of |G| copies of 1 through n,

each indexed by a different element of our palette group.

Now, τ(d) and β(d) as equal sized subsets of S(G)n completely and uniquely

determine d ∈ Pn(G). For example, when working in P4(Z4), letting τ(d) = {13, 21, 41}

and β(d) = {12, 31, 43}, we have completely and uniquely determined d as

d =

1 0 2r
r

r
r
r

r
r
r .

Recall that the colors on d are edge colors. The way they are determined is by

looking at what element of Z4 maps the subscript on the vertex labeled vi in the

bottom to the subscript on the vertex labeled d(v) j in the top. For example, in β(d),

the index on 1 is 2 and in τ(d), the index on 1 is 3. Then, the diagram needs to map 2

to 3. Thus, we color the edge from 1 to 1 by 1, as, in Z4, 2 + 1 = 3.

Let X ⊆ {1, . . . ,n} and H ⊆ G. Then, if S ⊆
{
s j | s ∈ X, j ∈ H

}
⊆ S(G)n, we have that

d(S) = {d(s)`} ,

where ` = gj, in which g is the color of the edge incident to s in d.

Example 3.2. We will work in P4(S3). Let S =
{
1(12), 3(132)

}
. Let

d =

(13) (123) (12)r
r

r
r
r

r
r
r .

Denote by S∗ the set S with indices of elements ignored. Here, for example,
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S∗ = X = {1, 3}. Certainly, S∗ ⊆ β(d). Then, d(S) =
{
1(123), 2e

}
, as (13)(12) = (123) and

(123)(132) = e (recall that we are multiplying right to left).

As in Section 2.2, we look to a vector space. Let Vn(G) be the 2(n×|G|)-dimensional

complex vector space with basis

{
~vS | S ⊆ S(G)n

}
.

Now, d ∈ Pn(G) acts on the basis elements of Vn(G) by

(
~vS

)d
=


~vd(S), if S ⊆ β(d),

~0, otherwise.

If we restrict |S| to a certain size, say k, we get a Pn-invariant subspace of Vn(G).

Call this subspace

Vn
k (G) = C-span

{
~vS | S ⊆ S(G)n and |S| = k

}
.

When uncolored, this was an irreducible subspace of Vn. Now, we have to check

whether Vn
k (G) is irreducible. We will not do this just yet, but keep in mind that we

do not know whether Vn
k (G) is irreducible for the moment.

Next, we define the colored planar rook algebra by

CPn(G) = C-span {d | d ∈ Pn(G)} .

Let us see if we can change to an xd-style basis. Define xd as in Equation 2.2. Now, if

b ⊆ d, then any edge in b colored j must be colored j in d, as well. The xd are linearly

independent, and we can form linear combinations of xd to get d ∈ Pn(G), as before.

That is, the set of xd forms a basis for CPn(G).
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The action of b ∈ Pn(G) on xd ∈ CPn(G) is then

(xd)b =


xbd, if τ(d) ⊆ β(b),

~0, otherwise.

Rewrite the xd’s as in Section 2.3, but including the coloring, as xS,T,(g1,...,gk).

Consider

Wn,k
T = C-span

{
xd | rank(d) = k, β(d) = T

}
.

We want to show that Wn,k
T � Vn

k (G). Let us try a map similar to what we saw in

Section 2.3:

xS,T,(g1,...,gk) 7→ ~vS,

where the S in ~vS is the S in xS,T colored by (g1, . . . , gk).

We first check to see if the map is a bijection. Let ~vS1 = ~vS2 . Then, S1 = S2. As this

determines the coloring of xS,T, we see that xS1,T = xS2,T. This gives us injectivity. Let

~vS ∈ Vn
k (G). Then, xS,T,C, where C is the coloring determined by the subscripts on the

values of S in ~vS, maps to ~vS. This gives us surjectivity. Thus, we have a bijection.

Again, due to linearity, we have a homomorphism. Hence,

Wn,k
T � Vn

k (G),

as desired.

Theorem 2.2 told us that Vn
k (and thus Wn,k

T ) was irreducible when we were

concerned only with {1, 2, . . . ,n} and Pn, uncolored. When we incorporate colors,

however, Wn,k
T is not necessarily irreducible.
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Theorem 3.5.

Let G be a group with |G| = m > 1. Then, W1,1
{1} is a P1(G)-invariant subspace of CP1(G)

that is not irreducible.

Proof. Since W1,1
{1} � V1

1(G), we can show that V1
1(G) is not irreducible.

Note that the indices on the following vectors are singleton sets, but for the sake

of notation, we do not write the set brackets.

Consider

U := 〈~v1g1
+ ~v1g2

+ . . . + ~v1gm
〉 ⊆ V1

1(G),

where gi = g j if and only if i = j.

We first show that U is P1(G)-invariant. As the left-regular action of G on itself

is indeed regular, we see that ~v1g1
+ ~v1g2

+ . . . + ~v1gm
under the action of d ∈ P1(G) is

either equal to the zero vector (if d is the empty diagram) or permutes the subscripts

in ~v1g1
+ ~v1g2

+ . . . + ~v1gm
. In the latter case, ~v1g1

+ ~v1g2
+ . . . + ~v1gm

under d is equal to

itself, as vector addition is commutative. Thus, U is P1(G)-invariant.

Certainly, U is a subspace of W1,1
{1} , as it only consists of scalar multiples of

~v1g1
+ ~v1g2

+ . . . + ~v1gm
.

It is also clear that U is a proper subspace of W1,1
{1} , as it does not contain, ~v1g1

, for

example.

Hence, W1,1
{1} is not irreducible. �

Note that W1,1
{1} is isomorphic as an algebra to the group algebraCP1(G)[{1}] � CG.

Thus, by Theorem 1.7, W1,1
1 is semisimple. This seems to imply that we have some

hope of our mirrored approach working, we just have to break down our subspaces

even further. However, we now generalize Theorem 3.5, showing that W1,1
{1} is not

the only problem subspace.
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Theorem 3.6.

Let G be a group with |G| > n. Then, Wn,n
{1,2,...,n} is a Pn(G)-invariant subspace of CPn(G) that

is not irreducible.

Proof. For the sake of brevity, let A = {1, 2, . . . ,n}. Since Wn,n
A � Vn

n(G), we can show

that Vn
n(G) is not irreducible.

Recall that S∗ is the set S with indices of elements ignored. Consider

U :=
〈 ∑

S⊆S(G)n, S∗=A

~vS

〉
⊆ Vn

n(G).

We first show that U is Pn(G)-invariant. As the left-regular action of G on itself is

indeed regular, we see that ∑
S⊆S(G)n, S∗=A

~vS

under the action of d ∈ Pn(G) is either equal to the zero vector (if rank(d) < n) or

permutes the subscripts in ∑
S⊆S(G)n, S∗=A

~vS.

In the latter case,  ∑
S⊆S(G)n, S∗=A

~vS


d

=
∑

S⊆S(G)n, S∗=A

~vS,

as vector addition is commutative. Thus, U is Pn(G)-invariant.

Certainly, U is a subspace of Wn,n
A , as it only consists of scalar multiples of

∑
S⊆S(G)n, S∗=A

~vS.

It is also clear that U is a proper subspace of Wn,n
A . Let T ⊆ S(G)n with |T| = n.

Then, U does not contain ~vT.

Hence, Wn,n
A is not irreducible. �
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Our mirrored approach to decomposing CPn(G) has clearly not gone very well.

Subspaces that were irreducible in CPn become non-irreducible when colored,

meaning that the decomposition process (or lack thereof) is significantly different.

We must turn to a new, more complicated method.

3.3 CPn(G) and Semisimplicity: A New Approach

It is clear that when we introduce colors, the path to semisimplicity (if one exists)

becomes harder to navigate. To decompose CPn(G), with G finite abelian, we need a

mixture of notation, cleverly-defined subspaces, and geometric intuition.

3.3.1 The Fundamental Theorem of Finite Abelian Groups

Theorem 3.7 (The Fundamental Theorem of Finite Abelian Groups).

Let G be a finite abelian group. Then, G is isomorphic to the direct product of cyclic groups.

Most undergraduate proofs of Theorem 3.7 require knowledge of the Sylow

Theorems, which are not covered in this Independent Study. Thus, we leave Theorem

3.7 without proof. The Sylow Theorems are concerned with Sylow subgroups of a

given finite group G. Sylow subgroups are related to the prime decomposition of

the order of G. The Sylow Theorems are some of the most interesting and powerful

group-theoretic notions (that may be encountered by an undergraduate) and alone

could make for an entire Independent Study. However, as we are not going into

detail about them here, we are not covering a proof of The Fundamental Theorem

of Finite Abelian Groups.

Example 3.3. Let G be an abelian group of order 63. We claim that there are 2 such

groups, up to isomorphism:
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1. Z9 ×Z7,

2. Z7 ×Z3 ×Z3.

One may be tempted to question why Z63 was not listed in Example 3.3. This is

becauseZ63 � Z9 ×Z7. In general, if gcd(a, b) = 1, we have thatZab � Za ×Zb. This

is also why Z21 ×Z3 is not listed, as it is isomorphic to Z7 ×Z3 ×Z3, considering

gcd(7, 3) = 1.

3.3.2 CPn(G) For Finite Abelian G

In this section, we will consider finite abelian groups as the direct products of cyclic

groups (see Theorem 3.7). That is, we will think of a finite abelian group G as

G = Zq1 ×Zq2 × . . . ×Zqm ,

where qi ∈N. Then, elements of G look like

g = (g1, g2, . . . , gm),

where 0 ≤ gi < qi.

Definition 3.1 Let G be a group. A G-partition of {1, 2, . . . ,n} is a set

A =
{
Ag | g ∈ G

}
of pairwise-disjoint subsets Ag of {1, 2, . . . ,n} indexed by elements of G such that

⋃
g∈G

Ag ⊆ {1, 2, . . . ,n}.
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That is, while we use the term "partition," we are only looking at a partition of a

subset of {1, 2, . . . ,n} [2].

Example 3.4. First, we need a group. Let us work with G = Z2 ×Z2. We also need to

determine a value for n. That is, we are working with diagrams in Pn for some n.

Let n = 7. Then,

A = {{1, 2}, {5}, {6}, {7}}

is a collections of subsets of {1, 2, 3, 4, 5, 6, 7}. Let A(0,0) = {1, 2}, A(0,1) = {5}, A(1,0) = {6},

and A(1,1) = {7}. Now, A is a G-partition of {1, 2, 3, 4, 5, 6, 7}.

Definition 3.2 Let A be a G-partition of {1, 2, . . . ,n}, S the bottom of a diagram d

with
⋃

g∈G Ag ⊆ S, and c : S→ G a color scheme. Define the α-function

α(A, c) =
∏
g∈G

∏
i∈Ag

∏
1≤ j≤m

(
ζq j

)g jc(i) j
,

where ζq j is the q jth root of unity e
2πi
q j . Note that g j is the jth entry in the tuple g.

Similarly, c(i) j is the jth entry of the tuple that is the color on edge i of d. We define

the empty product as being equal to 1 [2].

The α-function is a rule for extracting a root of unity out of a partition/coloring

pair. Despite the triple-product, when the group is fixed, the partition determines

the value of the α-function. To understand this product, we will work through an

example.

Example 3.5. We will continue with the group and G-partition from Example 3.4.

We can now pick an S such that
⋃

g∈G Ag = {1, 2, 5, 6, 7} ⊆ S. Let S = {1, 2, 4, 5, 6, 7}.
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Let c : S→ G be the color scheme defined by

1 7→ (0, 1)

2 7→ (1, 1)

4 7→ (1, 1)

5 7→ (0, 0)

6 7→ (0, 0)

7 7→ (0, 1).

One diagram (there are multiple) that represents this color scheme is

(0,1) (1,1) (1,1) (0,0) (0,0) (0,1)s
s

s
s

s
s

s
s

s
s

s
s

s
s .

We can now find α(A, c). We will do so in pieces, as the task is not an easy one.

Fix g = (0, 0). Then, we consider

∏
i∈A(0,0)

∏
1≤ j≤2

(
ζq j

)(0,0) jc(i) j
.

Now, A(0,0) = {1, 2}. Letting i = 1, we have

(
ζq1

)(0,0)1c(1)1
(
ζq2

)(0,0)2c(1)2
= (ζ2)0·c(1)1 (ζ2)0·c(1)2

= (ζ2)0·(0,1)1 (ζ2)0·(0,1)2

= (ζ2)0·0 (ζ2)0·1

= 1.
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Letting i = 2, we have

(
ζq1

)(0,0)1c(2)1
(
ζq2

)(0,0)2c(2)2
= (ζ2)0·c(2)1 (ζ2)0·c(2)2

= (ζ2)0·(1,1)1 (ζ2)0·(1,1)2

= (ζ2)0·1 (ζ2)0·1

= 1.

Thus, ∏
i∈A(0,0)

∏
1≤ j≤2

(
ζq j

)(0,0) jc(i) j
= 1.

Continuing,

∏
i∈A(0,1)

∏
1≤ j≤2

(
ζq j

)(0,1) jc(5) j
= (ζ2)0·c(5)1 (ζ2)1·c(5)2 = (ζ2)0·0 (ζ2)1·0 = 1,

∏
i∈A(1,0)

∏
1≤ j≤2

(
ζq j

)(1,0) jc(6) j
= (ζ2)1·c(6)1 (ζ2)0·c(6)2 = (ζ2)1·0 (ζ2)0·0 = 1,

∏
i∈A(1,1)

∏
1≤ j≤2

(
ζq j

)(1,1) jc(7) j
= (ζ2)1·c(7)1 (ζ2)1·c(7)2 = (ζ2)1·0 (ζ2)1·1 = ζ2 = eπi = −1.

Thus, α(A, c) = 1 × 1 × 1 × −1 = −1.

When A is a G-partition of {1, 2, . . . ,n} and d ∈ Pn(G), where d : S → T and⋃
g∈G Ag ⊆ S, we can look at

d(A) =
{
d(Ag) | g ∈ G

}
.

Note that d(A) is a G-partition of {1, 2, . . . ,n}. The block indexed by g ∈ G is d(Ag).

To denote that a diagram d has color scheme c, we write dc. When colors are
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ignored, dc and dk are the same diagram. For example, it may be that

dc =

g hr
r
r

r
r
r and dk =

x yr
r
r

r
r
r ,

but it is never the case that, say,

dc =

g hr
r
r

r
r
r and dk =

x yr
r

r
r
r

r ,

because the underlying diagrams are different. When discussing β(d) and τ(d), we

need not specify a color scheme, as β(dc) = β(dk) for all c and k (the same goes for

τ(d)).

Lemma 3.8. Let dc, bk ∈ Pn(G) with τ(d) ⊆ β(b).

1. If bkdc = (bd)r, then for any G-partition of {1, 2, . . . ,n}, we have that

α(A, r) = α(d(A), k) · α(A, c);

2. If A1 and A2 are G-partitions of {1, 2, . . . ,n} with
⋃

g∈G A1,g ∩
⋃

g∈G A2,g = ∅ and⋃
g∈G A1,g ⊆ β(d) and

⋃
g∈G A2,g ⊆ β(d), then

α(A1 ∪ A2, c) = α(A1, c) · α(A2, c),

where A1 ∪ A2 is the G-partition of {1, 2, . . . ,n} where the block indexed by g ∈ G is

A1,g ∪ A2,g [2].

While the notation is dense, the underlying concept is straightforward. Lemma

3.8 (1) says that given a partition, the α-function should be multiplicative − it should

return the same value when applied to the product of diagrams as it does when

applied to the diagrams individually and those results are multiplied together.
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Two diagrams d and b can be said to be disjoint if β(d) ∩ β(b) = τ(d) ∩ τ(b) = ∅.

Equivalently, if the associated matrices Md and Mb have the property that the

(i, j)-entry of Md times the (k, `)-entry of Mb is zero for all i, j, k, ` and β(d) ∩ β(b) = ∅.

Lemma 3.8 (2) says that given two disjoint diagrams, we can effectively impose one

on top of the other. The α-function should return the same value when applied to

this "imposition" as it does when applied to the diagrams individually and those

results are multiplied together.

Lemma 3.8 holds in large part due to the fact that we are working with finite

abelian groups −we could not even define the α-function otherwise.

We now exemplify part (1) of Lemma 3.8.

Example 3.6. We will work in Z2 ×Z2, with

bk =

(1,0) (0,0) (1,1)r
r

r
r

r
r

r
r

r
r ,

dc =

(1,1) (1,1) (0,1)r
r

r
r
r

r
r
r

r
r ,

bkdc = (bd)r =

(0,1) (1,1) (1,0)r
r

r
r

r
r

r
r

r
r .

Let our partition be A =
{
{1, 2}(0,0), {4}(0,1)

}
. Then, d(A) =

{
{1, 3}(0,0), {4}(0,1)

}
.
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We can now find α(A, c), α(d(A), k), and α(A, r):

α(A, c) =
(
ζ0

2

)5
× ζ2 = −1,

α(d(A), c) =
(
ζ0

2

)3
× ζ2 = −1,

α(A, r) =
(
ζ0

2

)4
= 1.

As desired,

α(d(A), k) · α(A, c) = −1 × −1 = 1 = α(A, r).

Part (1) of Lemma 3.8 discusses the multiplicativeness of the α-function. Fur-

thermore, it helps us see how similar to a homomorphism the α-function is. We are

taking colored diagrams and sending them through the α-function to points on the

unit circle. These points depend upon the number of cyclic groups in the decompo-

sition of our chosen group (that is, the points depend upon m in Zq1 × . . . ×Zqm).

Then, we are sending our sets of diagrams to subgroups of the group of rotations of

the unit circle. In fact, we appear to be sending them to Zm.

Let us now look at an example of part (2) of Lemma 3.8.

Example 3.7. We again work in Z2 ×Z2. We will look at the partitions A1 =
{
{1}(0,0)

}
and A2 =

{
{4}(0,0), {5}(0,1)

}
. Then, A1 ∪ A2 =

{
{1, 4}(0,0), {5}(0,1)

}
. Let

dc =

(0,0) (1,1) (1,1)r
r

r
r

r
r

r
r

r
r .

Calculation yields that α(A1, c) = 1, α(A2, c) = −1, and α(A1 ∪ A2, c) = −1.

Note that the product ∏
i∈Ag

∏
1≤ j≤m

(
ζq j

)g jc(i) j
= 1, (3.1)



3. G-Edge-Coloring CPn 75

when g = e, which helps to solidify the idea that the α-function behaves like a

homomorphism into Zm.

In Chapter 2, we defined a partial order on Pn via rank and extended this to a

total order. However, our examples in Section 3.2 show us that this will not work

for decomposing general CPn(G). To achieve our desired decomposition, we define

a different partial ordering, this time in terms of G-partitions. Given G-partitions A1

and A2, we define a partial order by A1 ≤ A2 if and only if A1,g = A2,g for all g , e

and A1,e ⊆ A2,e.

Example 3.8. Figure 3.3 shows an example of the partial ordering: two partitions A1

and A2 have the relation A1 ≤ A2 if there is a path of arrows from A1 to A2. In the

figure, let g , e.

{{1, 2}e, {3}g}

{{1}e, {3}g} {{2}e, {3}g} {{4}e, {3}g} {{4}e, {2}g}

{{3}g}

Figure 3.3: An example of the partial ordering on G-partitions

In terms of the α-function, Equation 3.1 implies that α(A, c) = α(B, c) for all B ≤ A.

At this point, we have seen some similarities between this approach to decom-

posing CPn(G) and the approach we took to decomposing CPn, uncolored. The

partitions we are working with are analogous to the T’s in the Wn,k
T ’s (Equation 2.4).
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This will become more apparent later, but consider how partitions correspond to

diagrams. Let us look at

dc =

0 2 2r
r
r

r
r

r
r

r
r
r ∈ P5(Z3).

Specifically, we want to consider β(d) and the color scheme c. Recall that Wn,k
T =

C-span
{
xd | rank(d) = k, β(d) = T

}
. We fixed a bottom set and ran through possible

top sets to create this subspace, and this is essentially what we are doing with

the partitions. The partition that corresponds to dc is {{2}0, {3, 5}2}. This partition

corresponds to all diagrams in P5(Z3) with bottom set {2, 3, 5} such that the color of

the edge incident to 2 is 0 and the color of the edges incident to 3 and 5 is 2.

We can extend to a total ordering as before, preserving the partial ordering.

We now define the objects that are analogous to the xd’s of the uncolored planar

rook algebra. Let A be a G-partition of {1, 2, . . . ,n}, and let T ⊆ {1, 2, . . . ,n} with

|T| =
∣∣∣⋃g∈G Ag

∣∣∣. Define

yT
A =

∑
B≤A

(−|G|)|A0/B0|

 ∑
c∈Col(d|∪B)

α(B, c)(d|∪B)c


 , (3.2)

where |A0/B0| is |A0| − |B0|, d is the diagram with β(d) =
⋃

g∈G Ag and τ(d) = T, Col(d)

is the set of possible color schemes of d, and d|∪B is the diagram d with β(d) restricted

to
⋃

g∈G Bg. Indeed, d|∪B is a subdiagram of d. The subscript c on d|∪B at the end of

Equation 3.2 indicates how the diagram d|∪B is colored.

Example 3.9. We will work in Z2, with A = {{2}0, {4}1}. Let T = {1, 3}. Then,

d =

r
r

r
r

r
r

r
r .

We leave d uncolored, as we will be looking at all possible colorings. Then,
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yT
A = y{1,3}

{{2}0,{4}1}
is equal to

( 0 0q
q

q
q

q
q

q
q −

0 1q
q

q
q

q
q

q
q +

1 0q
q

q
q

q
q

q
q −

1 1q
q

q
q

q
q

q
q

)
− 2

( 0q
q

q
q

q
q

q
q −

1q
q

q
q

q
q

q
q

)
.

This comes from the definition of yT
A and the following calculations:

α

{{2}0, {4}1} ,
0 0r

r
r

r
r

r
r

r
 = 1,

α

{{2}0, {4}1} ,
0 1r

r
r

r
r

r
r

r
 = −1,

α

{{2}0, {4}1} ,
1 0r

r
r

r
r

r
r

r
 = 1,

α

{{2}0, {4}1} ,
1 1r

r
r

r
r

r
r

r
 = −1,

α

{{4}1} ,
0r

r
r

r
r

r
r

r
 = 1,

α

{{4}1} ,
1r

r
r

r
r

r
r

r
 = −1.

Here, the diagrams represent color schemes.

If we look at CPn({e}), only coloring with the trivial group, yT
A = xT,A0 . Recall that

xT,A0 is the xd with τ(d) = T and β(d) = A0. This equality occurs due to the fact that

subpartitions of A correspond to subsets of A0 and because the α-function does not

contribute to yT
A, since we are coloring by e.
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The action of Pn(G) on the yT
A’s is as expected.

Theorem 3.9 ([2]).

For dc, bk ∈ Pn(G) with A a G-partition of {1, . . . ,n} such that dc :
⋃

g∈G Ag → T, we have

that

(
yT

A

)bk
=


α(d(A), k)−1

· yb(T)
A , if T ⊆ β(b),

~0, otherwise.

Example 3.10. Working in Z2, consider yT
A = y{1,3}

{{2}0,{4}1}
from Example 3.9, and let

bk =

1 1r
r

r
r
r

r
r
r .

Then,
(
y{1,3}
{{2}0,{4}1}

)bk
is equal to

(
−

1 1q
q
q

q
q

q
q

q +

1 0q
q
q

q
q

q
q

q −

0 1q
q
q

q
q

q
q

q +

0 0q
q
q

q
q

q
q

q
)
−2

(
−

1q
q
q

q
q

q
q

q +

0q
q
q

q
q

q
q

q
)
,

which involves the following calculations:

α

{{1}0, {2}1} ,
1 1r
r

r
r
r

r
r
r

 = −1,

α

{{2}1} ,
1 1r
r

r
r
r

r
r
r

 = −1.

Here, the diagrams represent color schemes.

Note what the action of Pn(G) on the yT
A’s reveals about the α-function. The

α-function creates an invariant-like complex number that is associated to a diagram.

When a diagram acts on yT
A, we need to update the associated scalars to fit the new

diagrams.
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Recall that when we encountered the xd’s, we rewrote them in terms of each

other. This occurred in the proof of Theorem 2.3. We can do something similar with

the yT
A’s.

Lemma 3.10. We can write the yT
A’s in terms of each other as follows:

yT
A =

∑
c∈Col(d)

α(A, c)dc −

∑
B<A

(
(|G|)|A0/B0| yd(∪g∈GBg)

B

) .
Proof. Note that the second sum runs over proper preceding partitions. That is, we

are looking at B < A, rather than at B ≤ A. When B = A, we have that |A0/B0| = 0,

meaning that −|G||A0/B0| = 1. Thus, the first term in a given yT
A depends only upon

the sum over the possible coloring schemes. The result follows. �

Example 3.11. Continuing from our previous examples, let us work in CP4(Z2), and

consider y{1,3}
{{2}0,{4}1}

:

( 0 0q
q

q
q

q
q

q
q −

0 1q
q

q
q

q
q

q
q +

1 0q
q

q
q

q
q

q
q −

1 1q
q

q
q

q
q

q
q

)
−2

( 0q
q

q
q

q
q

q
q −

1q
q

q
q

q
q

q
q

)
.

Lemma 3.10 tells us that we can consider y{1,3}
{{2}0,{4}1}

in terms of yT
B’s that satisfy certain

conditions. We first need to know which partitions B satisfy B ≤ A. There exist two

such partitions: A and {{4}1}. Now, we can see that

∑
c∈Col(d)

α(A, c)dc =

( 0 0q
q

q
q

q
q

q
q −

0 1q
q

q
q

q
q

q
q +

1 0q
q

q
q

q
q

q
q −

1 1q
q

q
q

q
q

q
q

)
.

There is only one proper subpartition of A, so

∑
B<A

(
(|G|)|A0/B0| yd(∪g∈GBg)

B

)
= (|G|)|A0/B0| yd(∪g∈GBg)

B = 2
( 0q

q
q

q
q

q
q

q −

1q
q

q
q

q
q

q
q

)
.

The difference of these two summations is indeed y{1,3}
{{2}0,{4}1}

.
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Our next big claim will be that the yT
A’s form a basis for CPn(G). To prove this,

we need the following lemma.

Lemma 3.11. Let d ∈ Pn(G) with d : S→ T, and let rank(d) = k. For any colorings c and

k of d, we have that

∑
A |

⋃
g∈G Ag=S

α(A, c)−1α(A, k) =


|G|k, if c = k,

0, otherwise.

Proof. If c = k, then the sum is simply equal to the number of possible colorings of d,

which is |G|k.

If c , k, then there exists s ∈ S such that c(s) , k(s). Consider the G-partition

A with
⋃

g∈G Ag = S r {s}, and for g ∈ G, let gA be the G-partition of {1, . . . ,n} with

gAh = Ah for all h , g and gAg = Ag ∪ {s}. Then,

∑
g∈G

α(gA, c)−1α(gA, k) = α(A, c)−1α(A, k)
∑
g∈G


 ∏

1≤ j≤m

(
ζqi

)g jc(s) j


−1  ∏

1≤ j≤m

(
ζqi

)g jk(s) j




= α(A, c)−1α(A, k)
∑
g∈G

 ∏
1≤ j≤m

(
ζqi

)g j(k(s) j−c(s) j)


= α(A, c)−1α(A, k)

∏
1≤ j≤m


q j−1∑
g j=0

(
ζqi

)g j(k(s) j−c(s) j)
 .

As c(s) , k(s), we have that for some j, c(s) j , k(s) j. Thus,

q j−1∑
g j=0

(
ζqi

)g j(k(s) j−c(s) j)
=

(
ζqi

)q j(k(s) j−c(s) j)
− 1(

ζqi

)(k(s) j−c(s) j)
− 1

=
1 − 1(

ζqi

)(k(s) j−c(s) j)
− 1

= 0,

as
(
ζqi

)(k(s) j−c(s) j)
− 1 , 0. This implies the result [2]. �
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We may now proceed with a proof of the claim that the yT
A’s form a basis for

CPn(G).

Theorem 3.12.

The set {
yT

A | A is a G-partition of {1, . . . ,n}
}

is a basis for CPn(G) [2].

Proof. Consider

∣∣∣∣{yT
A | A is a G-partition of {1, . . . ,n}

}∣∣∣∣ =

n∑
k=0

|G|k
(
n
k

)2

.

This comes from the fact that there is a bijection between the yT
A set and the set of all

colored planar rook diagrams, given by associating a given yT
A with the diagram d

where β(d) =
⋃

g∈G Ag and τ(d) = T such that the color on the edge of d incident to

a ∈ β(d) is the color indexing the element of A that contains a.

Let A be a G-partition of {1, . . . ,n}. Define

Yn
A := C-span

yT
A | T ⊆ {1, . . . ,n} , |T| =

∣∣∣∣∣∣∣⋃g∈G Ag

∣∣∣∣∣∣∣
 .

To show that the yT
A’s form a basis for CPn(G), we can show that given dc ∈ Pn(G),

we have

dc ∈

∑
A

Yn
A.

We proceed by induction on rank(d).

Base Case: If rank(d) = 0, then dc = y∅A with Ag = ∅ for all g ∈ G.

Inductive Step: Suppose that the claim holds for all ranks less than K.
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Consider dc ∈ Pn(G) with d : S→ T such that rank(d) = K. We now look at

∑
A |

⋃
g∈G Ag=S

α(A, c)−1yT
A.

By Lemma 3.10, we have that

∑
A |

⋃
g∈G Ag=S

α(A, c)−1yT
A =

∑
A |

⋃
g∈G Ag=S

α(A, c)−1

 ∑
k∈Col(d)

α(A, k)dk −

∑
B<A

(
(|G|)|A0/B0| yd(∪g∈GBg)

B

)

=
∑

A |
⋃

g∈G Ag=S

 ∑
k∈Col(d)

α(A, c)−1α(A, k)dk

 − ∑
A |

⋃
g∈G Ag=S

∑
B<A

(
α(A, c)−1 (|G|)|A0/B0| yd(∪g∈GBg)

B

) .
By Lemma 3.11, we have that the coefficient on dk is nonzero if and only if c = k.

Hence, ∑
A |

⋃
g∈G Ag=S

 ∑
k∈Col(d)

α(A, c)−1α(A, k)dk

 = |G|kdk.

Additionally, the rank of any diagram in the sum

Ξ :=
∑

A |
⋃

g∈G Ag=S

α(A, c)−1yT
A − |G|

kdk

must be less than K. By our inductive hypothesis, Ξ ∈
∑

A Yn
A. Thus,

∑
A |

⋃
g∈G Ag=S α(A, c)−1yT

A ∈∑
A Yn

A. This implies that dc ∈
∑

A Yn
A, as all other terms may be canceled by undoing

nonzero multiplication by α(A, c)−1’s and subtracting diagrams with rank less than

K (all diagrams in Ξ other than dc satisfy this criterion). �

Theorem 3.13.

Each Yn
A is Pn(G)-invariant and irreducible [2].

Proof. Theorem 3.9 tells us that the action of Pn(G) on a basis element of Yn
A produces
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either a scalar multiple of another basis element of Yn
A or ~0. Thus, Yn

A is Pn(G)-

invariant.

For the sake of contradiction, suppose W is a non-trivial proper Pn-invariant

subspace of Yn
A. Let

~0 , ~γ =
∑

T | |T|=|
⋃

g∈G Ag|

λT yT
A

be a nonzero element of W. Since ~γ is nonzero, there exists some S such that λS is

nonzero. Let dc ∈ Pn(G) with d : S→ S and c(s) = e for all s ∈ S. Then,

(
~γ
)dc = λSyS

A.

We can undo the multiplication by nonzero λS to see that yS
A ∈W.

Let yX
A be a basis element of Yn

A. Let bk ∈ Pn(G) with b : S→ X and k(s) = e for all

s ∈ S. Consider (
yS

A

)bk
= yb(S)

A = yX
A.

Hence, yX
A ∈W

Thus, any one basis vector generates the entire space Yn
A. Hence, W = Yn

A, a

contradiction.

Therefore, each Yn
A is Pn-invariant and irreducible. �

Theorem 3.14.

For G a finite abelian group, the colored planar rook algebra CPn(G) is semisimple and

decomposes as

CPn(G) =
⊕

A is a G-partition of {1,...,n}

Yn
A.

Proof. The regular representation of CPn(G) is completely reducible, as we have

constructed the appropriate decomposition. By the Artin-Wedderburn Theorem

(Theorem 1.6), we have that CPn(G) is semisimple [2]. �
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We have done in this section what we set out to do. The colored planar rook

algebra CPn(G) is semisimple for finite abelian G.

We will see in the next section (Section 3.3.3) that dimension plays a role in

constructing a counterexample to the claim that CPn(G) is semisimple for all G.

3.3.3 CPn(G) For Finite Non-Abelian G

That CPn(G) is semisimple for finite abelian G does not extend to finite non-abelian

G. In this section, we exemplify this unfortunate fact.

Example 3.12. The colored planar rook algebra CP1(S3) is not semisimple.

The elements of P1(S3) are

r
r ,

er
r ,

(12)r
r ,

(23)r
r ,

(13)r
r ,

(123)r
r ,

(132)r
r .

If

CP1(S3) =
⊕

i∈I

Vi

is a decomposition of CP1(S3) into irreducible CP1(S3)-modules, then Theorem 1.6

(2) tells us that the sum of the squares of the dimensions of the Vi’s is equal to the

dimension of CP1(S3) = 7. The only two decompositions of 7 into sums of squares

(of positive integers) are 7 = 22 + 1 + 1 + 1 and 7 = 1 + 1 + 1 + 1 + 1 + 1 + 1. In either

case, there are at least three 1-dimensional representations of CP1(S3). We will show

that, in fact, there exist exactly two 1-dimensional representations of CP1(S3).

Suppose

~v = α0

r
r + α1

er
r + α2

(12)r
r + α3

(23)r
r + α4

(13)r
r + α5

(123)r
r + α6

(132)r
r ,

whereαi ∈ C, generates a 1-dimensional P1(S3)-invariant irreducibleCP1(S3)-module.
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Let

d(12) =

(12)r
r

act on ~v. Then,

(
~v
)d(12) = α0

r
r + α1

(12)r
r + α2

er
r + α3

(123)r
r + α4

(132)r
r + α5

(23)r
r + α6

(13)r
r

As ~v generates a Pn-invariant submodule, we have that
(
~v
)d(12) is a scalar multiple

of ~v. That is,
(
~v
)d(12) = λ~v for some λ ∈ C. Then,

α0 = λα0;

α1 = λα2;

α2 = λα1;

α3 = λα5;

α4 = λα6;

α5 = λα3;

α6 = λα4.

From this, we see that

α0 = λα0;

α1 = λα2 = λ2α1;

α3 = λα5 = λ2α3;

α4 = λα6 = λ2α4.
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Hence, αi = 0 for all i > 0 or λ = 1. Now consider

(
~v
)d(23) = α0

r
r + α1

(23)r
r + α2

(132)r
r + α3

er
r + α4

(123)r
r + α5

(13)r
r + α6

(12)r
r

Again, we have a scalar multiple of ~v. So,

α0 = ωα0;

α1 = ωα3;

α2 = ωα6;

α3 = ωα1;

α4 = ωα5;

α5 = ωα4;

α6 = ωα2,

and we see that αi = 0 for all i > 0 or ω = 1.

If αi = 0 for all i > 0, then α0 is nonzero, as ~v was assumed to be nonzero. Thus,

the representation is the set of scalar multiples of the empty diagram.

Suppose αi , 0 for some i > 0. Then, λ = ω = 1, implying that all αi for i > 0 are

equal. Then, if d0 is the empty diagram,

(
~v
)d0 = α0

r
r + α1

r
r + α2

r
r + α3

r
r + α4

r
r + α5

r
r + α6

r
r

= α0

r
r + 6α1

r
r .

This is a scalar multiple of ~v, as ~v generates the entire representation. As
(
~v
)d0 has
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no non-empty diagrams, it must be the case that
(
~v
)d0 = ~0. Then,

α0

r
r + 6α1

r
r = ~0

implies that

α0

r
r = −6α1

r
r .

Thus, α0 = −6α1. Then, the representation generated by ~v is

C-span

−6

r
r +

er
r +

(12)r
r +

(23)r
r +

(13)r
r +

(123)r
r +

(132)r
r

 .
This is a 1-dimensional representation of CP1(S3). The only other 1-dimensional

representation of CP1(S3) is the set of scalar multiples of the empty diagram. That

is, we have exhausted all possibilities, implying that there are exactly two distinct

1-dimensional representations of CP1(S3). Thus, CP1(S3) is not semisimple.

This example is the only concrete one we have of the colored planar rook algebra

not being semisimple. In our concluding chapter, we will make some observations

about the lack of semisimplicity of CP1(S3) and discuss some potential implications.



CHAPTER 4
Conclusion

In the reasoning that CP1(S3) is not semisimple, one key component is the fact

that the sets of equations we receive upon acting on a linear combination of diagrams

do not behave "nicely." We now attempt to generalize these sets of equations.

Definition 4.1 Let G be a group and g ∈ G. Then,

Gg = {(x, xg) | x ∈ G}

is called the g-hit of G.

Example 4.1. Consider (23) ∈ S3. We can look at the (23)-hit of S3:

e (12) (23) (13) (123) (132)

(23) ↓ ↓ ↓ ↓ ↓ ↓

(23) (132) e (123) (13) (12)

So,

S(23)
3 = {(e, (23)), ((12), (132)), ((23), e), ((13), (123)), ((123), (13)), ((132), (12))}

Definition 4.2 Let G be a group and g ∈ G. Then,

xGg =
{
y ∈ Gg

| y = x(gk) for some k ∈N
}
,

88
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is called the x-block of Gg.

Example 4.2. Taking Example 4.1, we can look at the x-blocks of S(23)
3 for x ∈ S3. They

are

eS(23)
3 = {e, (23)}

(12)S(23)
3 = {(12)(132)}

(23)S(23)
3 = {e, (23)}

(13)S(23)
3 = {(13), (123)}

(123)S(23)
3 = {(13), (123)}

(132)S(23)
3 = {(12), (132)} .

Note that there are 3 distinct x-blocks, each of size 2, and that they partition S3.

Theorem 4.1.

Let G be a group and x, g ∈ G. Then, xGg = 〈g〉x, the coset of 〈g〉 with representative x.

Proof. Note that a ∈ xGg if and only if a = x(gk) = gkx for some k ∈N. This is true if

and only if a ∈ 〈g〉x. �

Theorem 4.2.

Let G be a finite group and g ∈ G. For a, b ∈ G, define a relation ∼ by a ∼ b if and only if

for x ∈ G, a and b are in the same x-block of Gg. Then,

1. The relation ∼ is an equivalence relation. Thus, the x-blocks of Gg partition G.

2. The size of an x-block of Gg is equal to the order of g. That is, |xGg
| = o(g).

3. The number of distinct x-blocks is equal to |G/〈g〉|.

Proof. 1. This is true because xGg = 〈g〉x, and the cosets of a subgroup of G

partition the group.
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2. This follows from the definition of xGg. The elements of xGg look like x(gk) = gkx.

Then, gmx = gnx if and only if m ≡ n mod o(g). So, the number of distinct

values x(gk) can assume is equal to o(g).

3. This follows from 1 and 2. As x-blocks partition G and the size of an x-block is

o(g) = |〈g〉|, we have that |G/〈g〉| = |G|/|〈g〉| = |G|/o(g) is the number of distinct

x-blocks.

�

We believe that cosets and normal subgroups are key in the understanding of

whyCPn(G) is semisimple for finite abelian G. All subgroups of an abelian group are

normal, so left and right cosets are equal. This seems to cause the sets of equations

we discovered in Section 3.3.3 to "work out nicely." When a subgroup is not normal,

these equations may not behave in such a manner. The method for decomposing

CPn(G) for finite abelian G is complicated, and a method for some finite non-abelian

G is unknown (if one exists). We have only the example CP1(S3) to show us that

there is a group G for which CPn(G) is not semisimple. We would like to explore

CP1(Q8), as Q8 is one of the next smallest non-abelian groups (after S3). Additionally,

all of Q8’s subgroups are normal, which can not be said of S3. We also wish to look

at D4, the other non-abelian group of order 8.

This Independent Study has looked at the planar rook algebra. The thesis itself

mirrors the process by which it was written. The project began by looking at the

uncolored planar rook algebra CPn and reading [1] to discover what it meant for

CPn to be semisimple. Intrigued by the algebra, we then looked at understanding

the semisimple decomposition of CPn(G) for finite abelian G ([2]). Again, one future

goal is to explore the colored planar rook algebra when colored by Q8 and D4. Other

future work includes coding the α-function (Definition 3.2), further exploring the
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subalgebras CPn(G)[S] (Theorem 3.4) and finding a simpler method of decomposing

CPn(G) for finite abelian G.
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