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Abstract

As the human population continues increasing rapidly and climate change

accelerates, resource depletion is becoming an international problem.

Community-based natural resource management (CBNRM) has been

suggested as a method to conserve resources while simultaneously

empowering traditionally marginalized communities. Because classical

equation-based modeling methods fail to capture the complexity of CBNRM,

Agent-Based Modeling (ABM) has emerged as a primary method of modeling

these systems. In this investigation, we conduct a sensitivity analysis and

thorough evaluation of an existing ABM of community forest management.

We then modify the original model by providing a new enforcement

mechanism that improves the validity of both the conceptual foundation and

emergent behaviors of the model. We finish by conducting a second sensitivity

analysis and evaluation of the new model. While this model remains

imperfect, we hope future work will be able to use the model to build a greater

understanding of CBNRM and apply this understanding to help propagate

successful CBNRM systems around the world.
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Chapter 1

Introduction

Human prosperity relies on natural resources such as forests, clean water, and

fertile land. As the human population increases and climate change

accelerates, resource depletion is becoming a worldwide problem. During the

mid-1900s, researchers such as Garrett Hardin assumed that humanity’s

selfish nature implies government regulations or resource privatization are the

only ways to prevent resource depletion. More recently, the field of

community-based natural resource management (CBNRM) has challenged

Hardin’s conclusions. CBNRM researchers, led by economist Elinor Ostrom,

argue that community management systems (CMSs) can be more effective than

outside regulation, while simultaneously empowering the local communities

that would be marginalized by government intervention and privatization.

Unfortunately, while CBNRM offers a promising solution to resource

depletion, the very nature of CBNRM makes it difficult to implement on a

large scale. CBNRM focuses on enabling individual communities to form

regulations that are compatible with their community and ecosystem. Since

1



2 CHAPTER 1. INTRODUCTION

each community and ecosystem is unique, a CMS that is successful in one

community may be ineffective elsewhere. Therefore, while there have been

many case-studies of CBNRM, researchers have struggled to generalize

findings and identify overarching themes of what makes a CMS successful

and how this success can be propagated to other communities.

Additionally, CBNRM is a social-ecological system (SES), meaning it

incorporates interactions both within human communities and between

humans and the natural environment. SESs are complex and often non-linear

systems that are difficult to describe using classical equation-based modeling.

Hence, while statistical analysis has helped identify trends in CBNRM,

modeling CBNRM using traditional methods has largely failed to capture the

complexity of these systems. This has made it difficult to understand not only

what factors influence the success or failure of a CMS, but also why these

influences occur and how we can respond to them.

Researchers have begun exploring Agent-Based Modeling (ABM) as an

alternative method of understanding CBNRM. ABM is a method of

computational simulation that models systems of agents that interact with one

another and their environment through a set of defined rules. By modeling

individual agents who follow probabalistic rules, ABMs allow for

heterogeneous populations, stochastic interactions, and complex, non-linear

systems - exactly the kinds of systems that challenge us when modeling

CBNRM.

As ABM for CBNRM is a growing field, there remains debate over the

most effective way to employ ABMs to investigate CBNRM. While some

ABMs have been used to suggest management policies for individual CMSs,
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most have focused on learning more about the dynamics underlying CMSs.

Understanding these dynamics can help us understand key ecological and

social factors that tip a CMS toward success or failure. While these models

have begun providing interesting insight into CBNRM, this remains an

emerging field; hence, many of these models contain unjustified assumptions,

are not well validated, and could benefit from additional sensitivity analysis.

In this investigation, we first provide an introduction to Agent-Based

Modeling (Chapter 2) and natural resource management (Chapter 3). We then

introduce a community forest ABM by Elena Vallino [40] (Chapter 4). We

conduct a sensitivity analysis of this model to learn how model parameters

impact model outputs. During this process, we identify several

implementation errors in the model code and discover that the model’s

method of enforcing CBNRM rules is not conceptually compatible with

real-world CMSs (Chapter 5). We therefore present a new model that fixes

implementation errors and modifies the enforcement mechanism to better

represent reality (Chapter 6). We then conduct a second sensitivity analysis

and analyze new emergent behaviors (Chapter 7). We finish with a conclusion

and suggestions for future work (Chapter 8).
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Chapter 2

Agent-Based Modeling

Agent-based modeling (ABM) is a method of computational simulation that

models systems of agents that interact with one another and their

environment through a set of defined rules. In contrast to traditional modeling

approaches that focus solely on replicating the macro-level behavior of a

system, ABMs are constructed based on micro-scale interactions between

agents in hopes of observing emergent behaviors. Emergent behaviors are

collective behaviors and patterns that appear, often through unobvious means,

from the accumulation of smaller interactions [27]. Population dynamics are a

classic example of an emergent behavior.

To better understanding ABM methods, in this section we compile

information from Borrill and Tesfatsion [5], Crooks and Heppenstall [13],

Doran [15], and Macal and North [26] to describe the agents, environments,

and rules used to develop ABMs, as well as discuss the advantages and

disadvantages of this modeling method. We also provide an example ABM to

illustrate these ABM characteristics.

5



6 CHAPTER 2. AGENT-BASED MODELING

2.1 Agents

While there is no clear-cut definition of what an “agent” is, there are several

defining characteristics that are common among agents in most ABMs [13, 26].

1. Agents are autonomous entities. While agents interact with each other

and their environment, each agent can exist and act in isolation.

2. Agents have states and behaviors. Each agent has a set of parameters

defining traits of the agent. The values of these parameters make up the

state of the agent. The parameters are defined at the beginning of the

simulation, but can change as the simulation progresses. The agent’s

behaviors are guided by these parameters. For example, an agent may

have a parameter that dictates how far the agent moves in a single

time-step. Because each agent can have a distinct state, we say the agents

can be heterogeneous, i.e. not all agents have the same traits and

behavior.

3. Agents are active. Agents interact with their environment and other

agents, both reacting to and influencing their surroundings. Agent

activity can take several forms:

(a) Proactive activity

i. Agents can have goals, and adjust their behavior to try to reach

those goals, often using bounded rationality. Bounded

rationality recognizes that agents do not have access to all

information in the simulation and their decision-making

processes may not lead to “optimal” results [43].
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ii. Agents can “learn.” In other words, they can maintain a

memory of their past in the simulation and use that to change

their behavior to accommodate that knowledge.

(b) Reactive agents

i. Agents can simply react to their surroundings with no

decision-making process. This is common for inanimate agents.

While most agents contain the characteristics described above, this

framework leaves a lot of flexibility as to what agents actually are. They can be

anything from individual molecules, to people, organizations, or even

countries. Often agents will be grouped into classes of agents that have similar

characteristics.

2.2 Environment

In ABMs, agents are embedded within an environment. Environments are

characterized by the following:

1. Environment structure. Often the environment is representative of a

physical environment, in which case it is usually structured as a discrete

grid or a continuous plane within which agents can move. Other

potential environment structures include three-dimensional

environments or social networks, and some ABMs refrain from defining

any spatial component to their model entirely [13]. When ABM

environments do contain a spatial component, usually one of the agents’

traits is their location within the environment. In a continuous plane or
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grid environment, an agent’s location is defined by x,y-coordinates. The

agent’s location within the environment often moves as the simulation

progresses.

2. Environment traits. Just as agents have traits, the environment of an

ABM also has traits. These traits change as the simulation progresses

and can be defined heterogeneously throughout the environment.

3. Agent-environment interactions. Just as agents interact with other

agents, agents also interact with their environment. These are two-way

interactions, such that agents influence environment traits and the

environment influences agent traits.

4. Neighborhoods. Agent “neighborhoods” define what part of the

environment the agent can interact with. In a grid environment,

potential neighborhoods include the von Neumann neighborhood,

which consists of the cell the agent is on and the four cells immediately

adjacent to the agent, and the Moore neighborhood, which consists of the

cell the agent is on and the eight cells surrounding the agent [26]. In a

continuous environment, a neighborhood may be defined by a

maximum Euclidean distance from the agent (Fig. 2.1).

Along with the characteristics described above, recently some researchers

have started integrating geographic information systems (GIS) into model

environments to increase the realism of ABMs [7].
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a) b) c)

Figure 2.1: Examples of potential agent neighborhoods. Shown are the (a) von
Neumann neighborhood, (b) Moore neighborhood, and (c) Euclidean neigh-
borhood.

2.3 Rules

The final component of an ABM is the set of rules defining the behavior of

agents within the model. One key aspect of these behaviors is how agents

interact with other elements in the model (i.e. other agents and their

neighboring environment). Often model rules will be implemented in discrete

time-steps. At each time-step, the agent and environment states are updated

according the the rules of the ABM. Certain rules may only come into effect at

infrequent intervals within the model’s progression, perhaps once every 50

time-steps, allowing the model to incorporate discrete events.

Rules can be defined for individual agents, classes of agents, or all agents

in the simulation. The rules defining agent behavior are often based on

qualitative information, such as expert knowledge, interviews, or stylized

facts. Stylized facts are patterns that are seen repeatedly in empirical research

and simplified into a general rule [21]. For example, a stylized fact in

economics may be that individuals with higher incomes spend more money.

Historically, ABMs have rarely based rules on empirical data [23]; however, as

accessibility to big data sources continues to grow, empirically parameterizing

ABMs is becoming more and more common [37, 3, 48, 24].
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Rules often introduce stochasticity, or randomness, to the model. For

example, behaviors may be dependent on sampling from a probability

distribution. One common example of this is defining agent movement as a

random walk. Other potential sources of stochasticity in the model include

stochastic initial states for the agents and environment, as well as “chance

encounters” between agents within the model.

2.4 Example ABM: a predator-and-prey model

The NetLogo Model Library contains many example ABMs, including an

ABM of a predator-and-prey system [46]. In the predator-and-prey ABM,

there are two classes of agents, Sheep and Wolves. Both agent classes contain

one trait, energy; the value for energy is different for each individual agent (i.e.

agents are heterogeneous), and this trait is dynamic (i.e. it changes as the

simulation progresses). The ABM environment is structured as a grid and

represents an open field through which the Sheep and Wolves can roam

(Fig. 2.2). Rules for the model are given in Table 2.1. Notice that the rules

followed by the Wolf class and the Sheep class are distinct. Also notice that

agent movement and reproduction introduce stochasticity to the model.

The population dynamics shown in Fig. 2.3a-b are examples of emergent

behaviors; the rules defining individual interactions in Table 2.1 result in

large-scale observations about agent population size. Because the model is

stochastic, the same initial conditions can cause drastically different emergent

behavior. For example, when experimenting with different parameter settings,

we found that initiating the model with 50 Sheep and 100 Wolves can lead to
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Figure 2.2: Example setup for the NetLogo predator-and-prey model library
ABM.

the Sheep population either dying off or exhibiting exponential growth

(Fig. 2.3a). Despite this stochasticity, it is possible to observe patterns in the

populations dynamics, and these patterns are sensitive to the model’s initial

conditions. For example, when the simulation begins with 50 Sheep and 100

Wolves, the Sheep population is more likely to die off than experience

exponential growth (Fig. 2.3a), whereas when the simulation begins with 50

Sheep and 200 Wolves, the Sheep population consistently ends in exponential

growth (Fig. 2.3b).

The predator-and-prey system can also be modeled using equation-based

modeling. The Lotka-Volterra equations are a system of differential equations

that model the population levels of predators (wolves) and prey (sheep). If x

represents sheep and y represents wolves, then the Lotka-Volterra equations

are given by
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Figure 2.3: Wolf and sheep population dynamics using (a-b) NetLogo’s
predator-and-prey ABM and (c-d) the Lotka-Volterra equations. The initial
conditions are (a, c) 50 sheep and 100 wolves or (b, d) 50 sheep and 200 wolves.
For the ABM, 10 runs are shown for each set of initial conditions. These runs are
indicated by distinct color saturation. Unlike the Lotka-Volterra equations, the
ABM is unstable and exhibits stochastic behavior. Nevertheless, there are pat-
terns in the ABM’s emergent behaviors. When there are initially 200 Wolves, the
Sheep population always ends with exponential growth, whereas when there
are initially 100 Wolves, the Sheep population usually dies off.
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Table 2.1: Predator-and-prey ABM rules

Rule Description

1) Movement Agents turn randomly to face a direction 50◦ right
or left of their current direction. Agents then move
forward one unit. Wolves lose one unit of energy.

2) Predation For each Wolf; if there are any Sheep on the Wolf’s
patch; the Wolf eats one of the Sheep, causing the
Wolf’s energy to increase.

3) Death Agents with energy < 0 and Sheep that have been
eaten die.

4) Reproduction Agents reproduce with probability sheep-reproduce or
wolf-reproduce. When agents reproduce, they share
their energy with their offspring.

dx
dt

= αx − βxy, α, β ≥ 0 (2.1)

dy
dt

= δxy − γy, δ, γ ≥ 0 (2.2)

where α and δ are the growth rates of sheep and wolves, respectively, β is the

rate at which wolves consume the sheep, and γ is the death rate of the

wolves [22]. Notice that α and δ from the Lotka-Volterra equations are

analogous to the probabilities of agent reproduction, sheep-reproduce and

wolf-reproduce, from the ABM. The parameter β corresponds to the probability

a Wolf agent will collide with a Sheep agent in the ABM, and γ corresponds to

the probability a Wolf agent will run out of energy (and therefore die).

As the ABM and Lotka-Volterra equations model the same system, we

expect them to produce comparable population dynamics; to some extent, this

is true. For example, when the wolf population is high, the sheep population

decreases rapidly for both models, and when the wolf population is low, the
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sheep population increases rapidly for both models. The inverse is true for the

wolf population. This similarity is largely a result of how random behavior

can be described probabilistically. For example, in the ABM, sheep-reproduce is

the probability a Sheep agent reproduces. In an ABM with a large population,

if sheep-reproduce = α and there are x sheep in the ABM, then on average

approximately αx sheep will reproduce, giving us the first term in Eq. 2.1.

However, in practice, the ABM population dynamics are unstable and

inevitably lead to the extinction or explosion of the agent

populations (Fig. 2.3a-b). In contrast, the Lotka-Volterra equations produce a

stable, cyclic relationship between the wolf and sheep populations

(Fig. 2.3c-d). This is because the Lotka-Volterra equations allow for a fractional

population size, so populations can never die out completely. Organism

populations found in the natural world have a very real possibility of

extinction, and the ABM allows this possibility to be realized. Modeling much

larger populations and environments with the ABM may reduce its instability

and enable the ABM to simultaneously produce cyclic emergent behaviors and

allow for population extinction.

2.5 Advantages and disadvantages of ABM

In their descriptions of ABM, Borrill and Tesfatsion [5], Crooks and

Heppenstall [13], Doran [15], and Macal and North [26] discuss the

advantages and disadvantages of this modeling method.

The most powerful advantage of ABM is that it allows us to understand

the dynamic interactions of a system and explain how these interactions lead
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to emergent behaviors. Traditionally, mathematicians have used Occam’s

Razor to guide model development. This means that, when deciding between

two models that are equally good at representing a system or set of data, the

simpler model is considered superior, as including additional elements to the

model introduces potential areas for error and unnecessary complexity. ABM

flips this theory on its head, arguing that increasing model complexity can

increase our understanding of the dynamics of the system. By creating a

model based on micro-interactions, ABMs can elucidate how individual

interactions cumulatively produce large-scale outcomes of the system. This

helps us not only understand the current system, but determine how changing

these interactions may influence large-scale outcomes.

In addition to understanding how individual interactions influence

emergent behaviors, ABMs incorporate several non-traditional components to

modeling: heterogeneous agents and environments, stochasticity, and discrete

events. These components allow ABMs to model complex non-linear systems,

increase the realistic nature of the models, and provide new possible areas of

exploration. For example, agent heterogineity allows modelers to examine

how populations of outlier agents influence system behavior.

Unfortunately, while these are interesting and exciting aspects of ABMs,

they also introduce many challenges. The numerous parameters, stochasticity,

and general complexity of ABMs makes them computationally expensive and

extremely difficult to analyze. Additionally, determining how much

abstraction to include in the model and deciding what rules to use to define

model behavior is both critical and, at times, ambiguous. The same real-world

behavior can often be represented by drastically different rule choices, and the
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model may be sensitive to these choices [15]. Because of these difficulties,

there is debate over whether results from ABMs should be used for

policy-making [36].



Chapter 3

Natural Resource Management

Natural resources such as forests, fisheries, and clean water are essential to

human subsistence and prosperity. Depletion of these resources is a major

problem for countries around the world. In 2014, the UN outlined an

international agreement to decrease deforestation by 50% by 2020; instead,

deforestation rates have continued increasing [25]. Overuse of resources has

severe impacts on communities that rely on the resources for sustenance and

livelihood, and these impacts propagate to the international community. For

example, it has been hypothesized that mass deforestation of the Brazilian

Amazon will cause water scarcity in places as far flung as regions of Africa

and the United States [42].

3.1 Tragedy of the Commons

One reason it is difficult to prevent natural resource depletion is because

natural resources are often common-pool resources (CPRs). CPRs have two

17
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defining characteristics: (1) CPRs are difficult to regulate, often because they

are large or do not have clear boundaries and (2) the more a CPR is used, the

less value it retains for other users [17]. Because of the challenges to regulating

CPRs, they have long been of interest to economists, environmentalists, and

other researchers.

Garrett Hardin first popularized the dilemma of CPR depletion in his

piece, The Tragedy of the Commons. He explains that CPR users keep 100% of

the profit from using a CPR. Although using the CPR also contributes to

resource depletion, this cost is split among all CPR users. Therefore, for any

given individual, there is always a net benefit to increasing their CPR use.

Thus, the “Tragedy of the Commons” is Hardin’s conclusion that users will

always try to maximize their profit by increasing CPR use, which inevitably

leads to resource depletion. These Tragedy of the Commons situations are

formalized in game theory as a Prisoner’s Dilemma [30].

Hardin argues that there are two ways to avoid a Tragedy of the

Commons. Firstly, a governmental authority can initiate regulations on CPR

use, thus directly preventing depletion through government legislation and

enforcement of that legislation [19]. The drawback to this solution is that

outside authorities, such as governments, often do not consider local context

when designing regulations on resource use. Regulations are instead designed

homogeneously across many communities and geographies, which can be

ineffective and even detrimental to individual CPRs.

Hardin’s alternative solution is to privatize the CPR by partitioning the

CPR and distributing ownership of each part to individual CPR users. Hardin

claims that each individual will be invested in the long-term functionality of
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their portion of the CPR and thus avoid overusing their portion of the

resource [19]. Unfortunately, resource privatization almost inevitably leads to

consolidation of ownership and massive inequality, as was seen after the

privatization of fish stocks first in Iceland and then in parts of New

England [28]. Thus, Hardin’s solutions to the Tragedy of the Commons do not

offer promising escape from this CPR dilemma.

3.2 Community-based natural resource

management

Despite the drawbacks of government regulation and privatization, for

decades these solutions were accepted by the scholarly community as the only

methods to prevent resource depletion; however, beginning in the late 20th

century, this belief has been challenged. There are many examples of

communities successfully managing CPRs without government regulation or

privatization. For example, in southern Thailand, many Community

Management Systems (CMSs) have developed to successfully manage coastal

mangrove ecosystems. Sudtongkong and Webb find that CMSs are actually

more successful than state managed parks at protecting mangroves. They

speculate that this is because the community members rely on the ecosystem

for subsistence and livelihood, and therefore are invested in ensuring its

longevity [38].

The mere existence of successful CMSs such as those in southern Thailand

challenges Hardin’s conclusions that government regulation or privatization
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are the only ways to prevent a Tragedy of the Commons and offers an

alternative solution: community-based natural resource management

(CBNRM). CBNRM is a method of preventing resource depletion by allowing

members of a community to collectively determine rules regarding resource

use and resource management structure.

Economist Elinor Ostrom is a main forerunner in CBNRM research.

Ostrom traveled to many small communities throughout the world in the late

20th century, conducting field research to uncover patterns in how

communities successfully prevent resource depletion. Through her research,

Ostrom develops eight design principals for successful CBNRM: [30]

1. Clearly defined boundaries - the people who can use the CPR and the

boundaries of the CPR itself must be clearly outlined.

2. Congruence with the local situation - the rules governing the CPR must

be tailored to the local community and ecosystem.

3. Collective rule-making - CMS members must be able to participate in

changing CMS rules.

4. Monitoring - there is monitoring to detect rule-breaking, and the

monitors are CPR users or individuals subject to regulation by CPR users.

5. Graduated sanctions - rule-breakers are subject to penalties; the severity

of those penalties depends upon the severity of the rule violation; and

individuals deciding those sanctions are CPR users or individuals

subject to regulation by CPR users.
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6. Conflict-resolution mechanisms - low-cost conflict resolution

mechanisms are available to CMS members.

7. Recognition by the external governments - the right of the CPR users to

create a CMS is recognized by the government.

8. Nested enterprises - when CPRs are a part of a larger system, rules and

activities of the CMS are organized in multiple layers.

Because Ostrom’s work is based on in-depth case-studies, she is able to

observe great detail within individual CMSs and elucidate how community

structures and dynamic interactions within CMSs cumulatively lead to their

success or failure; however, her reliance on case-studies limits the quantity of

CMSs she can consider, and hence limits the generalizability and predictive

power of her findings.

Research networks such as the International Forestry Resources and

Institutions and the Digital Library of the Commons have helped to facilitate

large-n analyses of CBNRM by constructing databases of individual CBNRM

research projects. In 2010, Cox conducted a thorough review of the literature,

confirming that many of Ostrom’s principles retain strong support for CMSs

around the world [12]. Statistical analyses have also confirmed many of

Ostrom’s principles, such as the importance of local monitoring and

enforcement of CMS rules [11, 18]. These statistical analyses also illuminate

new factors that influence CBNRM success, such as resource size [31],

dependence on the resource for commercial livelihood [31], leadership [29, 41],

organization [41], and social capital [41].
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Some researchers use logistic regression to assess factors that influence the

probability of CBNRM success [29, 31, 41]; however, others argue that logistic

regression is unsuited for CBNRM because, compared to the number of

explanatory variables, the sample size remains too small; there are a lot of

missing data; and the data are susceptible to selection bias [18, 20].

Additionally, while statistical analysis such as regression models help us

identify factors that are important for successful CBNRM, we lose much of our

understanding of the dynamics of CMSs that Ostrom was able to evaluate

using her case-study methodology.

3.2.1 Challenges for CBNRM research

One of the main challenges to CBNRM research is the sheer complexity of the

systems that are being explored. CBNRM research examines social-ecological

systems (SESs), which are systems that combine human social networks with

ecological networks. Such systems are incredibly complex, because they must

consider not only interactions within each subsystem (human and ecological),

but also between subsystems. Thus, there are numerous factors that influence

resource stability, and these factors likely interact in complex, nonlinear

manners [35].

A second challenge of CBNRM research is the many sources of

stochasticity in SESs. As in any social science, human behavior is often

irrational and unpredictable. Diversity of individuals’ experiences, values,

and decision-making styles make it difficult to anticipate the evolution of a

community’s actions. Even ignoring human variability, uncontrollable natural
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factors such as drought, storms, and invasive species have drastic impact on

natural resources and the probability of CBNRM success [4, 10].

Finally, the uniqueness of each CMS makes analyzing CBNRM difficult.

As Ostrom describes in her design principles, to have a successful CMS, the

management rules must be compatible with the local situation. A

management system that works in one location will not necessarily be

successful if adopted by another community. Each community has a unique

ecosystem and social structure that influences what management methods will

be most effective. Thus, generalizing findings to new or future CMSs can be

problematic. For this reason, Ostrom warns researchers against trying to

create simplistic models of natural resource use, such as the game theory

model used to describe Hardin’s Tragedy of the Commons situation. She

argues that, while such models are not incorrect, they make broad

assumptions and oversimplifications that limit the scope of applicability of the

model. For example, the Tragedy of the Commons model assumes there is no

communication among CPR users, and assumes the CPR users cannot create

any rules or agreements over how to use the CPR. In real-world context, these

limitations on communication and user agency are not realistic, so this model

cannot accurately describe resource use [30].
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3.3 ABM for CBNRM

3.3.1 Advantages of ABM for CBNRM

Given the challenges for CBNRM research described in Section 3.2.1 and the

strengths of ABM described in Section 2.5, ABM is a logical method to model

CBNRM. Communication between agents is an essential part of ABM, and

agent activity can easily be translated into agent ability to determine resource

management rules. ABMs allow for realistic representation of human

communities and behavior through elements such as bounded rationality,

heterogeneity, and evolutionary learning. They are also adept at modeling

complex, stochastic, nonlinear systems. In fact, interaction between

individuals and their environment is an aspect of CBNRM that is embedded

within the structure of ABMs. Perhaps most importantly, ABMs allow

modelers to analyze the dynamics of agent behavior and understand how the

elements of a CMS influence factors such as resource health and prosperity of

community members. This makes ABM a useful method to test hypotheses

and run simulations of experiments that contain variables that are difficult to

control, impractical to conduct (e.g. studying CPR health over centuries), or

simply not yet seen in real-world contexts. For these reasons, it is unsurprising

that modeling of SESs such as CBNRM is moving away from traditional

methods, such as using differential equations, and toward ABM [35].

3.3.2 Past ABMs for CBNRM

Past development of ABMs for CBNRM have focused on two main goals.
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Goal 1: Using ABMs to suggest management policies for specific

communities implementing CMSs.

Goal 2: Using ABMs to learn about and understand the dynamics and

critical factors within CMSs.

ABMs for policy prescription

When using ABMs to develop management policies, the ABM must be a

detailed, accurate model of the community and ecosystem of interest. This

presents two challenges. First, social-ecological systems are incredibly

complex, so determining what characteristics of the system are important to

capture in the model and what rules best capture those characteristics is both

critical and ambiguous. Secondly, once the ABM rules are defined, the

parameter space of the ABM is often enormous, making it difficult to fit

parameters to the community of interest. For these reasons, scholars debate

whether it is possible for ABMs to accurately model individual SES, and

therefore whether they should be used for policy prescription.

Participatory modeling is being explored as a method of improving the

applicability of policies suggested by ABMs. When using participatory

modeling, researchers involve stakeholders in developing model rules to

accurately depict the community of interest. For example, Campo et al.

collaborate with stakeholders in a community-forest management system in

Palawan, Philippines. Through conversations and behavioral experiments

with Palawan stakeholders, Campo et al. develop ABM rules that are specific

to the behaviors and ecosystems seen in the Palawan forest [8]. Similar
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projects have been implemented in Thailand [16] and Vietnam [9]. Allowing

stakeholder participation in determining ABM implementation not only

increases the validity of the model, it also helps stakeholders understand

model outputs and use those outputs to inform future decision-making [47].

ABMs for understanding system dynamics of CBNRM

As ABM sophistication increases through use of new methods such as

participatory modeling, GIS, and empirical parameterization, it is possible that

ABMs will develop to accurately represent individual real-world

communities; however, currently most ABMs are not used for recommending

policies. Instead, these models are designed to help us learn about and

understand the dynamics and system processes of CMSs. Such models can

and should be more abstract than models designed for policy prescription, as

they are hoping to represent groups of CMSs, rather than a single community.

These abstract models have helped us understand the role of institutions

in managing CPRs, as well as how various ecological and social factors

influence CBNRM success. Deadman’s ABM of CPR use demonstrates the

importance of communication in CPR management [14], while Schill et al.

show that cooperation alone cannot prevent CPR depletion - ecological

knowledge about the resource is also essential to its preservation [34]. Both of

these studies designed their models on behavioral experiments.

Perez and Janssen use ABM to examine how variable resource distribution

impacts CPR use. Their study of spatial heterogeneity of resource abundance

illustrates how uncontrollable natural factors such as resource abundance can
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influence CBNRM. In their model, they analyze two outcome variables:

resource health and the proportion of cooperative community members. By

considering both of these outcomes, this model highlights the importance of

both ecological and social sustainability to a successful CMS. They find that

there are nonlinear and non-intuitive relationships between resource

configuration, agent mobility, resource health, and the level of cooperation.

Generally, as agent mobility increases, cooperation decreases; however, when

resources are distributed homogeneously, as agent mobility increases,

cooperation also increases [32]. The complexity of their findings exemplifies

how ABMs can help build a more nuanced understanding of CBNRM.

Perhaps the largest collection of ABMs in CBNRM focus on the role of

institutions in CBNRM success. Bravo constructs a community forest ABM to

replicate a Tragedy of the Commons situation where uncooperative

individuals deplete the forest resource. He then modifies the model to allow

agents to collectively determine rules about forest use. This new model

successfully prevents forest depletion, replicating how CMSs can effectively

alter agent behavior [6]. Vallino builds on Bravo’s model to compare the

impacts of endogenous and exogenous institutions on forest health [40].

Agrawal et al. also use a forest ABM to study the distinct impacts of formal

institutions and informal social norms on resource health [1]. Thus far, ABM

research focuses broadly on how the existence of institutions influences

CBNRM. Less analysis has been conducted on how differences in institution

structure and management impact CBNRM.
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3.3.3 Evaluating and validating ABMs

While the field of CBNRM ABM is growing, this area of research still has a

long way to go. First and foremost, many of these models need greater

verification of model implementation and validation of model outputs. Few

model outputs have been validated with real-world observations, and even

fewer have been corroborated to determine whether outputs can successfully

predict observations that were not used in model development [36]. CBRNM

ABMs could also benefit from further sensitivity analysis. In addition to

traditional sensitivity analysis of model parameters, little research has been

done on how sensitive model outputs are to differences in rule mechanisms.

Finally, more work is needed in improving the realistic behavior of model

agents, such as refining the implementation of social networks and adaptive

behavior within the models [36].

Augusiak et al.’s method of ABM “evaludation” offers a comprehensive

procedure to evaluate and validate ABMs at each step in this cyclic

development process (Fig. 3.1) [2]. These steps consist of:

1. Conceptual model evaluation. Reviewing the conceptual decisions and

assumptions behind ABM rules to determine whether they accurately

represent agent and environment behavior.

2. Model implementation verification. Reviewing model code to ensure

all rules are implemented as they have been described.

3. Model output verification. Analyzing emergent behaviors and other

model outputs to determine whether they follow real-world
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expectations, as well as assessing how much calibration was required to

allow model outputs to successfully match these expectations.

4. Model analysis. Conducting sensitivity analysis and determining how

emergent behaviors evolve through the simulation process to ensure a

thorough understanding of model dynamics.

5. Model output corroboration. Comparing model outputs to patterns and

data that were not used during model conception or were unknown

prior to model conception. This step checks to see if the model can

independently corroborate new findings.
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5. Output corroboration

1. Conceptual model 

validation

2. Implementation verification

3. Output verification

4. Model analysis

Simulation

Real CBNRM system

Conceptual model

Computer model

Model Evaludation for CBNRM

Figure 3.1: The five steps in Augusiak’s evaludation process applied to CBNRM.
Adapted from Augusiak et al. 2014 [2].
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Model description

For this investigation, we build on an existing open source model of

community forest management first designed by Bravo and then expanded

upon by Vallino. This model is implemented in NetLogo [45], a software

program designed specifically for ABMs. See Table 4.1 for NetLogo

terminology that will be used throughout this thesis.

Table 4.1: NetLogo terms

Term Definition

patch A cell in NetLogo’s grid environment. Each patch contains its
own traits.

tick A single time-step. All model rules are implemented and agent/
patch states are updated during each tick.

BehaviorSpace is a program designed to facilitate experimentation with

NetLogo models by repeatedly running models while varying parameters

systematically; however, the limited flexibility of BehaviorSpace makes it

difficult to implement more complex methods of parameter space exploration

31
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and sensitivity analysis. Thus, we will be using the R package RNetLogo [39]

to run NetLogo simulations and export model outputs to CSV files that can

then be analyzed in R [33]. The tidyverse [44] package was used during

analysis.

4.1 Open-Access model

Bravo’s base model describes an open-access situation where agents are

logging a forest and there are no regulations on logging [6]. The simulation is

broken into periods, where each period consists of 10 ticks. The model

contains several global variables, which guide the overall evolution of agents

and the environment, see Table 4.2. The model is set in a forest environment

and is structured as a 50 × 50 grid, where each patch is a section of the forest

described by the traits given in Table 4.3. Model parameters do not have units;

thus, the forest area and the timescale of the simulation are not well-defined.

Loggers are the only class of agents in the Open-Access model. Logger traits

are defined in Table 4.4.

4.1.1 Rules

At each tick, Loggers start by decreasing their payoff by cost. This represents

the Loggers’ cost of living. Loggers then go to a random patch within their

neighborhood with trees > minimal-cut and log the patch. When logging a patch,

the Logger’s payoff is increased by the trees on the patch, and the patch’s trees

is set to zero (i.e. the Logger cuts down all trees on that patch). If there are no
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Table 4.2: Global variables

Variable Description Type Value(s)

max-tree-
growth
(bmax)

The maximum possible level of
biomass on each patch. This es-
tablishes a carrying-capacity for the
forest.

static 20*

growth-rate The amount of biomass increase per
tick on non-empty patches.

static 0.5

cost Income needed for sustenance.
There is a fixed cost agents must pay
each round.

static 5*

growth-prob The probability an empty patch will
grow back when all surrounding
patches are alive.

static 0.05

initial-loggers The number of Logger agents at the
beginning of the simulation.

static 100*

reference-
threshold

The “environmentalism level” of
the community. Loggers’ reference-
trees are chosen from a normal
distribution with mean reference-
threshold and standard deviation
0.25.

static 0.5*

Total-Biomass The total tree biomass present in the
environment.

dynamic [0, 2500× bmax]

Living-
Patches

The number of patches in the envi-
ronment with trees > 0.

dynamic {0, 1, ..., 2500}

* Base parameters (described in Section 5.1.1). These are manipulated during
model exploration.
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Table 4.3: Patch traits

Variable Description Type Value(s)

pxcor,
pycor

The x, y-coordinates of a patch, indi-
cating its location on the environment
grid.

static {0, 1, . . . , 50}

trees The tree biomass on the patch. Living
patches contain trees > 0 and empty
patches contain trees = 0. At the be-
ginning of the simulation,

dynamic [0, bmax]

trees ∼ U( 1
2bmax, bmax).

patches with trees > minimal-cut within their neighborhood, the Logger moves to

a random patch within their neighborhood and does not log.

The forest also grows as the simulation progresses. All patches with

trees > 0 are considered “alive”. At each tick, the trees on all living patches

with trees < bmax increases by growth-rate. Empty patches grow trees with

probability

p = growth-prob ×
N + 1

9
,

where N is the number of adjacent or diagonally adjacent patches that are

alive. This represents trees propagating from adjacent patches to the empty

patch. If an empty patch grows trees, we set trees = 1 for that patch.

When a period ends (i.e. after every 10 ticks), the Loggers update their

beliefs about the best way to log the forest. If a Logger’s payoff < old-payoff, the

Logger’s payoff-satisfaction is set to 0 with probability

q =
payoff − old-payoff
|payoff| + |old-payoff|

. (4.1)

Loggers with payoff-satisfaction = 0 then adjust their minimal-cut. The
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Table 4.4: Logger traits

Variable Description Type Value(s)

xcor, ycor The x and y-coordinates indi-
cating the patch the Logger is
on. The location of each Log-
ger is randomly selected at the
beginning of the simulation.

dynamic {0, 1, ..., 50}

reference-
trees

The fraction of initial tree
biomass the Logger be-
lieves should be conserved
in the forest environment.
This value represents how
“environmentally-minded” the
Logger is. At the beginning of
the simulation, for each Logger
this value is drawn randomly
from a normal distribution
with mean 0.5 and standard
deviation 0.25.

dynamic* [0, 1]

minimal-cut The minimal level of tree
biomass the Logger believes a
patch must contain in order
to be logged. Larger minimal-
cut indicates the Logger is less
likely to log the forest. At
the beginning of the simulation
minimal-cut= 0 for all Loggers.

dynamic [0, bmax]

payoff How much a Logger earns (or
loses) during a period of 10
ticks.

dynamic [−10 cost, 10(bmax− cost)]

old-payoff Final payoff from the previous
period.

dynamic [−10 cost, 10(bmax− cost)]

payoff-
satisfaction

Indicates whether the Logger is
happy with the state of the for-
est. This value is set to 1 at the
beginning of the simulation (in-
dicating they are content with
the state of the forest).

dynamic {0, 1}

neighborhood All patches within a 5x5 square
centered at the location of the
Logger.

dynamic N/A

* While this value is dynamic, it rarely changes; only one Logger adjusts their
reference-trees each period (see rule descriptions).
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adjustment depends upon the number of Living-Patches in the forest. When

Living-Patches < reference-trees, their minimal-cut increases by X ∼ U(0, 9), and

when Living-Patches > reference-trees their minimal-cut decreases by X ∼ U(0, 9).

If the amount of forest remaining is less than the amount the Logger believes is

appropriate, the Logger attributes the decreased payoff to depletion of the

forest, causing them to become more environmentally-minded and increase

their minimal-cut. In contrast, if the amount of forest remaining is more than

the amount the Logger believes is appropriate, the Logger attributes the

decreased payoff to not logging enough of the forest, and they decrease their

minimal-cut.

The end of each period also allows for a “selection process” among the

Loggers. The Logger with the lowest payoff is replaced by a copy of the Logger

with the highest payoff. The new Logger is placed on a random patch and their

minimal-cut is set to zero. The new Logger now has the same reference-trees and

payoff as the most successful Logger. This represents unsuccessful Loggers

adopting the behavior of successful Loggers.

At the end of the period, for each Logger, old-payoff is set to the payoff of

the most recent period, and payoff is reset to zero. For more justification of the

rules and setup of the model, see Bravo 2011 [6].

4.1.2 Model outputs

As expected in a CPR situation where there is no communication among CPR

users and no rules dictating CPR use, this ABM results in the depletion of the

forest. Figure 4.1 gives a graphic depiction of the forest at the beginning and
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end of the simulation, clearly illustrating how the forest is all but eliminated in

an open-access situation. Not only does the biomass level of the forest

decrease to zero, Logger payoffs, minimal-cut, and reference-trees also approach

zero, indicating the Loggers have no desire to preserve the forest. This follows

intuition. Since there is no cooperation among Loggers, selfish Loggers log the

most and are the most prosperous, so this behavior is rewarded and emulated.

a) b)

Figure 4.1: Visual representation of the (a) beginning and (b) end of a typical
open-access simulation. Loggers are depicted as circles of various colors. Green
patches contain biomass; the darker the green, the more biomass on the patch.
Black patches contain no biomass. By the end of the simulation, almost no green
patches remain.

4.2 Endogenous Institution model

After creating the Open-Access model, Bravo modifies the model to include an

“endogenous instituion” (i.e. a CMS) to explore how CBNRM influences forest

health. This is done by introducing a new Institution agent class. Each

simulation has one Institution agent, which tracks the development of rules

for forest management and Logger opinions on the current rules. The

definitions of the Institution traits are given in Table 4.5.
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Table 4.5: Institution traits

Variable Description Type Value(s)

tolerance-
threshold

The value determining when Log-
gers become unsatisfied with the
current rules of the Institution. For
this paper, tolerance-threshold is set to
“high” for all simulation runs.

static 2
3bmax

current-
institution

The minimum level of tree biomass
that a patch must have in order for
it to be logged. This essentially es-
tablishes the rules for when trees can
be logged in the CMS. This value is
set to 0 at the beginning of the simu-
lation and is subsequently adjusted
to follow the mean of all Logger’s
minimal-cuts.

dynamic [0, bmax]

unsatisfied The number of Loggers un-
happy with the current-
institution. Unsatisfied Loggers
have payoff-satisfaction = 0 or
|minimal-cut − current-institution| >
tolerance-threshold .

dynamic [0, initial-loggers]

enforcement-
level*

Determines the likelihood a Log-
ger is caught cheating. Loggers
are caught cheating with probability
1 − (enforcement-level/100).

static [0, 100]

* This variable only exists in the C & E model.
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4.2.1 Rules

The most important difference between the Endogenous Institution model and

the Open-Access model is that now Loggers’ decisions as to whether they

should log a patch are dictated by the rules of the Institution, rather than the

Loggers’ own beliefs. The minimal-cut trait of each Logger now does not

determine Logger behavior, it only indicates what Loggers believe would be

the best behavior for all Loggers in the community. Instead, when Loggers

decide whether to log, any and only patches with trees > current-institution are

available to be logged, regardless of the individual Logger’s minimal-cut.

The current-institution starts at 0, indicating that any living patch may be

logged at the beginning of the simulation. The current-institution is updated at

the end of each period if

unsatisfied >
2
3

initial-loggers.

Loggers become unsatisfied when their payoff-satisfaction = 0 or

|minimal-cut − current-institution| > tolerance-threshold. When 2
3 of the Loggers

are unsatisfied with the Institution, the current-institution is set to the mean of

all Loggers’ minimal cuts. Since minimal-cut is a Logger’s belief about how

much biomass there should be on a patch before the patch can be logged, the

mean minimal-cut of the community represents a compromise among

community members regarding how much biomass should be present for a

patch to be logged. This assumes that all Loggers have equal weight in the

decision-making process.
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4.2.2 Model outputs

During Bravo’s analysis of the Endogenous Institution model, under the base

parameters described in Section 5.1.1, he finds that the mean biomass level at

the end of 50 simulation runs is 26.3%. While this is only about a quarter of the

original biomass level in the forest, it indicates that the Institution does help

prevent complete forest depletion. He also discovers that the average of the

Loggers’ minimal-cut and reference-trees also do not decrease to zero in this

model, indicating that Loggers are still interested in forest preservation.

A replication of a single run of the Endogenous Institution model is shown

in Fig. 4.2. In Fig. 4.2c, we see that biomass declines initially, but then increases

and appears to stabilize1 at around 35% of the original biomass level. This

stabilizization occurs around the same time as the change in the

current-institution (Fig. 4.2c), which suggests that the Institution is essential to

the forest’s conservation. As found by Bravo, the average minimal-cut and

reference-trees do not decrease to zero in this example run.

4.3 Cheating and Enforcement model

Bravo’s model assumes that all Loggers always obey the CMS rules. In reality,

there are usually CMS members who violate the resource use rules. Thus,

Vallino builds on Bravo’s model by introducing Logger cheating and

institutional methods to prevent cheating. We call this the Cheating and

1There is no clear-cut definition of a “steady-state” for ABMs. Common practice to determine
when the model reaches a steady-state appears to be through qualitative observation. This is
an important area for future work in ABM.
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Figure 4.2: Emergent behaviors for a typical simulation using Bravo’s Endoge-
nous Institution model. (a) In the 19th period, the current-institution is set to
11.12 and remains there for the duration. (b) The average minimal-cut for all Log-
gers increases rapidly to around 11 before leveling out. (c) Biomass decreases
sharply until the 19th period before it levels out around 35%. (d) The average
reference-trees for all Loggers remains around 0.5 throughout the simulation.
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Enforcement (C & E) model.

4.3.1 Rules

Loggers cheat when they are unsatisfied. Cheating means that Loggers cut

down the trees on the patch they occupy even if trees < current-institution. The

Institution agent is given a new trait: enforcement-level (Table 4.5). The

enforcement-level parameter determines how often Loggers who cheat are

caught; however, a more intuitive variable would be a transformation of the

enforcement-level parameter that describes the probability a cheater is caught

cheating. Therefore, to facilitate analysis of the model, we define

surveillance-level to be the probability a cheater is caught,

surveillance-level = P(caught) = 1 −
enforcement-level

100
.

When a cheater is caught, they are removed from the model so they are unable

to log the forest.



Chapter 5

Analysis of the Cheating and

Enforcement model

As discussed previously, many ABMs for CBNRM have not been well

validated and could benefit from further sensitivity analysis. In her paper

introducing the Cheating and Enforcement model, Vallino tests her model for

many different parameter sets, but only reports the outputs of a single run for

each of these parameter sets. As ABMs are stochastic models, considering only

a single run for each parameter set fails to capture the stochasticity of the

model. Thus, we conduct a sensitivity analysis of the C & E model by running

the simulation 50 times for each parameter set and analyzing the distribution

of outputs over those 50 runs. We then use Augusiak et al.’s evaludation

process (described in Section 3.3.3) to conduct a thorough evaluation of

Vallino’s model.

43
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5.1 Sensitivity analysis

We start analyzing the C & E model by conducting a sensitivity analysis to

understand the impact of various model parameters on the magnitude of

biomass in the forest and the strictness Institution rules at the end of a

simulation.

5.1.1 Sensitivity analysis methods

Sensitivity analysis is conducted by varying one parameter at a time while

holding all other parameters at “base” values. The base values are chosen

from one set of parameters tested in Bravo’s original paper introducing the

Endogenous Institution model (Table 5.1). While Bravo gives no justification

for his parameter choices, we opt to use one of his parameter sets to facilitate

comparison across models. Parameter values are chosen to be equally

distributed from 0 to at least 150% of the original value. The primary output

values analyzed are

BM% = the percent of tree biomass remaining at the end of the simulation

and

K f = final-institution = current-institution at the end of the simulation.

A higher BM% indicates a better preserved forest, and a higher K f indicates a

stricter set of Institution rules at the end of the simulation.

In his paper introducing the Endogenous Institution model, Bravo
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conducts a sensitivity analysis of his model using 50 runs of each parameter

set. Using this as a guideline, we start by testing if 50 runs are enough to

capture the stochasticity of model. For the base parameter set, we conduct

three trials of 50 runs and compare the results across the three trials to ensure

all three trials produce comparable results. As there is little deviation between

the distributions of the percentage of biomass remaining at the end of the

simulation for the three trials, we conclude that 50 runs are enough to capture

the model’s stochasticity, and 50 runs are used for the remaining parameter

sets. (All 150 runs are used when analyzing base parameters.)

Both Bravo and Vallino run each simulation for 20,000 ticks to make sure

the model reaches steady-state; however, running the simulation for this long

takes too much computational time. Additionally, while there are no units for

the time that passes with each tick, a patch’s trees can go from 0 to

max-tree-growth within around 40 ticks. If we make a very conservative

estimate that forests require at least 20 years to regrow, 20,000 ticks would

represent at least 10,000 years. There is no reason to run the simulation for

10,000 years, as it is very unlikely a community management system (or even

the community itself) would last for that long. Therefore, instead of using

20,000 ticks, we allow each simulation to run for 2,000 ticks (at least 1,000

years), which qualitatively appears to take the model well into its steady-state.

The exception to this is when varying the number of initial-loggers; for large

values of initial-loggers, the simulation takes longer than 2,000 ticks to reach

steady-state. This will be discussed in Section 5.2.1.
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Table 5.1: Parameter values used during sensitivity analysis.

Parameter Base value Tested values

cost 5 {0, 2, ... 20}

max-tree-growth 20 {5, 10, ... 30}

initial-loggers 100 {50, 100, ... 300}

reference-threshold 0.5 {0.1, 0.2, ... 1}

enforcement-level 50 {10, 20, ... 100}

5.1.2 Distribution of final biomass level under base

parameters

The simulation is first run under the base parameters given in Table 5.1. The

distribution of BM% for base parameters is given in Fig. 5.1. Recall that Bravo

found his Endogenous Institution model (which does not allow Loggers to

cheat) to retain an average of 26.3% of forest biomass. We would expect

introducing Logger cheating to decrease BM%, as cheating is detrimental to

forest conservation. Instead, the C & E model’s mean BM% under base

parameters increases to 72.0%.

We also anticipated that, in certain cases, the model’s stochasticity would

create circumstances in which community members gathered to form an

effective Institution, while in other cases the model’s stochasticity would fail to

produce an effective Institution. This would create clear distinctions between

forests that are successfully conserved and forests that are depleted, and lead

to a multimodal distribution of BM%. In contrast to our expectations, the

BM% distribution is unimodal under base parameters (Fig. 5.1) and for most
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Figure 5.1: Distribution of BM% under base parameters. The distribution is
unimodal with mean 72.0%. The mean BM% for the Endogenous Institution
model is indicated by a dotted line at 26.3%.

other explored parameter sets. While this makes it more difficult to

distinguish between conserved and depleted forests, we have no evidence that

biomass should follow a multimodal distribution, so these results do not

necessarily indicate a flaw in the model.

5.1.3 Parameter: reference-threshold

We know reference-threshold is a measure of the environmentalism level of the

community. We expect communities that are more environmentally conscious

to better preserve the forest. When varying the reference-threshold parameter,

our intuition is confirmed, and we find a monotonically increasing

relationship between reference-threshold and BM% (Fig. 5.2). Interestingly,

when reference-threshold > 0.7, the amount of biomass remaining at the end of

the simulation actually surpasses the amount of biomass in the “pristine”

forest at the beginning of the simulation. BM% variance appears consistent for
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Figure 5.2: Percentage of biomass remaining after 2,000 ticks for various values
of reference-threshold. There is a strictly increasing relationship between reference-
threshold and BM%.

all reference-threshold values.

5.1.4 Relationship between current-institution and

Total-Biomass

If CMSs have a positive impact on forest conservation, we would expect

communities with stricter rules governing forest use to also have higher levels

of biomass; this is not seen in the C & E model. In fact, we find no relationship

between K f and BM% (Fig. 5.3). In fact, 97.5% of runs for all parameter sets

end with K f < 1. While there are exceptions when initial-loggers = 300 or

surveillance − level = 0, the overwhelming majority of situations lead to a

negligible K f . This indicates that model communities fail to form CMSs,

despite their ability to do so.
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Figure 5.3: There is no relationship between BM% and K f . For 97.5% of runs,
K f < 1. The exceptions occur when the surveillance-level = 0 or initial-loggers =
300.

5.1.5 Parameter: enforcement-level

Gibson et al. find that CMSs with higher monitoring and sanctioning

generally have healthier forests [18], and these findings are supported

throughout CBNRM literature [12, 41]. Recall that surveillance-level is the

probability a Logger who cheats is caught cheating. Based on the literature,

we would anticipate a clear positive correlation between surveillance-level and

BM% in the model. On the contrary, in Fig. 5.4 we see that, as long as

surveillance-level , 0, the value of surveillance-level does not influence BM%.

This suggests that the model’s enforcement mechanism does not accurately

replicate how enforcement plays out in the real-world.
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Figure 5.4: Percentage of biomass remaining after 2,000 ticks for various
surveillance-levels. When surveillance-level > 0, the value of surveillance-level
does not influence BM%.

5.2 Analysis of cheating and enforcement

In order to understand the lack of influence from the enforcement-level

parameter, we investigate the implementation of cheating and enforcement in

the C & E model.

5.2.1 Model evaludation

We use the first three steps of Augusiak et al.’s “evaludation” process

(described in Section 3.3.3) to analyze the cheating and enforcement

mechanism used in the C & E model. We use this process because it provides a

comprehensive analysis of the model’s conceptual foundation, accuracy of

implementation and coding, and validity of model outputs.
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Step 1: Conceptual model evaluation

Common sanctions for cheating on a CMS include reprimands, fines, or, in

severe cases, suspension of CPR use privileges. Even when privileges are

suspended, the CMS cannot guarantee the Logger will abide by the

suspension - in fact, after being ostracized from the CMS, they are likely to

completely ignore CMS rules and log whenever they see fit. This is why

Ostrom suggests graduated sanctions, determining the punishment for

cheaters based on the severity of the violation [30]. In the C & E model,

Loggers who are caught cheating are removed from the model entirely, which

implies that cheaters are imprisoned, exiled, or executed. This does not make

sense in real-life context, and does not follow Ostrom’s principles for a

successful CMS.

We would expect Loggers to move to a new patch of forest after logging

their current patch, so that they have an opportunity to log more biomass in

the next tick. In the C & E model, Loggers only move at the end of each tick if

they have not logged during that tick. Therefore, if a Logger logs their patch

on tick t, then on tick t + 1 they are inevitably located on an empty patch and

either cannot log or must cheat. There is no reason the Logger would wait to

find a new patch of forest, and therefore it would make more sense for all

Loggers to change location at each tick.

Finally, we would expect a Logger’s payoff-satisfaction to depend on their

payoff-satisfaction from the previous period. For example, if a Logger is

unsatisfied in period p because their payoff is decreasing and their payoff

continues to decrease in period p + 1, we would expect them to remain
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unsatisfied in the next period. Instead, Loggers whose payoff continues to

decrease in period p + 1 are unsatisfied with probability q (see Eq. 4.1)

regardless of their previous payoff-satisfaction.

Step 2: Implementation verification

There are two flaws in the model’s implementation of cheating:

1. Not all Loggers who should cheat actually do cheat. Vallino claims that

all unsatisfied Loggers cheat, but this is not how cheating is coded in the

model. Unsatisfied Loggers are Loggers with payoff-satisfactions = 0 or

|minimal-cut − current-institution| > tolerance-threshold. Loggers with

payoff-satisfaction = 0 do not cheat in the model. At the end of each

period, Loggers’ payoff-satisfaction is updated according to the model

rules; however, all Loggers’ payoff-satisfaction are subsequently reset to 1

before progressing to the next period. Thus, when determining if a

Logger will cheat, Loggers that should have payoff-satisfaction = 0 are not

included, and so do not cheat. We assume this is a coding error.

2. Some Loggers who are accused of cheating have not actually cheated.

Sometimes, unsatisfied Loggers will be placed on an empty patch and

still decide they want to “cheat.” A percentage of those Loggers are

“caught” cheating and removed from the model despite the fact that they

cannot log an empty patch and therefore cannot break the rules.
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Step 3: Model output verification

When Total-Biomass in the forest is low, more Loggers are unsatisfied with the

current-institution and cheat; thus, more Loggers are caught cheating and

removed, causing the number of Loggers in the simulation to decrease. A

good example of this is when initial-loggers is large. When there is an

overwhelming number of initial-loggers, Total-Biomass crashes immediately,

and the number of Loggers in the simulation begins to decrease. Figure 5.5 is

an example of this when initial-loggers = 1000, but a similar trend occurs

whenever initial-loggers > 200.

This decrease in Loggers has several consequences. Firstly, the

current-institution of the model rarely changes from 0. Recall that the

current-institution only changes when unsatisfied > 2
3 initial-loggers. Unsatisfied

Loggers are being removed from the model after they cheat, so they are unable

to call for a change in the current-institution, and consequently the

current-institution = 0 throughout the simulation. (In fact, it is impossible for

the current-institution to change once 1
3 of the Loggers have been removed for

cheating.)

Secondly, the decrease in Loggers causes unrealistic behavior in the

simulation’s Total-Biomass. When the simulation has a high number of

initial-loggers, Total-Biomass plummets immediately, and the number of

Loggers begins to decline. Total-Biomass remains near zero until the number of

Loggers reaches a low level, and then Total-Biomass jumps back up to a

substantial percentage of the original forest biomass level. Even when trying

to overwhelm the forest with 1000 Loggers, Total-Biomass eventually restores if
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Figure 5.5: Total-Biomass, number of Loggers, and number of cheaters removed
in the forest over time when initial-loggers = 1000. The number of Loggers
slowly decreases while Total-Biomass is low, due to the removal of cheaters, and
then flattens out after around 400 periods (4,000 ticks). Total-Biomass plummets
immediately, but then jumps back up when the number of Loggers flattens out.

the simulation is allowed to run long enough for all Loggers to be removed

from the model (Fig. 5.5).

This behavior does not follow empirical observations. CMSs would never

remove the majority of users from a forest, and a depleted forest is unlikely to

regenerate without substantial reforestation efforts. It also explains why

simulations with high numbers of initial-loggers do not reach steady-state

before 2,000 ticks. Total-Biomass cannot reach steady-state until the number of

Loggers also reaches steady-state, and it takes many ticks for the number of

Loggers to decrease to a stable number.
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Figure 5.6: A comparison of the predator-and-prey system and the C & E model
when initial-loggers is large.

5.2.2 Comparison with a predator-and-prey system

When initial-loggers is large, the behavior of the model is reminiscent of the

predator-and-prey system discussed in Section 2.4, where Loggers represent

Wolves and Total-Biomass represents Sheep (Fig. 5.6). In this section, we

compare the C & E model outputs with outputs from the the Lotka-Volterra

equations. We use a single ABM run where initial-loggers = 1000, because the

model’s stochasticity is minimal with this initial condition. Total-Biomass and

number of Loggers are analyzed as a percentage of their initial values. The

Lotka-Volterra equations are solved numerically in R. Since new Loggers are

never introduced into the model, we set δ = 0. All other parameters are chosen

to replicate ABM outputs.
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Figure 5.7: Loggers and biomass in the forest as a percentage of the original
amount for (a) the simplified ABM replicating a predator-and-prey model, along
with the Lotka-Volterra equations with parameters chosen to match the ABM
and (b) the C & E model with initial-loggers = 1000, along with the Lotka-Volterra
equations with parameters chosen to match C & E model.

If we remove the model’s forest carrying capacity and change Logger

behavior so that all Loggers cheat with a probability of 0.5%, we can choose

parameters for the Lotka-Voltera equations so that the equations closely follow

the ABM (Fig. 5.7a). Thus, under these modifications, the model is essentially

an ABM approximation of a specific instance of the predator-and-prey

differential equations.

If we reintroduce the forest carrying capacity, Total-Biomass now levels off

at around 4,000 ticks, while the Lotka-Volterra equations allow biomass to

increase indefinitely. Additionally, if Loggers are allowed to cheat according to

C & E model rules instead of simply cheating 0.5% of the time, the

Lotka-Volterra equations are not successful at modeling the number of

Loggers in the ABM (Fig. 5.7b). When biomass levels are near zero in the
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Lotka-Volterra equations, we have x ≈ 0, so Eq. 2.2 reduces to

dy
dt
≈ −γy. (5.1)

This is the differential equation for exponential decay; thus, using the

Lotka-Volterra equations, we would expect exponential decay of Loggers.

Instead, the number of Loggers appears to decrease approximately linearly

(Fig. 5.7b). Since the rate of Logger decrease is consistent regardless of the

number of Loggers left in the model, we conclude that the probability any

individual Logger will cheat increases as the simulation progresses. In the

Lotka-Volterra equations, this would be equivalent to replacing the constant γ

with γ(t), where γ(t) is an increasing function of time.
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Chapter 6

Monitoring and Sanctioning model

description

In Chapter 5, we outlined the conceptual drawbacks of removing all cheaters

from the Cheating and Enforcement model and identified several

implementation errors within the model’s code. Given these limitations, in

this chapter we modify the C & E model to fix implementation errors and offer

a new mechanism for cheating and enforcement that we believe better

represents community management systems seen in the real world. We will

call this model the Monitoring and Sanctioning (M & S) model.

6.1 Modifying Logger movement

In contrast to the C & E model, in the new M & S model all Loggers move at

the beginning of each tick. This ensures Loggers who successfully logged in

the last tick have a chance to be located on a patch with biomass. The rules

59



60
CHAPTER 6. MONITORING AND SANCTIONING MODEL

DESCRIPTION

governing how Loggers choose a new patch remain unchanged.

6.2 Preventing punishment of innocent Loggers

In the C & E model, Loggers were permitted to “cheat” even if they were

located on an empty patch. Because of this, Loggers were punished for

cheating even when they had not removed any biomass from the forest. In the

M & S model, Loggers cannot opt to cheat when they are located on an empty

patch.

6.3 Modifying payoff-satisfaction implementation

Recall that Loggers with payoff-satisfaction = 0 do not cheat in the C & E model,

even though these Loggers are considered unsatisfied. In the M & S model,

this implementation error is fixed, ensuring that payoff-satisfaction is not reset

to 1 at the end of each period. Thus, Loggers who are unsatisfied with their

payoff are now permitted to cheat.

The M & S model also changes the updating process of payoff-satisfaction so

it depends upon the Logger’s payoff-satisfaction from the previous round. At

the end of a period, all Loggers with payoff > old-payoff are satisfied. Loggers

with payoff = old-payoffmaintain the same payoff-satisfaction as in the previous

period. If payoff < old-payoff, Loggers who were unsatisfied with their payoff

remain unsatisfied, and Loggers who were satisfied become unsatisfied with

probability q (see Eq. 4.1). These rules are outlined in Table 6.1.
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Table 6.1: Definition of payoff-satisfaction for the M & S model. Loggers’ payoff-
satisfaction is updated at the end of each period.

Current payoff-satisfaction d = old-payoff − payoff New payoff-satisfaction

1 d < 0 0 with probability q
0 d < 0 0
x d > 0 1
x d = 0 x

6.4 Revising the cheating and enforcement

mechanism

In the C & E model, every unsatisfied Logger cheats on the current-institution;

however, human populations are heterogeneous. Individual people have

distinct moral codes and unique experiences, so Loggers’ cheating behavior

should reflect these differences. This would suggest that each unsatisfied

Logger should have a distinct probability of cheating, and that their

experiences throughout the simulation should influence that probability of

cheating. Therefore, in our model, we introduce a new dynamic Logger trait,

prob-cheat (pc), which is the probability a Logger will cheat if they are

unsatisfied. This value is updated throughout the simulation to account for

how the Loggers’ experiences influence their decision-making process.

Ostrom’s fourth and fifth design principles say that it is important to have

monitoring to detect rule-breaking and graduated sanctions to punish Loggers

in accordance with the severity of their violations [30]. To better align with

these principles, the enforcement-level trait of the Institution agent from the

C & E model is replaced by two traits, monitoring-level and sanction-level. All
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Table 6.2: Monitoring and Sanctioning model variables

Variable Description Type Value(s)

num-cheaters Tracks the number of cheaters at
each time step.

dynamic,
Institution

[0,
initial-
loggers]

initial-prob-cheat The initial probability of cheating
for all Loggers.

static,
global

[0,1]

monitoring-level The probability Loggers will be
caught cheating (as a percentage).

static,
Institution

[0,100]

sanction-level The effectiveness of sanctions
used to discourage Loggers from
cheating.

static,
Institution

[0,1]

prob-cheat (pc) The probability a specific Logger
will cheat. All Loggers start with
pc = initial-prob-cheat.

dynamic,
Logger

[0,1]

new M & S model parameters are defined in Table 6.2.

6.4.1 Rules

Each Logger starts with pc = initial-prob-cheat, and this value is updated

independently for each Logger as the simulation progresses. Unsatisfied

Loggers must weigh the consequences of cheating versus not cheating to

determine if they should follow Institution rules. We assume the probability a

Logger will cheat depends on the Logger’s perception of both how likely they

are to be caught and the repercussions if they are caught. In other words:

1. Loggers who are caught cheating are less likely to cheat again.

2. Loggers who are not caught cheating are more likely to cheat again.
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3. If sanctioning is more effective, the above effects will be greater.

Therefore, when a Logger cheats, pc is updated by the following equation:

∆pc =


−pc × sanction-level if caught

(1 − pc) × sanction-level if not caught
. (6.1)

As an example, suppose

initial-prob-cheat = monitoring-level = sanction-level =
1
2
,

and we examine a Logger who is indefinitely unsatisfied. The Logger’s pc over

time can be represented by the graph of the Markov chain in Fig. 6.1.

Some may object that the sanction-level should only affect ∆pc when a

Logger is caught; however, using sanction-level to scale ∆pc when the Logger is

not caught allows us to ensure that pc is primarily determined by the Logger’s

most recent experiences. If the Logger has most recently been caught cheating,

pc < 0.5, and if the Logger has most recently gotten away with cheating,

pc > 0.5. Nevertheless, all previous experiences retain some impact on the

Logger’s pc.

Example 1. Suppose we are in a forest where

initial-prob-cheat = monitoring-level = sanction-level =
1
2
.

Logger A cheats once and is not caught. Logger B cheats twice and is caught the first
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Figure 6.1: Graph representing the infinite Markov chain for an indefinitely
unsatisfied Logger with initial-prob-cheat = monitoring-level = sanction-level = 1

2 .
Fractions within blue nodes represent potential states (values of pc) for the
Logger. Fractions along edges represent the probability of transitioning from
one state to another. Notice that a Loggers who is successively caught cheating
ends with pc near 0, while a Logger who is successively not caught cheating
ends with pc near 1.
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time. Therefore,

pc,A, f inal =
1
2

+
(
1 −

1
2

)
×

1
2

=
3
4

pc,B,t=1 =
1
2
−

1
2
×

1
2

=
1
4

pc,B, f inal =
1
4

+
(
1 −

1
4

)
×

1
2

=
5
8

Although pc, f inal > 0.5, for both Loggers, Logger B has a memory of being

caught once, and therefore pc,A, f inal > pc,B, f inal.

6.4.2 Markov chain simulation of prob-cheat

To get an idea of how monitoring-level and sanction-level affect the probability

Loggers will cheat in the model, we use R to create a simulation of the Markov

chain given in Fig. 6.1. The simulation starts with 1,000 Loggers with pc = 0.5

and runs for 1,000 time-steps. We assume these Loggers are perpetually

unsatisfied and have the option to cheat at each time-step. We let

monitoring-level = sanction-level = 0.5, and then vary the monitoring-level and

sanction-level parameters one at a time.

Results from the Markov chain simulation are given in Fig. 6.2. When

monitoring-level = sanction-level = 0.5, the distribution of pc after 1,000

time-steps is skewed right, such that Loggers are much more likely to have pc

near 0, but some Loggers now have pc > 0.5 (Fig. 6.2a). This skewness occurs

because once a Logger has a low pc, they are unlikely to cheat, and therefore

their pc is unlikely to change, causing them to get “stuck” with a low pc.

As expected, in simulations with a high monitoring-level or sanction-level,



66
CHAPTER 6. MONITORING AND SANCTIONING MODEL

DESCRIPTION

0

1

2

3

4

0.00 0.25 0.50 0.75 1.00

D
en

si
ty

0

1

2

3

4

0.00 0.25 0.50 0.75 1.00
0

1

2

3

4

0.00 0.25 0.50 0.75 1.00

moni toring − level  = 0.5, sanct ion − level  = 0.5

moni toring − level  = 0.1, sanct ion − level  = 0.5

moni toring − level  = 0.5, sanct ion − level  = 0.1

p rob − ch eat

Figure 6.2: Distribution of pc for a Markov chain simulation of 1,000 perpet-
ually unsatisfied Loggers with initial-prob-cheat = 0.5 after 1,000 time-steps.
(a) When monitoring-level = sanction-level = 0.5, the distribution is skewed right,
such that most Loggers have a low pc. (b) When monitoring-level = 0.1 and
sanction-level = 0.5, the distribution is skewed left, such that most Loggers
have a high pc. (c) When monitoring-level = 0.5 and sanction-level = 0.1, the
distribution is approximately symmetric and centered about 0.5.

most Loggers have a very low pc. In fact, when either monitoring-level or

sanction-level is 0.9, over 95% of Loggers have pc < 0.01 (not shown). Also as

expected, decreasing monitoring-level or sanction-level bellow 0.5 increases the

number of cheaters with a high pc. When monitoring-level = 0.1, the

distribution of pc is skewed left, such that Loggers are much more likely to

have pc near 1 (Fig. 6.2b). When sanction-level = 0.1, the distribution of pc is

approximately symmetric about 0.5 (Fig. 6.2c). This indicates that monitoring

has a greater impact than sanctioning on Loggers’ pc



Chapter 7

Analysis of the Monitoring and

Sanctioning model

The Monitoring and Sanctioning model both fixes implementation errors from

Vallino’s original model and offers a new mechanism for cheating and

enforcement. We therefore conduct a second sensitivity analysis to understand

the influence of parameters in the new model and determine how the rule

changes impact model dynamics.

7.1 Sensitivity analysis methods

Sensitivity analysis was conducted using the same methods described in

Section 5.1.1. Base parameter values and tested values were the same as in

Table 5.1, except for initial-loggers and new parameters. New base parameters

and tested parameters are given in Table 7.1. The value initial-loggers was

varied between 60 and 200, because when initial-loggers > 200 in the M & S
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Table 7.1: Parameter values used during sensitivity analysis of the M & S model.

Parameter Base value Tested values

initial-loggers 100 {60, 80, ... 200}

monitoring-level 50 {0, 10, ... 100}

sanction-level 0.5 {0, 0.1, ... 1}

initial-prob-cheat 0.5 {0, 0.1, ... 1}

model, the forest became depleted immediately in all simulations and did not

rebound.

7.2 Distribution of final biomass level under base

parameters

Recall that Bravo found the mean BM% under base parameters for the

Endogenous Institution model (which does not allow Logger cheating) to be

26.3% [6]. We expected introducing cheating and enforcement to Bravo’s

model would decrease BM%; however, the C & E model actually increased the

mean BM% to 72.0%. After modifying the cheating and enforcement

mechanisms to create the M & S model, the mean BM% is 11.9%. This is just

under half the BM% found for the Endogenous Institution model, and

satisifies our intuition that cheating should decrease forest health (Fig. 7.1).

When testing the C & E model, we were surprised to find that BM%

followed a unimodal distribution. We thought the stochasticity of the model

would lead to some communities forming successful Institutions and other
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Figure 7.1: Distribution of BM% under base parameters. The distribution is
bimodal with mean 11.9%. The mean BM% for the Endogenous Institution
model is indicated by a dotted line at 26.3%. The BM% distribution under base
parameters for the C & E model is shown as a dashed line.

communities failing to form successful Institutions, resulting in a multimodal

distribution for BM%. The new model’s distribution of BM% is bimodal,

which aligns better with our intuition, and makes it easier to distinguish

between depleted and conserved forests. The trough of the distribution occurs

at 8.2%, so we define “depleted” forests to be those with BM%< 8.2% an

“conserved” forests to be those with BM%≥ 8.2%.

7.3 Relationship between current-institution and

Total-Biomass

Because Loggers who were caught cheating were removed from the C & E

model, the current-institution rarely changed from zero, and therefore there

was no relationship between the final-institution (K f ) and BM%. In the new
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model, we now see a strong positive correlation between K f and BM%.

Under base parameters the correlation between K f and BM% is ρ = 0.947

(Fig. 7.2). This indicates that model communities that form a stricter set of

rules governing forest logging are more successful at conserving the forest,

and communities that fail to form adequate rules fail to conserve the forest.

Additionally, the two cluster of points in Fig. 7.2 show that K f is bimodal, and

the modes of K f align with the modes of BM%. Finally, the figure shows that

communities that have met more recently are more likely to lie in the higher

cluster, indicating that they have both a high K f and a high BM%. This

suggests that it is important for communities to continue meeting and

adjusting the current-institution even after they have established a preliminary

set of rules. Ostrom’s third design principle states that it is important for

individuals using a community resource to participate in modifying CMS

rules [30]. This implies that allowing users to change CMS rules over time is

important to CMS success. This behavior was not included during model

conception, which indicates that our model is able to corroborate real-world

patterns that were not included during the development of the model.

The positive correlation between K f and BM% extends to almost all

parameter sets tested (ρ = 0.855 when including all simulation runs), although

the relationship between these variables no longer appears linear (Fig. 7.3).

The exception is when initial-loggers = 60. In this case, there are not enough

Loggers to deplete the forest, and therefore the current-institution is irrelevant.

If we exclude simulation runs where initial-loggers = 60, the correlation

between K f and BM% is ρ = 0.945, which is similar to the correlation found

using only base parameters.
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Figure 7.2: There is a strong positive correlation between K f and BM% under
base parameters (ρ = 0.947). Both K f and BM% exhibit bimodal behavior, and
the modes of these distributions align, as evidenced by the two clusters of points
seen in the figure. Communities that fail to meet consistently throughout the
simulation are more likely to end in the lower cluster, which has both a lower
K f and lower BM%.
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Figure 7.3: There is a strong positive correlation between K f and BM% for
almost all parameter sets (ρ = 0.855). The exception is when there are only 60
Loggers in the simulation; in this case there are not enough Loggers to deplete
the forest, and K f is irrelevant. When excluding simulations with 60 Loggers,
ρ = 0.945.
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Not only do we find a correlation between the current-institution and

biomass at the end of the simulation, we also find that changes in the

current-institution have a direct impact on the biomass in the forest as the

simulation progresses. Figure 7.4a-b shows an example of the biomass and

current-institution over time for a typical simulation under base parameters.

We see that changes in the current-institution cause direct changes in the

biomass level. At the beginning of a simulation, when biomass is decreasing

rapidly, the change in the current-institution stops forest depletion and helps

biomass level-out. After 59 periods, when the current-institution jumps up

drastically again, biomass level also increases sharply.

This relationship between changes in the current-institution and biomass

level is consistent across most simulation runs under all parameter sets.

Because biomass levels are stochastic and small fluctuations in biomass are

expected, we define an “increase” or “decrease” in biomass to be when the

mean biomass for the most recent 3 periods is at least 1,000 units larger or

smaller than the mean biomass for the 3 preceding periods. Since the effect of

changes in the current-institution may lag behind the adoption of new rules,

when the current-institution increases, we check whether this change is

followed by an increase of biomass within 3 periods. A “leveling-out” of

biomass occurs when there have been at least 3 periods of biomass decrease,

followed in the next 3 periods by at least 1 period where there is no change in

biomass. We believe these choices allow us to capture most instances when the

current-institution impacts biomass, while ensuring random fluctuations in

biomass are not included. Using this method for all runs over all parameter

sets, we find that an increase in the current-institution causes a leveling-out of
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biomass 50.4% of the time; an increase in biomass 22.8% of the time; and no

quantified impact 26.9% of the time (Fig. 7.4c).

7.4 Parameter: reference-threshold

Recall that reference-threshold is a measure of the environmentalism level of the

community. We would expect a monotonically increasing relationship

between reference-threshold and BM%, where communities with higher

environmentalism levels are better at conserving the forest. This was

confirmed in the C & E model, but is no longer found in the M & S model

(Fig. 7.5). BM% initially increases with reference-threshold, but drops for

reference-threshold = 6 and remains around 6.4% for reference-threshold > 6.

Interestingly, parameter sets where BM% is higher also have higher variance

in BM%. This suggests that unfavorable circumstances lead almost inevitably

to forest depletion, but favorable circumstances are not a sufficient condition

to guarantee forest conservation.

We next investigate the reason for the unexpected non-monotonic

relationship between BM% and reference-threshold. In Fig. 7.6, when

reference-threshold < 3, the community usually meets 1-2 times, and these

meetings occur near the beginning of the simulation, causing K f (and therefore

BM%) to remain low. When reference-threshold > 6, the community is more

environmentally conscious, so they set a higher current-institution early in the

simulation; however, because of the high initial institution, they only meet 1-2

times and these meetings occur early in the simulation. The community fails

to increase the current-institution as the simulation progresses, and they end
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Figure 7.4: For a typical M & S model under base parameters, (a) the current-
institution and (b) the percentage of biomass remaining over time. The current-
institution increases drastically after 8 periods, causing a leveling off in biomass.
After 59 periods, the current-institution increases sharply again, causing an in-
crease in biomass. (c) This relationship between the current-institution and
biomass levels is consistent across runs for all parameter sets. A change in the
current-institution ends a sharp decline in biomass 50.4% of the time, causes an
increase in biomass 22.8% of the time, and has little to no effect on biomass
26.9% of the time.
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Figure 7.5: Distribution of BM% for various values of reference-threshold.
Initially, increasing reference-threshold increases BM%; however, when
reference-threshold = 6, BM% drops, and for reference-threshold > 6, BM% re-
mains around 6.4%.

with a relatively low K f . In contrast, when 3 ≤ reference-threshold < 6, the

community usually meets at least three times and these meetings continue

until late in the simulation, which leads to a high K f and, hence, a high BM%.

7.5 Parameters: monitoring-level and sanction-level

One reason we chose to modify the C & E model is because the

enforcement-level had no impact on BM%. Unfortunately, the monitoring-level

and sanction-level parameters continue to have no meaningful impact on BM%

in the M & S model (Fig. 7.7a-b). The lack of influence of these two parameters

on BM% suggests that further work is needed in establishing an enforcement

mechanism for this model.

Although monitoring-level and sanction-level do not influence BM% in the
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Figure 7.6: The final-institution for various reference-thresholds. When reference-
threshold is extremely low or extremely high, communities meet only 1-2 times
near the beginning of simulation, leading to lower K f .

forest, higher levels for these parameters do decrease the number of Loggers

who cheat in the final period of the simulation (Fig. 7.7c-d), a relationship not

seen between enforcement-level and the number of cheaters in the C & E model.

This suggests that simulations with higher monitoring and sanctioning do

exhibit more cooperative communities.

7.6 Relationship between the number of cheaters

and final-institution

Initially, it seems odd that parameter sets with fewer cheaters do not have

higher BM% in Fig. 7.7a-b; however, further analysis of the mechanics behind

Institution behavior explains this incongruity. The current-institution can only
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Figure 7.7: The level of monitoring and sanctioning appear to have no impact
on BM% (see a-b); however, increasing either of these parameters does decrease
the number of cheaters in the final period of the simulation (see c-d).
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change when 2
3 of all Loggers are unsatisfied, and unsatisfied Loggers are also

the Loggers that have the potential to cheat. Thus, it follows that communities

with a high number of unsatisfied Loggers will have both a high K f (and

therefore a high BM%) and a high number of cheaters. In fact, when looking at

all parameter sets tested, a moderate positive correlation exists between K f

and the number of cheaters during the final period (ρ = 0.58) (Fig. 7.8). This

behavior does not follow empirical observations and further indicates that the

model’s enforcement mechanism needs additional modification.

However, also note that, when K f is high, “cheaters” may be Logging

patches with relatively high biomass. For example, suppose Cheater A lives in

a community with K f = 11 and logged a patch with trees = 10, whereas

Cheater B lives in a community with K f = 3 and logged a patch with trees = 2.

It is naı̈ve to consider Cheater A to be as culpable as Cheater B. Thus, although

communities with higher K f may have more cheaters, these cheaters may be

logging patches with more biomass than the cheaters in a community with a

low K f .
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Chapter 8

Conclusion

In an era when our population appears to be exceeding sustainable levels,

resources are squandered flippantly, and climate change threatens to further

limit resource abundance, natural resource management has become a subject

of primary concern both internationally and for individual communities. As

ecologists and social scientists learn more about ecosystem conservation and

human behavior, we have come to realize that small-scale community

management systems can be a powerful method of conserving natural

resources; however, understanding the complex social-ecological systems

surrounding community-based natural resource management can be

extremely challenging. The introduction of Agent-Based Modeling to the field

of CBNRM offers a promising method to learn about the dynamic interactions

within community management systems and provide insight into how such

dynamics impact the success of resource conservation.

81
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8.1 An Agent-Based Model of community-based

natural resource management

During this investigation, we examine an existing ABM first developed by

Bravo and then expanded upon by Vallino. The original model simulates a

community management system in which a community establishes rules

regulating how Logger agents may extract wood from a forest. Vallino’s

modifications allow Loggers who are unsatisfied with the Institution rules to

cheat. The model also establishes an enforcement mechanism which punishes

Loggers who are caught cheating.

Upon analyzing Vallino’s Cheating and Enforcement model, we found that

the enforcement mechanism does not accurately represent enforcement

procedures found in real-world CMSs. Loggers who are caught cheating are

sanctioned by being removed from the model. This suggests that the

punishment for cheating is exile, imprisonment, or execution, none of which

are realistic sanctions. Additionally, the enforcement mechanism leads to

unrealistic patterns in forest biomass levels over time; the level of enforcement

appears to have no meaningful impact on forest health; and the model found

no correlation between the strictness of Institution rules and forest

conservation.

8.2 Model modifications and findings

We propose a new Monitoring and Sanctioning model that fixes several

implementation errors within the C & E model and offers a new set of rules to
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model Logger cheating and Institution enforcement. We believe these

modifications make the ABM rules more realistic and in closer alignment with

Ostrom’s design principles for CBNRM. Additionally, the new model exhibits

emergent behaviors in which changes in Institution rules have a direct impact

on forest biomass levels, leading to a positive correlation between the strictness

of Institution rules and forest conservation. This behavior aligns with CBNRM

literature. Moreover, the model independently corroborates the importance of

communities meeting consistently and adapting CMS rules over time. Finally,

unlike Vallino’s C & E model, in the M & S model, increasing monitoring

and/or sanctioning successfully decreases the number of cheaters in the model.

8.3 Limitations and future work

Unfortunately, just as the level of enforcement has no meaningful impact on

forest conservation in the C & E model, the level of monitoring and

sanctioning continues to have no meaningful impact on forest conservation in

the M & S model. This suggests that the cheating and enforcement

mechanisms require further modification.

One possible method of modifying the cheating and enforcement

mechanism is by only allowing Loggers to cheat when they are unsatisfied

because they believe the current-institution is too high. Currently, all

unsatisfied Loggers have the potential to cheat, but we would expect Loggers

who believe the Institution rules are not strict enough would not cheat on

those rules. Allowing these Loggers to remain unsatisfied but not cheat would

better replicate human behavior and decrease the number of cheaters in the
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model while retaining enough unsatisfied Loggers to allow the

current-institution to change. This may also alleviate the unexpected positive

correlation between the number of cheaters in the simulation and the biomass

levels in the forest.

Other potential changes to the model include introducing more

heterogeneity to agent behavior. For example, not all individuals respond

identically to sanctioning, so it may be logical to have each Logger have their

own (randomized) sanction-level trait. Additionally, in a real CMS, individuals

who have recently been caught cheating may be subjected to increased

monitoring, which would suggest that Loggers should also have their own

monitoring-level trait, and that trait should increase when they are caught

cheating. Finally, a Logger’s probability of cheating should be based on their

perception of how “fair” the Institution is. Thus, a Logger’s prob-cheat could

be influenced by the number of cheaters in the community, as well as how

often those cheaters are caught.

As ABMs are extremely complex models, the process of evaluating and

validating these models is never complete. For example, after implementing

the new M & S model, we noticed that the Logger selection process appears

flawed. The selection process occurs at the end of each period, when the

Logger with the lowest payoff is replaced by a copy of the Logger with the

highest payoff, to simulate unsuccessful Loggers adopting the behavior and

beliefs of successful Loggers. However, during this process, the unsuccessful

Logger also copies the payoff of the most successful Logger, which does not

make sense. Thus, we would suggest that the unsuccessful Logger should

retain their own payoff when they copy the successful Logger’s beliefs. While
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this is only one example of a model rule that should be adjusted, there are no

doubt many such changes that will need to be made as validation of the model

continues and as the model develops in sophistication and complexity.

In addition to modifying the model itself, future work should expand the

breadth of analysis for this model. During our analysis, we focused almost

exclusively on biomass levels as a measure of a CMS’s “success”; however,

social sustainability is just as important as ecological sustainability for

CBNRM success. In past explorations of this model, Vallino and Bravo

incorporated Logger payoff into their analysis. Similarly, in their model of CPR

use, Perez and Janssen examined both resource health and the proportion of

cooperative community members [32]. While the number of cheaters in the

M & S model was briefly discussed, future work should provide further

analysis of the social indicators in model communities.

During our investigation, we found no clear way to define the steady-state

of an ABM. As ABMs are stochastic and have many model outputs, random

fluctuations in output values are always possible, and even if one output

appears to reach a steady-state, this is no guarantee that the model itself has

reached a steady-state. Thus, future work establishing a method of defining

when an ABM reaches steady-state could be beneficial both to this model and

ABMs in general.

It is clear from our investigation that CBNRM ABMs are still in their

beginning stages. CMSs are extremely complex systems, and although ABMs

have the capacity to model complex systems, developing such models is a

long and cyclic process, whereby a model is created, tested, and refined over

and over. As with any computational model, there is no way to ensure that
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coding errors have been entirely eliminated, and the conceptual validity of the

model will be challenged and improved upon over time. These problems are

more prevalent with new models, such as the community forest ABM we

investigated, as they have not yet gone through as thorough of a vetting

process. This does not mean that ABMs are an unacceptable means of

modeling CBNRM, but it does mean current investigations of these models

may wish to focus on model improvement before drawing concrete

conclusions or policy suggestions from model emergent behaviors.



Appendix A

Monitoring and Sanctioning model

code and interface

NetLogo code used for the Monitoring and Sanctioning model. All parameters

that were varied during sensitivity analysis are controlled by the sliders shown

in the screenshot of the NetLogo interface for the M & S model (Fig. A.1).

; g loba l v a r i a b l e s ( inc luding I n s t i t u t i o n v a r i a b l e s )

g l o b a l s [

growth−prob

s a t i s f a c t i o n

current− i n s t i t u t i o n

to lerance −threshold

u n s a t i s f i e d

num−c h e a t e r s

]

; Logger v a r i a b l e s

t u r t l e s −own [

payoff

87
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minimal−cut

re ference − t r e e s

old−payoff

payoff− s a t i s f a c t i o n

prob−cheat

chea ter ?

]

; patch v a r i a b l e s

patches−own [

t r e e s

l i v i n g −neighbors

]

; s e t t i n g up the s imulat ion

to setup

c l e a r −a l l

; used to match old vers ion ( NetLogo 4 . 3 ) d e f a u l t world s i z e

r e s i z e −world 0 50 0 50

set−patch−s i z e 5

; s e t t i n g o r i g i n a l values and model v i z u a l s

s e t growth−prob . 0 5

s e t current− i n s t i t u t i o n 0

s e t u n s a t i s f i e d 0

set−defaul t−shape t u r t l e s ” c i r c l e ”

i f e l s e high− t o l e r a n c e = t rue

[ s e t to le rance −threshold (2 ∗ max−t ree −growth ) / 3]

[ s e t to le rance −threshold max−t ree −growth / 3]

ask patches [

s e t t r e e s random (max−t ree −growth − max−t ree −growth / 2) +

max−t ree −growth / 2 + 1
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s e t pcolor 60 + 5 ∗ ( t r e e s / max−t ree −growth )

]

; i n i t i a l i z i n g Loggers

c r t i n i t i a l −loggers

ask t u r t l e s [

se txy random−pxcor random−pycor

s e t payoff 0

s e t old−payoff 0

s e t minimal−cut 0

s e t payoff− s a t i s f a c t i o n 1

s e t re ference − t r e e s (max−pxcor ∗ max−pycor ) ∗

random−normal re ference −threshold 0 . 2 5

s e t prob−cheat i n i t i a l −prob−cheat

s e t chea ter ? FALSE

]

compute− s a t i s f a c t i o n

r e s e t − t i c k s

end

; s teps in one t i c k of the model

to go

; update t i c k (+ 1)

t i c k

t ree −growth

t u r t l e −a c t i o n s

; i f we have reached the end a period , implement r u l e s t h a t occur

; a t the end of a period

i f t i c k s mod 10 = 0 [ compute− s a t i s f a c t i o n ]

; stop s imulat ion a f t e r 20 ,000 t i c k s

i f t i c k s = 20000 [ stop ]
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end

; r u l e s governing t r e e growth

to tree −growth

; c a l c u l a t e l i v i n g neighbors f o r each patch

ask patches [ s e t l i v i n g −neighbors count neighbors with [ t r e e s > 0 ] ]

; see i f an empty patch should regrow

ask patches with [ t r e e s = 0]

[

i f ( random 1001 / 1000) < growth−prob ∗ ( ( l i v i n g −neighbors + 1) / 9)

[

s e t t r e e s 1

s e t pcolor 60 + 5 ∗ ( t r e e s / max−t ree −growth )

]

]

; allow l i v i n g patches to grow

; ( i f they have not reached max−t ree −growth )

ask patches with [ t r e e s > 0 and t r e e s < max−t ree −growth ] [

s e t t r e e s t r e e s + . 5

s e t pcolor 60 + 5 ∗ ( t r e e s / max−t ree −growth )

]

end

; logger a c t i o n s f o r each t i c k

to t u r t l e −a c t i o n s

ask t u r t l e s [

; Model change :

; make a l l Loggers move at the beginning of t h e i r a c t i o n s

move− t u r t l e s
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; update payoff ( l i v i n g c o s t s )

s e t payoff payoff − c o s t

; i f r u l e s permit , log the patch they are on

i f e l s e ( [ t r e e s ] of patch−here > current− i n s t i t u t i o n )

[ log−here ]

; I f r u l e s to not permit , see i f the Logger w i l l cheat

; Model changes :

; Loggers can only cheat when [ t r e e s ] of patch−here != 0

; Monitoring and sanc t ion ing are introduced

[ i f ( ( abs ( minimal−cut − current− i n s t i t u t i o n ) > to le rance −threshold

or payoff− s a t i s f a c t i o n = 0) and [ t r e e s ] of patch−here != 0)

; check i f Logger w i l l cheat

[ i f ( ( random 100) / 100 < prob−cheat )

[ log−here

; t r a c k c h e a t e r s

s e t chea ter ? TRUE

; monitoring and sanc t ion ing

i f e l s e random 100 < monitoring− l e v e l ; i s chea ter caught ?

[ s e t prob−cheat prob−cheat −

prob−cheat ∗ sanct ion− l e v e l ]

[ s e t prob−cheat prob−cheat +

(1 − prob−cheat ) ∗ sanct ion− l e v e l ]

]

]

]

]

end
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; r u l e s f o r Logging

to log−here

s e t payoff payoff + [ t r e e s ] of patch−here

ask patch−here [

s e t t r e e s 0

s e t pcolor black ]

end

; r u l e s f o r Logger movement

to move− t u r t l e s

l e t green−patches patches in−radius 2 . 8 3 with

[ t r e e s > current− i n s t i t u t i o n ]

i f e l s e count green−patches = 0

[ l e t newX xcor + ( random 3 − 1) ∗ 2

l e t newY ycor + ( random 3 − 1) ∗ 2

s e t xcor newX mod (max−pxcor + 1)

s e t ycor newY mod (max−pycor + 1)

]

[ l e t newX [ pxcor ] of one−of green−patches

l e t newY [ pycor ] of one−of green−patches

s e t xcor newX

s e t ycor newY

]

end

; r u l e s implemented at the end of each period inc luding :

; Logger payoff− s a t i s f a c t i o n update

; I n s t i t u t i o n updates

; p l o t t i n g model outputs

; Logger ” s e l e c t i o n ” process

; r e s e t t i n g payoff

to compute− s a t i s f a c t i o n

; Model change : how payoff− s a t i s f a c t i o n i s computed
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ask t u r t l e s with [ payoff > old−payoff ] [

s e t payoff− s a t i s f a c t i o n 1

]

ask t u r t l e s with [ payoff < old−payoff ] [

i f payoff− s a t i s f a c t i o n = 1[

l e t q ( payoff − old−payoff ) / ( abs payoff + abs old−payoff )

i f (− random− f l o a t 1 ) > q [

s e t payoff− s a t i s f a c t i o n 0

i f e l s e count patches with [ t r e e s > 0] > re ference − t r e e s

[ s e t minimal−cut max l i s t ( 0 ) ( minimal−cut − random 1 0 ) ]

[ s e t minimal−cut min l i s t ( minimal−cut + random 10)

(max−t ree −growth + 1 ) ]

]

]

]

; ”endogenous i n s t i t u t i o n ” r u l e s and evolut ion

s e t u n s a t i s f i e d count t u r t l e s with

[ abs ( minimal−cut − current− i n s t i t u t i o n ) > to le rance −threshold

or payoff− s a t i s f a c t i o n = 0]

i f u n s a t i s f i e d > ( 0 . 6 6 6 6 6 ∗ i n i t i a l −loggers ) [

s e t current− i n s t i t u t i o n mean [ minimal−cut ] of t u r t l e s

]

; p l o t t i n g emergent behaviors

set−current−p l o t ”K”

p l o t current− i n s t i t u t i o n

set−current−p l o t ”Green patches ”

p l o t count patches with [ t r e e s > 0]

set−current−p l o t ” Tota l Biomass”

p l o t sum [ t r e e s ] of patches
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set−current−p l o t ” Payoffs ”

p l o t mean [ payoff ] of t u r t l e s

set−current−p l o t ”k ( i )”

p l o t mean [ minimal−cut ] of t u r t l e s

set−current−p l o t ” beta ( i )”

p l o t mean [ re ference − t r e e s ] of t u r t l e s / 2500

set−current−p l o t ” u n s a t i s f i e d ”

p l o t u n s a t i s f i e d

set−current−p l o t ”Number of Loggers ”

p l o t count t u r t l e s

s e t num−c h e a t e r s count t u r t l e s with [ chea ter ? ]

set−current−p l o t ”Number of c h e a t e r s ”

p l o t num−c h e a t e r s

ask t u r t l e s [ s e t chea ter ? FALSE]

ask one−of t u r t l e s with [ payoff = min [ payoff ] of t u r t l e s ] [ die ]

ask one−of t u r t l e s with [ payoff = max [ payoff ] of t u r t l e s ] [

hatch 1 [

se txy random−pxcor random−pycor

s e t minimal−cut 0

]

]

ask t u r t l e s [

s e t old−payoff payoff

s e t payoff 0

]

end
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Figure A.1: Screenshot of the M & S model NetLogo interface. All parameters
that were varied during sensitivity analysis are controlled by sliders.
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[32] Irene Pérez and Marco A. Janssen. The effect of spatial heterogeneity and mobility on the

performance of social–ecological systems. Ecological Modelling, 296:1–11, January 2015.

[33] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for

Statistical Computing, Vienna, Austria, 2019.

[34] Caroline Schill, Nanda Wijermans, Maja Schlüter, and Therese Lindahl. Cooperation Is
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