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Abstract 

 This project asked how can one make use of an econometric tool, specifically the 

regression model, as a source for choreography. Through integrating my research on dance 

choreography and econometrics, I created a dance piece that demonstrates the numerical 

relationships of a realized regression equation. The dance was separated into three sections, 

with each examining an econometric concept. Taking the primary question at hand one step 

further, this project also explored how this approach to choreography can be generalized so 

that almost any regression model can be a choreographic tool. Subsequently, a guideline was 

devised to provide other choreographers various ways to visually manifest econometric 

concepts in a dance. Despite the difficulty in reconciling many econometric concepts into one 

dance, I found the regression equation an effective tool to structure and determine elements of 

choreography. The final dance piece and guideline exemplify interdisciplinary research on 

dance and econometrics, two seemingly unrelated subjects.  
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Do You Want To Run a Regression? Nah, I Think I’ll Dance One Instead: 

Physicalizing Econometrics 

Introduction 

Dancing and studying economics both require a great amount of dedication and 

practice. For those who develop the persistence to perform in these areas, the pursuance of 

those skills can meaningfully contribute to broader societal conversations. In both dance and 

economics, there is an interaction between the discipline and various elements of society, 

including political values, culture, and philosophical ideas; they are captured in dance 

choreography, and they are reflected in economic policymaking. Although the disciplines cross 

through many elements of society, they naturally manifest themselves in different ways, as 

dance and economics use very different approaches to produce knowledge. While dance is 

founded on artistic expression, the discipline of economics is founded on dispassionate 

analytical tools. Dance and economics are different, but they do have commonalities. To 

expand academia’s understanding of dance as a multidisciplinary subject, my Theatre & Dance 

Senior Independent Study (I.S.) investigates the intersection between two seemingly disparate 

areas of knowledge: dance and economics. 

Dance is often studied in conjunction with other disciplines such as music and 

anthropology (Albright and Dils 30). To a lesser extent, dance is viewed in a quantitative 

manner because it is considered a physical activity, as opposed to the stationary process of 

solving a mathematical equation. Dance is rarely thought of in terms of econometrics, a highly 

mathematical branch in economics that measures and analyzes economic phenomena. 

However, is it possible to intentionally use economic relationships to aid the creation of a 

dance? I asked, “How can one make use of an econometric tool, specifically the regression 
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model, as a source for choreography? How can this approach to choreography be generalized 

so that any regression model can be a choreographic tool?” 

To demonstrate how I used an econometric tool as a source for choreography, I 

showcased a dance piece that embodied econometric concepts in the Spring Dance Concert of 

2019 at The College of Wooster. The choreography of this dance reflects certain aspects of the 

linear regression model, one of many econometric concepts. A linear regression model 

establishes a relationship between two things to show how one thing affects another. The linear 

regression model that I used in the final dance performance establishes how dancers’ technique 

affects consumers’ willingness to pay (WTP) to watch their performance while considering 

other factors that affect their WTP. The many relationships present in different components of 

a regression equation can be captured in the relationships among the dancers and in the 

choreography. 

Next, I generalized this choreographic approach by creating a guideline that allows for 

almost any linear regression model to be used as a choreographic tool. This guideline consists 

of formulas, directions, and rules to physicalize almost any regression equation within certain 

parameters. Since the relationship in every regression equation is different, every dance 

following a different regression equation would look different and achieve a different effect. 

Following this logic, a different choreography will be produced when a different equation is 

used as a choreographic tool. Although not all the elements of regression that I discuss in this 

guideline appeared in my final performance, the guideline provides suggestions translate to 

these elements of regressions into dance. 

In using the regression equations in my own choreography, I was not interested in 

providing the audience any context of what the equations actually represented. Rather, I 
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focused on the numerical values by portraying their relationship in the choreography. While 

the regression equation I used establishes a relationship between dancers’ technique and 

consumers’ WTP, my dance only represented the numerical relationship between the two. The 

goal of the dance was not about what the regression equation signified, but rather how the 

numerical aspects of the regression equation interact with one another. 

This project relied on background research in dance, mathematics, economics, and the 

overlap among the three fields. Even more so, this project demanded the input of my five 

physically talented and mentally intellectual dancers. But before transforming economic 

concepts into movement, I had to bridge the gap between econometrics and dance. The process 

of intertwining the two subjects required an additional step; I had to establish a relationship 

between mathematics and dance. Owing to the highly mathematical nature of econometrics, 

my work benefited from investigating the role that numerical relationships play in the artistic 

decision-making process of choreography. Chapter One examines how choreographers in the 

past have made use of numerical relationships in producing dance and the effects of using 

them. These works cover two subfields in mathematics, including geometry and probability. 

My comprehension of these works gave me ideas about choreographing a dance based on 

econometrics. 

Geometry is a mathematical field that deals with points, lines, angles, surfaces, shapes, 

size, and space. The works of Samuel Beckett, Alessandro Carboni, and works from the 

Renaissance period embody various geometrical relationships and properties. Samuel Beckett 

was an Irish playwright who choreographed Quad in 1982, a television play without dialogue 

(Beckett, Quad). It features four dancers dressed in different colored long, loose-fitting robes 
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performing in a space outline as a square. The first impression 

of this movement piece, which I refer to as dance, comes off 

as minimalistic. However, the choreography is created 

mathematically according to a geometric pattern as shown by 

the aerial view of the stage in figure 1. 

The original script of Quad (Beckett, The 

Complete Dramatic Works of Samuel Beckett 293) 

provides instructions to perform the choreography, giving me first-hand information regarding 

his piece. In “‘Mathematical Aesthetic’ as a Strategy for Performance: A Vector Analysis of 

Samuel Beckett’s Quad,” Piotr Woycicki studies the mathematical relationships found in 

Quad. The focus is predominately on the fleeting geometrical patterns created by the dancers 

as well as the mathematical structure of the choreography. In the performance, the dancers 

follow a strict spatial path in the performance space. A single point located in the center of the 

stage, called the “origin,” serves as an underlying numerical concept affecting how the dancers 

move. By making precise turns before they reach the origin, the dancers change direction, 

never passing the origin or each other. 

Studying Beckett’s piece allowed me to see how geometry can be used as a source for 

choreography. By reviewing the video recording of the original performance of Quad (Beckett, 

Quad), I saw the resulting effects brought about by using this mathematical form. Graley 

Herren (47) discusses the depersonalizing effect of Quad in his article “Samuel Beckett's Quad: 

Pacing to Byzantium.” He argues that the repetitive nature of the geometrical relationships in 

the dance strips away the personalities of the dancers. Additionally, the dancers appear to lack 

any freedom in the timing of their movement sequences and the precision of the movement to 

 

Figure 1. Floor Pattern Created in 
Quad (Woycicki 142) 
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produce a sense of inescapability. While dances based on numerical relationships can be 

evocative for viewers, they are inherently neutral and portraying them can depersonalize 

dancers. Rather than more traditional concepts such as emotion and narrative, Beckett 

produced a dance that adhered to geometric ideas. 

An extension of the mathematical ideas of Beckett’s Quad is ABQ, a solo dance piece 

choreographed and performed by Alessandro Carboni. In “ABQ – From Quad to Zero 

Mathematical and Choreographic Processes –between Number and Not Number: Performance 

Research,” Carboni describes his process of creating ABQ. Starting with the extraction of the 

concept of the origin found in the Quad in which he calls the “degree zero” (“ABQ – From 

Quad to Zero Mathematical and Choreographic Processes –between Number and Not Number: 

Performance Research” 50), he transformed this mathematical relationship into his own. He 

created a geometric concept by combining mathematical relationships and his research on 

southern Indian dances, which will be discussed later on. This transformation enabled him to 

construct a choreographic score for ABQ. Even though there is an overlap between Beckett and 

Carboni’s use of mathematical relationships, their works present themselves differently. Where 

Beckett’s Quad appears to be depersonalizing, Carboni’s solo appears to be more uplifting 

because he creates a relatively stronger character on stage than the dancers in Quad. This is 

expressed from the recording of his live performance on Vimeo, which will be elaborated later. 

Differing from the choreographies of Beckett and Carboni, dances during the 

Renaissance period in the 16th century in Italy and France did not use mathematical 

relationships as a source for choreography. Instead, the choreographers used mathematical 

relationships to achieve a specific goal, which is to present order and unity in dance. The 

scholarly research of Françoise Carter in Number Symbolism and Renaissance Choreography 
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describes and explains instances where dances during the Renaissance period were 

choreographed based on geometrical patterns. These patterns represented the view of the 

universe at the time. Through dance and choreography, people at the time embodied their belief 

that the universe was created in the image of God (Carter 22). To help people visualize the 

metaphysical aspects of life, it was necessary for choreographers to use forms that captured 

geometrical relationships. In this way, dances observed during the Renaissance period utilized 

numerical relationships not as a source for choreography but as a tool for choreography. 

Through movement, geometry was used to demonstrate Christian and spiritual cosmology of 

the universe during that time period. This article provides countless descriptions of the 

geometrical elements in the choreographies from the time period as well as the meaning behind 

the choreographic choices. 

Another important source is Jennifer Nevile’s “Dance and the Garden: Moving and 

Static Choreography in Renaissance Europe.” The emphasis of Nevile’s research is on the 

principles of order and proportion in the Renaissance period (806). She examines two 

variations of choreography to study these principles. The first is dance choreography, a type of 

dynamic choreography I have referred to earlier. The second is a type of static choreography, 

relating to the design of gardens of the nobility. Through detailed study of Renaissance history, 

Nevile demonstrates how the choreography in both dance and gardens makes use of geometry 

to reflect the ideals of the Renaissance period. This article also provides diagrams of the floor 

patterns of a selection of dances. By identifying the geometric properties of the floor patterns 

in these diagrams, I saw how important principles at the time manifested as numerical 

relationships in dance. I also briefly compared these to the geometrical qualities of Renaissance 

gardens because they parallel the effect of the dances. 
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Deviating from the three previously mentioned works, Merce Cunningham took 

another approach in his choreographic career in terms of the use of numerical relationships. As 

an alternative to intentionally exercising the use of geometric aspects in dance, as seen in the 

previous three cases, Cunningham turned to probability in his choreographic process (Siegel 

292). Probability is the likeliness of an event to occur. Unlike geometry, the presence of 

probability in dance cannot be easily seen visually because of the theoretical nature of 

probability. Through studying Cunningham’s experimental choreographic method, I saw how 

the intentional use of probability can be a determining factor in the effect of a dance. 

Cunningham’s approach to dance performance prompted him to create a guideline for his 

dancers, which is comparable to the guideline of my I.S. thesis. 

Cunningham’s interview at the Walker Art Center, titled Chance Conversations: An 

Interview with Merce Cunningham and John Cage, improved my understanding of his 

approach to dance. Cunningham’s aim to achieve unconventional effects in his dances, such 

as disorder, unpredictability, and an emphasis on the pure physicality of the body, prompted 

him to use unconventional choreographic methods. Some of his many choreographies falling 

under the category of “chance dances” relied on randomness to achieve the effect he wanted. 

Despite placing randomness as a guiding principle, Cunningham’s decisions were associated 

with elements of probability. Note that probability and chance are used as interchangeable 

terms because the same concept is not given the same name in the different disciplines of 

interest. Mathematicians describe it as “probability,” whereas dance scholars use the word 

“chance” as the term for Cunningham’s choreographic method of chance procedures. 

The books Ballet and Modern Dance by Susan Au and Time and the Dancing Image 

by Deborah Jowitt explain how Cunningham used chance procedures to create his chance 
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dances. The aspects of his dances that relied on probability include the number of repetition of 

a movement sequence, the duration of a phrase, the order in which the dancers entered the 

stage, as well as many more elements. The end goal was to examine how a variety of 

Cunningham’s works used a mathematically-rooted strategy as a means to achieve dances that 

emphasized movement. 

The outline of the paper is as follows: Chapter One entails research on dances that 

utilize mathematical relationships. I studied relevant sources to learn how others have used 

numerical relationships in their choreographies. But to choreograph a dance and to create a 

guideline for my dancers, it was essential that I understood the various elements of movement 

and dance. To inform my choreographic decisions, I examined Doris Humphrey’s book, The 

Art of Making Dances, on the composition of dance in Chapter Two. I drew mostly upon the 

second chapter of her book, provides the “ingredients and tools” for building dances (45). She 

discusses the creation of the overall design of a dance through aspects in choreography, 

including symmetry, the phrase, stage space, and the relative relationships of dancers. The 

other elements relevant to my study that she discusses are dynamics, rhythm, and motivation. 

This book highlights the elements of movement and dance I kept in mind when I 

choreographed the final dance piece and created the guideline. The many contributions of my 

dancers along with my choreographic and performance experiences in my college career also 

spurred the development of creative ideas. 

Since I intended to portray relationships in regression equations through dance, I 

needed a working knowledge of the regression model. Chapter Three introduces econometrics 

as a subject matter in relation to my dance choreography and guideline. It establishes how 

theory in regression analysis can be portrayed and represented through dance. Using 
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Econometrics: A Practical Guide (Studenmund) is a useful source to introduce beginners to 

econometrics. This book starts from the basics of econometrics, including what it is and how 

it is applied to the explanation of the regression model. With the groundwork built, I explored 

more complex econometric theories, including four of the seven Classical Assumptions of one 

type of regression equations, ordinary least squares. The knowledge I gained from this book 

was not only used as an inspirational springboard for the choreography, but it also acted as a 

choreographic score. 

Chapter Four discusses how the findings of my research from chapters 1, 2, and 3 

translated into both my final choreography and guideline that informs how others can utilize 

almost any regression equation as a choreographic tool. The research from chapters 1, 2, and 

3 consisted of relevant mathematics-related dances, as well as knowledge of dance 

choreography and the regression model. Following each rehearsal, I reflected on my progress 

on translating econometrics into dance to improve the physicalization of regression equations. 

Thus, the series of post-rehearsal reflections complement my discussion on the application of 

my research to my critical question. 

As stated, this paper discusses a narrow area of the interconnection between dance and 

economics. However, this approach of keeping the research focused came at an expense. I did 

not completely examine all aspects of the dances choreographed by the chosen artists, let alone 

all the relevant works of the artists. Furthermore, this paper does not cover all the existing 

dance pieces that make use of numerical relationships. This suggests that the econometrics-

based choreography I developed would differ vastly based on what research I applied to my 

work. Similarly, the mathematical components I explored are limited to geometry and 

probability. Since I do not have a comprehensive set of information, the conclusions from my 
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discussion have limitations. These problems may have interfered with my evaluation of the 

answer to the critical question. 

Despite these limitations, my study contributes useful analysis to an unconventional 

field. To summarize, I first explored dances that represent or make use of mathematical 

principles because econometrics involves using mathematics. I then separately studied dance 

choreography and econometrics to give me the tools and skills to write the guideline and 

choreograph my piece. My interdisciplinary work delves into an infrequently studied area, 

which could interest other scholars. Apart from the academic interdisciplinarity, my work 

allows for students and scholars of dance and economics to interact with one another. This 

interaction may stimulate conversations and inspire people to further connect and develop an 

appreciation for both dance and economics. My choreography captures my contribution 

towards the two fields, but the overall experience of my choreography provides a platform for 

people from the two fields to form a larger and more diverse community. 
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Chapter 1. Intersection Between Math and Dance: Math as a Choreographic Source 

 Surprisingly, mathematics unifies dance and econometrics. This connection is essential 

because it shows that mathematical concepts, such as my study of econometrics, can be used 

or portrayed in dance. This chapter demonstrations the relationship between mathematics and 

dance. More specifically, I explored two mathematical concepts, geometry and probability, to 

communicate the possible links between numerical relationships and movement. 

Geometry 

As Wasilewska (453) contends, there are unquestionable interactions between dance 

and geometry that is often times coincidental. The geometrical relationships in dance are 

something that is experienced by dancers with their bodies. In contrast, these geometrical 

relationships produced by dancers are visually understood and perceived by the audience. For 

example, dancers form geometric shapes in space with their bodies, whereas spectators observe 

the outcome of dancers’ bodily experience in geometric shapes. Mathematics in the World of 

Dance (Wasilewska 454) examines the relationship between dance and mathematics through 

analyzing images of dancers’ bodies. The author points out how the bodies of various types of 

dancers form geometrical shapes and reveal the mathematical relationships captured by the 

bodies in stillness. These dancers include ballerinas, modern dancers, and Argentine Tango 

dancers. 

In one instance, Wasilewska gives the example of a ballerina holding a grand plié on 

relevé in second position with arms stretched upwards. She points out that from the front view, 

the legs of the dancer are positioned 90 degrees from the floor and thus, form a rectangle. The 

dancer’s upper body and arms depict an image of a triangle. Moreover, one can imagine a line 

of symmetry through the middle of the dancer’s torso. Other geometric concepts are revealed 
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when the audience changes their perspective from the conventional front view to an aerial view. 

In the same position of a grand plié in second position, the dancer’s body forms a line. 

Depending on which body parts is emphasized, different types of angles can be discerned, 

including adjacent, reflex, and acute angles. The many embodiments of mathematical ideas in 

a dancer’s movements highlight the fact that it is possible for choreographic decisions to reflect 

specific geometric patterns. 

 With this knowledge in mind, I explored how this mathematical relationship has been 

used in the production of dances. By analyzing dances of Beckett and Carboni, I investigated 

how these two choreographers used math as a starting point in their choreographic process. 

Then, I explored how the dance pieces in the Renaissance period reflect geometrical ideas. 

Samuel Beckett’s Quad 

 More commonly known as a playwright, Samuel Beckett also explored movement in 

his works. Many of these works used numerical relationships to structure the performance, 

which differed from his earlier works such as Endgame and Come and Co. (Woycicki 136). 

Instead of keeping the mathematical relationships and forms of his work subtle and unnoticed, 

Beckett enunciated them. In December of 1982, he submitted his television play, Quad, to 

BBC2 (Beckett, The Complete Dramatic Works of Samuel Beckett 292). This piece lasts for 

approximately 15 minutes and consists of only non-verbal elements, including movement, 

lighting, costumes, and sound. Otherwise, Quad was primarily performed through the 

movements of four people. Their costumes are long, draped, and hooded gowns with a cowl to 

hide their faces. They are each in a different solid color, of white, yellow, blue, and red. 

Beckett used a geometrical framework for the underlying compositional methodology 

in Quad. The use of this mathematical relationship made the dancers in his piece appear 
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dehumanized. Before understanding how the effect was produced, I studied the geometrical 

elements in Quad. Embedded in the spatial patterns that are carved by the dancers of Quad are 

geometrical properties. If one were to look at the performance directly from above, they would 

see all four dancers create the same geometric pattern at different times. However, the dancers 

create the patterns starting and ending at a different corner on the square-shaped stage of six 

walking paces long. 

 The piece starts off with an empty stage. Once the dancers enter, they follow a 

systematic course by taking small but quick steps, as if they are walking in a hurry. It is through 

the repetition of their pathways that the audience notices the geometrical relationships in the 

choreography (Woycicki 143). Although the geometric patterns they inscribe on the stage are 

identical, the order in which they complete it are not. Beckett’s own book, The Complete 

Dramatic Works of Samuel Beckett, illustrates four possible courses that correspond to the four 

dancers. This sequence is shown in figure 2. Dancer 1 starts the performance by completing 

course 1 once. As dancer 1 completes course 1 the second time, dancer 3 completes course 3 

for the first time. As 

dancers 1 and 3 both 

perform their own 

sequences once more, 

dancer 4 joins them by 

completing course 4. Lastly, dancer 2 enters performing course 2 so that all the performers are 

completing their own courses together. In the same order as they entered, dancers 1, 3, and 4 

exit one by one after the repetition of every subsequent courses. As the only dancer remaining 

on stage, dancer 2 repeats the cycle as the first dancer on stage. The cycle is repeated a total of 

 

 

 

 

Figure 2. Script of Quad (Beckett 293) 
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four times until all the possible 

permutations of the courses are 

performed. Table 1 presents a summary 

of the possible orders in which the 

dancers appear on stage. Figure 2 and 

table 1 function as the script and 

choreographic score of Quad, which can 

also be considered as a mathematical formula for this movement piece. The nature of the 

dance’s structure suggests that numerical relationships are dictating the choreography. 

 The sequencing of the pathways is choreographed so that they dancers never collide 

with one another, even when all four of them appear on stage and are crossing center stage at 

the same time. This is made possible because the dancers avoid the middle area of the stage, 

labelled as the “origin” of the stage. Beckett represents the origin as point E in figure 2. As a 

result, the actual geometric pattern that is followed by the dancers is the one shown in figure 

3. The figure illustrates that every turn the dancer makes is either 90 degrees or less. In 

geometry, angles smaller than 90 degrees are called acute angles. 

 As the dancers follow their assigned paths, 

the only movement they carry out is walking with 

a hunched back. Other than those of a walking 

position of the lower body and a hunched back, the 

dancers do not create other distinct shapes. 

However, they do create fleeting shapes on the 

performance space as they walk across the floor. 

 

 

 

 

 

 

 

Figure 3. Geometric Patterns in Quad 

Table 1 

Permutations of Dancers on Stage in Quad 
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Every time a dancer completes one cycle of their course, they create the geometric pattern in 

figure 3. The surrounding shape is a square, which is the same shape as the outline of the stage, 

as outlined in black. The stage has four corners, labelled A, B, C, and D. 

 The square-shaped stage encloses several other shapes. Apart from the square, 

connecting the four corners is a polygon, as outlined in purple. This polygon is a two-

dimensional shape that is made of straight lines. The lines of a polygon must form a closed 

shape so that someone could trace the shape forever without taking the pencil off the paper. 

There are a number of properties associated with this polygon in purple. First, it can be 

classified as an octagon because it has eight sides. As opposed to a square, this is an irregular 

octagon because the length of its sides and its interior angles are unequal. Moreover, it is a 

concave polygon because there are internal angles that are greater than 180 degrees. It is also 

a concave polygon because it has angles that point inward. These inward-pointing angles are 

attached to the square surrounding origin E, as outlined in blue. 

 Apart from squares and the octagon, there are eight triangles labelled between 1 and 8 

in figure 3. These triangles can be identified as scalene triangles because each side is unequal 

in length. Triangles 1 through 4 are identical in size but face a different direction. Moreover, 

they are positioned on the outer part within the square and they each have one side 

overlapping the square of the stage. Triangles 5 through 8 are smaller and are positioned in 

the inner part of the square. Similar to triangles 1 through 4, these triangles are identical in 

size and face a different direction. Additionally, one side of each triangle overlaps the center 

square surrounding origin E. 

 As demonstrated, there are numerous geometrical concepts in the choreography of 

Quad. By following a strict mathematical structure, scholars argue that Quad depicts 
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dehumanized people in a dehumanizing world (Herren 47). The use of mathematics in 

choreography results in a plotless piece. The lack of variation in the movements of the four 

dancers and the repetitive nature of their paths strip away their personality. The dancers carry 

out the same movements and wear the same type of costume. Coupled with their covered 

faces, the dancers are left with little individuality. Moreover, the dancers never make eye 

contact with one another, let alone experience any physical contact with one another. These 

aspects further contribute to the dehumanization of the dancers, and they make it hard for the 

audience to discern a clear storyline. 

 An additional layer of the dancers’ humanity is stripped away because of the 

decisions of the playwright Beckett, and his crew (46). In the script, Beckett states that “each 

player has his particular light, to be turned on when he enters, kept on while he paces, turned 

off when he exits.” The script also states that each player has a particular sound 

accompanying their movements during their appearance on stage. In terms of both lighting 

and sound, each dancer is assigned their own unique aspect. Despite their hidden faces, the 

dancers are distinguishable from one another. However, for the final performance, Beckett 

and his crew collectively decided to light the entire stage and entire performance with neutral 

lighting. In comparison to the instructions of the original script, the final performance makes 

it more challenging for the audience to discern the dancers, especially since the dancers’ 

movements already show no apparent variation. The dancers’ reduced individuality translates 

into a smaller emotional element in the play. Additionally, the lack of dynamics and the 

consistent tempo of the movements give off a monotonous and unlively quality as well as a 

sense of purposelessness to the dance. For these reasons, one could argue that the repeated 
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geometrical course the dancers follow symbolize the entrapment of the daily routine of life 

(Davis and Butler 145). 

Alessandro Carboni’s ABQ 

The influence of Beckett’s work extended beyond its direct contribution to the 

development of the arts. Currently based in Sardinia, aspiring Italian artist Alessandro Carboni 

created the dance piece ABQ in 2007 that was inspired by one geometrical concept explored in 

Beckett’s Quad. Although Carboni and Beckett both choreographed a dance piece starting with 

an underlying geometrical relationship, the effect of their dances show large variations. While 

Beckett’s Quad dehumanized his dancers, Carboni’s self-performed solo piece, ABQ, draws 

forward a personality. 

Carboni obtained his doctorate degree in Creative Media from City University of Hong 

Kong. As both an independent and interdisciplinary artist, Carboni’s interests do not only lie 

in the performing arts. His interest in body, urban space, and cartography led to his numerous 

research studies and dance choreographies (Carboni, “Alessandrocarboni | ABOUT”). 

Although most of his bodily performances reflect his research in the evolution of urban areas, 

he took on a new approach in ABQ by incorporating mathematical ideas. The inspiration for 

this piece came about in 2006 when Carboni left London to Kerala, India for a four-month 

research project (Carboni, “ABQ – From Quad to Zero Mathematical and Choreographic 

Processes –between Number and Not Number: Performance Research” 50). That year marked 

the 100th anniversary of the birth of Samuel Beckett. In honor of Beckett, Carboni decided to 

use the numerical ideas present in Quad as a component in his choreography.  

From my previous analysis on Quad, I pointed out that the dancers never surpass the 

center region of the stage. As defined by the spatial paths of the dancers, this space in the center 
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is shaped as a square, as outlined in blue in figure 3. Seeing that the movement of the four 

dancers revolve around the center of the stage, Carboni identified this pivotal space as “degree 

zero.” From there, he sought to explore degree zero and discovered how it can be used in his 

choreographic process. At the School of Drama di Thrissur and the Sree Sankaracharya 

University of Sanskrit, Carboni studied two classical Indian dances of the South, Kathakali and 

Bharatanatyam. ABQ primarily uses his research in Bharatanatyam, which places a great 

importance on the hand, body, and space because they are used by the dancers as a vehicle for 

expression (“ABQ – From Quad to Zero Mathematical and Choreographic Processes –between 

Number and Not Number: Performance Research” 52). 

Through a mathematical lens, Carboni considered these three components of 

Bharatanatyam as a hierarchical structure that possessed alternate dimensions. The relationship 

of the hand, body, and space and its corresponding dimensions is represented in figure 4. 

Although the hand is the smallest unit of Bharatanatyam in comparison to the body and to 

space, it is an important aspect. In Bharatanatyam, the hands facilitate storytelling and evokes 

an emotional reaction from the audience. For these reasons, Carboni positioned the hand on 

the top of the hierarchical structure to capture the importance of the hands. In Vedic 

mathematics, the fundamental building block of numbers is zero, and zero is viewed as a single 

point in space. Basing off this concept, Carboni also considered the hand as degree zero, or as 

a single point existing in a one-dimensional (1-D) space. The use of Vedic mathematics is also 

    3-D <  2-D          < 1-D (degree zero) 

body moving <  body lying flat  < hand (mudras) 

Figure 4. Dimensions of the Body Moving, 
the Body Lying Flat, and Mudras 
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relevant to his research in India because it is a branch of mathematics based on Veda, one of 

the four Indian scriptures. Below the hand on the hierarchical structure is a human body lying 

flat on the floor that exists in a two-dimensional (2-D) space. At the bottom of the hierarchical 

structure is the moving body in space, appearing in a three-dimensional (3-D) space. 

In Carboni’s ABQ, I saw how Carboni established the body as an instrument that 

embodies geometrical and Vedic mathematical relationships to create a 3-D dance. In 

Bharatanatyam, mudras are a set of hand gestures. Since mudras are associated with the hands, 

Carboni considered them as degree zero existing in one dimension. He only used the mudras 

for its shape and structure but not for its traditional meaning and purpose in Bharatanatyam. 

Based on the appearance of mudras, Carboni assigned positions using the entire body according 

to each mudra. Thus, the mudras are enlarged into “hyper-mudras” (“ABQ – From Quad to 

Zero Mathematical and Choreographic Processes –between Number and Not Number: 

Performance Research” 53). Carboni then created a choreographic score by placing the hyper-

mudras into an imaginary cube and assigning different body parts to the nearest geometric 

property of the cube. Body joint-articulations were paired with the eight vertices of a cube, 

bones were joined with the 12 edges of a cube, and the body’s skin was assigned to the six 

surfaces of a cube. From there, Carboni made a choreographic score using the hyper-mudras 

(“ABQ – From Quad to Zero Mathematical and Choreographic Processes –between Number 

and Not Number: Performance Research” 54). Unlike Beckett who created a rigid formula for 

the dancers’ spatial paths in Quad, Carboni created a set of instructions for the movement 

sequences in ABQ that embody many geometrical relationships (“ABQ – From Quad to Zero 

Mathematical and Choreographic Processes –between Number and Not Number: Performance 

Research” 56). 
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The video recording of ABQ – Mechanical Extension in Four Arithmetic Operation 

captures Carboni’s multiple layers of geometrical manipulation. This approximately 40-

minute-long solo is performed by Carboni himself. Considering that Carboni was inspired by 

Beckett’s Quad to create ABQ, his artistic choices clearly reflect and mirror those of Beckett. 

Just as in Quad, the performance space of ABQ is shaped as a square without an elevated 

platform. Moreover, the concept of both pieces revolve at degree zero. Where the dancers in 

Beckett’s Quad avoid degree zero and never approaches the center of the stage, Carboni 

actively uses the space occupied at degree zero. This is made obvious right at the beginning of 

the piece since Carboni’s starting position is in center stage, which is precisely at degree zero. 

Unlike in Quad where all the dancers are always in a standing position, the majority of 

Carboni’s movements are on the floor, and his body deviates between straight and curved. 

Carboni starts in the center with his knees tucked in, curling up into a ball. This 

movement represents Carboni occupying a single point in space, called point number one. The 

soft-edged spotlight on Carboni also represents degree zero as a single point in space. 

Remaining in a ball at point number one of his starting position, he travels counter-clockwise 

to three other points. His spatial path forms a square when he returns to his original point. The 

spotlight does not change when this occurs so it seems like he is building a square around 

degree zero. At a faster pace, Carboni forms two more squares in his spatial path by travelling 

from point to point. Up to this point, he represents one point in a 1-D space. 

 The shift from a 1-D space to a 2-D space is indicated when Carboni expands his 

kinesphere by lying down flat on the floor facing the ceiling. His body forms a line in space 

with starting and ending points. These points are represented by his head and his toes, 

respectively. Thus, he is in a 2-D space. Carboni moves around the square-shaped stage in this 
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space, which he repeats for five times. The direction of 

his movements is again anti-clockwise. The spatial 

path created by his movements is a square along the 

inner edge of the performance space. The outer black 

and thin line in figure 5 symbolizes the square-shaped 

performance space, whereas the inner orange and thick 

line displays Carboni’s spatial path. The lighting 

clarifies his spatial path because it physically manifests 

the spatial path. As Carboni travels from point C to point D to create one of the four lines of 

the square, the lighting also forms that straight line. As he travels from point D to point B to 

create a second line, the previously lit line disappears as a new line of light emerges. This 

formation of spatial and lighted lines continues for five cycles. 

The next transition from a 2-D space to a 3-D space is indicated by Carboni’s further 

expansion of his kinesphere. In this 3-D space, his body is vertically on a high level rather than 

horizontally on a low level. Nevertheless, he maintains following the same square-shaped 

spatial path as the one outlined in the orange and thick box in figure 5. This time, the lighting 

highlights his spatial path even more obviously than before as the entire shape of a square is 

lit with the center left completely dark. Similar to the dancers in Quad, Carboni travels by 

walking. However, his steps are big and slow. Towards the middle of the piece, Carboni travels 

in the diagonal of the square, just like in Quad. Consequently, the change in his directions are 

no longer 90 degrees but 45 degrees. By doing so, Carboni creates four distinct isosceles 

triangles, or triangles with two sides of equal length, through his spatial path. These are 

 

 

 

 

 
 
 

 

Figure 5. Carboni’s  
 Spatial Path in ABQ 
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illustrated in figure 6. After this section of the piece, 

some earlier parts of the dance are repeated in 

retrograde so that ABQ ends with Carboni a 1-D 

space again. Just as he had begun the piece, he is 

curled up in the location of degree zero with a dim 

spotlight also in the center of the stage. 

 To some extent, the music of ABQ parallels 

with the mathematical structure in the dance. The complexity of the sounds of the performance 

correspond to the number of dimensions in space. As the number of dimensions increases, the 

number of instruments that is played also increases. Since Carboni moves in a 1-D space in the 

beginning of the piece, the only sound is one that Carboni makes on stage as he moves. It is 

only when Carboni moves in 2-D space that there is music, or non-bodily sounds produced by 

instruments. The first of these non-bodily sounds produces a specific low tone to create a 

constant beat. As Carboni transitions into 3-D space, more instruments are played. Thus, the 

layers in sound reflect the dimensions in space. 

The overall piece is very dynamic as it contains fluid and flowy movements as well as 

angular and fast-paced movements. The effect of ABQ is thus different than Beckett’s Quad. 

ABQ not only does not strip away the dancer’s individuality, but also brings forward a 

personality portrayed by the dancer. Despite the frequent use of repetition, the piece has a lot 

of variation, particularly when Carboni executes percussive movements as he travels across 

the stage. These movements often look convulsive and explosive, making Carboni appear 

lively and active. In contrast, this is not the case in Quad because the dancers seem unlively 

and plain. 

 

 

 

 

 

 

Figure 6: Carboni’s Spatial Path in 
ABQ, part two 
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Using a choreographic score derived from various mudras of Bharatanatyam, Carboni 

demonstrates mathematical elements in ABQ. Through investigating the choreographic process 

in the creation of his piece and the outcome of the dance, I gained a better understanding of 

how dance and mathematics, specifically geometry, can interconnect. Although Carboni and 

Beckett both used geometrical relationships as a starting point in their pieces, the end result 

and the effect of their dances differ vastly. 

Renaissance Dances in the 16th Century 

 Through inspecting the works of Beckett and Carboni, I observed one way in which 

geometrical relationships manifest in dance. Apart from being a starting point in choreography, 

numerical relationships can also be used as a choreographic tool in dance. Like hammers and 

nails, tools make a construction possible. The same logic can be applied to the process of 

choreography. Hoping to create dances that reflected their view of the universe, choreographers 

of the Renaissance period made use of geometrical relationships as choreographic tools. 

Number Symbolism and Renaissance Choreography by Françoise Carter spells out why the 

choreographers of the time wanted to achieve that effect and why they specifically chose 

geometry to achieve that effect (Carter 21). 

During the Renaissance period, the structure of the well-ordered universe was an 

important concept because people believed it originated from God and was created in the image 

of divinity (22). Since they also believed that relationships among numbers reflect the 

universe’s state of being, numbers were considered to be beautiful compositions that possessed 

divine qualities. Thus, the use of numbers in everyday life was desirable as it helped attain 

beauty. The relationship between numbers and the religious view of the universe can be traced 

back to the work of Greek mathematician and philosopher, Pythagoras, in 5th century BC. 
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Pythagoras saw that the harmonic characteristics of mathematics captured an element of 

eternity, as does the universe (21). Because the numerical system exists on its own and is free 

from any influence of the human world, it symbolized eternity. 

Owing to the fact that numbers have a 

direct relationship with geometrical shapes, 

Renaissance choreographers placed a large 

emphasis on geometrical figures. As presented 

in the first row of row table 2, a single point 

can create bulk. As shown in the second row, 

using two different points and connecting them 

creates a line with breadth. As seen in row 

three, taking three other points and connecting 

them creates a surface, or a flat shape with depth to it. Finally, the last row exhibits a solid 

shape that connects four additional points. Notice that the sum of the points used to create these 

four figures add up to ten. Ten was considered a powerful number because with ten points, one 

could construct the four geometric structures in table 2. These structures are important because 

they possess different geometric properties, including bulk, breath, surface, and shape. 

Geometry is one of the many areas of mathematics embedded with numerical 

relationships. Using the bodies of dancers, geometry can be easily visualized and recognized. 

To express the ideals of their society, 16th century choreographers used geometric shapes and 

patterns as compositional tools. For example, the dance figures observed in Renaissance 

dances follow imaginary geometric patterns on the floor. Apart from the dance itself, the music 

accompanying the dance functioned in a similar way. Again, Pythagoras made the connection 

 Table 2 

Building Figures with Points 
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between music and mathematics. Dancing to music was especially important when Pythagoras 

identified mathematical ratios in musical harmonies (22). This music sought to mimic the 

harmony of the universe beyond movements. 

By demonstrating order and measure in a dance through geometric form, the separation 

between the artificial and incomplete world of human beings and the perfect universe created 

by God would be closed (Nevile 809). The manipulation of space to create geometrical shapes 

allowed the choreographers to emulate the visible universe and the implicit structure 

underlying the universe. The square was associated with the earth and its elements, and the 

circle was thought to symbolize heaven and divinity (823). The suggestive nature of these 

shapes explains the abundant geometrical forms in the Renaissance dances. For example, 

choreographed by Balthazar de Beaujouleux in 1581, Le balet comique de la royne exhibits a 

total of 40 geometrical figures (808). Straight lines are also a reoccurring form in the 

choreography because it reveal order and control. 

Ballet piece Dolce Amoroso Foco also exemplifies the use of geometrical figures in 16th 

century Renaissance dances. In the first part of the piece as shown in figure 7 (a), three male 

(M) dancers line up on one side of the stage with the female (F) dancers lining up parallel to 

them. As the males and females travel past one another to take each other’s positions, a square 

(that is representative of the earth) is created. Producing this square on the pattern of the floor 

indirectly reveals one aspect of the universe’s structure. As for the second half of the piece, the 

three pairs of male and female dancers create the pattern in figure 7 (b) by tracing an imaginary 

circle with perpendicular lines in the center of the circle. Additionally, the circle represents the 

sacred and divine aspects of the universe. 
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In the 16th century, dance choreographies were not the only choreographies made 

according to a set of design principles and values. Like the forms created in dance, garden 

structures of the nobility reflected important values of the Renaissance period, including order, 

measure, symmetry, geometrical forms, and straight lines (806). Dances and garden structures 

can both be seen as the products of choreography, with the former having a dynamic quality 

and the latter having a static quality. Just as the designers of gardens, the choreographers of 

dances produced large geometric shapes because they were meant to observed by the nobles 

who were seated at an elevated angle. A simple comparison between Dolco Amoroso Foco and 

the garden at L’Ambrogiana, Italy exemplifies how the choreographies of both dance and 

(a) 

(b) 

Figure 7. Aerial View of Floor Patterns from Dolce 
Amoroso Foco (816) 
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gardens made use of the same design principles (814). The circular shape created in the ballet 

in figure 7 (b) is similar to the one created by the trimmed plants in L’Ambrogiana, as shown 

in the top left corner of figure 8. 

As scientific knowledge expanded in the 17th century, the Renaissance ideals of the 

universe gradually lost its significance (Carter 34). As the tie between science and religion was 

undermined, so did the tie between the religious world view and mathematics. As a result of 

this phenomenon, the use of geometrical relationships in dance decreased. Sir Francis Bacon 

was a prominent figure who advocated an empirical approach to research. He also established 

the foundation of the scientific method, which is still used today. His work and philosophy 

contributed to towards the push for the disconnecting mathematics from the arts (35). As a 

scientist, he disapproved dances that revolve around the use of geometrical figures and 

principles of order and symmetry to achieve divine perfection and to reproduce an image of 

the perfect world. Instead of reflecting divinity, he believed that dances should reflect the 

imperfect reality. 

 

 

 

 

 

 

 

 

 

Figure 8. Aerial View of the Garden at L’Ambrogiana, Italy (813) 
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Probability 

Merce Cunningham’s Chance Dances 

Despite Sir Francis Bacon’s attempt to discourage the use of geometry in dance, the 

intentional use of mathematics persisted, as previously demonstrated in Carboni’s ABQ. The 

use of mathematics as a compositional tool in choreography is not exclusively geometric. Born 

in Centralia, Washington, Merce Cunningham was one of the leading choreographers of the 

20th century. His experimental use of quantitative methods as a score for his dances has 

influenced many artists who followed him. Although Cunningham’s works are not directly 

associated with mathematics, the underlying mathematical principle in his dances is probability, 

the chance of something occurring. First, I inquired into why he explored the concept of chance 

in his works. 

Cunningham studied dance and theater first at George Washington University and then 

in Cornish School in Seattle (Morgenroth 11). Afterwards, he danced with Martha Graham 

between 1939 and 1945. Several years later in 1953, he opened his own dance company called 

the Merce Cunningham Dance Company. Since his first choreography in 1942, he further 

developed his technique and continued to choreograph. Branching off from the work of 

Graham who emphasized the importance of dancing with emotion to express emotion, 

Cunningham was a strong believer that dance does not necessarily require an emotional aspect. 

He also believed that movement should exist for movement’s sake because “[his] work always 

[came] from the same source–from movement” (14). 

Unlike choreographers in the Renaissance period, Cunningham did not believe in a 

fixed structure of the universe. His belief in the arbitrariness and unpredictability of life 

initiated him to find ways to reflect these ideas in dance (Au 156; Chance Conversations). He 
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did not want to portray order and structure in the universe like the Renaissance dances, but he 

wanted his dances to represent uncertainty in the universe. This interest led him to work with 

his close friend and colleague, John Cage, who explored the idea of indeterminacy in his music 

compositions. For Cunningham, indeterminacy was an attractive concept because it aligns well 

with the unpredictable conditions of nature (Franko 77). Indeterminacy meant that various 

elements of his work would be random and would differ in every performance, just as some 

aspects of nature are random every day. As with Cage, Cunningham was also interested in 

freeing his works from his own likes and dislikes (Chance Conversations). Playing with 

indeterminacy of space and time allowed for this. 

Cunningham’s choreographic process involved establishing a guideline with rules and 

directions for his dancers. Following Cage, Cunningham used chance procedures, or chance 

methods, to achieve indeterminacy. The chance procedures determined what his dancers would 

do in which situations and thus, determined the rules and directions in the guideline. An 

example of a chance method would be the use of playing cards to determine the order of a set 

of pre-choreographed movements, as employed in Cunningham’s Canfield in 1969 (Au 156). 

In this piece, Cunningham appointed a word indicating a unique movement to every card in 

the deck, and he assigned the red suit as fast movements and the black suit as slow movements 

(Dance Capsules). The reliance on probability not only eliminated certainty of a performance, 

but also Cunningham’s ability to choreograph dance in the traditional sense; he did not have 

the ability to make every choreographic decision in the way most choreographers did because 

he left the manipulation of various aspects of the dance piece to chance. Whether planned or 

unplanned, Cunningham could not completely express his choreographic intentions. 
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Seeing that there is standard mathematical terminology associated with probability, I 

will briefly identify and explain commonly used terms before using them in the context of 

Cunningham’s chance dances. Suppose I flip a coin repeatedly to find out the probability of 

getting heads versus the probability of getting tails. The two outcomes of this experiment is 

either heads or tails. Similarly, rolling a dice produces six outcomes. The set of outcomes, 

called the sample space, from rolling a dice ranges from one to six. If I roll a dice 10 times and 

only got even numbers, each even number is labelled as an event, or a subset of outcomes in 

the sample space. 

The concept of probability was introduced to dance when Cunningham based his 

dances off the idea of chance and randomness. Suppose a set of movements (outcomes) is 

obtained from a repertoire (sample space). If the movements were chosen at random, then each 

movement has an equal chance of selection. For simplicity purposes, I assumed that the method 

of achieving randomness is through rolling a dice. Suppose a dance based on randomness is 

created by selecting one of two movement sequences from a repertoire, A and B. Sequence A 

would be chosen if the dice lands on an odd number, and sequence B would be chosen if the 

dice lands on an even number. Given this information, sequences A and B have an equal chance, 

of 50%, of being selected as the dance. However, the probability of the sequences being 

selected as the dance would differ if the sequences are assigned to different numbers of the 

dice. For example, the probably of sequences A and B would differ if numbers 1 through 4 of 

the dice are assigned to sequence A, and numbers 5 and 6 of the dice are assigned to sequence 

B. The respective probabilities would be 66.67% and 33.33%. By using similar chance 

methods, Cunningham demonstrated in his dances the concept of indeterminacy and the role 

of chance in nature. 
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Performed in 1951, Sixteen Dances for Soloist and Company of Three was the first 

piece Cunningham choreographed that used a guideline to explore the potential role of 

indeterminacy in dance (Jowitt 284). In this piece, the guideline for his dancers was created 

using chance methods to order pre-choreographed movement sections. He also left to 

randomness and chance the timings of the sections and the directions of his dancers. To easily 

understand how probability comes into play in one of Cunningham’s “chance dances,” I only 

studied the relationships relating to probability through the ordering of movement sections 

using chance methods. 

A summary of the numerical relationships in Cunningham’s use of chance to order 

movement sections is illustrated in table 3. Assume that Cunningham starts with one movement 

section in a repertoire, section X. At this point, the only possible movement section that can be 

selected, or combination of movements, is X itself. In other words, there is a 100% chance that 

Table 3 

Relationship Between the Number of Movement Sections and Permutations 

Number of 
Movement 

Sections (n) 

Number of Possible 
Permutations (P) 

Possible 
Permutations 

Probability of 
Permutation (pr) 

1 1 X 100% 

2 2 X, Y 
Y, X 50% 

3 6 

X, Y, Z 
X, Z, Y 
Y, X, Z 
Z, X, Y 
Z, Y, X 

16.67% 

𝑛 𝑃 =
𝑛!

(𝑛 − 𝑛)! 

= 𝑛 ∗ (𝑛 − 1) ∗ (𝑛 − 2)… ∗ 1 
 𝑝𝑟 =

1
𝑃 ∗ 100% 
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the dancers perform section X. With one more movement section, section Y, the sample space 

increases from one to two. With movement sections X and Y, the combinations of the dance 

increase. One possible order of movements, or permutation, is X and then Y, and another 

possible permutation is Y and then X. Each of these permutations has a 50% probability of 

appearance. Adding an extra section to the repertoire, section Z, further increases the 

permutations of the dance. With three sections, there are six possible permutations, where each 

outcome in the sample space of six has almost a 16.7% chance of occurring. 

As the number of movement sections in the repertoire grows, the number of possible 

permutation increases and the probability of each permutation falls. To find the number of 

possible permutations (𝑃) associated with any number of movement sections (𝑛), one could 

use the formula to find 𝑃, as stated in the second column and last row of table 3. If 𝑛 = 10, or 

if the repertoire consisted of 10 movement sections, then the number of possible permutations 

would be 3,628,800. The calculation is presented below. 

𝑃 = 10(10 − 9)(10− 8)(10 − 7)(10 − 6)(10 − 5)(10 − 4)(10 − 3)(10 − 2)(1) 

= 10 ∗ 9 ∗ 8 ∗ 7 ∗ 6 ∗ 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1 = 3,628,800 

Using the formula in the last row and column of table 3 to find 𝑃, the following shows the 

calculation to find the probability of each permutation occurring if there were 10 movement 

sections in the repertoire. 

𝑝𝑟 =
1

3,628,800 ∗ 100% = 0.00002755739% 

Undoubtedly, the difference between the numerical permutations of having three and 10 

movement sections changed exponentially. Increasing the repertoire from three to 10 increases 

the sample space from six to 3,628,800 outcomes. This means that as Cunningham uses more 

movement sections, the possible dances that could be performed drastically increases. 
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However, every permutation would have a lower probability of presenting themselves on stage. 

Only by adding seven more movement sections, the probability of appearance of each 

permutation would fall from 16.67% all the way to 0.000028%. By using chance methods in 

the other elements of the dance, including the timing of the sections and direction of the 

dancers’ facings, the dance and hence probability, change accordingly. 

This framework of choreographing can even be further extended to create more 

complex dance pieces of varying probabilities. By 1953, Cunningham had experimented with 

other chance procedures, complicating the guidelines for his dancers. Rather than arranging 

the order of choreographed and thus, fixed movements by chance, Cunningham created 

guidelines for his dancers using chance procedures to formulate both indeterminate and fixed 

elements of the dance in Suite by Chance (Au 157). Cunningham started off choreographing a 

number of movement sequences that linked easily. He then made a chart that divided into 

different qualities of the dance such as timing and movement positions. To complete the dance 

composition, he tossed a coin to determine how the movements would both be combined and 

carried out. Complicating the use of randomness in choreography complicates the rules and 

directions guiding his dancers on how to perform the piece. Moreover, it also complicates the 

process of identifying and analyzing probability-related relationships in dance. Although 

possible, I did not derive more formulas to find the probabilities according to the chance 

method of coin-tossing and Cunningham’s choreographic decisions on what characteristics of 

the piece relies on randomness. 

In 1963, Cunningham used different chance procedures to choreograph Field Dances. 

Cunningham assigned each dancer a set of movement sequences. During the performance, the 

dancer could freely carry out the sequences in whichever order they wanted however many 
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times they wanted. They were also allowed to enter and exit at any time. There were many 

other ways in which Cunningham used chance methods in his dance to achieve indeterminacy 

and unpredictability. These strategies include the number of dancers on stage, the shape of the 

path the dancers took to execute fixed movement sequences whether curved or straight, the 

duration of each execution, the approximate speed of the movements, the level of the dancers, 

as well as the relative spacing of the dancers (Jowitt 279). The relationships relating to 

probability in every chance dance depended on the chance method used and on how different 

movement qualities or choreographic decisions rely on randomness. Clearly, the guideline that 

Cunningham created for his dancers differed piece from piece, with each incorporating a range 

of various aspects of dance. 

Besides the choreographic decisions in the dance itself, probability also replaced the 

certainty of other production aspects, including the costumes and music. This meant that 

Cunningham’s guideline included not only rules and directions for movement, but also for 

costumes and music. For example, Cunningham allowed his dancers to pick their costumes for 

every performance of Story from a supply of second-hand clothing selected by designer Robert 

Rauschenberg. Although music still played a role in Cunningham’s choreographies, the way 

in which it was used differed from more traditional dances because he choreographed 

independently of music (Morgenroth 15). Prior to the choreographic process, Cunningham and 

his music composer, John Cage, only decided on the length of the music and dance. Separately, 

they would create their pieces and then come together with their individual works. Without 

music to work with, Cunningham choreographed the dance with the help of a stopwatch to 

ensure that the dance would end at the same time as the music. This process guaranteed that 
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only chance would dictate whether the music aligned with the dance or whether the music 

contributed to creating an emotional response in the audience. 

By prohibiting the influence of dance on music and vice versa, the probability of the 

dance evoking a particular response in the audience changes every time it is performed. This 

means that not only is there indeterminacy in the chance dances, but also in the audience’s 

responses. With music functioning as an additional element in the dance, more outcomes are 

created. A greater number of outcomes signifies a larger sample space. Thus, the probability 

of every response occurring falls. As with other elements of his pieces, Cunningham used the 

numerical relationships of probability to achieve indeterminacy. 

Conclusion 

My analysis of numerical relationships in various dances indicated a noticeable 

relationship between dance and specific fields of mathematics, including geometry and 

probability. Based on a number of choreographers and works, I discerned different ways in 

which the creation of dance can involve numerical relationships. 

Through the discussion of three works, I revealed how geometry is manifested in dance. 

Beckett created a geometrical formula that dictated the movements of the dancers. Carboni 

transformed the numerical concept of the origin in Beckett’s Quad into a new mathematical 

concept, which formed a choreographic score. The two artists used geometrical relationships 

as a starting point but achieved very different results. The former dehumanized his dancers, 

and the latter gave a strong personality to the soloist. I also saw how numerical relationships 

can be strategically used to create opposing effects. From the Renaissance dances, symmetry 

in geometrical patterns and figures aimed to represent divinity and the highly structured 

universe. Dissimilarly, Cunningham’s chance dances used probability to achieve the effect of 
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indeterminacy and randomness. His choreographic process involved creating a guideline of 

rules and formulas that determined what the dancers would do in their performance. 
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Chapter 2. Elements of Movement and Dance: The Art of Making Dances 

 I studied dances that incorporate mathematical ideas, including geometry and 

probability, because they illuminate how I may approach a dance based on highly mathematical 

econometric concepts. It was also important that I emphasized learning the art of choreography 

itself because knowledge of choreography provides a structure and framework to create new 

dance ideas. To further my understanding of choreography, I relied on the book The Art of 

Making Dances by Doris Humphrey. This book offers one of many perspectives and 

information on dance choreography. 

 Doris Humphrey was an important figure shaping the history of modern dance in the 

United States of America in the early 20th century. She formalized her choreographic theory in 

1959 in The Art of Making Dances. Although her choreographic theory was written six decades 

ago, it is still largely applicable and used to this day and age. I selected her theory because it 

spells out basic yet vital elements of choreography that was required in my choreography. 

However, my use of her theory does not imply that I completely agree with all her 

choreographic ideas. Even Humphrey herself attests that “Discrimination and judgement are 

operating constantly, deciding what is agreeable and what is not” (50). Regardless of our 

opinions, her choreographic theory ultimately informed some of my choices in the final dance 

performance and guideline. 

Design 

For Humphrey, the raw materials of dance are design, dynamics, rhythm, and 

motivation (46), with each material of dance containing its own elements. According to 

Humphrey, there are more elements in design than any of the other raw materials of dance. 

The two main aspects of design are space and time (49), and they are respectively referred to 
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as space-designs and time-designs. On the one hand, people can view the design of a dance 

with respect to space at one point in time. For example, I can observe a different design at 

every moment of pause in a dance. On the other hand, people can perceive the design of a 

dance over time in one space. For example, I can observe a design in time from either the 

transition of one movement to another or the overall shape created in a section of dance. 

Space-designs, or designs that are viewed in space at one point in time, fall under two 

groups – symmetry and asymmetry (50). In everyday life, symmetry suggests stability. For 

example, an architectural construction with a symmetrical structure signals stability, balance, 

and security. This can be contrasted with asymmetry in the Leaning Tower of Pisa, which 

offers a sense of instability, imbalance, and trepidation. Using symmetry in dance can create a 

calming effect because of its association with stability (56). Despite the appeal of a calming 

effect, there is a need for asymmetry in dance because “art is for stimulation, excitement, and 

adventure” (50). People often prefer a passionate and vibrant speaker over a monotonic speaker. 

Likewise, asymmetry in dance stimulates the senses and captivates the audience. However, 

both symmetric and asymmetric designs must not be excessively used because it may remove 

the excitement in the dance. A balance between symmetry and asymmetry prevents the dance 

from being dull. 

Each of the two groups of design can either be oppositional or successional (57). 

Oppositional designs have lines that are angled and opposing. The narrower the angle, the 

weaker the angle becomes. At the extreme, two lines producing a right angle creates the 

strongest image. For example, the upper arm can be one line and the lower arm can be the 

second line. Bent at the elbows, the two lines form a right angle. When there are two lines 

pointing towards different directions, the two directions of energy “dramatizes and emphasizes 
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the very idea of energy and vitality” (58). This suggests that oppositional designs are forceful, 

as with asymmetrical designs. In contrast, successional designs have lines that are curved and 

flowing. The gradual and gentle changes in successional lines relative to abrupt changes in 

oppositional lines create a soothing effect, as with symmetrical designs. For example, the upper 

body can be bent backwards into the shape of a C. 

 Apart from space-designs, there are also time-designs that are viewed over a certain 

period of time. Humphrey calls the organization of movement in time-designs the “theory of 

the phrase” (66). Phrases are shapes that are formed in the succession of time from one design 

in space following to another design in space. All phrases have a recognizable shape, a 

beginning and an end, peaks and troughs, and a time length (68). There three types of phrases, 

each differing in the position of its high point. When a dancer is performing the high point of 

a phrase, it either means that the dancer is at a high level in space or that there is a peak in 

dynamic, tempo, or other elements of dance. The first type of phrase has its high point at the 

beginning of the phrase. The second type has its high point at or near the end, and the third 

type has its high point at or near the middle. The types of phrases in a dance should be varied 

to interesting dances. 

Another element of design in dance 

is the stage space. Different areas of the 

stage have specific names, as exhibited in 

figure 9. According to Humphrey, the most 

powerful spatial path of the stage is the 

diagonal, starting from one corner of the 

stage to another (75). Similarly, the most 
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powerful area of the stage is the Center Line of the stage, which includes UC, CC, and DC 

(80). As dancers move from UC to DC, their stature and power increases. Within the Center 

Line, the “dead center,” or CC, is the strongest position on the stage (76). Like asymmetry, the 

dead center can lose its power when it is overused. Asymmetry maintains its power to stimulate 

the senses through the occasional and appropriate use of symmetry. Likewise, the dead center 

maintains its power through the use of other areas of the stage space. The most powerful spot 

on stage is thus refreshed and energized by its lack of use.  

Although not as powerful as the Center Line, the four corners in UR, UL, DR, and DL 

are also strong. This is because they are nearest to the architectural support of the stage (74). 

The downstage corners in DR and DL can be strategically used because the close proximity 

with the audience gives an intimate feeling (78). This suggests that as the dancers move farther 

upstage, their performance becomes weaker. In comparison to the sides of the stage, the 

downstage and upstage corners are also strong spaces for entrances and exits (82). 

Generally speaking, a stage has seven strong areas and six weak areas. Respectively, 

these areas are displayed by the filled and hollow circles in the aerial view of the stage in figure 

10. Furthermore, it is crucial to consider the directions of the dancers relative to the stage space 

(85). The lines and shapes made by the body can be obstructed from the audience because of 

improper directional choices. A 

remedy for such a mistake would be to 

have dancers face downstage, perform 

circular movements, or position 

themselves at a forward diagonal (86). 

 

 

 

 

 

 

 

Figure 10. Power of Positions On the Stage 
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The last element of design is the spatial relationship of dancers in small groups (91). 

Dancers can be assembled into groups in a way that isolates a single dancer, giving them the 

most attention and power on stage. For example, the group of dancers in ballet called the corps 

de ballet often dances near stage left or right, highlighting the principal dancer in center stage. 

Similarly, a piece consisting of only five dancers can do the same. One dancer can attract the 

audience’s attention if they perform a set of sharp movements in CC while the remaining four 

dancers are towards upstage slowly performing the same set of movements. This arrangement 

encourages the audience to place more of their attention primarily on the single dancer and less 

of their attention on the group of anonymous and indistinguishable dancers. In contrast, a group 

of dancers rather than one leading dancer can carry much of the weight of the piece by bringing 

to light the identity of the dancers within the group. It is important to equally highlight the 

personalities of all the dancers to reveal their identities. 

Dynamics 

The second raw material of dance is dynamics, which can be thought of as a scale 

possessing one end with the “smoothness of cream” and another end with the “sharpness of a 

tack hammer” (97). A simple approach to dynamics in dance is to vary the tempo of the 

movements. However, additional layers of elements of dance, such as tension, can be added to 

create variations of dynamics. Humphrey offers a list of examples of different effects within 

dynamics, including “slow-smooth with force,” “fast-smooth without tension,” “fast-sharp 

with tension (like pistol shots),” “moderate-sharp with little force (rather blunt),” and “slow-

smooth without tension (dream, sluggish or despairing)” (97). However, she points out that the 

words sharp, smooth, fast, slow, tension, and relaxation cannot be defined in absolute terms 

because everyone evaluates each word subjectively. 
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Once a choreographer has a specific dynamic in mind, they must choose the appropriate 

movements to portray the effects within the dynamic (98). For example, it would be sensible 

to use angular movements to create sharpness for they are broken and harsh. It would not make 

sense to use circular movements to create sharpness because they are smooth and continuous 

in nature. Apart from the proper types of movements, the choreographer must also select 

appropriate body parts to carry out those movements. The segmentation of body parts is useful 

when a desired body part and movement cannot create a desired effect within the dynamic. For 

example, a swing of the leg from the hips is difficult to create sharpness because it cannot 

move fast enough and does not have any points of accent. To achieve sharpness, the dancer 

would have to perform accented thrusts on joints of the leg, such as the knee and/or ankle. 

As with the use of symmetry and asymmetry and of the dead center, a dance should 

vary the use of dynamics to keep the audience engaged. For the audience, the combination of 

sharp dynamics and speed is stimulating, and the combination of smoothness and slowness is 

soothing. However, each effect should be used appropriately to maintain variation in dynamics. 

For example, if an entire piece is sharp and speedy, its constant stimulating effect loses its 

power and stops being stimulating. On the other hand, if an entire piece is smooth and slow, 

its constant soothing effect becomes tedious and weak. Dynamics can also be considered not 

only between movements, but also within movements (101). Dynamics can be created within 

movements by varying the uses of different body parts. For example, a dancer can move their 

torso in a circular motion while they flick their hands around. This would be more engaging to 

the audience due to the variation of effects within the movements that produce a larger effect. 
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Rhythm 

Humphrey considers rhythm as the “most persuasive and most powerful element” (104) 

in the art of dance. A main reason is because it “permeates every aspect of human beings” and 

organizes human life (104). Humphrey identifies four sources of rhythmical organization in 

human life (105). The first is the vocal apparatus, which involves the breath, speech, and 

singing. This apparatus helps human beings develop a sense of rhythmic awareness. The 

second source deals with the unconscious functions of life such as the heartbeat, peristalsis, 

motion of muscles, and waves of physical sensation. The third is emotional rhythm, where the 

human mind experiences waves of different feelings of various intensities. 

The fourth source of rhythmical organization is the most important for dancers. The 

motor and propelling mechanisms of human beings largely depend on the feet, as they provide 

the platform of body support to travel around in space. According to Humphrey, dance 

originated from the feet (105). The walking and dancing bodies create both rhythm and beat as 

weight shifts across different parts of the body. The process of this creation is facilitated 

through the interplay between the moving body and gravity (106). A walk is initiated by 

removing one leg off the ground, shifting the weight of the body to the other leg. As the leg in 

the air descends, gravity takes control to complete the step. The beat of a walk occurs on every 

step. The strength of the beat can be artificially amplified or softened by controlling the leg 

muscles. In other words, gravity provides the natural force for the production of beats, which 

can be manipulated by the person. During her choreographic career, Humphrey developed a 

theory of motion called fall and recovery. The fall alludes to giving in to gravity, and recovery 

refers to rebounding from gravity. Suppose the relationship of a dancer with respect to gravity 

is neutral in a standing position. If the dancer executes a leap, they give in to gravity when they 
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are pulled down onto the floor. As the dancer lands and recovers to a neutral standing position, 

they rebound from gravity. The rhythm of a dance is created through variations in the 

movements that embody the concepts of fall and recovery. 

Tempo is an aspect of rhythm because can describe the pattern and frequency of rhythm. 

Like the words associated with dynamics such as sharp and slow, words associated with tempo 

such as moderate, fast, and slow are defined in relative terms (108). Nonetheless, Humphrey 

provides a rule of thumb. Instead of thinking about tempo in terms of the name of the tempi 

(e.g. fast and slow), dancers should think of tempo in terms of movement. Humphrey considers 

the rate of normal walking as a moderate tempo. Hence, anything faster than that is fast, and 

anything slower is slow. In dance, a choreographer can modify the audience’s perception of 

tempo. This alteration can be achieved by starting the piece faster or slower than moderate 

tempo and then further increasing or decreasing the speed of movements so that the original 

tempo appears moderate relative to the modified speed. Like the four rhythmical organizations 

of human life, tempi must change correspondingly to stimulate the audience. 

Motivation 

 As Humphrey contests, “A movement without a motivation is unthinkable” (110). 

Humphrey believes that there is no point performing a movement that lacks purpose. She is 

especially critical of dancers executing pure technique, as it is empty and without substance. 

Nonetheless, a highly technical dance can still possess motivation for the movements can aim 

to demonstrate the advanced physical abilities of the dancers. Motivation makes a performance 

worthy of display, and it prevents a performance from becoming technical, cold, and 

mechanical (110). Humphrey draws a parallel between dance and drama (111). Everything a 

playwright puts on the script strategically communicates something. Actors would not say 
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something bizarre on stage, such as “ah-ah-ah,” unless it serves a purpose to the play. Similarly, 

every movement in dance should in some way have intent. 

 Apart from the motivation behind dancers’ movements, Humphrey emphasizes on the 

intent of dancers’ faces as she is “not a believer of the faceless dancer” and she sees “no 

reason for eliminating expression of the face” (85). Owing to the highly interactive and 

interpersonal nature of people’s lives, the power of faces is inevitably felt in everyday life. 

Unless the purpose of a dance involves no or minimal human-related ideas, such as 

impersonality and total abstraction, then the impassive face is appropriate. 

Conclusion  

In this chapter, I explored the art of dance and choreography using Humphrey’s The 

Art of Making Dances. I discussed Humphrey’s ideas on the four raw materials of dance, 

including design, dynamics, rhythm, and motivation. More specific elements of dance were 

discussed for each raw material of dance. This knowledge was ultimately applied to the 

choreographic decisions in the final dance piece and was considered in the creation of the 

guideline. 
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Chapter 3. The Basic Model of Econometrics: Regression Equations 

My main goal was to present a dance that was based on concepts of regression 

equations in the Spring Dance Concert. My secondary goal was to create a guideline that other 

dance and/or economics enthusiasts can foll6ow to transform certain regression equations into 

a dance. To do so, I had to develop a working knowledge of regression models. Then, I had to 

learn about other econometric concepts that were included in the guideline but were not 

necessarily included in my final choreography. As much as I could, my choreographic 

decisions were based on econometric concepts. To understand the logic behind my choices and 

how the audience could potentially interpret the dance as an embodiment of a regression 

equation, I explain relevant aspects of econometrics in this chapter. As I introduce these ideas, 

I will briefly indicate how they were expressed in the final dance performance and how they 

could be expressed in other dances that are based on econometrics. For a more detailed 

discussion of how my choreographic decisions reflect econometrics, refer to Chapter Four. 

But first, what is it? Think of econometrics as the intersection between mathematics 

and economics. Econometrics is highly mathematical in nature because economic phenomena 

are often represented through math; it is a branch of study in economics that uses quantitative 

methods to measure and analyze economic phenomena (Studenmund 2). For example, 

econometrics can be used to measure and analyze how discrimination in the work force affects 

employment opportunities or how the number of reviews of a dance performance affects 

performance attendance. As brought up earlier, the regression equation I used as the 

choreographic score in the final dance performance explored the numerical relationship 

between the technique of dancers (represented by variable 𝑇𝐸𝐶𝐻 ) and the consumer’s 

willingness to pay for their performance (represented by variable 𝑊𝑇𝑃), rather than the subject 
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matter themselves. As expressed in [a] of 

figure 11, part of the regression equation I 

used in the final dance establishes how 𝑇𝐸𝐶𝐻 

affects 𝑊𝑇𝑃 . The unit of measurement for 

𝑇𝐸𝐶𝐻 is levels, where the minimum of level 

zero signifies dancers with little or no technique, and the maximum of level five signifies 

dancers with a high level of technique. On the other hand, 𝑊𝑇𝑃 is measured in U.S. dollars. 

Single-Equation Linear Regression Model 

A common and basic method in econometrics is the single-equation linear regression 

model, which has two main components, namely the dependent variable ( 𝑌 ) and an 

independent variable (𝑋). Dependent variable 𝑌 is also called the outcome variable because it 

is the output of the equation, and independent variable 𝑋 is also called the explanatory variable 

because it explains the variation in dependent variable 𝑌. A single-equation linear regression 

model establishes a relationship between independent variable 𝑋 and dependent variable 𝑌 to 

see how the former affects the latter, as outlined in [b] of figure 11. As stated in [a], my 

regression equation shows how 𝑇𝐸𝐶𝐻 affects 𝑊𝑇𝑃. Therefore, 𝑊𝑇𝑃 is dependent variable 𝑌, 

and 𝑇𝐸𝐶𝐻 is independent variable 𝑋. 

The concept of the independent and dependent variables could be captured in dance. In 

[b] of figure 11, it is stated that independent variable X affects dependent variable Y, and a 

dancer affects the dance. Following this logic, a dancer could represent independent variable 

𝑋, 𝑇𝐸𝐶𝐻, and the dance itself could represent dependent variable 𝑌, 𝑊𝑇𝑃, as outlined in [c] 

of figure 11. The elements grouped in blue on the left column are associated with the dependent 

 

 

 

Figure 11. Relationship Between 
Independent and Dependent Variables 

       (left column)                   (right column) 
[a]   WTP <--affects-- TECH 
[b]         Y <--affects--  X 
[c] dance <--affects-- dancer 
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variable, and the elements grouped in green on the right column are associated with the 

independent variable. 

Equation 1 more formally represents the relationship between the dancers’ technique 

(𝑇𝐸𝐶𝐻) and consumer’s willingness to pay (𝑊𝑇𝑃) in a standardized format of a single-

equation linear regression model. 

 

 

𝑊𝑇𝑃						 = 				 𝛽D 		+		𝛽F𝑇𝐸𝐶𝐻   (1) 
(term 1)           (term 2)        (term 3) 

         (dance itself)       (dancer 1)     (dancer 2) 

Term 1 on the left side of the equation is always the dependent variable. The right side of the 

equation consists of terms 2 and 3. Term 2 is the constant or intercept term, 𝛽D, a number that 

indicates the value of dependent variable 𝑌 when independent variable 𝑋 has no impact on 

dependent variable 𝑌 , or when 𝑋 = 0. In equation 1, the number of 𝛽D  would tell us the 

consumer’s willingness to pay if the dancers’ technique was level zero (low level of technique). 

Like independent variable 𝑇𝐸𝐶𝐻 , constant 𝛽D  could also be represented by a dancer. The 

reason is that constant 𝛽D affects dependent variable 𝑊𝑇𝑃, just as independent variable 𝑇𝐸𝐶𝐻 

affects dependent variable 𝑊𝑇𝑃. To avoid confusion over the dancers, I continue by referring 

to the dancer representing constant 𝛽D as dancer 1 and the dancer representing independent 

variable 𝑇𝐸𝐶𝐻 as dancer 2. 

Term 3 consists of two components, the beta coefficient and independent variable 

𝑇𝐸𝐶𝐻. The two are paired together because all independent variables correspond to a beta 

coefficient that is signified by symbol beta, 𝛽. In the single-equation linear regression model, 

the specific name for beta coefficient βF is slope coefficient. βF is a dollar value that measures 

slope 
coefficient 

dependent 
variable (𝑌) constant 

independent 
variable (𝑋) 
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how much a one-unit increase in independent variable 𝑇𝐸𝐶𝐻  impacts dependent variable 

𝑊𝑇𝑃. This impact can be positive if 𝛽F > 0, negative if 𝛽F < 0, or zero if 𝛽F = 0. While an 

impact of zero suggests no impact at all, a positive (or negative) impact means that a one-unit 

increase in independent variable 𝑇𝐸𝐶𝐻  increases (or decreases) the value of dependent 

variable 𝑊𝑇𝑃 by the size of 𝛽F dollars. A positive impact is demonstrated in figure 12. The 

dark blue bar represents the original size of dependent variable 𝑊𝑇𝑃  prior to a one-unit 

increase in independent variable 𝑇𝐸𝐶𝐻. Dependent variable 𝑊𝑇𝑃 increases by the size of 𝛽F 

dollars after a one-unit increase in 

independent variable 𝑇𝐸𝐶𝐻 , which is 

represented by the addition of the light 

blue bar in figure 12. On the other hand, a 

negative impact means the subtraction of 

𝛽F  amount from the original size of 

dependent variable 𝑊𝑇𝑃 . Specifically, 

βF is a dollar amount that tells economists the magnitude of the effect of a one-level increase 

in the technique of dancers (represented by a dancer) on the consumers’ willingness to pay 

(represented by the dance itself). When slope coefficient 𝛽F = 0, it means that 𝑇𝐸𝐶𝐻 has no 

impact on 𝑊𝑇𝑃. A large value of 𝛽F signifies a large impact of 𝑇𝐸𝐶𝐻 on 𝑊𝑇𝑃, meaning a 

larger light blue bar in figure 12. This can be compared to a smaller light blue bar when the 

value of 𝛽F is small due to the small impact of 𝑇𝐸𝐶𝐻 on 𝑊𝑇𝑃. 

In choreography, slope coefficient 𝛽F  could be used to determine how dancer 2 

(representing independent variable	𝑇𝐸𝐶𝐻) is impacting the dance (representing dependent 

variable 𝑊𝑇𝑃). Suppose independent variable 𝑇𝐸𝐶𝐻 represents an element of dance such as 

 
 
 
𝑊𝑇𝑃 after a one-
level increase in 

𝑇𝐸𝐶𝐻 

𝛽F amount 
(in dollars) 

𝑊𝑇𝑃 
(in dollars) 

Figure 12. Change in Independent Variable 
𝑇𝐸𝐶𝐻 on Dependent Variable 𝑊𝑇𝑃  
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the speed of movements. Its corresponding slope coefficient, 𝛽F, would dictate the speed of 

dancer 2’s movements. If 𝛽F = 0, dancer 2 would have no impact on the speed of the dance 

and therefore, would perform movements at a moderate or normal pace. For the purpose of my 

study, any element of dance matched with a coefficient of zero is considered the default. Here, 

a moderate tempo is the default for the element of dance, tempo. If the slope coefficient is 

positive so that 𝛽F > 0, dancer 2 would perform fast movements; if the slope coefficient is 

negative so that 𝛽F < 0, dancer 2 would perform slow movements. In the example in figure 12, 

the addition of 𝛽F means that dancer 2 would perform faster movements. 

The functional form of a model determines the shape of the regression equation. With 

different functional forms, regression equations have different shapes. In choreography, the 

regression equations and thus, varying shapes, could determine the spatial patterns that dancers 

make, the formations of the dancers, or the shapes that individual dancers or dancers together 

make in their movement. The functional form in equation 1 is called the linear functional form 

because it is a single-linear regression model. Graphically, equation 1 looks like a straight line, 

as demonstrated in figure 13. There are three ways to choreographically represent the 

functional form of equation 1 as a straight line, with dancer 1 as 𝛽D and dancer 2 as independent 

variable 𝑋. First, the two dancers could travel in a straight line to represent the linear functional 

form as a spatial pattern. Second, they could create a straight line to represent the functional 

form as a formation so that the relative positionings of the dancers create a straight line. Third, 

individual dancers or both dancers 1 and 2 could create a straight line to represent the functional 

form in the shape of the movement. 
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Equation 1 in figure 13 is displayed as a graph on a grid system on which coordinates, 

such as points 𝑂, 𝐴, and 𝐵, can be mapped. To visualize the graphical form of equation 1 as 

the formation of the dancers, imagine the performance space as the grid with the 𝑋-axis as 

downstage and the 𝑌-axis as stage right. Dancers 1 and 2 could form the shape of equation 1 

by forming a straight line from downstage right across upstage left. Seeing that dancer 1 

represents 𝛽D, they would start at point 𝑂 where 𝛽D is located. At this point, the dependent 

variable or 𝑋-coordinate is zero, whereas the independent variable or 𝑌-coordinate is 𝛽D . 

Coordinates are represented as (𝑋, 𝑌) . Therefore, the coordinate of point 𝑂  is (0, 𝛽D) , 

suggesting that dancer 1 would be situated at the edge of stage right and away from the edge 

of downstage by the amount of 𝛽D. 

Figure 13. Graphical Representation of a Linear 
Regression Equation (Studenmund 7) 

𝛽D 

Equation 1: 
𝑌 = 𝛽D + 𝛽F𝑋 

Δ𝑋 

Δ𝑌 

stage right stage left 

downstage 

upstage
s 
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Equation 1 only looks at how a single explanatory variable, 𝑋 = 𝑇𝐸𝐶𝐻 , affects 

dependent variable 𝑌 = 𝑊𝑇𝑃. In reality, there are often more than one explanatory variable 

affecting the dependent variable but are not included in the model. These excluded variables 

are called omitted variables. Any variation in the consumers’ willingness to pay for dance 

concerts not explained by the technique of dancers is incorporated into the stochastic error term 

𝜖 (9), as demonstrated in equation 2. 

𝑊𝑇𝑃					 = 			 𝛽D 			+ 			𝛽F𝑇𝐸𝐶𝐻		 + 			𝜖   (2) 
        (dance itself)       (dancer 1)      (dancer 2)      (dancer 1) 

Since constant 𝛽D and stochastic error term 𝜖 are numbers that can be added together, dancer 

1 who is representing constant 𝛽D  would also represent stochastic error term 𝜖 . This is an 

appropriate choice because both constant 𝛽D  and stochastic error term 𝜖  affect dependent 

variable 𝑌. Dependent variable 𝑌 on the left side of equation 2 depends on all the elements on 

the right side of the equation. Likewise, a dance depends on all its dancers. In this case, dancers 

1 and 2 affect the dance. 

Multivariate Linear Regression Model 

Apart from the dancers’ technique, there are many other things that affect the 

willingness of consumers to pay for a dance performance. A multivariate linear regression 

model takes into account more than one explanatory variable, compared to the single-equation 

linear regression model that takes into account only one explanatory variable. Although only 

partially developed for the purpose of simplicity, equation 3 is the regression equation I used 

for my choreography that takes into account two explanatory variables that may affect the 

consumer’s willingness to pay, 𝑊𝑇𝑃. The first variable is the technique of dancers, 𝑇𝐸𝐶𝐻, 

and the second variable is 𝐽𝑂𝐵, the weekly hours of work of an audience member. 
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𝑊𝑇𝑃						 = 			 𝛽D 			+ 	𝛽F𝑇𝐸𝐶𝐻	 +	𝛽P𝐽𝑂𝐵			 + 			𝜖   (3) 
         (dance itself)      (dancer 1)      (dancer 2)      (dancer 3)     (dancer 1) 

Any variation in 𝑊𝑇𝑃 not explained by the two independent variables is incorporated into 

stochastic error term 𝜖. These consist of all other factors affecting the consumer’s willingness 

to pay. A dance based on the structure of multivariate linear regression model in equation 3 

would require three dancers to represent the additional explanatory variable, 𝐽𝑂𝐵, in the model. 

In a single-equation linear model, 𝛽F is called the slope coefficient. In a multivariate 

linear model, all beta coefficients, including 𝛽F  and 𝛽P  in equation 3, are called regression 

coefficients. The interpretation of slope coefficients differs from that of regression coefficients. 

As stated in the single-equation linear model in equation 1, 𝛽F is the change of dependent 

variable 𝑊𝑇𝑃  from a one-unit increase in its corresponding explanatory variable 𝑇𝐸𝐶𝐻 . 

However, when interpreting regression coefficient 𝛽F  in the multivariate linear model in 

equation 3, the impact of the other explanatory variable, 𝐽𝑂𝐵 , on 𝑊𝑇𝑃  is assumed to be 

constant. Thus, 𝛽F is the change of 𝑌 from a one-unit increase in its corresponding explanatory 

variable, 𝑇𝐸𝐶𝐻 , while holding the impact of variable 𝐽𝑂𝐵  on 𝑊𝑇𝑃  constant. In dance, it 

means that the dancer representing 𝛽F  would keep other elements of dance constant by 

performing those elements of dance at the default. 

Estimating Regression Equations 

To avoid overcomplicating the next econometric concept, I now return to the simple 

single-equation linear regression model in equation 1. The regression equations I have been 

describing are purely theoretical; they have no actual numbers. The goal of regression analysis 

is to use a dataset to quantify a theoretical equation into an estimated regression equation (15). 

regression 
coefficients 
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This manipulation involved using data to estimate the impact of independent variable 𝑇𝐸𝐶𝐻 

on dependent variable 𝑊𝑇𝑃. 

𝑊𝑇𝑃Q 			= 				 𝛽DR 			+			𝛽FR𝑇𝐸𝐶𝐻    (4) 

The symbol ^ (hat) on top of 𝑊𝑇𝑃, 𝛽D, and 𝛽F tells economists that the values have been 

estimated into an assigned number. For example, 𝛽DR is the estimated value of constant 𝛽D. 

The full estimated regression equation I ultimately used in my choreography is 

introduced in Chapter Four. However, the estimated regression equation in equation 5 is an 

example of an estimated regression equation. 

𝑊𝑇𝑃Q 			= 			15			 + 			2𝑇𝐸𝐶𝐻     (5) 
       (dance itself)      (dancer 1)     (dancer 2) 

The estimated value of 𝛽D, as denoted by 𝛽DR, is 15, and the estimated value of 𝛽F, as denoted 

by 𝛽FR, is 2. Notice that stochastic error term 𝜖 is not visible because it is factored into 𝛽D. With 

actual and realized numbers in the regression equation, the relationship between 𝑊𝑇𝑃 and 

𝑇𝐸𝐶𝐻 is realized. These estimated values clearly tell my dancer what type of movements to 

perform in order to portray the numerical relationship between 𝑊𝑇𝑃 and 𝑇𝐸𝐶𝐻. As suggested 

before, a positive value of 𝛽F would tell my dancer to perform fast movements. With 𝛽FR = 2, 

my dancer would perform fast movements. In econometric terms, it means that when the 

dancers’ technique increases by one level, the consumers’ willingness to pay for a dance 

concert increases by 2. In contrast, if 𝛽FR = −2, my dancer would perform slow movements. If 

𝛽FR = 0, my dancers would perform at the default, or moving at a moderate tempo. 

A common method of estimating regression equation, or finding the actual values of a 

theoretical regression equation, is using ordinary least squares (OLS). This regression 

estimation technique allows for the estimation of beta coefficients (35). Although common, 
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OLS is not the only method to estimate a regression equation. To avoid overcomplicating my 

research, OLS was the only method I studied. Although I touch upon the assumptions of OLS, 

I did not investigate its mechanics and how it operates because it was not relevant to my 

choreography. 

The Classical Assumptions 

 OLS is only effective when all seven rules are met, also known as the Classical 

Assumptions (93). Economists can test whether the rules are met to determine the reliability 

of OLS as a method to estimate a regression equation. Since it was not feasible to incorporate 

all seven Classical Assumptions into my choreography or guideline, I considered four of them, 

including Classical Assumptions I, III, IV, and VI. 

Classical Assumption I: Functional Form 

 There are three elements to Classical Assumption I of OLS (94). First, the regression 

model must have an additive error term. The error term must be added and not multiplied or 

divided into the model such as the one in equation 4. To consider this in choreography, the 

dancer representing stochastic error term 𝜖 was added into the dance as a separate component 

independent of other dancers. Second, the regression equation must be correctly specified. This 

means that there are no omitted variables and that the chosen functional form is supported by 

theory. For the purpose of my work, I explore this part of Classical Assumption I when I 

consider Classical Assumption III because the two are related. 

 As previously suggested, a regression equation’s functional form could be visually 

manifested into three elements of dance, including spatial patterns, formations, or the shape of 

movements. Different functional forms signify different shapes of equations and thus, create 

possibilities for the three elements of dance. Therefore, the study of different functional forms 
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was important in determining these choreographic elements. To this point, I have only talked 

about one functional form, the linear form. Like the single-equation linear regression model in 

equation 6, the multivariate linear regression model in equation 7 could also be visualized as a 

straight line. 

𝑊𝑇𝑃 = 𝛽D + 𝛽F𝑇𝐸𝐶𝐻 + 𝜖     (6) 

𝑊𝑇𝑃 = 𝛽D + 𝛽F𝑇𝐸𝐶𝐻 + 𝛽P𝐽𝑂𝐵 + 𝜖    (7) 

Hence, both two equations could be visually manifested into spatial patterns, formations, and 

the shape of movements that involve a straight line. 

 Due to the third part of Classical Assumption I, I only studied the linear form and a few 

other functional forms. The third part of Classical Assumption I states that the regression 

equation’s functional form must be linear in the coefficients (211). I neither studied what that 

means nor why that is the case because I only needed to know what the forms look like visually. 

The other functional forms I studied that meet the last requirement of Classical Assumption I 

were the double-log, semi-log, and polynomial functional forms. Since all functional forms 

produce a different shape, the shape of the double-log functional form is different than the 

shape of linear form, which is a straight line. The difference between the two forms is the 

presence of natural logs in both the 𝑋 and 𝑌 variables (213). The linear forms in equation 6 

and 7 do not have any natural logs, symbolized by 𝑙𝑛. In contrast, the double-log form in 

equation 8 has natural logs in 𝑊𝑇𝑃, T𝐸𝐶𝐻, and 𝐽𝑂𝐵. 

𝑙𝑛	𝑊𝑇𝑃 = 𝛽D 		+ 𝛽F𝑙𝑛𝑇𝐸𝐶𝐻		 + 𝛽P𝑙𝑛𝐽𝑂𝐵		 + 𝜖   (8) 
(natural log)           (natural log)      (natural log) 

By having natural logs, the shape of the double-log functional form differs from the shape of 

the linear forms, which is dependent on the magnitude of 𝛽F. As demonstrated in figure 14 (a), 

the double-log functional form is a curved line instead of a straight line in figure 13. 
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Another functional form similar to the double-log is the semi-log, which has some 

variables expressed in natural log form (216). Like the double-log, the shape of the semi-log 

varies according to the magnitude of 𝛽F. When only dependent variable 𝑌 is in natural log form 

(𝑙𝑛𝑊𝑇𝑃), as identified in equation 9, the shape of a semi-log form is the one in figure 14 (b). 

𝑙𝑛𝑊𝑇𝑃 = 	𝛽D + 𝛽F𝑇𝐸𝐶𝐻 + 𝛽P𝐽𝑂𝐵 + 𝜖   (9) 
(natural log) 

Figure 14. The Graphical Shape of Various Functional Forms 

(a) Double-Log (b) Semi-log (𝑙𝑛𝑌) 

(c) Semi-log (𝑙𝑛𝑋F) (d) Second-Degree Polynomial 
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When independent variable 𝑇𝐸𝐶𝐻 is in natural log form, as in equation 10, the shape of the 

function appears to be the one in figure 14 (c). 

𝑊𝑇𝑃		 = 𝛽D + 𝛽F𝑙𝑛𝑇𝐸𝐶𝐻 + 𝛽P𝐽𝑂𝐵 + 𝜖   (10) 
 (natural log) 

The remaining type of functional form is the polynomial functional form where independent 

variables are raised to a power other than one (218). A common type of polynomial is the 

second-degree polynomial or the quadratic form where an independent variable is raised to the 

power of two. This is exhibited by independent variable 𝑋FP in equation 11. 

𝑌 = 𝛽D + 𝛽F𝑋F + 𝛽P𝑋FP + 𝛽T𝑋P + 𝜖    (11) 
      (power of 2) 

Again, I did not need to understand the details of the form, but only needed to know what the 

form looks like. As shown in figure 14 (d), the form could either be hill-shaped or u-shaped, 

depending on the magnitude of the regression coefficients. 

Classical Assumption III: Endogeneity 

 An extension of part two of Classical Assumption I is Classical Assumption III, which 

states that all explanatory variables must not be correlated with the error term, also known as 

exogeneity (97). The opposite of exogeneity is endogeneity, when the explanatory variables 

and error term are correlated. If there is endogeneity, the results and analysis of the regression 

equation skew people’s understanding of the relationship between consumer’s willingness to 

pay (𝑊𝑇𝑃) and the technique of dancers (𝑇𝐸𝐶𝐻). The magnitude of the regression coefficients 

would be affected, leading to inaccurate interpretation of the estimated equation. To understand 

how this could translate into dance, I use the same multivariate regression model as before, 

displayed again in equation 12. 

𝑊𝑇𝑃						 = 			 𝛽D 			+ 				𝛽F𝑇𝐸𝐶𝐻			 + 				𝜖   (12) 
       (dance itself)      (dancer 1)        (dancer 2)       (dancer 3) 
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In choreographic terms, exogeneity would mean that the movements of dancer 2 (representing 

explanatory variable 𝑇𝐸𝐶𝐻) and the movements of dancer 3 (representing stochastic error term 

𝜖) would not be the same. On the other hand, endogeneity in choreography could mean that 

dancers 2 and 3 perform similar, but not identical movements. The similarity of the dancers’ 

movements would depend on the severity of endogeneity. 

A major factor causing endogeneity is the presence of omitted variables, which are 

important explanatory variables not included in the regression equation that help explain the 

dependent variable. Explanatory variable 𝐽𝑂𝐵, the hours worked by audience members, is an 

example of an omitted variable. This is because 𝐽𝑂𝐵  is an important variable affecting 

consumer’s willingness to pay (𝑊𝑇𝑃) but is not included in equation 12. The presence of 

omitted variables can either cause an upward or downward bias of the 𝛽 coefficient estimates. 

This bias is labeled as the omitted variable bias. 

To explain how omitted variable bias could be shown through dance, I must reiterate 

that 𝛽 coefficients can determine the extent to which elements of dance are performed. As 

previously stated, speed is the element of dance corresponding to independent variable 𝑇𝐸𝐶𝐻 

that is represented by dancer 2. This means that 𝛽F  determines the speed of dancer 2’s 

movements while keeping all other elements of dance at the default. A positive 𝛽F means that 

dancer 2 would perform fast movements so that the greater the 𝛽F, the faster the movements. 

A negative 𝛽F means that dancer 2 would perform slow movements so that the smaller the 𝛽F, 

the slower the movements. A 𝛽F value of zero means that dancer 2 would perform movements 

at the default, at a normal pace. Since omitted variable bias causes bias in the 𝛽 coefficient 

estimates, an upward bias results in a greater value of 𝛽, and a downward bias results in a 

smaller value of 𝛽. In terms of dance, omitted variable bias exaggerates the value of 𝛽F and 
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thus, would exaggerate the speed of dancer 2. For example, if the actual 𝛽F without omitted 

variable bias is positive, dancer 2 would perform relatively fast movements. If there is omitted 

variable bias causing an upward bias in 𝛽F, dancer 2 would perform slower movements that 

are still faster than a normal walking pace. Likewise, omitted variable bias causing a downward 

bias in 𝛽F would cause dancer 2 to perform even faster movements. 

My ability to choreograph a dance capturing all relevant explanatory variables was 

limited because I had a limited number of dancers. Since my original regression equation 

consisted of many independent variables, I had to omit enough variables to allow my available 

number of dancers to reflect the equation. By deciding which explanatory variables to exclude 

according to the number of dancers I had, I knew whether a regression equation had omitted 

variable bias and hence, whether endogeneity existed. The true and unmanipulated regression 

equation of my choreography is the one in equation 13, which requires 17 dancers to represent 

each term of the model. 

𝑊𝑇𝑃 = 𝛽D + 𝛽F𝑅𝐸𝐿𝐴𝑇 + 𝛽P𝐽𝑂𝐵 + 𝛽T𝑇𝐸𝐶𝐻 + 𝛽W𝐴𝐺𝐸 + 𝛽Y𝐻𝐼𝐺𝐻𝑆 + 𝛽\𝐼𝑁𝐶𝑂𝑀𝐸 +
𝛽_𝐺𝐸𝑁𝐷𝐸𝑅 + 𝛽a𝐶𝑂𝐿𝐿 + 𝛽b𝐴𝑅𝑇𝑆𝑒𝑑 + 𝛽FD𝐷𝐴𝑁𝐶𝐸𝑒𝑑 + 𝛽FF𝐴𝑇𝑇𝐸𝑁𝐷 + 𝛽FP𝐴𝑇𝑇𝐸𝑁𝐷𝑚𝑑 +

𝛽FT𝑀𝑈𝑆𝐼𝐶 + 𝛽FW𝐿𝐼𝐺𝐻𝑇𝑆 + 𝛽FY𝐶𝑂𝑆𝑇𝑈𝑀𝐸 + 𝛽F\𝑆𝑃𝐴𝐶𝐸 + 𝜖  (13) 
 

Since I only had five dancers, I removed 12 terms. I only took away independent variables 

because constant term 𝛽D and stochastic error term 𝜖 are essential in a regression equation. The 

removed independent variables become omitted variables. The remaining explanatory 

variables were 𝑅𝐸𝐿𝐴𝑇 (whether the audience member is in a relationship), 𝐽𝑂𝐵 (hours of work 

per week), 𝑇𝐸𝐶𝐻, and 𝐴𝐺𝐸 (age of the audience member). Such alterations turn the regression 

model into the one in equation 14. 

𝑊𝑇𝑃					 = 			 𝛽D 			+		𝛽F∗𝑅𝐸𝐿𝐴𝑇		 + 	𝛽P∗𝐽𝑂𝐵		 + 		𝛽T∗𝑇𝐸𝐶𝐻		 +	𝛽W∗𝐴𝐺𝐸			 + 			 𝜖∗ (14) 
       (dance itself)     (dancer 1) (dancer 2)         (dancer 3)        (dancer 4)        (dancer 5)     (dancer 1) 
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The effect of the omitted variables on 𝑊𝑇𝑃 is now captured in the new stochastic error term, 

𝜖∗ . This implies that there is endogeneity because there is a correlation between the four 

explanatory variables and stochastic error term 𝜖∗. The presence of omitted variables due to 

the removal of important explanatory variables causes a bias to the beta coefficient estimates. 

Not only does omitted variable bias change the stochastic error term, but it also changes beta 

coefficient estimates. For example, omitted variable bias changes 𝛽F , the beta coefficient 

estimate corresponding to variable 𝑇𝐸𝐶𝐻, into 𝛽F∗. 

Classical Assumption IV: Serial Correlation 

 Unlike Classical Assumption III, much of the translation of the next assumption to 

dance was not applicable in the final dance performance but was included in the guideline to 

account for a common type of regression model, called the time-series model. I decided to 

study Classical Assumption IV to improve the applicability of the guideline to suit dances 

based on time-series models. This model examines the impact of independent variables on the 

dependent variable observed not in one period of time, but throughout multiple time periods. 

The regression equation I utilized in my choreography was not a time-series model but 

was a cross-sectional model. This is because the relationship between 𝑊𝑇𝑃  and 𝑇𝐸𝐶𝐻  is 

observed in one time period and not over time. An example of a time-series model is one that 

examines the relationship between the number of dance practices I receive weekly (𝑃𝑅𝐴𝐶𝑇𝐼𝐶𝐸) 

and my appreciation of dance (𝐴𝑃𝑃) over time. As modelled in equation 13, 𝑃𝑅𝐴𝐶𝑇𝐼𝐶𝐸 is 

independent variable 𝑋 and 𝐴𝑃𝑃 is dependent variable 𝑌, with one dancer representing each 

term on the right-hand side of the equation to produce an overall dance. 

𝐴𝑃𝑃g 					= 			𝛽D 		+ 		𝛽F𝑃𝑅𝐴𝐶𝑇𝐼𝐶𝐸g 		+ 	𝜖g   (13) 
       (dance itself)     (dancer 1)    (dancer 2) (dancer 1) 
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The unit of time, such as days, months, and years, is represented by 𝑡 , where the 

maximum number of observed periods is 𝑇. Any time period is represented by 𝑡, so that the 

first time period is 𝑡 = 1 and the last time period is 𝑡 = 𝑇. The distinction of the time periods 

can separate the dance into different sections, whereby the entire dance is divided into however 

many time periods exist in the regression equation. An example of how different time periods 

in a regression equation could be reflected in dance is visualized in figure 15. The regression 

equation in (a) has 𝑡, the unit of time, in months with a maximum of three months so that 𝑇 =

3. A dance reflecting this equation would be divided into three parts. In (b), the dance is divided 

into three sections, where each one-minute-long section reflects each of the three months. 

Classical Assumption IV states that there must not be a presence of serial correlation 

(97). Serial correlation deals with the relationship between observations of the stochastic error 

term 𝜖 in different time periods, as displayed in figure 16. Stochastic error terms in different 

 

 

 

 

 

 
Figure 15. Time Period of Regression Model vs. Time Period of Dance  
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Figure 16. Stochastic Error Terms in Different Time Periods  
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time periods must not be positively or negatively correlated with each other; the stochastic 

error term in period 𝑡, 𝜖g, cannot be correlated with the stochastic error term in the next period, 

𝜖giF (305). To ensure that Classical Assumption IV is not violated, 𝜖g must not affect 𝜖giF. 

This implies that serial correlation would affect dancer 1 who is representing stochastic error 

term 𝜖. If a positive stochastic error term in one period affects the chance of the stochastic error 

term in the next period of having a positive value, there is positive serial correlation. Similarly, 

if a negative stochastic error term in one period affects the chance of a negative value in the 

next period, there is negative serial correlation. In dance, the presence of serial correlation 

could be portrayed when the movements of dancer 1 in one time period affect their movements 

in subsequent time periods. 

Tests that use an already estimated regression equation are called post-regression 

estimations. The Durbin-Watson 𝑑 test is one method to detect serial correlation (318). The 

details of how a 𝑑 test functions were unnecessary for the purpose of my work; however, it 

was important to know what the test results signified and thus, could be demonstrated in dance. 

If the value of the test is greater than 1.66, there is no serial correlation. This would mean that 

the movements of dancer 1 in one time period would not affect their movements as the dance 

progresses. A value smaller than 1.12 implies the presence of serial correlation, so the 

movements of dancer 1 in one time period would affect their movements later in the dance. A 

value anywhere between 1.12 and 1.66 suggests an inconclusive result, meaning there is 

uncertainty in whether there is serial correlation in the regression equation. In this case, the 

movements dancer 1 in one time period. 
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Classical Assumption VI: Collinearity 

 The next assumption I explored refers back to the regression model in equation 14 

where the consumer’s willingness to pay (𝑊𝑇𝑃) is the dependent variable and where the 

technique of dancers (𝑇𝐸𝐶𝐻) and the audiences’ hours of work (𝐽𝑂𝐵) are the independent 

variables. 

 

𝑊𝑇𝑃						 = 			 𝛽D 			+ 	𝛽F𝑇𝐸𝐶𝐻			 + 𝛽P𝐽𝑂𝐵			 + 			𝜖   (14) 
        (dance itself)     (dancer 1)      (dancer 2)      (dancer 3)     (dancer 1) 

There must not be a violation of Classical Assumption VI for OLS to best estimate of this 

regression model. The explanatory variables must not have perfect collinearity; they cannot be 

a perfect linear function of another (99). In other words, if explanatory variable 𝑇𝐸𝐶𝐻 is a 

perfect linear function of explanatory variable 𝐽𝑂𝐵, then 𝑇𝐸𝐶𝐻 can be completely explained 

by  𝐽𝑂𝐵 because they have everything in common. If the movements of dancer 2 represent 

variable 𝑇𝐸𝐶𝐻, and if the movements of dancer 3 represent variable 𝐽𝑂𝐵, perfect collinearity 

suggests that their movements are exactly the same. Imperfect collinearity would exist when 

an explanatory variable strongly but would not perfectly explains the variation of another 

explanatory variable, suggesting that the movements of dancers 2 and 3 are similar but would 

not be exactly the same. When more than two explanatory variables are involved, it is called 

multicollinearity, suggesting that more than two dancers are representing explanatory variables. 

Like the test for serial correlation, Variance Inflation Factor (VIF) is a post-regression 

estimation method that determine the severity of multicollinearity in an estimated regression 

equation (259). As with the 𝑑 test, I did not investigate the procedure of finding values of VIF 

because I did not physicalize the process of finding multicollinearity. Rather, I embodied the 

presence and extent of collinearity into my choreography. VIF is achieved by examining how 

correlation causes 
collinearity 
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much an explanatory variable can be explained by all other explanatory variables. Therefore, 

a VIF value can be calculated for every coefficient estimate that corresponds to an explanatory 

variable. An explanatory variable with a VIF value of one indicates that it is not correlated 

with any other explanatory variables. Economists typically draw the line between high and low 

multicollinearity at five (260). An explanatory variable with a low VIF value, one that is 

between one and five, suggests a low degree of multicollinearity. In dance, this could be 

observed through the lack of or minimal physical contact between the dancer representing that 

explanatory variable and the other dancers representing other explanatory variables. In contrast, 

an explanatory variable with a VIF value greater than five suggests severe multicollinearity. In 

dance, the dancer representing that explanatory variable would experience a lot of physical 

contact with other dancers representing other explanatory variables. 

Conclusion 

To this point, I have covered a lot of material on econometrics. From the basic concepts 

of the dependent variable 𝑌 and the independent variable 𝑋, all the way to the various Classical 

Assumptions, my understanding of these concepts provided me the foundation to choreograph 

a dance based on regression equations and to create the guideline. After exploring various tools 

of choreography and learning more about how regression equations operate, I had more skills 

and tools to answer the question, “How can one make use of an econometric tool, specifically 

the regression model, as a source for choreography and subsequently, a dance performance?” 

In this chapter, I studied various econometric ideas that allowed me to choreograph a 

dance based on a specific regression equation. Since the purpose of the guideline was to 

broaden the applicability of my choreography so that others could transform other regression 

equations into dance, I needed a more extensive understanding of regression equations. Hence, 
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I also explored some econometric concepts outside of the ones that were required to form the 

final dance performance based on one specific regression equation. The guideline incorporated 

a total of four out of the seven Classical Assumptions of regression equations, including 

Classical Assumption I, III, IV, and VI. 
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Chapter 4. Application of Research to Choreography 

The final dance performance and the creation of the guideline were made possible by 

integrating my research on dance and econometrics. In the previous chapter, I explained the 

mechanics of fundamental econometric concepts as well as how those concepts can be 

physicalized in dance. In the current chapter, I first discuss how I used a specific regression 

equation as a choreographic tool for the final dance performance in the Spring Dance Concert. 

Next, I introduce a guideline that allows for the general physicalization of regression equations 

and discuss its limitations. 

The Final Dance Performance 

The final dance piece (Appendix A) is separated into three sections, with each section 

aiming to demonstrate a different econometric concept. The goal of the first section is to 

introduce the different independent variables of the regression equation. The goal of the second 

section is to explore the concept of multicollinearity, a part of Classical Assumption VI. The 

goal of the third section is to explore the concept of endogeneity, a part of Classical 

Assumption III. Although entire sections are not devoted to other aspects of the regression 

equation, they are considered through other aspects of the dance. For example, although the 

shape of the equation is not considered in an entire section, it is embodied in the shape of the 

dancers’ movements as well as the formations they form. 

The complete and unmanipulated theoretical regression equation I used as a 

choreographic score in my choreography is equation 15, which was taken from my other I.S. 

for the Department of Economics. 

𝑊𝑇𝑃 = 𝛽D + 𝛽F𝑅𝐸𝐿𝐴𝑇 + 𝛽P𝐽𝑂𝐵 + 𝛽T𝑇𝐸𝐶𝐻 + 𝛽W𝐴𝐺𝐸 + 𝛽Y𝐻𝐼𝐺𝐻𝑆 + 𝛽\𝐼𝑁𝐶𝑂𝑀𝐸 +
𝛽_𝐺𝐸𝑁𝐷𝐸𝑅 + 𝛽a𝐶𝑂𝐿𝐿 + 𝛽b𝐴𝑅𝑇𝑆𝑒𝑑 + 𝛽FD𝐷𝐴𝑁𝐶𝐸𝑒𝑑 + 𝛽FF𝐴𝑇𝑇𝐸𝑁𝐷 + 𝛽FP𝐴𝑇𝑇𝐸𝑁𝐷𝑚𝑑 +

𝛽FT𝑀𝑈𝑆𝐼𝐶 + 𝛽FW𝐿𝐼𝐺𝐻𝑇𝑆 + 𝛽FY𝐶𝑂𝑆𝑇𝑈𝑀𝐸 + 𝛽F\𝑆𝑃𝐴𝐶𝐸 + 𝜖  
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(15) 

Assuming that no key explanatory variables are missing, this is the true regression equation 

with exogeneity, or without an endogeneity problem. However, I shortened equation 15 into 

equation 16 by removing 12 explanatory variables because I did not have enough dancers to 

represent all the components of the initial equation. Compared to equation 15, equation 16 has 

an endogeneity problem. Since section one of the dance does not consider endogeneity, it only 

uses equation 16, and since section three of the dance explores endogeneity, it uses both 

equations 15 and 16 to contrast the presence and absence of endogeneity. 

						𝑊𝑇𝑃			 = 	 	𝛽D 		+		𝛽F𝑅𝐸𝐿𝐴𝑇		 + 		𝛽P𝐽𝑂𝐵	 +		𝛽T𝑇𝐸𝐶𝐻			 + 	𝛽W𝐴𝐺𝐸					 + 				𝜖       (16) 
            (first)             (second)      (third) (fourth) 

    (dance itself)   (dancer 1)       (dancer 2)        (dancer 3)           (dancer 4)         (dancer 5)       (dancer 1) 

Equation 16 has one constant term and one stochastic error term, which are 𝛽D  and 𝜖 , 

respectively. One dancer, dancer 1, represents these two components. Equation 16 also has 

four independent variables, including variables 𝑅𝐸𝐿𝐴𝑇, 𝐽𝑂𝐵, 𝑇𝐸𝐶𝐻, and 𝐴𝐺𝐸. One dancer is 

required to represent each independent variable. Thus, to physicalize the entire equation in a 

dance, a total of five dancers is required. 

Section One: Elements of Dance 

The first section of the final dance performance introduces the four independent 

variables in equation 16. The numerical relationships of these variables provide motivation for 

the dancers’ movements, which align with Humphrey’s theory on the motivation of movement. 

Since the beta coefficients determined the type of movement my dancers performed, they 

provided the motivation for my dancers to execute movements within parameters. Also 

following Humphrey’s philosophy on dancers’ facial expressions, I found it appropriate for 

my dancers to maintain a neutral facial expression. I believe this choice was appropriate as my 
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dancers were trying to represent abstract and intangible concepts of econometrics rather than 

depict or elicit human emotions. 

From Doris Humphrey’s The Art of Making Dances, I identified four elements of dance 

to pair with each dancer representing a different independent variable, as labeled in parentheses 

in the first two rows below equation 16. The first two columns of table 4 summarize which 

explanatory variable is paired with which element of dance. The first element of dance, tempo, 

is one of the components from the raw element of rhythm, which is paired with variable 

𝑅𝐸𝐿𝐴𝑇. The second element of dance, the direction of the dancer, is from the raw element of 

dynamics and is paired with variable 𝐽𝑂𝐵 . The dancer either faces forward, sideways, 

backwards, or any direction in between. The third element of dance, the level of the dancer, is 

paired with variable 𝑇𝐸𝐶𝐻 and ranges from high to low. Lastly, the dancer’s kinesphere is 

paired with variable 𝐴𝐺𝐸, which is large, small, or anywhere in between. 

The remaining four columns of table 4 outline both the type of movement the dancers 

would perform and the way in which they would perform the movements. The movement is 

determined by the sign of the regression coefficient, which is positive, negative, or zero. The 

elements of dance performed at the default are italicized in the fifth column of the table. To 

clarify what these coefficients entail, I will provide an example of what each dancer 

Table 4 

Relationship Between Elements of Regression Equations and of Dance 

Explanatory 
variable 

Element of 
Dance 

Regression 
Coefficient 

𝜷𝒌 < 𝟎 
(negative) 𝜷𝒌 = 𝟎 𝜷𝒌 > 𝟎 

(positive) 
𝑅𝐸𝐿𝐴𝑇 Tempo 𝛽F slow moderate fast 
𝐽𝑂𝐵 Direction 𝛽P left forward right 
𝑇𝐸𝐶𝐻 Level 𝛽T low middle high 
𝐴𝐺𝐸 Kinesphere 𝛽W small medium big 
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representing each variable would perform according to their corresponding regression 

coefficient. Take 𝑅𝐸𝐿𝐴𝑇, the variable that is paired with the element of tempo, as the first 

example. If its corresponding regression coefficient, 𝛽F , is a negative value, dancer 2 

representing variable 𝑅𝐸𝐿𝐴𝑇 would perform slow movements; if 𝛽F is a positive value, dancer 

2 would perform fast movements. If 𝛽F = 0, dancer 2 would perform movements at a moderate 

tempo or the pace of normal walking. This means that a moderate tempo is the default for the 

element of dance, tempo. Likewise, the dancer representing variable 𝐽𝑂𝐵, dancer 3, would 

alter the direction of their phrases according to their corresponding regression coefficient. 

Dancer 3 would dance to the left of the forward-facing direction if 𝛽P is negative, and they 

would dance to the right if 𝛽P is positive. If 𝛽P = 0, dancer 3 would face the front, meaning 

that a frontward-facing direction is the default. Representing variable 𝑇𝐸𝐶𝐻, dancer 4 would 

perform movements at a high level if 𝛽T is negative or at a low level if 𝛽T is positive; if 𝛽T =

0, dancer 4 would perform movements at a medium level, one that is neither high nor low, 

which is the default for levels. Lastly, dancer 5 who is representing variable 𝐴𝐺𝐸  would 

perform movements either within a big kinesphere if 𝛽W is positive or within a small kinesphere 

if 𝛽W  is negative. Otherwise, their kinesphere would be medium-sized if 𝛽W = 0, which is 

considered the default for the size of kinesphere. 

 In equations 15 and 16, which are previously presented as theoretical regression 

equations, the actual sign and size of the regression coefficients are unknown. Once these 

equations are estimated, the sign and size of the regression coefficients become realized, as in 

estimated regression equations 17 and 18, respectively. 

	𝑊𝑇𝑃Q 			= 					73				 + 				9	𝑅𝐸𝐿𝐴𝑇		 − 	0.4	𝐽𝑂𝐵		 − 			2	𝑇𝐸𝐶𝐻		 − 		0.9	𝐴𝐺𝐸  (17) 
	𝑊𝑇𝑃Q 		= 				−58		 − 		4.7	𝑅𝐸𝐿𝐴𝑇	 − 	0.5	𝐽𝑂𝐵		 + 	0.3	𝑇𝐸𝐶𝐻	 + 		0.1	𝐴𝐺𝐸 +⋯ (18) 

       (dance itself)       (dancer 1)         (dancer 2)          (dancer 3)          (dancer 4)            (dancer 5) 
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Where the first section of the dance only uses equation 17, the third section of the dance uses 

both equations 17 and 18. To interpret equation 17 in dance, take regression coefficient 𝛽F, the 

regression coefficient corresponding to variable 𝑅𝐸𝐿𝐴𝑇 , as an example. The regression 

coefficient of variable 𝑅𝐸𝐿𝐴𝑇 is 9. According to table 4, dancer 2 performs movements at a 

fast pace since the value of the regression coefficient is positive (𝛽F > 0). As pointed out in 

Chapter Three, the impact of other variables on dependent variable 𝑊𝑇𝑃 is held constant when 

interpreting a regression coefficient. Thus, dancer 2 keeps other elements of dance constant so 

that those elements of dance are the default. 

Table 5 provides more guidance for the performance of each dancer. The second row 

is the guide for dancer 2. The second column under “Tempo” indicates that dancer 2’s 

movements are fast because 𝛽F is positive; the third column under “Direction” indicates that 

they are forward-facing (default); the fourth column under “Levels” tells them to perform 

Table 5 

Elements of Dance for Each Dancer 

  1 2 3 4 
 Element 

of dance Tempo Direction Level Kinesphere 

1 

dancer 1 
(constant 
and error 

terms) 

moderate 
(default) 

forward-
facing 

(default) 

middle 
(default) 

medium-sized 
(default) 

2 dancer 2 
(𝑅𝐸𝐿𝐴𝑇) 

(𝛽F > 0) fast 
(𝛽F < 0)  slow 

forward-
facing middle medium-sized 

3 dancer 3 
(𝐽𝑂𝐵) moderate (𝛽P > 0) right 

(𝛽P < 0) left middle medium-sized 

4 dancer 4 
(𝑇𝐸𝐶𝐻) moderate forward-

facing 
(𝛽T > 0) high 
(𝛽T < 0) low medium-sized 

5 dancer 5 
(𝐴𝐺𝐸) moderate forward-

facing middle (𝛽W > 0) large 
(𝛽W < 0) small 
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movements at a middle level (default); the last column under “Kinesphere” states that their 

kinesphere is medium-sized (default). 

 To clearly introduce each independent variable in the final dance, the dance starts with 

all the dancers doing the same movement, establishing the fact that they are all the same, or 

undifferentiated, at the beginning. While the dancers representing independent variables are 

introduced, dancer 1 (representing both the constant term and the stochastic error term) is 

consistently performing movements at the default for each element of dance; dancer 1 is always 

moving at a moderate tempo, facing the front, at mid-level, and using a medium-sized 

kinesphere. Seeing that independent variables are introduced one after another in the order 

presented in equation 16, dancer 2 is introduced first. The introduction of dancer 2 is achieved 

by only differentiating their tempo. Since the regression coefficient of dancer 2 is positive 9, 

dancer 2 performs faster movement relative to everyone else while keeping other elements of 

dance the same as everyone else. While dancer 2 speeds up their movement, they still keep 

their direction, level, and kinesphere the same as everyone else. It is important to note that 

when dancer 2 changes their tempo, their tempo is considered fast because it is relatively faster 

than the tempo of the other dancers. 

The next dancer who is introduced as a different variable is dancer 3. With a regression 

coefficient of negative 0.4, dancer 3 performs to the left of the other dancers while keeping 

other elements of dance at the default. Similar to the previous case, the direction of dancer 3 is 

relative to the direction of the other dancers. For example, the direction of the other dancers, 

no matter which direction, is considered forward-facing. If the other dancers are facing stage 

right, then dancer 3 performs to the left of stage right. Since dancer 4’s regression coefficient 

is negative 2, they perform everything at a low level while keeping other elements of dance at 
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the default. Even when all the dancers lower their levels, in order to maintain at a low level, 

dancer 4 changes levels that is relatively lower than other dancers. Dancer 5 is the last 

independent variable who is introduced. With a corresponding regression coefficient of 

negative 0.9, dancer 5 performs movements within a small kinesphere while keeping other 

elements of dance at the default. To exaggerate dancer 5’s use of a small kinesphere, the other 

dancers make use of a large kinesphere. 

Section Two: Collinearity 

A distinct change in the music accompanies the transition of the dance from section 

one to section two. The music not only slows down, but it also softens. This change in the 

music helps to hint at the introduction of a new econometric concept, collinearity. Using the 

post-regression estimation method of VIF, the results show that both estimated regression 

equation of equations 17 and 18 have no perfect collinearity. This is because the VIF values 

for all the explanatory variables are almost precisely one. The absence of collinearity means 

that no explanatory variable is correlated with any other explanatory variable. In terms of dance, 

the dancers would make no physical contact with one another. 

Despite the lack of collinearity, I still wanted to capture this concept in the final dance. 

Therefore, I randomly assigned made-up VIF values to each dancer representing an 

independent variable, as displayed in table 6. Dancers 3 and 5 representing explanatory 

Table 6 

Assigned VIF Values of Dancers Representing Independent Variables 

Explanatory variable Dancer VIF Value 
𝑅𝐸𝐿𝐴𝑇 2 4 
𝐽𝑂𝐵 3 12 
𝑇𝐸𝐶𝐻 4 2 
𝐴𝐺𝐸 5 12 
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variables 𝐽𝑂𝐵 and 𝐴𝐺𝐸, respectively, both have VIF values of 12. Since the high VIF values 

suggest a high degree of collinearity, not only do the two dancers have the most physical 

contact out of all the dancers, but they also maintain contact for the longest amount of time. 

Although they face different directions, the movements they perform are extremely similar, 

and they share the most body weight with each other. Dancer 2 who is representing the first 

explanatory variable, 𝑅𝐸𝐿𝐴𝑇, has a VIF value of 4, indicating a moderate level of collinearity. 

Thus, they have some physical contact with other dancers. Lastly, variable 𝑇𝐸𝐶𝐻  that is 

represented by dancer 4 is associated with a VIF value of 2. Given this low value, dancer 4 is 

in contact with the other dancers for the least amount of time to signify the presence of minimal 

collinearity. Meanwhile, dancer 1 who is representing the constant and error terms makes no 

contact with any other dancer at all. To further isolate dancer 1 as someone representing a 

different component of the regression equation, they are placed upstage in a corner away from 

the other four dancers who are representing independent variables and are situated in center 

stage. 

Section Three: Endogeneity 

 As the dance moves into its third section, there is another shift in the music. Since 

section three of the piece makes use of the regression equation that section one is based on, the 

music in section three has many similarities with the music in section one. As previously noted, 

the estimated regression equation ultimately used in my final choreography (as exhibited again 

in equation 19) removed 12 explanatory variables from the original equation (as exhibited 

again in equation 20). For an easier comparison between the two equations, I purposely exclude 

the 12 explanatory variables in equation 20. 
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	𝑊𝑇𝑃Q 			= 					73				 + 				9	𝑅𝐸𝐿𝐴𝑇		 − 	0.4	𝐽𝑂𝐵		 − 			2	𝑇𝐸𝐶𝐻		 − 		0.9	𝐴𝐺𝐸  (19) 
	𝑊𝑇𝑃Q 		= 				−58		 − 		4.7	𝑅𝐸𝐿𝐴𝑇	 − 	0.5	𝐽𝑂𝐵		 + 	0.3	𝑇𝐸𝐶𝐻	 + 		0.1	𝐴𝐺𝐸 +⋯ (20) 

      (dance itself)        (dancer 1)         (dancer 2)          (dancer 3)          (dancer 4)           (dancer 5) 

The exclusion of these important explanatory variables, or the presence of omitted variables, 

can cause omitted variable bias in altered regression equation 20. This bias can give rise to an 

endogeneity problem, whereby the included explanatory variables are correlated with the 

stochastic error term. Unlike equation 19, equation 20 has no omitted variable bias. 

Clearly, there is a difference between the estimated coefficients in equations 19 and 20. 

To capture omitted variable bias in the dance, I first reestablished the dancers as variables from 

equation 19, as in the first section of the dance. I did so by having the dancers perform 

movements that are almost the same as those in section one of the dance. The point of bringing 

back previous movements is to remind the audience of which variable each dancer represented, 

and thus which element of dance each dancer was altering. After a moment of silence in the 

music, the dancers are suddenly introduced the dancers as variables from equation 20. For 

example, dancer 2 representing the variable 𝑅𝐸𝐿𝐴𝑇 first performs fast movement, as dictated 

by the positive sign of the regression coefficient in equation 19. However, to capture omitted 

variable bias and endogeneity, dancer 2 performs slow movement, as dictated by the negative 

sign of the regression coefficient in equation 20. This stark contrast in the dancers’ movements 

highlights them as variables in an equation with endogeneity (equation 19) versus as variables 

in an equation without endogeneity (equation 20). 

Serial Correlation 

The issue of serial correlation is not applicable to the cross-sectional model used in the 

final dance, as opposed to time-series models. The lack of serial correlation can be attributed 
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to the lack of stochastic error terms in different time periods. Hence, the dancer representing 

the stochastic error term, dancer 1, does not have to worry about their movement over time. 

Other Econometric Concepts 

 As explained, each section of the dance portrays a different econometric concept. Apart 

from what has been mentioned, there are additional ways in which the concept of the piece is 

embodied throughout the dance. The motif of diagonals was another way in which linear 

regressions are physically manifested in the final dance. There are four main ways in which 

diagonals appear and are achieved. The first way is through the shape of individual dancers’ 

bodies. An example is the recurring movement of the piece, a sideway-leaning pivot with arms 

stretched at a diagonal. The second way is through the shape that multiple dancers’ bodies 

make together. For example, towards the end of section two of the piece, two dancers standing 

upright with their arms stretched out each lean over on a different dancer to form a diagonal 

line. The third way is through the formations in the dance. The dancers are often placed to 

create a diagonal line either within certain boundaries or across the stage. The last way in which 

diagonals are present in the piece is through the spatial patterns that the dancers form. 

Aside from the dance itself, other visual aspects work to support the concept of the 

dance, which is to physicalize econometrics. As stated before, the music, an edited instrumental 

version of Billie Eilish’s “COPYCAT,” changes when the dance shifts between sections of the 

dance. However, it particularly enhances the way I introduce each dancer as a different variable 

in the first section of the piece. The music begins with a rhythm produced by one instrument. 

Once the first dancer is introduced as a variable, there is different sound added on top of the 

previous rhythm. The introduction of the remaining three dancers is accompanied by a change 

in the music, either through the addition of a sound or a change in the beat or rhythm. 
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The lighting designer, Mike Schafer, used lighting techniques to help the audience 

comprehend when and how a dancer is introduced as a variable. An extra layer of light is added 

whenever a dancer was introduced as a variable. Lights forming a diagonal across stage were 

also consistently used. Furthermore, there was a light projected through a gobo on the upper 

part of the cyclorama, a large curtain positioned upstage of the theater. As a result, the 

projection mimicked data points scattered along a linear regression equation. Fortunately, this 

effect was neither overwhelming nor distracting the audience from watching the dance. Instead, 

it was a subtle but strong complement to the piece. 

The costumes were also strategically designed to 

support the idea of regression equations. Figure 17, 

designed and produced by Rebecca Callan, is an example 

of the dancers’ costumes. The fabric of the costume is 

patterned as the grid of a graph. Hence, the pattern is 

evidently geometric and linear. Aside from the costume 

of the dancer representing both the constant and stochastic 

error terms, the basic structure of the other dancers’ 

costumes is manipulated into a distinct design as they 

each represent a different variable. Each of the four 

dancers representing an independent variable has diagonal 

black bands on top of mesh that is placed across different 

parts of their upper bodies. For example, in figure 17, the 

black bands make a diagonal across the chest area. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 17. Costume Design 
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Lastly, even the performance space aligned well with the concept of the piece. 

Although performed in a standard proscenium stage, a black drape was hung from the ceiling 

at an angle to change the performance space. This angled drape created a diagonal, reflecting 

a linear regression equation. Not only did the drape provide a literal and visual representation 

of a linear regression equation, but it also effectively transformed the performance space into 

one that is abstract and mathematical. 

The three sections of the final dance performance each demonstrate a different 

econometric concept. Apart from these concepts, other aspects of the dance such as the lighting 

and costumes reveal or hint at the idea of regression equations. However, this dance is only 

one way in which a specific regression equation can be physicalized. A different regression 

equation and naturally, a different choreographer, would produce a different dance. 

The Guideline 

Using the final dance performance, I devised a general guideline (Appendix B) on 

how to physicalize regression equations. Apart from the econometric concept of serial 

correlation, I have explained how other econometric concepts were applied to the final dance 

piece. This guideline can be used by others who are interested in physicalizing a different 

regression equation than mine. The guideline does not dictate a choreographic work, but 

rather it provides suggestions on how to visually manifest econometric concepts in a dance. 

Limitations 

The final dance piece and guideline are embodiments of research on the overlap 

between dance and econometrics. My works aimed to physicalize the numerical relationships 

in regression equations but not the subjects of the regression equations. However, these are 

incomplete explorations as they are only one of many physical and visual representations of 
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econometrics, meaning my work only provides one way of physicalizing econometrics. My 

work would have varied if my background research on the topic had been different. My 

background research affected the final dance piece and guideline in two ways. First, if I had 

used a different resource on dance choreography instead of Doris Humphrey’s The Art of 

Making Dances, I would probably have had a very different choreographic approach. This is 

especially the case since I based my dance off of the elements of dance that Humphrey 

identifies in her book. Second, the outcome of my work would have changed drastically if my 

econometric focus was something other than the linear regression model, such as the probit 

model. Since the numerical relationships of other econometric models differ to those of linear 

regression models, physicalizing other econometric models would also be different than 

physicalizing linear regression models. Hence, there are other possible ways of physicalizing 

econometrics, which prompts further research in this interdisciplinary field. 

Conclusion 

As previously stated, my final choreography was based on a specific regression model, 

which explores the relationship between the technique of dancers and the consumer’s 

willingness to pay (WTP) to watch a modern dance performance. I was not interested in 

showing the technique of the dancers or depicting the consumer’s WTP in the dance, but rather 

in representing the numerical relationships between the two. Based off the final choreography, 

I also formalized a guideline to physicalize other regression models. 
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Conclusion 

As cited in Dance Composition by Jacqueline Smith-Autard, “Composing involves the 

molding together of compatible elements which, by their relationship and fusion, form an 

identifiable ‘something’” (3). I have demonstrated the compatibility of econometric concepts 

and choreography. To answer the first part of the critical question, how can one make use of 

an econometric tool, specifically the regression model, as a source for choreography, I used a 

specific regression equation as a choreographic tool to visually manifest econometrics in 

dance. The result was demonstrated in the final dance performance in the Spring Dance 

Concert at The College of Wooster between April 11th and 13th of 2019. Once produced, the 

final dance was used to create a guideline that allows this approach to choreography to be 

generalized, which answers the second part of the critical question: how can this approach to 

choreography be generalized so that any regression model can be a choreographic tool? 

The first step to this project was to study choreographies involving the use of 

mathematics because they help to connect dance and econometrics. On the one hand, 

mathematical relationships, particularly geometry, are present in movement and in 

choreography. On the other hand, econometrics is a field that is highly mathematical. Samuel 

Beckett’s Quad, Alessandro Carboni’s ABQ, and 16th century Renaissance dance 

choreographies provided me with a clear understanding of how mathematical concepts can be 

utilized in dance. Similarly, Merce Cunningham used probability, another mathematical 

concept, to explore the intersection between mathematics and dance. 

The detailed study of Doris Humphrey’s The Art of Making Dances provided the basis 

for my choreographic ideas and choreographic approach. In the final dance piece and guideline, 

I used fragments of Humphrey’s ideas on the raw materials of dance. My research on 
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econometrics, specifically the linear regression model and the Classical Assumptions, gave me 

the knowledge to integrate econometric relationships with dance. The three sections of the final 

dance piece each explore a different econometric concept. In addition, other visual elements, 

such as lighting and music, contributed to the goal of physicalizing econometrics. With the 

dance piece, I devised a guideline for future choreographers seeking to represent similar 

econometric concepts through dance using different linear regression models. 

As I reflected on the entire choreographic process in hindsight, I realized something 

important for my future self as a choreographer. I believe that I often wrongly change my 

choreographic decisions too soon, which is largely owed to my impatience. Perhaps my 

choreographic ideas would have worked, but when my dancers failed to quickly create the 

effect that had I hoped for, I changed it to something new. I made it a habit to remind myself 

not to be easily discouraged. 

My semester-long choreographic journey taught me to value the process as much as the 

product itself. Commitment and mental endurance is necessary when engaging in experimental 

and explorative works. The concept of the final dance piece, to physicalize econometrics, is 

not a straightforward task. The clarity of my dancers’ relationships and the flow of the phrases, 

and hence, the concept of the piece, have come a long way since the beginning of the 

choreographic process. At the end of the day, although the audience member with no context 

of the final dance performance may be clueless, the dance is still an evocative piece of art that 

can be enjoyed by all, whether dancers, non-dancers, economists, or non-economists. 

It is crucial to take note that by no means do I claim that my choreographic decisions 

in the final dance piece and guideline reflect all the intended econometric concepts. With 

endless possibilities in the movements of the human body come endless possibilities in 
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choreography. Coupled with the extensive systems in econometrics, a field shown to be 

connected with dance, there are countless econometric-related dances yet to be discovered. 

This expansive space for academic research allows for the growth in scholarship bridging the 

gap between dance and economics. The increasing use of quantitative and mathematical 

structures in dance could potentially evolve into either a new style of dance or a new approach 

to choreographing dance. 

A main takeaway from this project is that in contrast to econometrics, there is no right 

or wrong in dance. Econometrics and dance may appear to be mutually exclusive disciplines 

and difficult to reconcile. However, I have demonstrated through my work that they can be 

fused into one. The physicalization of econometrics may be an unconventional and ambitious 

endeavor, but I have proved it possible. 



 Lau 83 

Works Cited 

Albright, Ann Cooper, and Ann Dils. “Moving History/Dancing Cultures: A Dance History 

Reader.” Moving History / Dancing Cultures: A Dance History Reader, Wesleyan 

University Press, 2001. Talis Aspire, 

https://contentstore.cla.co.uk/secure/link?id=354439e8-2c65-e611-80c6-

005056af4099. 

Au, Susan. Ballet and Modern Dance. 2nd ed, Thames & Hudson, 2002. 

Beckett, Samuel. Quad. 1981, https://www.youtube.com/watch?v=LPJBIvv13Bc. 

---. The Complete Dramatic Works of Samuel Beckett. Faber & Faber, 2012. 

Carboni, Alessandro. “ABQ – From Quad to Zero Mathematical and Choreographic 

Processes –between Number and Not Number: Performance Research.” A Journal of 

the Performing Arts, vol. 12, no. 1, 2007, pp. 50–56. 

---. “Alessandrocarboni | ABOUT.” Alessandrocarboni, https://www.alessandro-

carboni.com/about. Accessed 12 Apr. 2018. 

Carter, Françoise. “Number Symbolism and Renaissance Choreography.” Dance Research: 

The Journal of the Society for Dance Research, vol. 10, no. 1, 1992, pp. 21–39. 

JSTOR, doi:10.2307/1290696. 

Chance Conversations: An Interview with Merce Cunningham and John Cage. Walker Art 

Center, 1981, https://walkerart.org/magazine/chance-conversations-an-interview-

with-merce. 

Dance Capsules. “Canfield.” Merce Cunningham Dance Capsules, 2011, 

https://dancecapsules.mercecunningham.org/overview.cfm?capid=46036. 



 Lau 84 

Davis, Robin J., and Lance St John Butler. Make Sense Who May: Essays on Samuel 

Beckett’s Later Works. Rowman & Littlefield, 1989. 

Franko, Mark. Dancing Modernism / Performing Politics. Indiana University Press, 1995. 

Herren, Graley. “Samuel Beckett’s Quad: Pacing to Byzantium.” Journal of Dramatic 

Theory and Criticism, vol. 0, no. 1, Sept. 2000, pp. 43–60. 

Humphrey, Doris. The Art of Making Dances. Rinehart, 1959. 

Jowitt, Deborah. Time and the Dancing Image. 1st ed, W. Morrow, 1988. 

Morgenroth, Joyce. Speaking of Dance: Twelve Contemporary Choreographers on Their 

Craft. Routledge, 2004. consort.library.denison.edu Library Catalog, 

http://AU8DT3YY7L.search.serialssolutions.com/?V=1.0&L=AU8DT3YY7L&S=JC

s&C=TC0000249450&T=marc. 

Nevile, Jennifer. “Dance and the Garden: Moving and Static Choreography in Renaissance 

Europe.” Renaissance Quarterly, vol. 52, no. 3, 1999, pp. 805–36. JSTOR, 

doi:10.2307/2901919. 

Siegel, Marcia B. The Shapes of Change: Images of American Dance. Houghton Mifflin, 

1979. 

Smith-Autard, Jacqueline M. Dance Composition: A Practical Guide for Teachers. 2nd 

edition, A & C Black, 1994. 

Studenmund, A. H. Using Econometrics: A Practical Guide. 6 edition, Pearson, 2010. 

Wasilewska, Katarzyna. Mathematics in the World of Dance. Mathematics, Music, Art, 

Architecture, Culture, 2012. 



 Lau 85 

Woycicki, Piotr. “‘Mathematical Aesthetic’ as a Strategy for Performance: A Vector 

Analysis of Samuel Beckett’s Quad.” Journal of Beckett Studies, vol. 21, no. 2, Sept. 

2012, pp. 135–56. Edinburgh University Press Journals, doi:10.3366/jobs.2012.0043. 

 



 Lau 86 

Appendices 

Appendix A: Video of Final Dance Performance 

http://www.youtube.com/channel/UCZ1qfqnDF7zdH1gJg5GQwYg?view_as=subscriber 

 
Appendix B: Guideline for Translating Econometric Concepts into Dance 

Econometric 
Concept 

Application to Dance 

Dependent 
Variable 𝒀 

Represented by the dance itself. 

Independent 
Variable(s) 𝑿 

Each is represented by a dancer. If there are more independent 
variables than dancers, take away as many independent variables 
as needed when estimating the regression model. Every dancer is 
assigned one element of dance (e.g. repetition, speed, angle) to 
vary in their movements while keeping other elements of dance 

fixed. The dancers must be able to vary the element of dance 
according to a scale. For example, if the element of dance is speed, 

the dancer could perform at various speeds. The two ends of the 
scale (e.g. very fast and very slow) are assigned either a positive or 
negative sign. Note: If independent variables are removed, refer to 

Classical Assumption III. 

Estimated Beta 
Coefficients 𝜷𝒌, 

where 𝒌 =
𝟏, 𝟐, 𝟑,… 

The sign (+/-) of an estimated beta coefficient (e.g. 𝛽F) determines 
how the dancer representing the independent variable 

corresponding to that beta coefficient (𝑋F) would perform 
movements of the assigned element of dance relative to other 

dancers (e.g. if the estimated beta coefficient is positive and if a 
positive sign is assigned to very fast movements, the dancer would 

perform fast movements relative to other dancers). 

Classical 
Assumption III: 

Endogeneity 

Show the presence of endogeneity by contrasting the estimated 
regression equation containing all the original independent 

variables with the estimated regression equation that removed 
independent variables. This contrast is represented through 

different movements as the estimated coefficients from the two 
regression equations are different.  

Constant Term 𝜷𝟎 Represented by a dancer. 
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Stochastic Error 
Term 𝝐 

Represented by the same dancer as constant term 𝛽D. 
Cl

as
sic

al
 A

ss
um

pt
io

n 
I:  

1. additive 
error term 

Error term is represented by an individual dancer. 

2. correct 
functional 

form 

This concept is reflected in the dance through Classical Assumption 
III. 

3. linearity in 
coefficients 

The shape of the functional forms that are linear in the coefficients, 
including linear, double-log, semi-log, and polynomial functional 
forms, would be used. These shapes determine spatial patterns 

that dancers make, the formations of dancers, and the shapes that 
individual dancers or dancers together make in their movement. 

Classical 
Assumption IV: 

Serial Correlation 

In the presence of serial correlation, the movements of the dancer 
representing stochastic error term 𝜖 in one time period would 

affect their movements in the next time period. Otherwise, in the 
absence of serial correlation, the movements of the dancer would 

not affect other movements throughout the dance. Whether or not 
movements of one time period affect movements in the next time 
period is dependent on the presence of serial correlation, which is 
determined by the value of 𝑑. If 𝑑 is greater than 1.66, there is no 

serial correlation. If 𝑑 is smaller than 1.12, there is serial 
correlation. In the case of uncertainty when 𝑑 is in between 1.12 
and 1.66, the dancer would alternate between the presence and 

absence of serial correlation. 

Classical 
Assumption VI: 

Multicollinearity 

The dancer representing both the constant and stochastic error 
terms would have no contact with any of the other dancers. In the 
presence of perfect multicollinearity, the movements of dancer 1 
who is representing independent variable 𝑋F would be in physical 
contact with dancer 2 who is representing independent variable 
𝑋P. Otherwise, in the absence of perfect multicollinearity, the two 
dancers would not have any physical contact. In the presence of 
imperfect multicollinearity, dancers 1 and 2 would experience 

some degree of physical contact. The level of contact between the 
movements of dancers is dependent on the degree of 

multicollinearity, which is determined by the VIF value. A VIF 
greater than 5 signifies severe multicollinearity, and a VIF smaller 

than 5 signifies a low degree of multicollinearity. 
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Appendix C: Journal of Choreographic and Production Processes 

 

Saturday 19th January 4:00 pm – 5:30 pm, rehearsal (Elyse absent) 

Prior to our first rehearsal, I felt as though there was a high chance that all my ideas in 

my writing may not work at all. I could think of so many potential challenges that my dancers 

and I would face when trying to piece my abstract ideas together. I hoped that combining 

econometrics and dance would definitely produce a work that I envisioned, as if combining 

one and one together to make two. Unlike the mechanics of numbers, mixing econometrics 

into dance cannot always create work that I envision in my head. One plus one may actually 

be three. Even worse, perhaps one and one cannot be added together. 

I started the rehearsal by assigning a different variable and element of dance to each 

dancer. The elements of dance included tempo, high point in the phrase, symmetry vs. 

asymmetry, and smooth vs. sharp movements. We tested whether it was possible to have each 

dancer vary their assigned element of dance while keeping other elements of dance the same. 

As the choreographer who is not involved in the dancing but watching the dance, the scene 

appeared very disorganized and not ‘choreographed.’ It was extremely unclear that the dancers 

were provided a prompt. Following someone’s suggestion, everyone focused on altering the 

same element of dance. This was more effective because everyone had the same goal. Between 

the dancers and I, the feedback given and the thoughts shared were applicable to everyone. 

This method also helped me figure out which ideas were better or worse. 

This first rehearsal was relieving. As predicted, my dancers contributed a lot, especially 

since the production component of my I.S. is a rather explorative piece of choreography. When 

I posed a set of questions to my dancers, I found my reaction to their responses fascinating. 



 Lau 89 

There were many instances where I would tell my dancers that their suggestion may not work 

because of a conflicting element in the structure of regression equations. For example, one of 

them said that to acknowledge the significance of the regression coefficient in the dance, those 

representing more significant variables could affect the movement of other dancers. I pointed 

out that it was a clever idea, but it would violate the concept of collinearity in linear regression 

models. It would be equivalent to saying that the “significant dancers” affect other variables 

when significance has to do with affecting the dance itself. Nonetheless, we found ways in 

which those suggestions could be utilized elsewhere. 

 

Sunday 20th January 2:00 pm – 3:20 pm, rehearsal (Elyse absent) 

 It was during this rehearsal that I decided to change my approach in tackling my critical 

question that asks how one can use econometric regression equations not only as a source of 

choreography but also as a generalized approach to choreography applicable to any regression 

model. It all started when I felt that I was not making enough progress relative to the previous 

rehearsal and relative to the effort and thinking put into the rehearsal. I was disappointed when 

I found that many fun and theoretically appealing and stimulating choreographic ideas did not 

work with my concept, which is to reflect the rigid, black and white numerical relationships in 

econometrics. My dancers and I would come up with ideas, but we felt restricted by the need 

to precisely capture the structure and rules of the regression equation in the dance. 

After experiencing several times of disappointment, I took a five-minute break to 

internally reflect on my current approach. I realized that I was overly fixated on physicalizing 

the exact structure and rules of the regression equation to a point where I started comprising 

my creativity. Henceforth, I made it clear to myself that my goal was to provide an econometric 
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framework for dance, rather than eliminating or discouraging the aspects of artistry and 

individuality in dance. We also thought it would be wise to change some of the elements of 

dance. Symmetry vs. asymmetry as well as smooth vs. sharp movements were changed to high 

vs. low levels and the direction of the dancer, respectively. This was because the dancers found 

it extremely hard to portray the differences in those elements with clarity. 

Before the next rehearsal, I plan to come up with set movement phrases for my dancers 

to work on so that there will be less improvisation and more practice on controlling different 

elements of dance. This would aim to physicalize, as accurately as possible, the impact of one 

independent variable on the dependent variable while controlling for all other variables. 

 

Thursday 24th January 2:30 pm – 2:50 pm, meeting with costume designer 

I had my first meeting with Rebecca Callan (Becky), the costume designer of the Spring 

Dance Concert. I did not have any ideas for her beforehand, but she gave me some things to 

think about, such as colors, patterns, or shapes that could be representative of my piece. Even 

at an early stage in the choreographic process, this meeting was very helpful. Now I have 

something to keep in the back of my mind. 

 

Thursday 24th January 7:00 pm – 8:30 pm, rehearsal 

 Feeling overwhelmed by the conceptual part of my piece, I chose to focus on 

choreographing movement rather than figuring out the structural aspects of my piece. Even 

though I choreographed a phrase in advance, my movement often does not work on other 

bodies, or rather does not illicit a similar visual effect on other bodies. Unlike many of my 

experiences in choreography, my dancers were able to learn and perform the phrase without 
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major changes. Furthermore, I picked out a piece of music to go along with the movement 

phrase. My dancers said they really like my choice of music, as well as the phrase. Their 

positive responses assured me that my work can head towards a promising direction. 

In addition to working on setting movement, I asked my dancers to explore moving 

with one another while being in contact to various extents using different body parts. The 

purpose of the exercise was to begin the development of one of the sections of my piece that 

illustrates the concept of multicollinearity. While I observed the dancers, I noticed intriguing 

shapes. In particular, I enjoyed watching the ones where they shared weight because it 

reminded me of the Contact Improvisation class I took last summer. 

 

Sunday 27th January 2:15 pm – 3:45 pm, rehearsal (Reyka absent) 

Today’s rehearsal could have went better. Not only did we miss a dancer, again, but we 

didn’t start until ten minutes into the rehearsal since everyone took their time to get ready. As 

with the previous rehearsal, I choreographed movement in advance. Unlike last time, the 

choreography seemed awkward on the bodies of my dancers. I might consider adjusting the 

movements, but in the meantime, we will continue to work on the movements. I also felt that 

we spent too much time relearning phrases from last rehearsal. As someone with some 

experience in choreographing, I can attest that it is very frustrating when time is taken away 

from further developing the piece due to time spent working on material from the previous 

rehearsal. I tried being patient and understanding, but I don’t think I tried hard enough. In an 

attempt to be assertive and honest, I asked my dancers to be ready to dance right when rehearsal 

starts, and I suggested them to work on the phrases outside of rehearsal. 
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Thursday 31st January 7:00 pm – 8:30 pm, rehearsal (Elyse absent) 

 It is already challenging to choreograph, but it is even harder to choreograph based on 

a regression model, to physicalize econometrics. Today, I experienced very strongly the 

struggles of not only a choreographer, but also of someone exploring a new area of knowledge. 

While I was helping my dancers perform choreographed movements in a specific way, I was 

faced with another task. I had to establish physical relationships among the dancers that respect 

the rules of regression equations. On top of that, I had to keep in mind that my five dancers 

naturally move very differently, meaning that my choreography must accommodate the five 

different bodies. These problems will be ongoing throughout the process. I think focusing on 

other aspects of my work will be more productive. For next rehearsal, I plan to work on the 

overall structure of the dance. Perhaps dividing the piece into sections will benefit my 

choreography. 

 

Sunday 3rd February 2:15 pm – 3:45 pm, rehearsal 

 After working on existing choreography, we explored representing the graphical shapes 

of various types of regression equations. It was not an easy task, but since my dancers were 

cooperative and communicative, they managed the task well. It was helpful to simply watch as 

it allowed me to think and come up with suggestions that I otherwise would not have if I 

physically participated. After all, there are advantages to both carrying out an action yourself 

and watching someone else perform it. With some remaining time, we went back to trying out 

movements that involved physical contact. I find such movements especially hard to 

choreograph all by myself because it is puzzling to know how two or more bodies would 



 Lau 93 

interact without feeling a body. Thus, improvisation seems to be key to choreographing 

interdependent movements. 

 

Thursday 7th February 11:00 am – 11:30 am, production meeting 

 The first production meeting involved talking about the needs and concepts of the 

different choreographers presenting in the concert. Since I have been a part of the production 

side of past concerts a number of times, what happened was consistent with my expectations. 

Quite a bit of the meeting was figuring out dates for tech rehearsal and deadlines. The meeting 

did leave me with a question. How does one light a piece about econometrics? 

 

Thursday 7th February 7:00 pm – 8:30 pm, rehearsal (Ella present for 20 minutes) 

 The production meeting this morning may have left me with a question, but tonight’s 

rehearsal left me in tears. I wish I could say that they were tears of joy. Despite what happened, 

I learned an important lesson. Unlike numbers, people are hard to predict. But like working 

with numbers, working with people demands patience. 

 

Sunday 10th February 2:15 pm – 3:45 pm, rehearsal 

 In stark contrast to the previous rehearsal, today’s practice was very productive and 

meaningful. We worked on physicalizing the concept of multicollinearity by doing partner 

work. By the end of the rehearsal, we developed some working movement phrases. Despite 

coming up with movement material, I still need to work on assembling the already-

choreographed movements so that the section on multicollinearity is coherent with other parts 

of the dance piece. Our progress seems promising again. 
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Monday 11th February 4:00 pm – 5:10 pm, sharing 

 I shared the progress of my piece to some of the participants of the Spring Dance 

Concert for the first time. It was thrilling to hear positive feedback from someone involved in 

the concert who is also an Economics major (I am a double major in Theatre & Dance and 

Economics). I do not necessarily refer to positive feedback as people’s comments about how 

much they enjoyed or appreciated the aesthetics of the piece. Here, I define positive feedback 

as comments that express one’s understanding of what I am trying to do, mixing econometrics 

with dance. Even though I briefly talked about the goals of my piece, she said she could see 

how the relationships of the dancers’ bodies and movements agree with concepts in regression 

equations. More specifically, she could tell that I was trying to “control explanatory variables 

in the regression equation” by controlling for the various elements of dance in movement. 

 The sharing got me in such a great mood because of the exchange of understanding 

between me and the other Economics major. As both Economics majors and dancers, she and 

I experienced a connection. To a varying extent, my dance piece induced the both of us to not 

only the artistic and creative part of our brains, but also the quantitative side of our brains to 

view dance. I see beauty in a dance that, in order to process grasp, calls the viewer to use 

knowledge from two opposing disciplines. It was during that moment of connection with the 

Economics major that reminded me of why I indulged into this complicated topic in the first 

place. 

Someone pointed out that they did not see all the dancers differentiate to become a 

unique explanatory variable. They were in fact correct because I still have to figure out how to 

introduce the last dancer as their own unique variable. I have been struggling to come up with 
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another element of dance that works with what I already have choreographed, is achievable for 

my dancers, and is clear to the audience. 

 

Thursday 14th February 11:00 am – 11:40 am, production meeting 

 

Thursday 14th February 7:00 pm – 8:30 pm, rehearsal 

 This rehearsal, we primarily worked on differentiating the last dancer representing the 

fourth variable in the regression equation. Beforehand, I came up with a number of movement 

qualities for them to work with. Some of these qualities were ones that I had previously planned 

for but did not seem to work. However, I decided it was worth revisiting them since so much 

has changed. With the intention of choosing the movement quality that was visually the clearest, 

we decided that the dancer representing the fourth variable will alter the use of their kinesphere. 

Although we figured out which element of dance to pair with the fourth variable, we did not 

have the time to choreograph a movement phrase. Considering the structure of the dance so 

far, I decided to extend the length of the music. It appears to me that we need more time to 

clearly present the last variable to the audience before going into the next section of the piece. 

 

Sunday 17th February 2:15 pm – 3:45 pm, rehearsal 

 Even though everyone was very cooperative and willing to contribute, we still struggled 

to introduce the dancer representing the fourth variable. The goal for this dancer is to do the 

same basic phrase as everyone else while only altering the use of their kinesphere. It took some 

time for my dancers to learn and perform the phrase, let alone to work on the primary task we 

had at hand. As we practiced more, it became clearer that the dancer is changing the use of 
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their kinesphere. However, the clarity did not seem to be sufficient. We tried other things, such 

as changing their position relative to the other dancers, which helped to some extent because 

it singled out the dancer and placed an emphasis on their movements relative to the movements 

of the others. 

 

Monday 18th February 4:00 pm – 5:00 pm, sharing 

 

Thursday 21st February 11:00 am – 11:50 am, production meeting 

 

Thursday 21st February 7:00 pm – 8:30 pm, rehearsal (Karabella absent) 

 Despite missing a dancer, we successfully choreographed the majority of the second 

section of the piece, which aims to express multicollinearity, an econometric concept. 

Although this section uses the same piece of music as the previous section, the music is calmer 

as it slows down. I made the decision to start the second section when the music slows down 

because a new aural tone helps to introduce a new idea. 

Using loose phrases that were previously developed, we worked to communicate 

different levels of multicollinearity through varying the use of skin-to-skin contact. This 

choreographic choice was strategically made because multicollinearity is about the correlations 

among the variables. Following this logic, I decided that the higher the correlation between 

two dancers, the more contact they would have with one another. Before working with any 

movement, we established the strength of the correlations among the variables they were 

representing. Accordingly, we portrayed these correlations by putting together partner and 
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group movements. One obstacle was trying to maintain the same amount of contact based on 

their established relationships with one another. 

 

Sunday 24th February 2:15 pm – 3:45 pm, rehearsal 

 Today we started working on the third and last section of the piece. Where the first 

section aims to reflect a modified regression equation that excludes many of the control 

variables, the third section aims to reflect parts of the original regression equation that include 

all the other control variables. The value of the regression coefficients corresponding to the 

dancers’ assigned variables in the modified equation are different than those in the original 

equation. With this in mind, their movements are thus also different. In order to better evaluate 

the quality of this section, I need to work more on it. 

 

Monday 25th February 4:00 pm – 5:00 pm, sharing 

 

Thursday 7th March 11:00 am – 11:30 am, production meeting 

 

Thursday 7th March 7:00 pm – 9:00 pm, rehearsal 

With more feedback from other people, I not only found ways to further my work, but 

I also learned about the things that work and do not work. At the same time, I’ve been working 

with my lighting designer, Mike Schafer. I am so thankful that he has so many brilliant 

production ideas that align well with my concept. He was thinking of hanging a black drape 

from the ceiling at an angle to reflect a linear regression equation. Not only could this provide 

a literal visual representation of a linear regression equation, but it could also effectively 
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change the shape of the performance space from a rectangular shape to an irregular shape, as 

if the audience is not in a theater anymore but in another dimension in an abstract world full of 

numerical concepts. 

Even more than before, my dancers and I found it extremely challenging to develop a 

phrase that allows everyone to only alter their assigned quality of movement while “controlling” 

for other aspects of the dance. For example, we had to come up with a phrase that can both 

clearly and simultaneously portray contrasting use of levels, speed, and kinesphere among the 

dancers. Essentially, the goal is to have the audience identify the similarities and differences 

among the dancers who are each representing a different independent variable. Nonetheless, 

we made a lot of progress. However, Spring Break is approaching in less than a day… 

 

Thursday 28th March 11:00 am – 11:20 am, production meeting 

 

Thursday 28th March 7:00 pm – 8:30 pm, rehearsal 

 For me, choreographing a dance based on the concept of econometrics is a fairly 

ambitious task. As I am approaching the end of the choreographic process, I must say that it 

does not get easier. Perhaps the third section of the piece is the most difficult for both me and 

my dancers. Every time we think we have figured something out, we quickly realize that the 

movements are either conceptually incorrect or not completely reflective of the concept of the 

piece. Unfortunately, when the movements do align with the concept, they do not appear as 

visually appealing. We definitely need to continue to strive for a healthy balance between 

accuracy of conceptual ideas and esthetics of movements. 
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Sunday 31st March 2:15 pm – 3:45 pm, rehearsal 

 The choreography is almost complete! We were also able to work on spacing on the 

stage. I really appreciated the opportunity to view the piece farther away from the dancers. I 

could see the entirety of the piece and all the dancers together with more clarity as my eyes 

were not forced to only look at individual dancers. I decided that some of the parts that were 

choreographed during last rehearsal did not demonstrate the concept of the last section as 

clearly as I wanted. As the next resort, I made use of repetition, which made the movements 

not only more purposeful and less random, but also more familiar. 

Monday 1st April 4:00 pm – 5:00 pm, sharing 

 

Wednesday 3rd April 5:30 pm – 7:00 pm, rehearsal 

 The piece is completed!! The remaining time until the show can finally be used to clean 

up the dancers’ movements, which I am very grateful for. Working on stage has been quite a 

different experience than working in the dance studio. Spacing is vastly different when you get 

to view the dance from the perspective of the audience. What may seem appropriate in the 

studio may be less suitable on stage. For example, the V-shaped formations are not as strong 

when the dancers are spaced closely and evenly on stage but are stronger when spread out and 

unevenly spaced on stage. 

 

Thursday 4th April 7:00 pm – 8:30 pm, rehearsal 

 Today’s rehearsal started and ended strongly. Given the current performance of my 

dancers, I am confident that the Spring Dance Concert will turn out wonderfully. This rehearsal 
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was also the first time that I saw the first draft of the lighting design. I think the lighting really 

does further explore the concept of my piece. 

 

Saturday 6th April 4:00 pm – 5:00 pm, tech rehearsal 

 

Monday 8th April 6:15 pm – 10:00 pm, dress rehearsal 

 

Tuesday 9th April 6:00 pm – 9:20 pm, dress rehearsal 

 

Wednesday 10th April 6:15 pm – 9:00 pm, dress rehearsal 

 

Thursday 11th April 5:45 pm – 9:00 pm, opening night 

 

Friday 12th April 5:45 pm – 9:00 pm, second performance 

 

Saturday 13th April 5:45 pm – 9:00 pm, last performance 
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Appendix D: Initial Development of Costume Ideas 

CoW DANCE COSTUME DEVELOPMENT 
 
COMPLETE your COSTUME THOUGHTS. 
DISCUSS your ideas with Rebecca Callan, Costume Designer/Shop Supervisor. 
TRANSLATE your ideas into realistic costume. 

TIME/MONEY/LABOR 
 
REMEMBER to use the Costume Stock that CoW has and then we will BORROW OR BUY 
costume pieces. 
 
TRY your costumes in the piece. 

Do they work?  Or is it not what you thought it would be? 
EDIT costumes as needed. 
 

SDW COSTUME THOUGHTS 
 

ü PointOfView (POV) STATEMENT 

 
1. What is your piece about, what is the concept? What are you trying to accomplish? 

Are you using a particular movement style/pedagogy? What does your piece make 
you feel? What do you want your audience to take from your piece? 
My piece explores how one can make use of an econometric tool, specifically a 
regression equation, as a source for choreography. The structure of the dance will 
partially follow the numerical structure and relationships of the regression equation. 
My dance explores how dancers can affect a dance in the way that independent 
variables affect the dependent variable. 

2. What is the music or sound for the piece? 
COPYCAT by Billie Ellish 

3. Who are the dancers in your piece? 
Elyse Evans, Karabella Hernandez, 
Ella Lang, Kathlyn MacDonald, and 
Reyka VanSickle 
 
 

Source: 
http://sphweb.bumc.bu.edu/otlt/MPH-
Modules/BS/R/R5_Correlation-
Regression/R5_Correlation-
Regression5.html 
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ü Find and attach a PICTURE/PAINTING/VISUAL INSPRIRATION. 

Color thoughts: Black and white to capture the non-discriminating and plain 
nature of regression equations. However, a different color could potentially 
be used on each dancer since they are each representing a different variable. 

 
ü Please attach 2 complete looks for your piece. 

1. LITERAL (PEDESTRIAN, DANCE CATALOGUE, 
KOHLS/TARGET/WALMART) 
 
Source: 
https://www.trendhunter.com/trends/cream-dress 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. ABSTRACT (HAUTE COUTURE, AVANT GARDE, ABSTRACT FASHION, EDITORIAL) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Source: https://www.news.com.au/lifestyle/fashion/fashion-trends/shoppers-slam-
hideous-jeans-made-from-laces/news-story/8888f57d01543e65b339958b46130299 
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Appendix E: Spring Dance Concert Publicity Poster 
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Appendix F: The Wooster Voice Article About the Spring Dance Concert
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Appendix G: Spring Dance Concert Tech Schedule 

Thursday, April 4 
4:00-6:00pm – 1st Tech for Kim 

*any crew available. 
6:00-10:00pm – SM Coordinated Schedule 
 
Friday, April 5 
SM Coordinated Schedule 
  
Saturday, April 6 
1:00pm - Crew Call 
1:30pm - Reyka Call 

2:00pm - Reyka Go (60mins) 
2:30pm – Crystal Call 

3:00pm- Crystal Go (45mins) 
3:15pm – Madigan Call  

3:45pm -Madigan Go (45mins) 
4:00pm -Rachel Call 

4:30pm - Rachel Go (60mins) 
 
Sunday, April 7 
1:00pm - Crew Call 
1:30pm – Claire Call 

1:45pm - Rachel Video Go (15mins) 
2:00pm - Claire Go (45mins) 

2:15pm - Teagan Call  
2:45pm - Teagan Go – (45mins) 

3:00pm - Kim Call  
3:30pm - Kim Go (90 mins) 

 
Monday, April 8 
6:00pm Crew Call 
6:15pm Dancers Call 
7:30pm Go Dress Rehearsal 1  
*Full Costume & Makeup 
*Crew in all black 
*Dancers Dismissed with Kim’s permission 
 
Tuesday, April 9 
5:45pm Crew Call 
6:00pm Dancers Called 
7:00pm Photo Call 
7:30pm Go Dress Rehearsal 2  
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*Full Costume & Makeup 
*Dancers Dismissed with Kim’s permission 
 
Wednesday, April 10 
2:00-5:00pm – Tech/Spacing Rehearsal – Talise 
3:00pm – SM/Crew Call, as needed. 
5:00-6:00pm – SM/Crew Dinner Break 
6:00pm Crew Call 
6:15pm Dancers Called 
7:30pm Go Dress Rehearsal 3 & Video 
*Full Costume & Makeup 
*Immediately following the rehearsal, all dancers must report to the stage for final notes. 
 
Thursday, April 11 
5:30pm Crew Call 
5:45pm Dancers Call 
6:00pm Warm Up 
7:30pm Go Opening Night 
 
Friday, April 12 
5:30pm Crew Call 
5:45pm Dancers Call 
6:00pm Warm Up 
7:30pm Go Performance 2 
 
Saturday, April 13 
5:30pm Crew Call 
5:45pm Dancers Call 
6:00pm Warm Up 
7:30pm Go Performance 3 
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Appendix H: Spring Dance Concert Program 
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