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Abstract

Operations research models have been and continue to be integral to the imple-

mentation of forest management strategies. Fundamental operations research

models such as linear and dynamic programming have respective advantages and

disadvantages when applied to any forest system. An overview of five fundamental

operations research models are provided in terms of a timber harvesting system.

Timber production management is a branch of forest management that seeks to

optimize the economic benefits of harvesting timber. The time-stage nature of timber

harvesting systems makes dynamic programming a particularly useful model for

timber production management. Thus, dynamic programming is the primary model

discussed in this thesis. Through several constructed examples, the structure and

solving process of a dynamic programming model is demonstrated and analyzed.

Both discrete and continuous dynamic programming models are discussed as well

as varying forest management considerations.
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CHAPTER 1
Introduction

1.1 ForestManagement

The forest is a dynamic system, requiring those who take care of it to understand

its interactions with other systems as well as the mechanics within the forest

itself. An advanced understanding of the inner and outer workings of the forest

ecosystem is crucial to knowing what is best for a specific environment. Thus, the

management of a forest takes the time and effort of many people, including those in

government, science, and administration. To manage a forest is to be concerned

with all of these aspects, and create a management plan which reflects the needs

of all parties involved. Depending upon the main purpose of a management plan,

forest management teams may differ. For example, those managing the forests of

a national park may not have the same exact skills or professional goals as those

needed to keep a timber production facility functioning. With the main purpose

of timber production being to profit off of wood products, there is a large need for

economic expertise at a logging company. National parks also require economic

expertise, but efforts are more focused on the upkeep of land and sustaining of jobs.

Regardless of purpose, the application of operations research models has been and

1



1. Introduction 2

continues to be of aid when discussing forest management strategies for the present

and future.

1.1.1 ModelingWithin ForestManagement

With environmental concerns skyrocketing over the past few decades, there are now

mandatory health standards regarding a managed forest ecosystem and surrounding

lands. To address new forest management laws and regulations as well as societal

views, forest management modeling now typically builds additional assumptions

into previous models. Environmental concerns are not weighted equally in all

models, with some models addressing specific environmental concerns to follow

federally-enforced ordinances. On the other hand, there are forest management

strategies that prioritize an increase in natural development and growth, usually

for forest lands that have been protected for this purpose. Forest managers with

this task look to decrease the impact of human activity so as not to negatively affect

the natural environment. The idea that in order to decrease the impact of human

activity, humans need to manage and alter the forest system even more is a bit ironic,

but forest management is now needed in many areas for any progress.

One model type which can be used to project future timber production values,

but is most often used by forest ecologists to see changes in a forest for overall forest

health reasons is simulation models. Trajectories of species organization and other

variables are based off of biological information. There is little to no optimization

involved in these models, as forest systems are most harmonious with a balance of

many interactions, rather than the dominance of one variable such as profit. Ellison

[2018] The environmental forest manager does not approach the forest as a source

of income, so when using simulation modeling there is no need to find a way in

which the most income can be made, and there is little to no importance placed on

the monetary value of the forest.
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Simulation models are sometimes built upon the assumption that a forest is

never disturbed and is always a uniform density. Twery [2004] This does not

allow for the adjustment to any unexpected behavior in the forest ecosystem. It is

easier to account for uncertainty factors by applying other models, such as dynamic

programming or Markov decision processes. The existence of spatial variables

in the forest system also presents an issue. These variables, such as size, shape,

and relative arrangement, are used alongside non-spatial variables to describe the

spatial structure of a forest. There is difficulty in accurately representing the spatial

structure of a forest given the innate complexity of a forest system. Kurttila [2001]

In recent years, geographic information systems (GIS) and other tools have allowed

forest managers to monitor spatial variables while also paying attention to the

biodiversity levels of a forest throughout time. Ezquerro et al. [2016] Altogether,

there are ways to successfully model a forest in which the priorities of the forest

manager are solely environmentally driven.

Adaptive management is another approach to managing a forest system. Adap-

tive management involves proper ecological treatment of the forest and constant

“learning through management where knowledge is incomplete." Allen and Garmes-

tani [2018] The main goals of adaptive management are to reduce any factors of

uncertainty in the system and expand the comprehensive knowledge of relations to

the system. Allen and Garmestani [2018] Successful adaptive management includes

the ability to investigate small alterations of a model, allowing the manager to see a

plethora of management options with their respective drawbacks. This sensitivity

analysis is not only important to adaptive management, but to other real-world

models as well.

Although forest management strategies that prioritize the harvesting of timber

as a natural resource seem less environmentally-aware, they can still involve

assumptions to produce more environmentally friendly solutions. Concerns within
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the forest management and larger community do not have to be ignored. There

are ways to prevent conditions that indicate poor biodiversity levels in a forest,

some of these conditions being low forest connectivity, low genetic variation in

plant and animal populations, open conditions throughout a forest, little forest

cover, and ill constructed roads throughout a forest. Lindenmayer and Franklin

[2002] In fact, new laws and regulations, paired with the development of operations

research models and techniques, have produced and increased the integration of

biodiversity factors into forest management considerations. Recent operations

research techniques and approaches for optimizing economic and environmental

benefits within forest management systems are working towards obtaining desired

future conditions and increased biodiversity levels. Martell et al. [1998]

In this thesis, the forest management type that will be explored and investigated

is timber harvesting, and thus there will be a focus on optimizing economic benefits.

Some environmental concerns will be considered and addressed, as the protection

of the environment is an objective of most forest managers, but these factors will

not be given the most attention. The center of this investigation in modeling timber

harvesting systems is to optimize forest value over a time horizon. A background

in operations research modeling may be useful. For the understanding of terms

and context, a short background on timber harvesting systems is provided.

1.1.2 Timber Harvesting

The original objective of forest management was to maximize the profit of timber

production from a certain stand or stands. A stand is a patch of forest that is distinct

in composition or structure from surrounding areas of forest. Lindenmayer and

Franklin [2002] Before the invention of computers with high computational abilities,

growth and yield tables were created to predict the development of a stand’s volume

in order to know when and how much to cut for optimal profit. These tables can still
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prove useful when solely concerned with stand volume. Twery [2004] However, the

priorities of timber production management are changing, with leading objectives

being where and how to cut, compared to when and how much. Ezquerro et al.

[2016]

As timber is a natural resource, the profit made from cutting and selling timber

is an obvious goal of many forest managers in the industry. Large properties across

the world are dedicated to the growing and harvesting of timber. This type of forest

management is important for many economies and communities and has been

shifting towards using more sustainable practices in order to view the forest as a

multiple-use system. Hof [1993] For sustainability reasons, the modeling of timber

production now includes variables that the average person might not consider

when first thinking about a stand’s evolution. Just a few of these variables are road

paving costs and timetables, fuel costs, the volume of timber remaining after harvest,

biodiversity indices, and costs of harvesting equipment upkeep and replacement.

Ezquerro et al. [2016]

With the many variables and complexities of the system, there are difficulties

in the process of harvest and planting. While trees can grow across almost any

landscape, there are locations that are much more convenient and accessible than

others. The conditions of a stand such as wind speeds or the slope of a hill or

mountainside need to be taken into account, as these factors may have a large impact

on the cost of harvest. The removal of trees by helicopter might be required for

stands too isolated or dangerous - the danger possibly applying to the environment

as well as humans. HowStuffWorks [2008] Digging up any protective layers of

soil, or compacting the soil until it can no longer absorb rainfall runs the risk of

negatively effecting the water quality in surrounding areas. Both of these situations

must be considered throughout the harvesting process. of Forestry [2009]

The harvesting process begins in the planning stage. Forest managers may
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collaborate with harvesting contractors to identify a stand to clear-cut or thin, and

the best management practice (bmp) for the site. The best management practice

changes depending upon the conditions of the stand. Harvesting a stand can

take the use a lot of equipment and machinery to cut and transport the timber

safely. Examples of possible equipment used are chainsaws, a feller buncher which

stabilizes a tree while also cutting it down, and a skidder which transports the cut

logs away from the cutting site. There are some highly mechanized systems for

timber harvest that arguably consume less fuel per unit of overall output compared

to low mechanized systems. Machine and fuel costs are two primary costs that

impact the net return from harvest, but the two largest costs of timber harvesting in

the southern United States, reported in 2011, are hauling and labor costs. Cubbage

and Granskog [1982] Baker et al. [2013] Harvested logs are typically transported to

a timber mill facility after being loaded onto large trucks, adding to this hauling

and labor cost component.

Certain precautionary measures are taken throughout the harvesting process,

given the risk of human and environmental harm. For example, the prediction of

where a tree will fall and how hard it will hit the ground is important for the safety

of workers as well as animal and plant life. There are also industry standards for

the height at which a tree can be cut for easy clean-up, future planting, and site

preparation. OklahomaGardening [2016]

After harvest, the land is prepared for planting, utilizing the expertise of a

silviculture forester whose goal is to control how the forest grows and develops.

Equipment such as a D8 bulldozer breaks the soil loose to a certain depth required

and new trees are planted, typically in the dormant season, during colder months.

Trees are strategically planted at a planned distance from adjacent trees, and often

along the topography of the land instead of in straight rows. OklahomaGardening

[2016]
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The careful planning and procedure of timber harvests contributes to a more

sustainable and environmentally friendly industry. By spending money on practices

such as taking precautionary measures when cutting down trees and avoiding the

removal of protective soil layers, some assumptions concerning the health of a forest

are already built into a model through required harvesting costs. Mandating the

completion of certain ecosystem-protecting tasks also mandates the spending of

money on these tasks, which then takes away from the overall net return made off

of a stand.

Throughout all stages of timber harvesting - harvest itself, preparation for

planting, and planting - the forest manager looks to quantify value in the land. This

can be done using many different measurements and depends on the state of the

trees that are harvested. Standing timber is usually measured in board feet, while

harvested logs can be measured in board feet, cubic feet, cords, or units of weight.

Descriptions of a couple of these measurements are given as follows:

board foot

a unit for measuring the volume of merchantable timber that a log will

yield. 1 board foot is equivalent to a 1 foot by 1 foot by 1 inch piece

of wood. The volume of merchantable timber can also be expressed in

thousand board feet, abbreviated mbf. Nix [2018]

cord

stacked wood which occupies 128 ft3 of space. The dimensions for this

space are typically 4 feet high, 4 feet wide, and 8 feet long. The actual

quantity of wood within a cord is influenced by the diameter and length

of the logs, the form of individual logs, the thickness of any bark, and the

method of stacking and transporting the cord. The amount of "air space"
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in a cord can be diminished by stacking logs with larger diameters due

to the fact that they tend to be straighter and smoother. Compared to

using machines, stacking logs by hand also produces more solid wood

per cord. Williams [1968]

To estimate the value of merchantable timber in a stand, forest managers

across the United States utilize log rules. There are three main log rules - Doyle,

International, and Scribner. Each log rule will produce a separate volume estimate

for the same stand. Nix [2018] These different estimates are partially due to each

rule’s individual approach to addressing the taper of a tree. If all trees grew as

perfect cylinders, then the calculation of timber volume would be made much easier.

But, while the diameter of a tree is smaller towards the top compared to the bottom,

a timber volume calculation must be altered from the formula for the volume of a

cylinder. A trees taper is influenced by its species and surrounding environmental

conditions, which ultimately impacts timber volume estimations. Yoder [2019]

The Doyle rule is the most widely used log rule and is very popular in the

southeastern United States. The Doyle formula for calculating the board foot yield

of a log is:

board feet = (D − 4)2
∗

L
16

D is the diameter of a log at the small end in inches and L is the length of a log

in feet. Cassens The Doyle rule is visibly the most similar log rule to the calculation

of the volume of a cylinder: πr2h where r is the radius and h is the height of a

cylinder. Using the variables D and L while also converting to feet, the formula for

the volume of a cylinder becomes D2
∗
πL
576 ≈ D2

∗
L

183 .

Not as popular, but more accurate than the Doyle rule, is the International rule.

A formula for the board foot calculation of a tree using the International rule is as

follows, with the same definitions for D and L as when using the Doyle rule.
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board feet = 0.04976191LD2 + 0.006220239L2D − 0.1854762LD + 0.0002591767L3

− 0.01159226L2 + 0.04222222L

The International rule board foot calculation is more elaborate. For the sake

of time management and efficiency, a handheld device can be employed by forest

managers when making volume estimates which computes this calculation. Yoder

[2019]

Evidently, the timber harvesting process is very complex. While the actions of

planting and harvesting require specialized machines, time for planning, and many

hours of manpower, there is a job of determining the value in the harvest and the

land itself. To maximize the profit made from harvest, a number of variables can

be considered. Taking into account all tree species and climates, successful and

efficient models may vary. What produces an optimal net return for one stand is

probably not what will yield an optimal net return for a stand located in a different

part of the world. Improvements have been made, but there is no single model or

approach that has been the best choice for managing all situations and variables.



CHAPTER 2
Model Overviews

2.1 Operations ResearchModels for Timber

Harvesting

Of the numerous types of operations research models applied to forest management,

a few of the most common are: linear programming, integer programming, nonlinear

programming, dynamic programming, and Markov decision processes. All five

of these model types can be utilized for optimizing the net return, or any other

variable in timber harvest operations. In general, "an optimization model seeks

to find values of the decision variables that optimize (maximize or minimize) an

objective function among the set of all values for the decision variables that satisfy

the given constraints" Winston [2004] Constraints limit the domain of a problem

and represent requirements of the model. For optimization models including quite

a few constraints, the modeler must be careful that the constraints do not limit the

objective function from achieving a solution.

Classic operations research optimization techniques such as linear programming

have been employed since the mid-20th century, persisting in relevance and func-

tionality. Ezquerro et al. [2016] The following is a discussion of the applications

10



2. Model Overviews 11

of linear and dynamic programming, and Markov decision processes, along with

possible benefits and drawbacks for each model type. A brief overview of integer

and nonlinear programming is included as well.

2.1.1 Linear Programming

A linear programming model (LP) in operations research is an optimization model

with a linear objective function. This objective function is subject to linear constraints

that limit the possible domain of the model. Linear programming is a popular way

to model a system due to the ease of solving for optimal values with a particular

algorithm - the simplex method. A variable that is typically optimized in the timber

production industry is the net return from harvesting and selling. Large linear

programming models allow for the inclusion of many constraints, thus allowing

for the inclusion of environmental, industrial, social and economic requirements.

The expansion of a linear programming model when optimizing the net return

of timber production is important due to the many ways one spends and makes

money during the harvesting and selling process.

Variables that indicate high or low biodiversity levels in the forest ecosystem can

be optimized as well. However, the net return made from harvesting and selling

is usually the variable of most concern to those in charge of the timber harvesting

process. Forests are not harvested for the sake of the environment, but for the benefit

of the economy and individual or community use. Environmental concerns can still

be effectively enforced in a linear programming forest management model through

the addition of assumptions and constraints. Forestry laws and regulations and

economic requirements can also be expressed in this way.

The issue of clear-cutting large areas of forest at once is an example of an

environmental concern for forest managers. The preservation of biodiversity levels

is more likely to occur in forests with a smaller total clear-cut area, or in forests
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that are clear-cut in several smaller patches. The question a forest manager has

when addressing clear-cutting issues is "where to cut?" If a large forest is sectioned

into stands, the manager wants to avoid harvesting a stand immediately next to, or

adjacent to, a stand that was recently clear-cut. By adding adjacency constraints to

a linear programming model, a forest manager can impose the rule that a minimum

amount of time must pass before a stand can be cut down if it is adjacent to a stand

that has recently been clear-cut. Martell et al. [1998] For any stand in the current time

period, the value of a variable is set to one if that stand was harvested. For any two

adjacent stands, their representative variables must sum to less than or equal to one.

Consequently, these variables can either be one or zero. The requirement of solution

variables having an integer value makes the problem an integer programming

model, an extension of linear programming models. Through adjacency constraints,

the existence of a large area of clear-cut forest can be avoided, which reflects well

on measurements of biodiversity.

The economic impact of timber mills also needs to be reflected in modeling

forest management systems. The constant flow of income from selling timber may

be crucial to the development and growth of a city or town’s economy, especially

in some rural areas. Continuation of economic growth can be established with

certainty by including minimum harvest levels. Kaiser and Messer [2012] The

volume of trees harvested is set greater than or equal to a minimum required value

per time period. This value is adjusted, as the profit a city needs to function is

different across different regions. A region may not require minimum harvesting

levels if their economy is not dependent upon local timber operations.

The addition of economic and environmental constraints allows forest managers

to account for many variables in modeling the net return from timber harvests

using linear programming. Nevertheless, the true relationships between variables

are not always linear, and the spatial structure of a forest can be more accurately
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described by nonlinear functions. Thus, a nonlinear programming model may be

more suitable in cases where spatial structure is a priority. Kurttila [2001]

Two general assumptions of linear programming models are that areas of land

can be grouped in that they have similar-enough characteristics, and that modeling

changes of a forest system can be done over a long span of time. Martell et al.

[1998] After a solution is found, certain management techniques will be applied to

the land groupings, or stands, for each time period. If an area that was assumed

to have similar characteristics does not actually have similar characteristics, the

management technique applied may not be the best technique for the majority of

that area. For example, imagine a stand which consists of a wide range of tree

species. Over time, one species of tree becomes ready for harvesting, while all

other species take more time to reach peak development for harvest. If that stand

was assumed to have similar time-to-harvest periods, a management decision to

clear-cut may come at a bad time for a large portion of the trees in that stand. This

can be an issue with other models as well. To avoid this error and also to keep a

more organized harvesting pattern, timber production plantations may only plant

and harvest even-aged stands of the same species.

A linear programming model informs a forest manager what forest management

decisions to make across many time periods. Trees grow and live for long periods of

time compared to the existence of many living things, and there are many changes

within a forest ecosystem just over a few years. Hence, making an assumption about

the changes of forest variation, biodiversity, profits, etc. over large time periods

may not be a low-impact decision on a model. To confront these assumptions, linear

programming models can be adjusted to consider unexpected behavior over long

time periods and horizons.
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2.1.2 Integer Programming

Mentioned previously, an integer programming model (IP) is an extension of a linear

programming model which requires some or all decision variables to have integer

values. This particular requirement is necessary for scenarios such as optimizing

the number of employees needed in an office at once; a solution of 8.45 employees

is not applicable to the real world. Models requiring all variables to be integers are

called pure integer programming problems, while only some of the variables are

required to be integers in a mixed integer programming problem. Winston [2004]

2.1.3 Nonlinear Programming

Nonlinear programming models (NLP) are applied to systems in which any function

included in the objective function or constraints can be nonlinear. Within a forest

system, many variables change with time in a nonlinear fashion. Examples are

growth rates, the average diameter of a tree, and animal or plant populations.

Simplifying the system to a linear programming problem would make the problem

easier to solve, but would deliver less accurate results. The difficulty in actually

finding a feasible result also increases when working with nonlinear relationships.

Winston [2004]

2.1.4 Dynamic Programming

Instead of choosing to make management decisions for each time period that

optimize the objective function over one large time horizon as in linear programming,

dynamic programming (DP) can be used to find more realistic solutions by making

optimal management decisions more frequently. Assessing the forest after a

shorter period of time has elapsed provides opportunity to make adjustments to
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management decisions while the forest is changing. In this way, the larger problem

is broken down into several smaller problems. Winston [2004]

With dynamic programming, each "smaller problem" is a stage in a stand’s

evolution. A stage is often a time period. There is a set of possible states that the

stand could be in during a stage, and at each state there is a management decision.

These management decisions each correspond to a value which represents the

variable that is optimized in the forest system. Each management decision made

effects the final optimal value. For example, if the forest system is a private tree

farm, the value for each state might be the current monetary worth of the farm

at a specific time. At each state value, the forest manager makes a decision that

moves the model on to the next stage. For a possible management decision in this

next stage, there are a number of possible decisions that could have been chosen

previously that allow for this management decision to be made. In other words,

there can be multiple paths from one management decision, back to the previous

stage.

The many paths that each chain of management decisions creates helps to

describe the recursive nature of a dynamic programming model. This recursive

nature is what connects all of the management decisions in the optimal set together;

the optimal decision at a current state depends on the optimal decision paths from

subsequent states. Thus, the decision made at a current state does not depend on

the decisions that preceded. Winston [2004] To solve for all optimal states, the last

stage’s optimal decisions for each state in the stage is found first. The second-to-last

optimal decision for each state in the second-to-last stage can then be found because

it is dependent upon the last stage’s optimal decision paths. The third-to last optimal

decisions for each state can then be found, and so on.

By working backwards in this manner, the solution set is found more efficiently.

Compared to searching for an optimal solution set out of all possible decision paths,



2. Model Overviews 16

dynamic programming is a technique which may limit the feasible optimal solution

set when performing the recursive process. Perhaps the optimal value for all states

at a particular stage correspond to the same management decision made in the

previous stage. This would indicate that all other management decisions in the

previous stage can be ignored. All possible solution sets do not have to be tested in

order to find an optimal solution set using a dynamic programming model. Similar

to linear programming, the objective function for a dynamic programming model

can still be subject to constraints. The constraints may limit how many states are

available at each stage, ultimately limiting the number of feasible solutions.

As mentioned, a stage is often a time period. This is especially true in forest

management models. However, not all dynamic programming models work to

find an optimal solution set across a time horizon. The stagecoach problem is a

classic example of a dynamic programming model outside of forest management

that does not use time periods as stages. This example can be useful in examining

the basic structure of a dynamic programming model and will be presented in the

next chapter.

Also in chapters to come are examples of two timber harvesting problems that

are well modeled specifically by dynamic programming. These are the rotation

and thinning problems. The goal of these problems is to find the optimal stand

replacement periods (rotation) or optimal partial harvesting periods (thinning) for

a stand or stands. Kennedy [1986] For either the rotation or thinning problems, net

return is maximized.

While dynamic programming allows a forest manager to adjust management

strategies more frequently, a dynamic programming model does not allow for large

uncertainties such as disease and forest fire. Even smaller uncertainties such as

whether a stand will have enough time to grow to a certain volume are difficult

to calculate using linear or dynamic programming. The long growing periods of
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trees allow for a higher uncertainty factor, as the longer the stand is not harvested,

the longer the stand is at risk of uncertain behavior. Introducing the calculation

of probabilities of success or failure can help in modeling uncertainties. Another

modeling technique can be of use in order to address these issues - Markov decision

processes.

2.1.5 Markov Decision Processes

Often times, forest management models cannot accurately determine the best

management strategy for a forest due to uncertainties in the future of the forest

ecosystem. All variables within an ecosystem are not easily controlled, and nature

does not abide by the requests of forest ecologists, timber mill managers, or anyone,

for that matter. Disease and forest fires are natural occurrences within a forest that

are healthy for plant and animal life in the long run, but disturb human activities,

especially the activities of someone whose job is to harvest and sell timber. The

risk of small or large uncertainties pose a threat to the productivity of any type

of forest management. Thus, there is an interest in calculating the certainty of a

forest to evolve to a specific point. For instance, it would be beneficial to know

the probability of a stand growing so that it reaches a larger volume range over

one time period, or if that stand is more likely to grow so that it still fits within its

current volume range.

A basic property of a Markov decision process is that it uses Markov chains.

Markov chain models are defined by a set of states, and the transition probabilities of

one state moving to another state over a set period of time. Buongiorno and Gilless

[2003] Thus, the structure of a Markov chain is much like a dynamic programming

model, where the system can be in one of any number of states at one point in time.

For a Markov chain model for forest management, the states could be different

volumes of timber within a stand, and the transition probabilities could be the
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probability of moving from one timber volume range to another over a set time

period. These probabilities can be nicely ordered within a matrix, and then used

to find volume range probabilities for the same stand in the next time period by

constructing an initial state vector and applying matrix multiplication. Buongiorno

and Gilless [2003]

If using low, medium, and high volume ranges, a transition probability matrix

is structured by matrix T as shown below where the tx,y entry is the probability of

starting in volume x and ending in volume y. For x = 1 or y = 1, the volume is a

low range, for x = 2 or y = 2, the volume is a medium range, and for x = 3 or y = 3,

the volume is a high range. So, the t1,1 entry of the matrix is the probability of the

stand starting in a low volume range and ending in a low volume range over one

time period. Buongiorno and Gilless [2003]

The initial state vector for the problem, p0, contains the probabilities of the stand

being in a low, medium, or high volume at the beginning of the time horizon - at

time zero. At this time, the volume of the forest is known, so this initial state vector

will contain a probability of one for the correct volume range, and probabilities of

zero for all other volume ranges. The state vector, pi, at any time i is structured

as follows, and an example initial state vector is given for a stand that has a low

volume range. Buongiorno and Gilless [2003]

T =


t1,1 t1,2 t1,3

t2,1 t2,2 t2,3

t3,1 t3,2 t3,3

 pi =
[
l m h

]
p0 =

[
1 0 0

]

To find the state vector for the next time period, p1, the initial state vector is

multiplied with the transition matrix T. The resulting probabilities reveal the

certainty of the stand being in a low, medium, and high volume range at the next

time period. For any time period i, the state vector can be found by taking the
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previous stage’s state vector and multiplying it by the transition matrix. Buongiorno

and Gilless [2003]

Transition probabilities, and thus transition matrices, can be altered in order to

accommodate certain forest management strategies. If the manager of a forest would

like to clear-cut all high-volume stands in the period after they reach high-volume,

then the probability of moving from a high-volume stand to a low-volume stand

would increase, and the probability of moving from a high-volume stand to a

high-volume stand would become zero. For any model considering the possibility

of disease or forest fire, the probability of moving up in volume classification will

never be one, as there will always be a chance of disease or forest fire moving the

stand to a lower volume. While different management strategies can be reflected

through separate transition matrices and outcomes for future stand states found,

each Markov chain represents one management plan. A Markov decision process is

defined as a model where Markov chains are used to represent separate management

plans with different outcomes. Buongiorno and Gilless [2003]



CHAPTER 3
Dynamic Programming Investigation

3.1 Modeling with Dynamic Programming

The essentials of dynamic programming were outlined in chapter two. Dynamic

programming was described as a problem that has been broken down into smaller

subproblems and solved recursively. Each smaller problem is solved one at a

time, unlike linear programming where all of the decisions are made at once.

Dynamic programming has many advantages compared to linear programming,

including particular applicability to the time-stage nature of timber harvesting in

forest management and independence from linear relationships. The following

discussion outlines the essential parts of dynamic programming through a simple,

discrete problem called the stagecoach problem. Then, a timber harvesting dynamic

programming model is provided and the application of dynamic programming to

forest management is investigated in both discrete and continuous settings.

20
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3.2 The Stagecoach Problem

The stagecoach problem is a popular problem used in order to introduce the

fundamentals of dynamic programming. A version of the problem is set up as

follows:

A traveler is set to make a journey from Beloit, Wisconsin to Superior, Wisconsin

by stagecoach. To get to the end of their travels, the traveler must pass through a

number of towns, or intermediate points. Taking the stagecoach from one town to

the next costs a certain amount of money, and the traveler would ideally spend the

least amount of money overall. What route must the traveler take from Beloit to

Superior to minimize the total amount of money spent on travels?

This example stagecoach problem can be visualized by the diagram below:

Figure 3.1: Diagram for an example stagecoach problem.

In this stagecoach problem, the traveler is looking to journey from Beloit to

Superior and will do so by traveling through three other Wisconsin cities. Evidently,

there are no time periods in which the travel needs to occur, so in this example the
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stages of the problem are not time periods. There are four stages in this example,

each with a decision to make regarding the next city to visit. The different cities in

each stage are separate states, one of which will be included in the solution set for

the optimal path. As seen in Figure 3.1, it is possible to journey from the city the

traveler is in to any other city in the subsequent stage.

To minimize the total amount of money spent on travel, each path from city to

city needs to be given a monetary value. These values are given by the tables below:

Madison Milwaukee Fond du Lac

Beloit 5 7 11

Table 3.1: Path values for stage one of the stagecoach example.

La Crosse Green Bay Oshkosh

Madison 6 10 5

Milwaukee 9 8 6

Fond du Lac 8 4 2

Table 3.2: Path values for stage two of the stagecoach example.

Eau Claire Wausau

La Crosse 6 11

Green Bay 9 5

Oshkosh 11 7

Table 3.3: Path values for stage three of the stagecoach example.
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Superior

Eau Claire 9

Wausau 12

Table 3.4: Path values for stage four of the stagecoach example.

At first it seems like every possible path from Beloit to Superior needs to be

compared in order for the path of least cost to be found. By doing so, the optimal

path will be found. However, as problems grow, this brute force method demands

too much computational time. It is impractical to add up all of the costs for every

path when there are a large number of stages and states included in the problem.

The brute force method would not take a long time for the stagecoach problem

provided, but dynamic programming proves to be more efficient. Ramsay [2017]

The stagecoach problem can also be solved by using a greedy algorithm technique.

This technique chooses the current stage’s best decision to make for optimality to

the next stage, regardless of the effects that the decision might produce further

down the path. So, for example, the first decision is to travel from Beloit to Madison

since that is the cheapest route to the second stage. From Beloit to Superior, the

greedy algorithm would produce the path:

Beloit→Madison→ Oshkosh→Wausau→ Superior

The total cost is 29 units. This path is in fact not the overall optimal path for the

traveler to take, but turns out to be close to optimal. Note that the path of most cost

to the traveler is the path:

Beloit→ Fond du Lac→ La Crosse→Wausau→ Superior

This path yields a cost of 42 units. In this case, the greedy algorithm is not a bad

strategy to use. Ramsay [2017]
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The greedy algorithm is an example of a heuristic method, which aims at solving

a problem quickly rather guaranteeing an optimal solution. Hence, a heuristic

method may produce a good, but non-optimal solution, and may even produce

a non-optimal and undesirable solution. For the greedy algorithm, the optimal

state chosen in one stage may not be a part of the optimal set of states, possibly

causing the overall optimal path to be overlooked. This algorithm only considers the

immediate state of the problem in making decisions, ignoring any possible long-term

consequences. In forest management, the consideration of long-term consequences

is crucial for any economic or environmental goals. For this stagecoach problem

example, the path found by the greedy algorithm is not the optimal path. Although

the greedy algorithm may be quite fast, it is not guaranteed to produce an optimal

solution, and is not deemed a good method for finding optimal solutions compared

to modeling with dynamic programming. Ramsay [2017]

Now, let us apply the dynamic programming technique explained in chapter

two to this stagecoach problem. First, the optimal decisions for each state in the last

stage are obtained. For the two states in stage four, there is only one path to end

in Superior, so these two paths are optimal for their respective states. Comparing

the two paths in this last stage tells us that it costs less to travel from Eau Claire to

Superior than from Wausau to Superior. Note that this does not indicate that the

path from Eau Claire to Superior will be part of the optimal path when considering

all decisions at every stage. Thus, the optimal path when in state Eau Claire is to

pay 9 units to go to Superior, and the optimal path when in state Wausau is to pay

12 units to go to Superior. The cost and future state of the optimal decision for each

state in stage four is then stored so that they can be easily referred to when using

backwards recursion. This data can be found on Figure 3.2 along with the path

values, or cost of traveling from one town to the next for stage four.
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Figure 3.2: Diagram for an example stagecoach problem with path values and stored optimal state
values for stage four.

Moving back to stage three, the optimal decision is found again for each state

in the stage. The optimal value at each state is equivalent to the minimum costing

path out of all paths, or decisions, that could be made to go to the next stage and

then finish in Superior. For instance, the optimal value for state La Crosse is the

minimum costing path between the two possible paths to get to the fourth stage

and then finish in Superior. Going from La Crosse to Eau Claire costs 6 units, plus

the cost to finish which is 9. Traveling from La Crosse to Wausau costs 11 units,

plus the cost to finish which is 12. Thus, the optimal value for state La Crosse is 15

units by traveling through Eau Claire. (6 + 9 = 15 units < 11 + 12 = 23 units) This

data is then stored for the next step as shown above state La Crosse in Figure 3.3.

The optimal values for the other two states in stage three are also calculated using

the optimal values found for the states in stage four. The results are: 17 units by

going through Wausau for state Green Bay and 19 units by going through Wausau

for state Oshkosh. This data can again be viewed on the figure below.
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Figure 3.3: Diagram for an example stagecoach problem with path values and stored optimal state
values for stages three and four.

Given this stage three information, it is possible to find the optimal values for

each state in stage two and for the state in stage one as well. In stage one, the only

state, Beloit, turns out to yield an optimal value of 26 by way of Madison. The

optimal solution set which minimizes overall cost is found as follows, costing 26

units.

Beloit→Madison→ La Crosse→ Eau Claire→ Superior

A final diagram, Figure 3.4, with all stored and path values is provided on the

following page.
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Figure 3.4: Diagram for an example stagecoach problem with all path values and stored optimal
state values.

The decision path found during the process of searching for optimal values

reveals the recursive behavior and constant assessment of a dynamic programming

model. For any state s in stage n, the optimal cost of the system from that state on is

the optimal value of moving to the next stage from the current state plus the cost of

the optimal path to finish from there. Consequently, the total cost of the system from

state s does not depend upon previous decisions or states visited. In other words,

the decision made in one stage does not have any sort of impact on the decision

made in the next sequential stage. The system is fully assessed during each new

stage. In the example provided, due to the backwards recursive process for dynamic

programming models, the fact that the traveler went from Beloit to Madison during

stage one had no effect on the traveler’s decision to go from Madison to La Crosse

in stage two. Ramsay [2017]
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3.3 Example Discrete Timber HarvestingModel

The stagecoach problem is a discrete model - one that has a finite number of stages

and states. Discrete models can grow to be very large problems, with hundreds

or thousands of stages and states. Thus, the computation of large models can

be difficult and time-consuming. Due to the complexity of forest systems and

the influence of many variables, solving for optimal solutions usually involves

the use of a computer program that can complete the computations necessary for

decision-making quicker than the average human. For simplicity, a small optimal

rotation dynamic programming example is given. The problem is set up as follows:

A forest manager uses an area of land with room for 100 trees for timber growth

and harvest. The trees in this area are assumed to always be the same age. At

20-year time intervals, the forest manager must decide whether to let the trees grow,

or to clear-cut and replant the stand. If the stand is left alone to grow, there is still

a present value of the stand, found by considering the stand’s future value. Even

without selling the available timber, there is still value in the property given that

there will be even more timber to sell as time progresses. There is not only value in

the timber that can be sold, but value in the potential of the property, which is what

the present value accounts for in this case. To calculate present value, the future

value of the stand is discounted by 40 percent, assuming that there is an increase in

the price of timber sales over time. Essentially, this "discount factor" (0.6) adjusts the

future value of the stand to estimate the present value by accounting for inflation.

If the stand is clear-cut, all of the trees are sold and replanting occurs. The net

return per tree from clear-cutting, harvesting, transporting, and selling is 1 unit

per year the tree has lived. This net return also incorporates the future value of the

stand, discounted to account for inflation. Replanting all 100 trees costs 20 units

per tree (2, 000 units). The time horizon begins with 100 newly-planted trees, and if
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the trees grow to be 80 years old, the stand must be clear-cut. What management

decisions must the forest manager make over an 80-year time horizon in order to

find the optimal rotation period of the stand? That is, what is the optimal amount of

time to leave in between clear-cuts to allow for maximized net return in the stand?

Kennedy [1986]

A diagram for this problem is given below:

Figure 3.5: Diagram for an example discrete timber harvesting model.

For this example, the stages are 20-year time periods and the states in each stage

are all viable ages of the trees in the stand. In stage one, the only management

decision possible is to let the trees grow because the stand begins with 100 newly-

planted trees at age zero. The possible management decisions in stage two are

to clear-cut and replant, returning the trees back to age zero and thus finding the

optimal rotation period (indicated by "STOP" in the next stage), or letting the trees

grow to age 40. All other stages include the decision to either clear-cut and replant

or let the trees grow, excluding the final decision in stage five which must be to

clear-cut the trees at age 80. If the stand is ever clear-cut, then the optimal rotation

period has been determined, and continuing with the model is redundant because

the objective is to find the amount of time in between clear-cuts that allows the
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manager to make the most return. Continuing with the problem would lead to

clear-cutting and replanting after every optimal amount of time has passed, which

is the same amount of time.

As with the stagecoach problem, the optimal decisions for each state in the last

stage are found first. The last stage of the problem, stage five, occurs at the end of

the 80-year time horizon, when the stand must be clear-cut. As this is the only path

that can be taken from the 80-year-old stand state, it is the optimal path for the state.

Clear-cutting 80-year-old trees yields a return of 8, 000 units, and a replanting cost

of 2, 000 units, so the net return is 6, 000 units. An updated diagram with the path

value and stored optimal state value for stage five is displayed below.

Figure 3.6: Diagram for an example discrete timber harvesting model with the path value and
stored optimal state value for stage five.

Moving backwards, the fourth stage of the problem includes making a decision

between letting the trees grow to 80 years old, and clear-cutting 60-year-old trees.

The money made from clear-cutting the stand in the fourth stage is 6, 000 units,

minus 2, 000 for replanting, equals 4, 000 units. If the trees are left alone to grow,

then the value of the stand is the discounted future value of the stand. The future

value is equivalent to the return made after letting the trees grow to 80 years old, and

then clear-cutting, so the discounted future value is 0.6 ∗ 6, 000 units = 3, 600 units.
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Out of the two possible management decisions for the 60-year-old stand state, the

optimal path is to return the stand back to age zero. Thus, the optimal management

decision for the fourth stage is to clear-cut as seen in Figure 3.7, indicating that the

optimal rotation period is at most 60 years.

Figure 3.7: Diagram for an example discrete timber harvesting model with path values and stored
optimal state values for stages four and five.

To continue with the dynamic programming steps, the model moves backwards

to the third stage. This stage of the problem includes making a decision between the

same two management decisions in the fourth stage, but with a 40-year-old stand

state. Clear-cutting 40-year-old trees yields 2, 000 units (4, 000 − 2, 000). The value

in letting the stand grow is 0.6 ∗ 4, 000 units = 2, 400 units. Hence, a decision to let

the stand grow is optimal for the 40-year-old stand state. The second stage includes

a 20-year-old stand state with an optimal decision of letting the stand grow. The

state in the first stage has one path available, just like the fifth stage, so the optimal

decision for that state is to let the stand grow. A final diagram, Figure 3.8, with all

stored and path values is given below.
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Figure 3.8: Diagram for an example discrete timber harvesting model with all path values and
stored optimal state values.

Up until the stand reaches an age of 60 years old, the optimal decision for the

stand is to let the trees grow. At 60 years old, it becomes more profitable to clear-cut.

After 80 years of growing, the most profitable management decision would also

be to clear-cut even without the requirement to clear-cut. If the time horizon was

more than 80 years long, then any state in stages following stage five would also

include the optimal decision to clear-cut. As the amount of time left for the stand to

grow increases, the profit made off of clear-cutting the stand increases. For example,

clear-cutting in stage four yields a profit of 4, 000 units and clear-cutting in stage

five yields a profit of 6, 000 units. This means that if it is possible to wait longer to

clear-cut, the forest manager should wait for a larger return. Although clear-cutting

at a stand age of 80 years would be more profitable, the optimal rotation period is

60 years because the landowner makes a profit more frequently.

Altogether, the optimal amount of time to leave in between clear-cuts to allow

for maximized profit for this problem is 60 years. In other words, the management

decision to clear-cut would come every 60 years for this particular stand of 100 trees.

Other constraints or assumptions could be included in this dynamic programming
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model in order to make the model more realistic. These aspects may be added

in order to abide by an economic or social requirement, to describe forests with

more than one stand or tree species, to apply more accurate net return functions,

etc. While constraints and assumptions help to model the system after the way

things work in the world, they also complicate the system. The more constraints

and assumptions, the more complex the problem. When these problems become

larger and more complex, the ability to compute an optimal solution set can come

into question.

A specific alteration that would add to building a more representational model

would be to measure the volume of merchantable timber within the stand instead

of quantifying the stand by number of trees. Although the trees in the stand are

assumed to be the same age, this does not imply that there is an equal amount

of timber that can be sold from each. Especially if this stand consists of trees of

different species, each tree will not have the same volume. If the stand consisted of

trees of different species, the net return from selling each tree would not be the same

number of units per year the tree has lived, requiring different net return values for

each species.

Next, the difficulty in solving a larger, more complex dynamic programming

model is illustrated through an investigation of a continuous timber harvesting

model. While assumptions are still made, the model addresses many known

difficulties with decision-making for timber harvesting and utilizes real-world

values.

3.4 Continuous Timber HarvestingModel

As stated previously, discrete timber harvesting models can grow to be very large,

with many states and stages. Even if a discrete problem grows to have hundreds of
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thousands of states and stages, the number of states and stages is still finite. Discrete

problems most accurately describe a system which changes, and then stays in one

state for a duration of time. Continuous models, on the other hand, can describe

problems with an infinite number of states or stages. By including infinite stages in

timber harvest models, which means infinitely many time periods, the management

area is assessed and altered constantly. Timber harvest models with infinite states

allow for endless management possibilities. While forests are constantly changing

in volume, timber quality, and more, a continuous model is more fitting as opposed

to a discrete model. In this section, a dynamic programming model with continuous

states is considered. Similar to the previous model, the stages of the model will be

discrete, mandating the reassessment of a stand after a set time period. All variables

will be defined in terms of a fish harvesting scenario presented by Kennedy [1988].

The model will then be applied to timber harvesting.

An article published in 1988 by John O. S. Kennedy includes a discussion of

both n-period and infinite-period models regarding natural resource management.

Kennedy considers an n-period fish harvesting model in order to deduce optimality

conditions for dynamic resource problems. The harvesting level is maximized in

order to produce a maximal present value for stage i, Vi(xi), across the time horizon.

The harvesting level is the biomass of fish harvested in each time period. Biomass

is a measure of the quantity of desired material, in this case fish, present within a

given volume or area. For any time period i where i = 1, 2, ...,n, there is a certain

biomass of fish stock available, xi, and a biomass that is actually harvested during

period i, represented by ui. Variable xi is continuous and will represent the state at

any period. Kennedy [1988]

Management decisions for the optimal biomass harvested are set to be made over

n time periods. The net return for the fish harvested in time period i is equivalent

to the amount of money made from selling the harvested fish, ui, minus the cost
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of harvesting those fish. The price per biomass unit that the fish will be sold at in

time period i is represented by pi and the cost per biomass unit is a function of both

xi and ui, represented by ci(xi,ui). The cost of harvesting fish may include many

factors just as in timber harvesting, and is a function of both xi and ui because there

is a cost per unit of biomass harvested as well as a change in cost depending on the

density of the fish, or the biomass of fish per area or volume. A crowded fish farm

may have different costs compared to a sparse one. Net return in time period i with

respect to the biomass harvested out of the biomass available is profit minus cost

and is represented by the function Ai(xi,ui) = piui − ci(xi,ui). Therefore, all variables

and functions xi, ui, pi, and ci(xi,ui) contribute to the calculation of net return in each

stage. Kennedy [1988]

Over time, the biomass of fish grows through reproduction and individual fish

growth and death. This rise in population, and thus rise in biomass over one time

period i is described by the function gi(xi). From one time period to the next, the

biomass of the fish stock increases by the biomass grown in the last period and

decreases by the biomass harvested in the last period. This is represented by the

relation xi+1 = xi + gi(xi) − ui. This formula produces the state variable for the next

stage, given the the current stage’s state variable, growth quantity, and harvest

quantity.

Knowing how to calculate the biomass of the fish stock in the upcoming time

period is useful for calculating the future value of the fish stock. The present value

of the fish stock when harvested at any level includes future value as well as net

return. There is value in any fish stock that is not sold as well as in the potential

of the system to produce more fish. This future value is represented by a function

for the value of the biomass of the fish stock in the next time period, adjusted

by multiplier α for inflation, given by α ∗ Vi+1(xi+1). The "terminal stock" value is
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symbolized by the function F(xn+1) and is assumed to be equivalent to Vn+1(xn+1),

the value of the fish stock in the n + 1 time period. Kennedy [1988]

As mentioned, the end goal of the continuous model is to find optimal har-

vesting levels at all stages to yield optimal present values V1(x1),V2(x2), ...,Vn(xn).

Considering all variables and functions, we have the dynamic programming model:

Vi(xi) = max
ui

[Ai(xi,ui) + αVi+1(xi+1)]. This model illustrates how the present value of

the current decision is determined by the net return of the current decision plus

the value to finish from the next stage. In the last stage, n, the present value is

Vn(xn) = max
un

[An(xn,un) + αVn+1(xn+1)]. Vn+1(xn+1) is found by the assumption that

Vn+1(xn+1) = F(xn+1), as F(xn+1) is known. Optimal un is found with a correspond-

ing management decision for each feasible xn. Consequently, all optimal Vn(xn)

are stored for each state. While the states are continuous, function optimization

must be utilized. Every un cannot be tested discretely as in the previous dynamic

programming examples. Kennedy [1988]

Stepping backwards to the n − 1 stage, Vn is used in the maximization of un−1

for all feasible xn−1, and all Vn−1 are stored for each state. This process continues

until optimal values are found for all states in stage one and an optimal path is

determined. A final set of all Vi and corresponding ui make up the optimal solution.

Kennedy [1988]

This fish harvesting scenario can easily be applied to a timber harvesting system

where a certain quantity of timber, ui, is harvested instead of a certain biomass of

fish for any period i. Kennedy [1988] Biomass will be replaced by quantity of timber,

measured in thousand board feet, or mbf. A summary of all variables and functions

with timber harvesting definitions is given below:

xi: total quantity of timber in period i

ui: quantity of timber harvested in period i
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Vi(xi): optimal present value of timber, dependent upon the quantity of timber

Ai(xi,ui): net return from harvesting ui from xi in period i

α: discount factor, adjusts future value based off of todays market and future

inflation projections

pi: price of timber in period i

ci(xi,ui): cost of harvesting ui from xi in period i

gi(xi): growth in quantity of timber in period i

F(xn+1): value of the terminal timber quantity, dependent upon the total quantity of

timber in the time period following the last stage

The model is structured as follows:

Vi(xi) = max
ui

[Ai(xi,ui) + αVi+1(xi+1)] (3.1)

where Ai(xi,ui) = piui − ci(xi,ui) (3.2)

xi+1 = xi + gi(xi) − ui (3.3)

Vn+1(xn+1) = F(xn+1) (3.4)

The maximization in Equation (3.1) is the sum of the net return from harvest

and the optimal present value in the next time period, scaled by the discount

factor. The breakdown of net return from harvest is provided by Equation (3.2),

and Equation (3.3) is the calculation of the total quantity of timber in the next

time period. The final equation, (3.4), exhibits that the present value of timber

in the n + 1 time period is equivalent to the value of the terminal timber volume.



3. Dynamic Programming Investigation 38

This allows F(xn+1) to be substituted for Vn+1(xn+1) when finding Vn(xn). Dynamic

programming starts by solving for optimal Vn(xn) by optimizing un. Working

backwards, maximal present values across all time periods are found when all

optimal levels of harvesting, or quantity of timber harvested, are set for all feasible

xi. The objective of this timber harvesting problem is to find optimal u1,u2, ...,un to

produce optimal V1(x1),V2(x2), ...,Vn(xn).



CHAPTER 4
Application of Continuous Timber HarvestingModel

The continuous timber harvesting model introduced in the last chapter contains

many moving parts. Several separate functions feed into the optimization of

harvesting levels and present value for each time period. For timber harvest stands

with more than one species, the functions for timber price, cost, and growth become

even more complex. To avoid further complexities, a stand containing only one

species will be analyzed, one containing pinus taeda, commonly known as loblolly

pine. Carey [1992]

Loblolly pine can be found across most of the southeastern United States,

reaching up into southern New Jersey and out into eastern Texas. The species grows

rapidly and tends to have a very tall, straight trunk. Mature loblolly trees can grow

to exceed 110 feet in height and 30 inches in diameter. These factors make loblolly

ideal for timber harvesting. Carey [1992]

In order to build a model which accurately replicates the harvesting of a

loblolly stand over time, values for all variables and functions were found using an

abundance of sources. What follows is a discussion of these variables and functions,

including the price of timber, the cost of harvest, the discount factor, timber volume

growth, and the value of the terminal timber volume. For all functions in the model,

the total quantity of timber in period i, xi, is the volume of loblolly present measured

in thousand board feet (mbf). The volume of loblolly harvested during that time

39
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period in mbf is ui. Each stage of the problem covers a five-year span, and all states,

xi, from zero to a potential maximum volume of M mbf, are reviewed for optimality

in all time periods. The model assumes that the beginning management year is 2018

and the end year is 2058, covering a total of 40 years. Thus, i = 1, 2, ..., 8 and n = 8.

The loblolly stand that is managed is one acre of land.

4.1 Discussion of Applied Variables and Functions

Chapter three provided a summary of all variables and functions used in the

continuous model with timber harvesting definitions. In this section, these variables

and functions, given below, will be assigned values specific to a loblolly pine stand

in the southeastern United States. Every function will be left in terms of ui and xi.

To begin, the stumpage price, pi, is determined, which is most plainly the price per

volume of timber.

pi ci(xi,ui) Ai(xi,ui) α F(xn+1) = F(x9) gi(xi)

4.1.1 Stumpage Price

The stumpage price at which any kind of timber is sold varies based off of factors

such as timber quality and accessibility. Estimations of this price can be made

based on south-wide average stumpage prices, which can then be used for pi in

the continuous model. Current price reports from the South Carolina Forestry

Commission provide a south-wide average of $179.7/mbf for pine sawtimber during

the last quarter of 2018. Ten years before, during the last quarter of 2008, the

south-wide average stumpage price of pine sawtimber was $218.7/mbf. This decline

in average south-wide stumpage prices over the last ten years could be partly due

to efforts made to recover from the financial crisis of 2008. Stumpage prices for pine

sawtimber have leveled out to around $179.7/mbf since then. A graph of south-wide
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pine sawtimber stumpage prices over the last ten years is given below (see the blue

line). Anon. [2018] Note that stumpage prices are shown in US$/ton. These numbers

have been converted to US$/mbf to arrive at the values above. The conversion

calculation was made using the conversion recommended on the South Carolina

Forestry Commission’s website ("multiply reported price by 7.5"). Anon. [2018]

Set pi = 179.7

Figure 4.1: Graph and table for south-wide sawtimber stumpage prices over time in US$/ton. Anon.
[2018]

4.1.2 Harvest Cost

To obtain the net return from harvesting a loblolly stand, the cost of harvest is

subtracted off of the profit made. Profit for time period i is now known, as a value

for pi is set. More involved than the profit is the cost of harvest, which includes many

separate costs as mentioned in chapter one. Note that the cost function accounts
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for some environmental requirements as money must be spent on efforts to make

the forest a healthier, safer place. Accounting for the cost of harvest by finding all

individual cost components may be incredibly time consuming and tedious. Yoder

Lumber located in Millersburg, OH provides a strategy to approach this issue by

hiring subcontractors to perform the actual harvesting duties. Yoder compensates

these subcontractors using predetermined fixed rates based on the distance of the

site from their mill. The further the site is, the more that Yoder pays. Subcontractors

working on the closest sites are paid $115/mbf harvested while those working on

the furthest sites are paid $125/mbf. The only other cost that Yoder must pay is the

cost of transport for the harvested logs to reach their mill. This is known as the

carrier rate. Yoder [2019] When considering the calculation of the cost of harvest for

Yoder Lumber, a function for the net return from harvesting is simplified due to the

involvement of just two fixed rates.

While Yoder Lumber typically works with hardwoods, using Yoder’s exact

values for determining the cost of harvest is not entirely accurate as loblolly pine is

a softwood. A function for harvest costs can be more representative of the specific

forest system and is just as simplified by using region-wide cost averages. The

average cost of harvest, including the cost of loading and hauling, for the southern

region of the United States in 2011 was $17.01/ton. Baker et al. [2013] This is

equivalent to about $127.58/mbf, using the South Carolina Forestry Commission’s

conversion. The properties studied to create this average were predominantly

pine stands. The average reported is a weighted average, accounting for a greater

contribution of some cost components compared to others. The cost of hauling

timber off-site was the largest component of overall harvest costs in the south,

with labor costs as a close second. The reported average cost of harvest for 2011 is

suspected to be lower than the average for all contractors due to the fact that the

contractors who agreed to report on their harvesting costs “were selected based on
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their reputations for quality and consistent performance." Baker et al. [2013] These

contractors are better with spending less on harvests as they know how to harvest

more efficiently. However, the contractors selected are more likely to have accurate

cost records, and thus provide a better understanding of harvesting costs in the

south. Baker et al. [2013]

Adjusting the provided southern region average from 2011 to obtain a 2018

average may yield a usable cost value, but an investigation of logging costs over

many years proves that the 2011 value from Baker et al. [2013] is believably too

low. In order to look at the costs of logging in the eastern United States, from

Michigan to Florida and then over to Texas, the Department of Forestry has tracked

the costs of harvesting over a 20-year period for a variety of contractors that work

primarily with pine stands. Reported average logging costs per ton between 1989

and 2009 ranged from $18 to $21 when adjusted to 2010 dollars, removing the effects

of inflation. Figure 4.2 illustrates this trend, as follows. Stuart and Grace [2011] The

solid line represents the adjusted costs. Thus, average costs ranged roughly from

$135/mbf to $157.5/mbf. The average of these two values is $146.25/mbf. Note that

this value is larger than the cost provided by Baker et al. [2013].



4. Application of Continuous Timber Harvesting Model 44

Figure 4.2: Graph of eastern harvesting costs over two decades in $/ton. Stuart and Grace [2011]

Adjusting $146.25/mbf so as to obtain a value for 2018 yields $167.33/mbf, and is

an element of the cost of harvest used in the continuous model. Inflation rates

for each year from 2011 to 2018 were found using Anon. [2019]. There is still one

aspect of the harvest cost that will be incorporated into the model, addressing the

dissemination of fixed costs as xi increases.

Even though there are many components of the cost to harvest, there are often

times quite a few fixed costs associated with harvesting a stand. As a stand increases

in volume, these fixed costs are spread across a larger quantity of timber, driving

the cost to harvest per mbf down. Jacobson [2008] Hence, if the volume in a stand is

larger, it is cheaper per mbf to harvest the desired amount. This indicates that the

harvesting cost per mbf decreases as the total stand volume increases. The inclusion
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of a multiplier, B, which scales the computed cost of $167.33/mbf, depending upon

the present volume of timber, xi, addresses this occurrence. This multiplier is

structured as follows where M is a maximum mbf capacity in the stand. As the

total volume of timber in the stand, xi, increases, this multiplier gets closer to zero,

causing a decrease in harvest cost. xi is multiplied by 0.25 in B so as to avoid the

overall cost value getting too close to zero. This produces a reduction in cost per

mbf of 75% of 167.33 if xi is near the maximum capacity. Note that if xi is near zero,

the cost will be close to the full 167.33. Without multiplying xi by 0.25, when the

stand gets close to full capacity, B gets super close to zero, causing the overall cost

of harvest to be unrealistically close to zero.

B =
M − 0.25xi

M
where 0 ≤ B ≤ 1

Set ci(xi,ui) = 167.33 ∗ Bui

4.1.3 Net Return

The complete function for the net return from harvesting ui from xi in time period i,

Ai(xi,ui), is found below.

Ai(xi,ui) = piui − ci(xi,ui) = 179.7ui − 167.33 ∗ Bui

4.1.4 Discount Factor

Considering the second part of the maximization equation for the continuous model,

the variable α is a discount factor which adjusts the future value in a stand based

off of today’s market. In general, this variable accounts for inflation. The annual

inflation rate in the United States in 2018 was 1.9%, which is also a rough average of

annual inflation rates in the United States over the past ten years. Anon. [2019] To

adjust the value of a stand one year in the future to this year’s value considering an



4. Application of Continuous Timber Harvesting Model 46

inflation rate of 1.9%, the α variable becomes 1
1.019 = 0.98. So, to know the current

value of a stand, the value of the stand in one year is multiplied by 0.98. As all time

periods are five years, α = 0.985 = 0.9.

Set α = 0.9

Each α will adjust the present value of the stand in the i + 1 time period to the

current price, adding value to the current stand. An updated maximization equation

is provided below, displaying this idea through notation. The remainder of the

model is also provided, with substitutions for any found variables and functions up

to this point.

Vi(xi) = max
ui

[Ai(xi,ui) + αVi+1(xi+1)] (4.1)

= max
ui

[179.7ui − 167.33 ∗ Bui + 0.9Vi+1(xi+1)] (4.2)

where xi+1 = xi + gi(xi) − ui (4.3)

V9(x9) = F(x9) (4.4)

The pieces of the model left to establish are gi(xi), the growth of the stand in

timber volume in period i, F(x9), the value of the terminal timber volume, and M,

the maximum mbf capacity of the stand. After M is obtained, we then have B.

4.1.5 Terminal Timber Value

F(x9) is needed during the last stage, n = 8, to find V8(x8). By Equation (4.1), V9(x9)

must be known in order to find V8(x8). Since V9(x9) = F(x9), a substitution can be
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made. To estimate the value of the terminal timber volume, or the present value of

all available timber in the 9th time period, a price per mbf for all x9 is determined.

Then, V8(x8) can be calculated using F(x9).

Assuming that the cost of harvest during the n+1 time period is $167.33/mbf and is

not effected by B, the net return from harvesting all available timber (x9) is equivalent

to (179.7−167.33)x9 = 12.37x9. Adjusting the constant 12.37 using an annual inflation

rate of 1.9%, as all prices are still in 2018 dollars, yields (1.019)45
∗ 12.37 = 28.854.

The inflation rate is compounded over 45 years because the time horizon is 40 years

with five-year time periods, and at the n + 1, or 9th stage, 45 years have passed.

Set F(x9) = 28.854x9

To calculate x9 for F(x9), Equation (4.3) is utilized. Equation (4.3) implies

x9 = x8 + g8(x8) − u8. The growth function is needed for this calculation. The next

section is an investigation of the growth of loblolly pine, needed to deduce a function

for all gi(xi), and to complete the continuous model.

4.1.6 Determining the Growth of Loblolly Pine

From one stage to the next, the total quantity of timber in a stand changes depending

on how much is harvested and how much is grown (see Equation (4.3)). All variables

that are needed to calculate the quantity of timber in the next stage - xi, gi(xi), and ui

- are measured in timber volume units (mbf). Thus, gi(xi) is the quantity of thousand

board feet that a loblolly stand of volume xi gains in time period i through tree

growth and death. Using data from loblolly stands in the southeastern United

States, an annual percentage of the volume of loblolly that is gained through tree

growth and death in a one-acre stand is found. This percentage is then used to

find a growth percent over five years, and is multiplied by xi to represent our final

growth function.
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In their 1963 publication, Nelson et al. [1963] discuss board foot growth in relation

to variables which have major effect on the volume of a tree. These factors are stand

age, stand density, and site index. All three terms are needed for a discussion of

growth percentage, and are described below.

stand age

the age of the trees within a stand, assuming that the stand is even-aged.

stand density

to measure the density of a stand one can use what is called the basal

area. Basal area is a measurement of the “amount of an area (usually an

acre) occupied by tree stems." Anon. Another way of thinking about

basal area would be to imagine if all trees in a stand were chopped off

at a height of 4.5 feet. The roughly circular area within each tree at that

height can then be calculated. Basal area is an estimation of the sum

of all of these cross-sectional areas. A formula for basal area will be

provided in this section as a function of the diameter of a tree at breast

height (4.5 feet).

site index

a measurement of the productivity of a site. The site index is the average

height in feet of the tallest trees in a stand, the dominant and codominant

trees. Codominant trees make up the general canopy layer while the

dominant trees are the tallest trees overall. The taller the dominant and

codominant trees, the higher the site index. A large site index is an

indication of good productivity. Yancey [2014]

By monitoring the growth of loblolly pine over ten years in three southeastern

states, Nelson et al. [1963] provides a least-squares solution for annual board foot
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growth in terms of stand age (A), density (D), and site index (S). Note that solutions

are in board feet, not mbf. The equation is provided below.

Annual board-foot growth = 866.8 + 0.37917(
10, 000

A
) − 23.7774(S) + 0.14207(S2)

− 17.08437(D) + 0.37445(SD) − 0.00071(SD2) (4.5)

To build a growth function for the continuous model, gi(xi), the annual board foot

growth values provided for specific stand ages, basal areas per acre, and site indices

are used to find a percentage of annual growth. By taking the annual board foot

growth values in board feet given by Equation (4.5) (Figure 4.3) and dividing them

by the total board feet in the stand, the percentage of annual growth is obtained.

Thus, the total board feet in the stand needs to be found for all possible combinations

of stand age, density, and site index. Lastly, the average of all growth percentages is

computed and used to find a growth percentage over a five-year time period.
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Figure 4.3: Table of board foot growth values for all stand ages, basal areas per acre, and site indices
in Nelson et al. [1963].

A couple timber harvesting management calculations are needed to first find

the total board feet in a stand in terms of stand density and site index. One formula

needed is for the calculation of basal area. The basal area of a standing tree in square

feet, BA, is calculated using the diameter of the tree at breast height, in inches (DBH).

Breast height is 4.5 feet from the base of a tree. Anon. The formula is provided

below.
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BA = 0.0055 ∗ (DBH)2 (4.6)

Mentioned in chapter one, the International 1/4 inch rule calculates board feet

(b f ) using the following equation in terms of log length in feet, L, and the diameter

inside the bark at the small end in inches, D. Cassens Equation (4.7) is the next

timber management calculation needed.

b f = 0.04976191LD2 + 0.006220239L2D − 0.1854762LD + 0.0002591767L3

− 0.01159226L2 + 0.04222222L (4.7)

This log rule will be used for calculating the total board feet in the stand.

Assuming that the diameter inside the bark of a loblolly tree at the small end is

equivalent to the diameter of a loblolly tree at breast height, it is possible to make a

substitution for D with DBH to calculate board feet given basal area and log length.

Namely, if DBH = D, then DBH values can be used in a b f calculation as a substitute

for D. Due to the fact that DBH is in terms of BA, the board foot calculation would

then be in terms of BA and L instead of D and L. The substitution and simplification

of the board foot formula is as follows.

Given BA = 0.0055 ∗ (DBH)2 =⇒ DBH =
√

BA
0.0055 , and DBH = D,

we get the following:
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b f = 0.04976191LD2 + 0.006220239L2D − 0.1854762LD + 0.0002591767L3

− 0.01159226L2 + 0.04222222L

= 0.04976191L(

√
BA

0.0055
)2 + 0.006220239L2(

√
BA

0.0055
)

− 0.1854762L(

√
BA

0.0055
) + 0.0002591767L3

− 0.01159226L2 + 0.04222222L

= 9.04762L(BA) + 0.006220239L2(
BA

0.0055
)

1
2 − 0.1854762L(

BA
0.0055

)
1
2

+ 0.0002591767L3
− 0.01159226L2 + 0.04222222L

= 9.04762L(BA) + 0.0838736856L2(BA)0.5
− 2.500960571L(BA)0.5

+ 0.0002591767L3
− 0.01159226L2 + 0.04222222L

Thus, the resulting equation is:

b f = 9.04762L(BA) + 0.0838736856L2(BA)0.5
− 2.500960571L(BA)0.5

+ 0.0002591767L3
− 0.01159226L2 + 0.04222222L (4.8)

Now that the total board feet in a stand can be found by knowing basal area

and log length, one last change is made to substitute site index for log length. Log

length is the length in feet of all merchantable sawtimber available from a standing

tree, the non-merchantable sawtimber being the crown. To determine a relationship

between site index and log length, live crown ratios are employed.

A live crown ratio is the ratio of crown height to total tree height. Tree vigor is

said to increase as the live crown ratio increases. DeYoung For loblolly pine, the

live crown ratio for a good tree vigor indication is 0.4. Zhao et al. [2009] Assuming

that the trees in a stand are in good health, a live crown ratio of 0.4 implies that the
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percentage of the height of the trees in the stand that are merchantable sawtimber is

60%. Consequently, if SI is site index:

L = 0.6(SI) (4.9)

By substitution of Equation (4.9) into Equation (4.8):

b f = 9.04762L(BA) + 0.0838736856L2(BA)0.5
− 2.500960571L(BA)0.5

+ 0.0002591767L3
− 0.01159226L2 + 0.04222222L

= 9.04762(0.6 ∗ SI)(BA) + 0.0838736856(0.6 ∗ SI)2(BA)0.5
− 2.500960571(0.6 ∗ SI)(BA)0.5

+ 0.0002591767(0.6 ∗ SI)3
− 0.01159226(0.6 ∗ SI)2 + 0.04222222(0.6 ∗ SI)

= 5.428572(SI)(BA) + 0.0301945268(SI)2(BA)0.5
− 1.500576343(SI)(BA)0.5

+ 0.00005598(SI)3
− 0.0041732136(SI)2 + 0.02533333(SI)

A final equation for the total board feet in a loblolly stand in terms of stand density

(basal area per acre) and site index is as follows.

b f = 5.428572(SI)(BA) + 0.0301945268(SI)2(BA)0.5
− 1.500576343(SI)(BA)0.5

+ 0.00005598(SI)3
− 0.0041732136(SI)2 + 0.02533333(SI) (4.10)

The total board foot volume can now be found for each BA and SI combination

with the derived equation. The percentage of annual board foot growth is calculated

by taking a given growth value in Figure 4.3 and dividing by total board feet for

the correct site index and basal area. After computing all percentages, the average
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annual board foot growth percentage for southeastern loblolly pine is 1.74%. The

board foot growth percentage becomes (1.0174)5 = 1.09 = 9% after five years.

Set gi(xi) = 0.09xi

Succeeding the calculation of all board foot growth percentages, the total board

feet for each BA and SI combination can be compared to set an M value. Explained

when discussing the B variable for the cost of harvest towards the beginning of

section 4.1, M is the maximum mbf capacity of a stand. The maximum board foot

value calculated using Equation (4.10) is 88795.17887 board feet which is 88.795 mbf.

Rounding up, we set M = 90. Therefore, B = M−0.25xi
M = 90−0.25xi

90 .

Set B = 90−0.25xi
90

4.2 The CompleteModel

Considering all found variables and functions for a one-acre loblolly pine stand,

the complete continuous timber harvesting model is structured as follows. As the

management time horizon is 40 years and each time period is five years, there are

eight stages of the problem. Thus, i = 1, 2, ..., 8.

Vi(xi) = max
ui

[179.7ui − 167.33(
90 − 0.25xi

90
)ui + 0.9Vi+1(xi+1)] (4.11)

where xi+1 = xi + 0.09xi − ui (4.12)

V9(x9) = F(x9) = 28.854x9 (4.13)
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4.3 The Dynamic Programming Process

Recall the process for solving a dynamic programming problem from the dynamic

programming investigation in chapter three. In this section, Equation (4.11) is solved

recursively. The optimal decisions for all states in the last stage, or time period, are

examined first. As a reminder, each stage of the problem covers a five-year span,

and the time horizon is 40 years long, beginning in 2018. Hence, the last time period,

stage eight, covers years 2053 to 2058.

The present value of a stand in the last time period, V8(x8), can be found by

applying the assumption that V9(x9) = F(x9). The function F(x9) is substituted into

the maximization equation for V9(x9), as shown below.

V8(x8) = max
u8

[179.7u8 − 167.33(
90 − 0.25x8

90
)u8 + 0.9V9(x9)]

= max
u8

[179.7u8 − 167.33(
90 − 0.25x8

90
)u8 + 0.9 ∗ 28.854x9]

Using Equation (4.12), we make a substitution for x9.

V8(x8) = max
u8

[179.7u8 − 167.33(
90 − 0.25x8

90
)u8 + 0.9 ∗ 28.854(x8 + 0.09x8 − u8)]

Simplifying the above yields:

V8(x8) = max
u8

[−13.5986u8 + 0.4648x8u8 + 28.3058x8]

Optimal u8 can now be found with a corresponding management decision for

each feasible x8. Just as in previous dynamic programming problems, all optimal
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V8(x8) are stored for each state. In this continuous problem, function optimization

is utilized because every feasible u8 cannot be tested discretely. The maximization

of the simplified equation is performed by taking the derivative with respect to u8

and setting it equal to zero, as follows.

d
du8

[−13.5986u8 + 0.4648x8u8 + 28.3058x8]

= −13.5986 + 0.4648x8 = 0

=⇒ x8 = 29.2569

While the derivative is a constant with respect to u8, a maximum or minimum

occurs at the endpoints u8 = 0 and u8 = x8. The above also demonstrates that if

x8 = 29.2569, the derivative is equal to zero for all u8. So, V8(x8) is a constant function

and all chosen u8 are minimums and maximums. For x8 > 29.2569, the derivative is

a constant larger than zero. Hence, the maximum occurs at u8 = x8, where u8 is the

largest it can be. For any x8 < 29.2569, the derivative is a constant less than zero.

This means the maximum occurs at u8 = 0, where u8 is the smallest it can be.

Thus, if the total volume of timber in the stand is above 29.2569 mbf at the 8th

stage, the best management decision to make would be to harvest everything, as

harvesting more yields even more present value. If the total volume of timber in

the stand at the 8th stage is below the critical point, then the harvesting level is not

maximized, and it is more beneficial to leave the stand to be reassessed in the next

stage. Therefore, for 0 ≤ x8 < 29.2569 the stored optimal decision for every state is

to leave the stand to grow, and for x8 ≥ 29.2569 the stored optimal decision for every

state is to harvest everything. The two optimal decisions are for u8 = 0 and u8 = x8.

1. For 0 ≤ x8 < 29.2569, u8 = 0 and V8(x8) = 28.3058x8.
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2. For x8 ≥ 29.2569, u8 = x8 and V8(x8) = 14.7072x8 + 0.4648(x8)2.

By optimizing u8, V8(x8) is found and stored for each x8. Each stored V8(x8) is

then used in the next step, moving backwards to the the 7th time period. In this

stage, V7(x7) is as follows.

V7(x7) = max
u7

[179.7u7 − 167.33(
90 − 0.25x7

90
)u7 + 0.9V8(x8)]

For the first optimal decision in the last stage (0 ≤ x8 < 29.2569), harvesting no

timber, a maximized function for V8(x8) was found in terms of x8. This is substituted

into the V7(x7) formula.

V7(x7) = max
u7

[179.7u7 − 167.33(
90 − 0.25x7

90
)u7 + 0.9 ∗ 28.3058x8]

Again, using Equation (4.12), we get:

V7(x7) = max
u7

[179.7u7 − 167.33(
90 − 0.25x7

90
)u7 + 0.9 ∗ 28.3058(x7 + 0.09x7 − u7)]

Through simplification and function optimization using the derivative with

respect to u7, the point at which to choose to harvest the stand or leave it alone to

grow is found for this case. This point is x7 = 28.195. Similar to the last stage, if

0 ≤ x7 < 28.195 the stored optimal decision for every state is to leave the stand to

grow, and for x7 ≥ 28.195 the stored optimal decision for every state is to harvest

everything.

When following the second optimal decision in the last stage to the 7th stage
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(x8 ≥ 29.2569), the maximized quadratic function is substituted into the V7(x7)

formula. Substitutions using Equation (4.12) are also made.

V7(x7) = max
u7

[179.7u7 − 167.33(
90 − 0.25x7

90
)u7

+ 0.9 ∗ (14.7072(x7 + 0.09x7 − u7) + 0.4648(x7 + 0.09x7 − u7)2)]

Note that the objective function, V7(x7), is now quadratic, creating more difficulties

in finding the management decisions for all x7. Simplifying the above equation

results in:

V7(x7) = max
u7

[0.418325(u7)2 + (−0.8665 − 0.447x7)u7 + 14.4277x7 + 0.497(x7)2]

Applying function optimization yields the following:

d
du7

[0.418325(u7)2 + (−0.8665 − 0.447x7)u7 + 14.4277x7 + 0.497(x7)2]

= −0.8665 − 0.4471x7 + 0.8367u7 = 0

=⇒ u7 = 1.0356 + 0.5344x7

Thus, a critical point is found where u7 = 1.0356 + 0.5344x7. This u7 value needs

to be tested, along with the endpoints to find the overall maximum for the stage;

the maximum may also occur at where u7 = 0 or u7 = x7. After plugging all three

u7 values into V7(x7) and graphing, V7(x7) is found to be optimal for every state

x7 when u7 = 0. (see v(0, x), v(1.0357 + 0.5344x, x), and v(x, x) in Figure 4.4) The
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graph when u7 = 0 is shown in red. That v(0, x) has the largest coefficient on x2 also

indicates that u7 is optimal for all states.

Figure 4.4: Equations and figure when following the second optimal decision in the last stage to the
7th stage.

Stepping back into the 6th stage follows the same optimization process, obtaining

optimal management decisions for each state, with only two management decisions
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available. Each step backwards gets increasingly complex. This continuous model

demonstrates the process of stepping through a dynamic programming problem

through an application of a timber harvesting system with management decisions in

each time period. By applying a dynamic programming model, the optimal present

value over the entire time horizon can be found.

4.4 FurtherWorks

While the structure and solving process of a dynamic programming problem are

demonstrated, the application of the constructed models to real-world data is not.

Future work may include the exploration and comparison of the constructed models

and real-world data. The last model discussed, the continuous timber harvesting

model, contains values and functions which attempt to replicate a specific stand in

the southeastern United States. Hence, the accuracy of those values and functions

can be tested.

One piece of the continuous model that would be interesting to expand upon

would be the growth function. The growth rates of a species depends on many factors,

some of those being tree age, basal area, site index, and more. An investigation of the

plethora of factors impacting growth rates might further develop an understanding

of timber growth rates and the influence of gi(xi) on the continuous model. Starting

with an extended look into the influencers of the growth rates of loblolly pine in

the southeastern United States could lead to the improvement of solutions to the

continuous model. It would be interesting to investigate and model other species in

a timber production setting as well.
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