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Abstract

Dungeons and Dragons is a tabletop roleplaying game which focuses heavily

on character interaction and creating narratives. The current state of the game’s

character creation process often bogs down new players in decisions related to

game mechanics, not a character’s identity and personality. This independent

study investigates the use of machine learning and natural language processing to

make these decisions for a player based on their character’s backstory - the textual

biography or description of a character. The study presents a collection of existing

characters and uses these examples to create a family of models capable of predicting

a character’s class, race, and attribute scores. The accuracy and limitations of these

models are discussed, but they represent a first step in abstracting away some of the

more tedious parts of character creation for new players.
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CHAPTER 1

Introduction

Since its introduction in 1974, Dungeons and Dragons (D&D) has become

perhaps the most recognizable entry in the tabletop roleplaying game genre. 1 In

the traditional D&D setting, players take on the role of a fantasy character and

guide them through adventures led by another player acting as the game master

(something of a narrator). As a roleplaying game, the focus of D&D is on the

interactions between the players, non-player characters, and the world. A player’s

character is a crucial piece of the game; it defines these interactions.

Characters in D&D are represented by two components: their character sheet

and backstory. The character sheet holds information relevant to the mechanics of

the game like attribute scores, skill proficiencies, and character class and race. The

backstory, on the other hand, is a purely textual representation of the character. It

often reads like a character biography or introduces the character through a short

story. While the character sheet is necessary for actually playing the game, the

backstory is what allows a player to relate to the character and effectively roleplay.

Unfortunately, the current state of character creation can lead to flat characters,

creating lackluster roleplaying experiences. The current process often neglects the

backstory. New players spend the first part of creating a character rolling dice

1As evidenced by its numerous products topping the list of Amazon’s bestselling fantasy gaming
books and current lead in number of games on roll20, a popular online tabletop gaming service. [1]
[9]
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2 1. Introduction

to determine stats and choosing categories; by the time they are done checking

boxes on the character sheet, the backstory feels like something of an afterthought.

In the most recent edition of D&D there is even a small list of vague character

backgrounds a player can choose from (e.g. Noble, Knight, and Sage). When the

player brings this character to a session, it feels more like stats-on-a-stick than an

actual individual.

This project aims to flip the character creation process on its head and use

machine learning models to generate relevant character sheet information from

textual backstories. This gives players a more character-centric character design

process. Such a system allows a player to define their character from a storytelling

perspective rather than constructing it with game mechanics as the forethought.

1.1 Problem Outline

The goal of this project is to produce a family of machine learning models to analyze

character backstories and output relevant character sheet information. In order to

limit scope, the project’s domain is initially limited to 5th edition characters (the

most recent set of rules), but later chapters will discuss the complications involved

with this and resulting decisions. Wrapped up in the goal are two distinct problems:

data collection and model construction.

1.1.1 Data Collection

Construction of any machine learning model relies on a body of data. This data

is needed to train, validate, and test models. As a general rule of thumb, more

data correlates to better models, and the objective here is to collect as much D&D

character information as possible. In an optimal world, collected data will represent
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any type of character players might think to create, since machine learning models

struggle with data unlike the kind they are trained on.

While this is discussed further in future chapters, the lack of easily accessible

datasets or APIs for D&D characters present the foremost hurdle in this problem:

finding data sources. Once found, the data must be collected from these sources

and represented.

1.1.2 Model Construction

The meat of the project is accurately generating character sheet information from

the collected data. This problem involves training a family of models on collected

backstories in order to make predictions about the categories and stats one finds in

D&D character sheets. This involves a series of tasks.

The first task is that of feature generation and selection. Discussed more fully in

future chapters, this essentially involves extracting information from the character

backstories and restructuring them in such a way that machine learning models can

effectively learn from them.

Following this, different model structures with different parameters must be

compared. There are many different types of machine learning algorithms, each

with their own pros and cons. In order find effective models, a variety should be

considered. Finally, an analysis of the selected models performance is given.
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CHAPTER 2

Natural Language Processing Background

This chapter outlines the history of natural language processing (NLP) - the task

of extracting information from human languages in order to analyze their meaning.

Since D&D backstories are composed in human language, NLP is quite relevant to

the project. The chapter discusses the general evolution of the field as well as its

various phases in order to give context to the project’s approach in analyzing D&D

backstories. Finally, it describes an NLP technique used in the project.

2.1 History

The field of natural language processing was born in the early 1950s. With the onset

of the Cold War, the governments of the United States and the Soviet Union were

both interested in effective translation of each other’s language. Around this time,

Locke and Booth published the first book on machine translation which discussed

how the cryptanalysis techniques of World War II might be used to perform machine

translation [16]. Their book also provided a list of references that represented

essentially the entire body of work on the subject. With this work, and the catalyst of

contemporary politics, funding for NLP (specifically machine translation) exploded.

Throughout this period much of the work done followed Noam Chomsky’s

theory of transformational generative grammar [8]. As Chomsky’s linguistic

5



6 2. Natural Language Processing Background

research progressed, he would come to say that language is composed of a deep

structure and a surface structure. A sentence, for example, has a deep structure -

the semantic relationships between parts of a sentence - and a surface structure -

the sentence as it appears.1 The deep structure of a sentence is transformed into the

surface structure using a set rules, and this set of rules is called a grammar. These

rules take a string of at least one symbol (sort of like variables) and any number of

terminals (the actual lexical elements of the sentence, like words and punctation)

and transform them into another string of symbols and terminals. A sentence starts

out as a single, root symbol and, after continually applying rules, evolves into a

string consisting of only terminals - the surface structure. Thus, a language can

be represented as a grammar which possesses the rules necessary to convert a

sentence’s deep structure into surface structure. Knuth’s article [15] offers a more

in-depth look at such grammars, providing examples and describing the ways in

which a machine can process them. The bottom line, however, is that Chomsky’s

theories offered a computationally friendly, and formal definition of language for

early NLP researchers.

Work in these early days started with simple word-to-word dictionary lookups

for translation. Researchers soon realized that syntax often preceded the task of

semantic analysis since sentence structure can play such a role in meaning. This led

much of the research to be dedicated towards computational grammars capable of

parsing sentences - breaking a sentence down into a tree of syntactic components [14].

These grammars consisted of complex, hand-written rule sets. In 1966, however,

the infamous Alpac report effectively shut down NLP research [21]. It assessed

the progress of machine translation as a whole, and concluded that efforts had not

matched expectations.

1As with any discussion related to linguistics, it should be noted that semantics refers to the
meaning behind symbols in a language (e.g words), while syntax refers to the grammatical structure
of a language.



2.2. Term Frequency Inverse Document Frequency 7

Research in NLP regained traction alongside the boom of statistical analysis

in the 1980s which was supported by an increase in computational power and

memory. At this time, NLP began to focus more on corpus linguistics - the study

of a language using existing texts of that language. 2 A perfect example of this

new kind of NLP is Kenner and O’Rourke’s Travesty [11]. Travesty was a PASCAL

program that used Markov chains to generate character sequences using the learned

character frequencies from a textual example. In their paper, Kenner and O’Rourke

describe feeding Travesty the names of 29 English cities. The program’s output

produced sequences of characters that looked remarkably like legitimate city names,

such as Chire and Nettlewett. The authors noted that, simply by using character

frequencies, they could pick up on recognizable styles in textual examples.

Since then, NLP research has continued on this trajectory, and today a large

amount of it is data driven and based in machine learning. Because of the sheer

quantity of data available and its many forms, much current work uses machine

learning techniques capable of extracting meaning from unstructured, unannotated

language. Zang and LeCun, for example, were able to create a convolutional neural

network to perform a variety of NLP subtasks from purely character level input (i.e

without knowledge of words, phrases, or any other syntactic or semantic structures)

[24]. In subsequent chapters, some of these current techniques are explored.

2.2 Term Frequency Inverse Document Frequency

The approach taken by this project in analyzing D&D character backstories falls

much more within the realm of corpus linguistics than Chomsky style formal

linguistics. To underline this (and provide a concrete example of statistical NLP),

2Here, a corpus is defined as a collection of documents.
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this section outlines a technique used in the project to extract meaning from the

character backstories: term frequency inverse document frequency (TF-IDF).

TF-IDF is an extension of the concept of IDF, introduced by Karen Spärk Jones

[13]. IDF essentially measures how rare a word is in a corpus, and by correlation,

how much information it carries. Assume a corpus has a set of documents D and

we want to know the IDF of a term, t. In this case, the IDF can be calculated as:

id f (t,D) = log |D|
|d∈D:t∈d|

In other words, it is the logarithm of the ratio of documents to documents in

which the term appears. Words like “the” and “a” will have very low IDF values

since they will most likely appear in every single document. Rare words, however,

will have much higher IDF values, indicating that they carry a lot of information

in relation to the corpus as a whole. TF, on the other hand, is a measure of how

frequent a word is a single document. TF-IDF combines the two by multiplying TF

and IDF. This value is an indication of, for a given word, how important it is for a

given document.

Each document in a corpus will have a TF-IDF for every word that appears in

the corpus (words in the corpus, but not in the given document will have a TF-IDF

of 0 for that document). Therefore, these TF-IDF values can be represented as a

matrix, where the columns are words and the rows are documents. A TF-IDF matrix

can be a useful way to extract information from relatively small corpora, and proves

to be extremely valuable for the models trained in the project.



CHAPTER 3

Machine Learning Background

This chapter outlines and defines machine learning and grounds this background

by walking through some of the models used in the project. Broadly, machine

learning can be divided into two categories, supervised and unsupervised learning,

and this chapter will be discuss each in turn. At its core, however, machine learning

revolves around finding relationships within data to perform some sort of task. The

following discussion relies on [12], [7], and [20] for its theoretical underpinnings.

3.1 Supervised Learning

In supervised machine learning, the task at hand is usually some kind of prediction

- given unseen data, place a label on that data. The types of labels one might

predict for a piece of data create two sets of supervised problems: classification and

regression. Classification problems deal with predictions when the results have

discrete values. Often times this is binary, like predicting whether or not it will rain

on a given day, but this does not have to be the case. One might wish to classify

the majors of incoming college first-years. Regression problems require predicting

continuous values. A regressor might be used to estimate the value of a company’s

stock.

In its essence, prediction comes down to mapping an input space to an output

9



10 3. Machine Learning Background

space. This is where the ‘learning‘ in supervised models takes place. A model is

fed training data - pairs of input and already-known output - and tries to find the

optimal mapping between the two. We call each dimension of the input a feature,

while each dimension of the output is called a target or label. After training, the

model can be used on new examples without labels to predict them. Usually, the

efficacy of the model is calculated by testing its performance on a subset of the

known data not used during training.

Most supervised learning models learn through a process of optimization; they

continually adjust their parameters and check their performance on the training

data until satisfied. At the core of optimization is a loss function (e.g. mean-squared

error), which a model can use to numerically assess its performance on some training

data. Given a loss function, a model can calculate its error over a set of training

examples and adjust its parameters accordingly. In general, consider a supervised

learning problem where we have a set of training examples, N, where each example

is of form (x, y). x is a vector of features and y is a vector of targets. Let L be a

loss function and E be the error represented by the aggregate loss over all training

examples. We seek to find some f in,

E =

N∑
i=1

L( f (xi), yi) (3.1)

such that E is minimized. A significant portion of constructing a good model comes

from what loss function is used.

The choice of loss function and the parameters of the model lead to two distinct

types of supervised learning models: generative and discriminative. Models in

the two groups both learn to make predictions, but differ slightly in what these

predictions represent. The difference is perhaps easiest to understand in the context

of classification, where the predicted probabilities of each target represent two

different concepts.
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Discriminative models cut the feature space up along decision boundaries such

that the different regions will contain each class. Thus, they model the conditional

probability of each class with the given input, P(y|x), where y is a class and x is a

feature vector. Generative models, however, consider the actual distribution of each

class and model this. In this way, they model the joint probability of each class,

P(y, x).

To illustrate the difference, consider a musician who is given information about a

song (key, tempo, etc.) and is asked to predict if the song is rock, country, or classical.

If the musician tries to play a song from those features based on songs they’ve

already learned and chooses whichever genre results, this would be a generative

approach. If the musician simply compared the features to those of songs they’ve

seen in the past to make a decision, this would be a discriminative approach.

Most of the models used in the project are discriminative, since discriminative

models work better than generative ones on small amounts of data.

3.1.1 SupervisedModels

Having discussed the basics of supervised machine learning, this section provides

example models and their algorithms to ground the concepts.

3.1.1.1 Decision Trees

Decision trees are the first and foremost example due to their success in the project.

A decision tree performs a series of splits on the features of some training data. Each

of these splits creates subsets of the data, which are then split on individually. Good

splits are ones which lead to the most homogeneity in the targets of the resulting

subsets. In the case of classification, these are subsets with a majority of one class,

while in regression, they are subsets with tightly clustered values. Once the splits

have been made, a decision is made by applying a new instance of data to each of
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these splits until a leaf node is reached. The average value or class of the examples

in that leaf node is the prediction.

The series of splits a decision tree performs is essentially just cutting up the

feature space. Each split is a cut, separating a portion of the feature space into

several regions where each region represents a leaf node in the decision tree. Each

of these cuts is a hyperplane in the feature, but with higher dimensional spaces, this

become harder to visualize. Thought of this way, it’s clear that decision trees are

discriminative models.

Figure 3.1 visualizes the results of training two decision trees on a toy dataset of

different wines [2]. The first of these trees has a maximum depth of three, while

the second has no maximum depth. Maximum depth is a way of telling a decision

tree to stop training (i.e how many splits to consider). Without a maximum depth,

a decision tree needs some sort of base case to stop splitting data. Usually, this is

when the subsets of a split are totally pure (or some purity threshold is reached).

In classification this means all of the training examples in the subset are one class,

while in regression the target values are tightly enough clustered that they fall under

some set threshold.

0 1 2 3 4
total_phenols

0

1

2

3

4

5

6

fla
va

no
id

s

Max depth is 3

0 1 2 3 4
total_phenols

0

1

2

3

4

5

6

fla
va

no
id

s

No max depth
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Figure 3.1: Decision surfaces of decision trees with varying heights classifying wines.
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Trees with too many splits, however, usually lead to serious overfitting - a

trained model that performs well on the training data but poorly on the testing

data. Indeed, in the case of decision trees, having no maximum depth will lead

to a model that can correctly predict every single training instance. Visually, it

creates a fractured feature space with many tiny regions. To counteract this, two

approaches are used: max depth and pruning. Using pruning, once decision trees

are fully grown (i.e they cannot split any more), they continue to remove splits

(merging subsets) from the bottom of the tree until their accuracy on a testing set

stops improving. Using max depth, the trees grow until they hit a maximum depth.

In this way, maximum depth and pruning are regularization techniques - a method

to reduce the complexity of the model and thus prevent overfitting. Of course, a

maximum depth too low can lead to underfitting - a model that fails to capture

the important nuances of the training data. The trees in figure 3.1 reflect these two

opposites by showing an underfit, small tree and an overfit, large tree.

With this in mind, the backbone of decision trees becomes how to perform the

splitting. There are several flavors of decision tree algorithms (the trees in the

project use CART - classification and regression trees), but all of them are greedy.

At each split, they choose the feature that will lead to the purest subsets. There are

two metrics commonly used to determine purity in a set of a data - entropy and the

Gini index - but since models in the project use the Gini index, that is the metric

discussed here.

The Gini index measures the likelihood of misclassifying a random instance

from a dataset by using the distribution of labels in that set. The index falls in

the range of [0, 1) where impurity increases from a totally pure 0 to an impure 1 -

total purity meaning all the instances are of the same class. For the set of training

examples T with C classes, assume i = {1, 2, ...,C} and let pi represent the proportion

of training instances in T with class i. We calculate the Gini index of T as:
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Gini(T) =

C∑
i=1

(pi)(
∑
j,i

p j) = 1 −
C∑

i=1

pi
2 (3.2)

Thus, while decision trees don’t have a loss function, they do use an optimization

metric - in this case, the Gini index - to determine their parameters (the splits made).

In order to perform a split, the algorithm iterates over each feature and calculates

the weighted sum of the Gini indexes of the subsets resulting from a split on that

variable. Consider a set T of training examples and the set of sets, S resulting from

a split on some feature where the union of all sets in si ∈ S is T and the intersection

of all sets in S is the null set. The weighted average of the Gini indexes is then:

|S|∑
i=1

|si|

|T|
Gini(si) (3.3)

Whichever feature results in the lowest weighted average Gini index is selected

to split on, and the algorithm continues using the new subsets.

3.1.1.2 Decision Tree Example

With the structure of decision trees outlined, the following shows the process of

creating a decision tree on a fabricated example. The task is to predict whether future

characters will survive the terrible Dungeon of Corrosion based on the following 10

training examples (the Dungeon of Corrosion and any references to it are made up

for the purposes of this chapter). The features include each character’s level, armor

and class, while the target is a binary yes or no.
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Level Armor Class Survive?

1 Leather Wizard Yes

2 Plate Fighter No

2 Leather Wizard Yes

1 Chain Fighter No

2 Chain Wizard Yes

2 Plate Fighter No

1 Leather Fighter No

1 Leather Wizard Yes

1 Plate Wizard No

2 Chain Fighter Yes

Table 3.1: Training examples for characters who entered the fictitious Dungeon of Corrosion.

To perform the first split, we must find which of the three features results

in the purest split using the Gini index. In the case of armor and class, this is

straightforward, but level is a continuous value. In order to calculate the Gini index

of splitting on a continuous feature, each possible midpoint for the values is selected

and split upon (where the split is a binary, greater-than-or-less than decision) and

the best one is chosen. In this case, the only possible midpoint is 1.5 so that is the

only split required for assessing splitting on level. The weighted Gini index of each

split are as follows:

WeightedGinilevelSplit = 5
10 (1 − (2

5
2

+ 3
5

2)) + 5
10 (1 − (3

5
2

+ 2
5

2)) = 0.48

WeightedGiniarmorSplit = 4
10 (1 − (1

4
2

+ 3
4

2)) + 3
10 (1 − ( 3

3
2

+ 0
3

2)) + 3
10 (1 − ( 1

3
2

+ 2
3

2)) = 0.28

WeightedGiniclassSplit = 5
10 (1 − ( 1

5
2

+ 4
5

2)) + 5
10 (1 − (4

5
2

+ 1
5

2)) = 0.32

The split on armor results in the purest subsets, so it is the initial split. Of

the three subsets, the process is repeated for those of the chain and leather armor
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types (this time without armor as a feature). The plate armor subset, however, is

completely pure, so it becomes a leaf node with the prediction value of ‘no.‘ Figure

3.2 shows the full tree once the process has completed and pure leaf nodes have

been found.

Armor

No

Class Level

leather

plate

chain

NoYes

wizard fighter

NoYes

<1.5>=1.5

Figure 3.2: Trained decision tree for predicting Dungeon of Corrosion survivability.

It should be noted that the CART algorithm cannot take categorical values, so

those in the example would be split into n new features where n is the number of

categories for that feature (e.g. plate, leather, and chain for armor). The values for

these new features would become 0 or 1 to indicate presence. In this way, each split

becomes binary.

3.1.1.3 Random Forests

Random forests are extensions of the decision tree model, and are an example of

ensemble learning. Ensemble methods are those that combine many weak models

in order to construct a strong model. When it comes to decision trees, this involves

training many trees as opposed to just one. Each tree is trained using a random

subset of both the training data and the features, and thus any individual tree is

weaker than a regular decision tree. A random forest is a collection of such trees,

and its output is the average output of all its trees.

Random forests are often preferred to single decision trees because of their

higher stability. Decision trees themselves are quite unstable in that, if a few new
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data points are added to the training data, they can easily change the splits made

and lead to a vastly different tree. In the case of random forests, while each tree is

slightly more biased since it has fewer features to pick from and examples to guide

the splits, the averaging of output results in a lower variance.

3.1.1.4 Multilayer Perceptron

A multilayer perceptron (MLP) is a simple feedforward artificial neural network

discussed here because of its effectiveness in the project when performing regression

tasks associated with predicting character stats. An MLP consists of an input

layer, at least one hidden layer, and an output layer where each layer is fully

connected (more on this in a moment). Each of these layers consists of a number

of neurons whose output is real value. Thus, each layer of the perceptron can be

represented as vector of real values. The first layer - the input layer - has the same

dimensionality as the feature space of the training set, while the output layer has

the same dimensionality of the prediction target. The dimensionality of the hidden

layers is a hyperparameter of the model.

Between each layer is a matrix of weights, which, through matrix multiplication,

maps values from one layer to the next. Assume there is an MLP with a set of layers,

L and a set of weight matrices W. Consider, that in L, there are two arbitrary layers,

Li ∈ Rm and Li+1 ∈ Rn. To say that these layers are fully connected means that there

exists a weight matrix Wi ∈W such that Wi is m × n and maps Li to Li+1; a neuron in

Li has a weight for every neuron in Li+1. Figure 3.3 shows this structure using an

MLP with a 3-dimensional input layer, a single 4-dimensional hidden layer, and a

2-dimensional output layer. The arrows between each layer represent the weight

matrices.
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Figure 3.3: The structure of an MLP [22]

.

In order to make a prediction, data is fed through the MLP, starting with the

input layer. At each layer, the output from the last layer is multiplied by the weight

matrix corresponding to the next layer, a bias term is added to the sum, an activation

function is applied to each element in the resulting vector, and finally this output is

passed off to the next layer. The output of the final layer is the prediction.

To further build on the constructions above, assume f to be the activation

function associated with layer Li+1 and let b ∈ Rn be the biases for the neurons in

Li+1. We calculate the output of Li+1 as

Li+1 = f � (LiWi + b)

where � represents the elementwise application of f .

The activation function is a key part of the MLP and allows it to capture non-linear

relationships in the data. Without an activation function, a perceptron is essentially

a linear regression model; the input is multiplied by a series of weights to obtain

the output. The activation function map the output of the matrix multiplication

at each step to a new range, performing something of a squishification. Then the

value in this range corresponds to how much a neuron has “fired.” Figure 3.4 is an



3.1. Supervised Learning 19

example of the sigmoid function, a commonly used activation function which maps

values to the range (0, 1).

Figure 3.4: The sigmoid activation function: 1
1+exp(−x)

.

The accuracy of an MLP depends on the weights and biases associated with

each layer since these are ultimately what decide how the input is transformed as

it is fed through the network. Thus, an untrained MLP is initialized with random

weights, and, during training, these weights are slowly adjusted to lead to better

performance on the training data. The most common method to achieve this is

gradient descent through backpropagation. At its core, this approach determines

how poor the output is for some training examples, figures out the impact of each

weight matrix and bias vector in the network and tweaks them accordingly.

In order to determine the performance of the model on some training data, a loss

function is required. Mean squared error (MSE) is a common choice for regression

problems and makes a useful example. Consider a training data instance with

target vector y ∈ Rn and assume the predicted values of the training instance are

represented by y′ ∈ Rn. The MSE of this prediction is

1
n

n∑
i=1

(yi − y′i)
2

Usually, an MLP is applied to all training examples, or a batch of them, and the

average error is taken before any corrective actions are taken. Consider a set of
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targets, T, for some training data, and a set of corresponding predictions P, such

that each pi ∈ P and ti ∈ T is n-dimensional. The average MSE for the targets is

1
|T|

|T|∑
j=1

n∑
z=1

(T jz − P jz)2

After determining the average loss, comes the process of weight adjustment.

First, the partial derivative of the error function with respect to each of the weights

is calculated. This is called backpropagation because, in order to do it, one starts at

the output layer and calculates the partial derivatives of the weights linking this

layer to its predecessor before moving backwards a layer and calculating those

partial derivatives (and so on until reaching the input layer). Once all the partial

derivatives have been calculated they represent a gradient vector with which to

update the weights. These derivatives are then added to their respective weights

after being multiplied by a learning rate. A higher learning rate leads to larger

jumps in the weights, while a lower rate causes smaller changes.

After this is complete, the network can once again be used on the training data

and the weights adjusted again. This process continues either until a set number

of iterations have completed, or the network reaches a stopping point (its error

stops changing). This behavior is what gives gradient descent its name. If the loss

function is visualized as a surface plot, then then the network will slowly makes

steps towards a minima of such a plot.

3.1.2 Logistic Regression

Logistic regression is a binary classification (output labels can be represented as 0 or

1) model that also met success in the project. At its core, logistic regression shares a

lot in common with basic linear regression; both models rely on linear combinations

of features. In linear regression, the predicted output of an instance is just a linear
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combination of its features using some weights, but in the case of logistic regression,

we model the log-odds that an instance is labeled 1 using a linear combination of its

features. Suppose we have an n-dimensional feature vector x and a weight vector

w with a weight for each feature plus a bias weight, w0. In this case

log-odds(x) = w0 +

n∑
i=1

wixi

This strategy may seem odd, but it ultimately allows a logistic curve (a sigmoid

function like that in Figure 3.4) to be fit to the data. A logistic curve is locked within

the range [0, 1], and thus provides a convenient way to model probability. Moving

to just odds from the log-odds only requires raising the base, b, of the logarithm to

the linear combination of features:

odds(x) = bw0+
∑n

i=1 wixi

In probability theory, the odds of something happening is simply the ratio of the

number of times that thing happens to the number of times it does not. Therefore,

converting the odds to a probability is as simple as

odds
odds + 1

.

Using this, a logistic regression model predicts the probability of an instance

being class 1 as
bw0+

∑n
i=1 wixi

bw0+
∑n

i=1 wixi + 1
=

1
1 + b−(w0+

∑n
i=1 wixi)

This final form is a logistic curve. This curve is used to classify instances fed to

the model. If the output of the model is ≥ .5 then the instance belongs to class 1,

otherwise it belongs to class 0.
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As such, while the features have a linear effect on the log-odds of an instance,

they do not have this linear effect on the odds (and as a result, probability). A

constant increase in a feature will not lead to a constant increase or decrease in the

probability. Despite this fact, logistic regression is still recognized as a generalized

linear model since a linear combination is used to model log-odds - there is no

multiplication of features to arrive at the class label probability.

The weights for a model are chosen such that they result in a maximum likelihood

for the data at hand. Assuming the probability of being class 1 are independent

among data instances, then the likelihood of a collection of data instances represented

as feature-label pairs (x, y) for a model m is calculated as

Likelihood(m) =
∏

i

(m(xi))yi(1 −m(xi))1−yi

In other words, for each data instance, we use the model to predict the probability

that the instance belongs to class 1. If it does belong to class 1, we use that probability,

otherwise we subtract the prediction from 1 in order to get the probability that

it is class 0. These probabilities will be high when the model correctly predicts

data instances of each class. The product of all these probabilities represents the

likelihood of model given the data. Choosing weights to maximize this results in a

good model.

Gradient descent (as discussed in the MLP section) is one way to arrive at these

weights. Here, the likelihood function serves as the cost function. However, this

function often has local minima which gradient descent can get stuck in. Log

likelihood is used to convert the cost function into a convex one - a function with a

single, global minimum.

While logistic regression is used primarily for binary classification, it can be

extended to multi-class problems. The simplest approach to this is to create a model
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for each class label, where 1 corresponds to that class label and 0 corresponds to

every other label. Once each model is trained, the prediction for a data instance is

the label corresponding to the model which gave the highest probability.

3.1.3 Support VectorMachines

While they failed to achieve notable performance in the project, support vector

machines (SVM) were used and so merit a short description. Like logistic regression,

support vector machines deal with binary classification problems. They attempt

to draw a hyperplane to divide the two classes. Once found, the line represents

the maximum-margin between the two classes. That is, it is the line with the

greatest distance to any point in first class as well as the second. SVMs can perform

multi-class classification by drawing multiple hyperplanes.

3.2 Unsupervised Learning

In unsupervised learning, instead of making predictions, the task involves finding

latent relationships or structures in data. Put simply, you might say supervision

is learning with labels, while unsupervised learning is learning without labels.

Unsupervised methods are capable of learning relationships within data that might

be used to create new labels for the data or redefine the data itself.

3.2.1 Feature Engineering

While feature engineering is by no means a subset of unsupervised learning,

unsupervised techniques are often applied during feature engineering, so this

process is described here. As mentioned previously, the inputs to a machine

learning model are called features. Supervised models make predictions by learning
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the variations between the features of training data, and as a result, the actual

representation of the features is extremely important.

Feature engineering encompasses the refinement and manipulation of this

feature space before training a supervised model. If training a model is like baking

a cake, then feature engineering is like preparing the ingredients. In the simplest

case, feature engineering might just be dropping a feature that has no variance; if

all the students in some training data watch one hour of TV a day, then this feature

doesn’t reveal any useful information about a student’s grade. An example of more

complicated feature engineering is combining features. One might simply average

two features if they seem highly correlated or cross two features if they are not

linearly separable.

3.2.1.1 Dimensionality Reduction

One type of feature engineering that sometimes employs unsupervised learning is

dimensionality reduction - shrinking the number of features in the feature space.

Supervised models generally benefit from being trained on feature spaces with

lower dimensionality due to the infamous “curse of dimensionality.”

A term introduced by Bellman in 1961 [6], the “curse of dimensionality” refers

to the explosion in volume that accompanies increasing the dimensions of a feature

space. This impacts machine learning because it requires a greater number of

observations to explain the variations in the features. Consider a scenario where

a model is built to classify fruit as either apples or grapefruit. Imagine that there

are ten total training examples, five apples and five grapefruits, and that the only

features used are size and color; the classifier will probably perform quite well. Now

consider, however, that instead of two features, there are 10,000 covering everything

there is two know about these fruits - germination time, vitamin C content, weight,
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water content, growing location, etc. With only five observations of each fruit, it will

be extremely difficult to explain the variations in such a large number of features.

Another problem with high dimensionality is its impact on Euclidean distance [5].

As the number of dimensions expands, the distance between points becomes more

uniform. Thus, in the example above, while there is most likely two distinct clusters

of observations in two-dimensional space (one cluster for apples and another for

grapefruits), this difference disappears in the 10,000-dimensional space as each

observation seems just as far apart from all other observations.

3.2.1.2 Word2Vec

Word2Vec is a group of models for learning word embeddings that has merit in the

project and is discussed here to give a concrete example of unsupervised learning

in the context of dimensionality reduction. A piece of text viewed as a collection of

words is an inherently high dimensional space, and the simplest way to represent

these words numerically is to use one hot-encoding. Under this scheme, if the text

in question has a vocabulary of size n, then each word can be represented as an

n-dimensional vector where each element is 0 except for the element at the same

index as the word’s location in the dictionary, which is set to 1. In this way, each

word gets its own encoding, but the encodings are extremely sparse (the majority of

values are 0).

Word2Vec learns new, more representative encodings for the words in a corpus

based on their context. In this case, context is an indication of the words that appear

near a given word in the corpus; words with similar contexts have the same words

appear near them in the text. Numerically, words with similar contexts will have

encodings that are close in distance. Figure 3.5 shows what this might look like

after training a Word2Vec model to learn 2-dimensional word embeddings on a

(wholly fictitious and nonexistent) story about the Dungeon of Corrosion.
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Armor

Acid

Hero

Damage

Figure 3.5: Example 2-dimensional word embeddings.

While several implementations of Word2Vec exist, this discussion assumes the

one built on the skip-gram neural network architecture. This network takes one-hot

encoded words as input and predicts a word it expects to see near that word

as output. Once trained, the output of the network is no longer useful, and the

Word2Vec model discards it, only retaining the first weight matrix of the network.

These weights serve as the new embeddings for the words corpus; each row of

the matrix corresponds to the embedding of a word in the vocabulary. In order to

find a word’s embedding, one simply takes the one hot encoding of the word and

multiplies it by this weight matrix to isolate the word’s embedding.

The network itself comprises three layers in a similar structure to the MLP

described above. The input layer has as many neurons as there are words in a

text’s vocabulary, since it takes one hot word encodings. The middle layer (the only

hidden layer) determines the dimensionality of the resulting word embeddings

and is usually on the order of 102 in size. Finally, the output layer, like the input is

the same size as the text’s vocabulary. The activation function of this final layer is

the softmax function. If o ∈ Rm is the vector of outputs of the network before the

softmax is applied, then the softmax of any neuron n ∈ o is:

eon

e
∑m

i=1 oi
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After applying this function to each of the output neurons, the sum of the outputs

will be 1. Because of this, and the fact that there is a neuron for each word in the

vocabulary, the output of each node represents the probability of finding each word

in the vocabulary near the input word.

That actual training examples for the network are word pairs (input, output)

from the text. The number of these pairs depends on the context window, an

important hyperparameter in the Word2Vec. The context window is a number

that indicates how many words before and after a word are included in its context.

Figure 3.6 shows how to craft the first few training examples on an example text

with a window size of one.

Corrosive acid covered poor Thortoq, whose metal armor stood no chance.

Corrosive acid covered poor Thortoq, whose metal armor stood no chance.

Corrosive acid covered poor Thortoq, whose metal armor stood no chance.

Input Output

corrosive acid

acid corrosive

acid covered

covered acid

covered poor

Figure 3.6: Creating the first few Word2Vec training examples for a toy text.

Actually training the skip-gram network can be costly, since there is an output

neuron for each word in the vocabulary of the corpus. Calculating the softmax over

thousands, if not tens of thousands values is expensive; two methods exist to combat

this. First, under-sampling is performed on words with high frequency in the

corpus. These are often stop words, like “the", and once removed are not included
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in the vocabulary or when creating training pairs. Secondly, the skip-gram network

often uses negative sampling. When the weights of the network are updated, only a

small sample of the neurons in the output layer, and the corresponding weights are

updated. This sample always includes the neuron for the word that should’ve been

predicted and a small number of so-called ’negative’ neurons, those neurons that

should not have fired. This greatly reduces the number calculations performed.

The Word2Vec model, once trained, produces a word embedding lookup table

for the vocabulary of a corpus. These new embeddings are both much smaller than

one-hot encodings for those words and much more representative of the words’

meaning.

3.2.2 Clustering

Clustering techniques are discussed here because clustering is a well known family

of unsupervised learning methods. They are a popular method for finding groups of

similar data points in an unlabelled set. They can also be useful to see if class labels

are actually representative of the data groups found in a dataset. Many clustering

algorithms exist, but the underlying process involves finding data points that are

close together in the feature space and assigning them to a cluster, where “close”

is defined by some distance function or represented by some sort of generated

distribution. Figure 3.7 shows how a clustering algorithm (fit with 3 clusters) might

label a group of wines based on their phenol and flavanoid levels versus the actual

labels of the wines. The labels are irrelevant, but the figure shows how clustering

can find similar data points in a dataset even if the true labels are not known (the

true labels are just for reference).
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Figure 3.7: Clustered and actual wine class labels among wines with the varying phenol and
flavanoid levels.
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CHAPTER 4

D&D&Data

This chapter first explores the structure of the data used, its acquisition, and

preprocessing. It then provides a brief analysis of the processed data in the context

of the problem at hand.

In this project, the data is composed of individual character instances, each with

two general parts: a representation of the backstory and character information

relevant to the mechanics of the game (the prediction targets). In the case of D&D,

the first of these is simply raw text, while the latter can be any of the scores or

categories found on the D&D character sheet.

Figure A.1 shows the official character sheet for 5th edition D&D. Many of the

entries on this sheet are derivative of others or have can have values that depend

on information not found in the character’s backstory (e.g. Alice’s character has a

bond with Bob’s even though Bob’s character is not in Alice’s backstory). Because

of this, the following pieces of the character sheet are assumed to be valid targets

for prediction:

• Attribute Scores: These are a series of numeric scores that describe the basic

mental and physical aptitude of a character. Higher scores correspond to

higher aptitude in that attribute.

31
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• Class:1 The class of a character is a categorical variable that describes their

adventuring ‘profession‘ of sorts and can take a number of discrete values.

• Race:2 What would a fantasy universe be without Tolkien-esque races? Race

is another categorical variable that can take a number of discrete values.

• Skill Proficiencies: The character sheets of D&D 5th edition feature a discrete

list of skills which players can bubble in indicating ‘proficiency.‘ A character

performs more efficiently at a task using these skills.

4.1 Acquiring Data

With no readily available datasets of D&D characters online, acquiring character

data requires different routes than the usual download of a compressed file or

API query (for example - gathering tweets using Twitter’ API). Thus, we use two

methods to collect data: Google Forms and web scraping.

The Google Form originally only contained fields for character class, race, name,

and backstory. As the project progressed to its current form, however, inputs

for attribute scores and skill proficiencies have been added. The link to the form

was distributed among several game stores, gaming club officers at a number of

universities, and a Reddit post. As of the time of this writing, the form has collected

196 responses.

Unfortunately, 196 is a paltry number of examples to train any sort of model

with, especially when considering the number of class targets in each of the discrete

categories requiring classification. For example, when considering character class,

there are twelve targets. Even if the responses are completely balanced against

1While there are many classes and races in the D&D universe, this project focuses on those found
in 5th edition Player’s Handbook. They are the most popular.

2See footnote 1
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character class, then each class would only have 16 training examples. A comparable

dataset in the domain of NLP is the subset of the Yahoo! Answers corpus that the

authors of [24] use which includes questions from 10 different categories, each with

140,000 training and 6,000 testing examples. Even with this amount, their models

could still only achieve 71.10% classification accuracy. While it is impossible to

define the amount of data needed to adequately solve a certain problem, it’s safe to

say that 196 examples is not nearly enough.

In order to further gather character information, we scrape Shadowhaven’s

Dungeons & Dragons 3E Character Database, a site “dedicated to the use and

storage of Dungeons & Dragons character files” [10]. Each character in the database

has its own page, which is downloaded using the requests module for Python. Once

downloaded, the raw HTML is parsed with the help of the beautiful4soup module;

the fact that location of HTML elements containing relevant character information

within each page is constant makes this possible. In total, the database contains

pages for 16,515 characters - 6,684 of which have backstories or textual descriptions

of any kind.

The biggest issue with this data is that all of the character information comes

from D&D 3rd edition, while the goal of this project (and the information submitted

through the Google Form) is in the domain of 5th edition characters. Attribute

scores are identical between the two editions and there is a large overlap between

races and classes. Unfortunately, the skill proficiencies in each are different enough

that one cannot predict 5th edition proficiencies by training on 3rd edition ones.

As a result, we drop skill proficiency from the list of prediction targets. Also,

the classes and races are reduced to the intersection of those found in the database

and all 5th edition possibilities. There might be unforeseen differences between the

two editions that could confuse models training on a large number of 3rd edition

characters with 5th edition ones sprinkled in. Therefore, the 5th edition characters
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collected through the Google Form are used exclusively in testing sets for the trained

models. They indicate the sort of characters expected to be thrown at the model in

production and are thus a good indication of model efficacy.

With these modifications realized, the data consists of characters defined as a

combination of backstory and the following prediction targets:

• Character Class (classification problem with 11 classes)

Barbariana) Bardb) Clericc) Druidd) Fightere)

Monkf) Palading) Rangerh) Roguei) Sorcererj)

Wizardk)

• Character Race (classification problem with 7 classes)

Dwarfa) Elfb) Gnomec) Half-elfd)

Half-orce) Halflingf) Humang)

• Character Attribute Scores (regression problem with 6 components)

Strengtha) Dexterityb) Constitutionc)

Intelligenced) Wisdome) Charismaf)

4.2 Preprocessing

Before extracting features or fitting any models to the data, it is necessary to remove

bad examples and attempt to remove noise from those which can be kept. This

helps lower the confusion of trained models.

The first and simplest step is to drop duplicate characters, since duplicated

characters will either give that character a slightly heavier weight when training a

model or the character will show up in both the training and testing sets, causing a
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leak of information. Following this, we drop examples with less than 100 characters

in their backstory. This compensates for when the backstory is just a few words

or is just a declaration of nonsensical character information, such as “Additional

NotesSpells per Day:01254+13+1.” The threshold of 100 characters is a just a

heuristic chosen since it seems to work.

Following this, we drop punctuation and any stop words (words such as “the”

or “a” which have little meaning) from the backstory. This shrinks the vocabulary

of the entire corpus, since “Hammer” and “hammer” are now the same word. Also,

since we use words as tokens, stripping punctuation and sticking to lower case

helps reduce the dimensionality of any resulting feature space.

To reduce the vocabulary of the backstories further (and thus the dimensionality

of any resulting features relying on it) we apply lemmatization to the backstories. A

lemmatizer operates similarly to a stemmer, which applies a series of production

rules to a word in order to reduce it to its word stem. A lemmatizer, however,

incorporates the part of speech of a word and its morphological analysis in order to

provide its dictionary form [17]. Consider the following examples:

He is learning to read.

A stemmer and lemmatizer will both reduce learning to “learn.”

I went to the store.

A stemmer will reduce went to “went”, while a lemmatizer will reduce went to “go.”

We use the Natural Language Toolkit’s (NLTK) WordNet lemmatizer to perform

the lemmatization. This implementation conducts the necessary morphological

analysis using WordNet, a lexical database for English where nouns, verbs, adjectives

and adverbs are placed into into groups called synsets based on semantics and lexical

relations [18] . Application of the lemmatizer reduces the size of the backstories’

vocabulary from 66,713 to 58,680.
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Apart from the backstories, the actual targets for classification and regression

also require preprocessing. Many of the user entries for class, race, and even

attribute scores are misspellings, abbreviations, or outside the range of accepted

values. Originally, just a token replacer was written and applied to the entries. It

matches entries to acceptable values close in spelling using a sequence matcher

or replaces them using a dictionary of common abbreviations. Unfortunately, it is

difficult to cover each edge case using this approach. Therefore, the character class

and race values were hand annotated before running the token replacer on them.

Attribute scores are simply coerced into integer values.

4.3 Data Analysis

This section provides a cursory analysis of the preprocessed data. We explore the

patterns and distributions within the data, which is useful for understanding how

it fits into the problem. A better understanding of the data at hand will lead to a

better understanding of model performance in the future.

Figure 4.1 shows the distribution of word counts among the backstories. One

must remember that these are the processed backstories, so stop words have been

removed. As a result, the backstories will be slightly shrunken. The maximum

backstory length is 5,983 words, while the mean and median are 261.2 and 173,

respectively. Also to note, the x-axis of Figure 4.1 cuts off at the 99th percentile of

the word counts.

The figure indicates that the distribution is heavily skewed right; most of the

backstories are relatively short. This makes prediction harder, since a smaller

amount of text is more likely to hold less information than a larger one. In addition,

shorter backstories will have more unstable predictions, since each word will have

a large importance; changing one could result in a vastly different decision.
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Figure 4.1: Distribution of word counts (up to the 99th percentile) among processed backgrounds.

Figure 4.2 shows the distributions of both the character class and race for the

subsets of characters where the two are recognized (notice the different totals for

each - just because a character’s class is known does not mean that the race is, and

vice versa). Here, we see that the dataset is not balanced on either target. In the

case of race, this is extremely true, as the characters are overwhelmingly made up of

humans. Imbalanced classes pose an issue in machine learning, as trained models

will be naturally biased to the majority class.

A simple example portraying this is a Nobel Prize Laureate classifier that takes

academic papers as input and decides whether or not the writer will win a Nobel

Prize. Such a classifier will have > 99% classification accuracy if it simply says no to

every paper (only 10 individuals won prizes in 2017 [4]). This behavior, however,

is useless. Attempts to remedy this class imbalance are discussed in the results

chapter.
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Figure 4.2: Distribution of character race and class among processed backgrounds.

Figure 4.3 expands upon the information in Figure 4.2 by showing the class

composition of each race. That is, each pie chart shows the makeup of a single race

in terms of the character classes present among characters of that race.

These distributions indicate some correlation between character class and race.

We observe that some races seem to have a high bias towards certain classes

(Dwarves and druids, Half Orcs and barbarians, Halflings and rogues).
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Figure 4.3: Distribution of character class within races among characters with recognized character
class and race.
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Figure 4.4 shows box plots for each of the six attribute scores. Each plot indicates

the quartiles of an attribute. This whiskers are set to be 1.5 ∗ IQR and, thus do not

indicate the maximum and minimums. Indeed, the y axis is clamped from [0,40], so

there are some outliers among the attributes approaching values of 1000 not shown.

Overall, it seems that for each attribute, over 50% of the characters’ scores reside

in the 10-20 range. This is expected, as anything below 10 gives a character negative

modifiers for that attribute during gameplay. In addition, while most of the scores

have similar spreads, dexterity has a higher mean and lower quartile than all the

rest indicating at a least a small general preference for dexterity over the other

attributes.

Strength CharismaIntelligenceDexterity WisdomConstitution
Attribute

0

5

10

15

20

25

30

35

40

At
tri

bu
te

 S
co

re

Box Plots of Each Attribute

Figure 4.4: Distribution of attribute scores among characters.



CHAPTER 5

Predicting Characters: Approach and Results

As stated in the previous chapter, there are three groups of prediction targets in

the project: character class, race, and attribute scores. Rather than attempt to build

a single model to learn all of these relationships, however, three separate models

are constructed, one for each area. This chapter first discusses the approach used

to predict class and race, two similar classification problems, before moving on to

the attribute scores. For each area the feature engineering steps are outlined and

the performance of any trained models are evaluated. The tasks are accomplished

using the Scikit-Learn, Tensorflow, and Tensorlayer libraries for Python.

5.1 Class and Race

The underlying assumption made when predicting a character’s class and race is

that the composition of words in a character’s backstory is indicative of where the

character falls in these two categories. Because there are so few training examples,

more complex models incorporating sentence structure into the feature set are not

pursued. In other words, when considering “Thortoq hates humans” and “Thortoq

loves humans,” the meaning of the word “human” does not differ.

For both class and race, the available characters - those with recognized classes

or races - are split into training and testing sets. Following the guidelines from

41
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Andrew Ng, the split is 80/20, respectively [19]. In addition, the split is stratified so

that the training and testing sets represent the same class distribution found in the

data. The 5th edition characters from the Google Form are included in the test sets

for both class and race. Table 5.1 shows the actual counts for these sets.

Problem Training Preliminary Testing 5th Edition Data Total Testing

Class 2954 739 135 874

Race 3708 927 113 1040

Table 5.1: The number of characters in training and testing sets for class and race classification.

With this in mind, two feature spaces are engineered for classifying class and

race. The first contains TF-IDF values. The raw backstories of the training data are

converted into a matrix of TF-IDF values where each row represents a character and

each column corresponds to a word in the training data’s vocabulary. If every word

in the vocabulary is kept, then the dimension of the feature space is quite large. The

upper bound is the size vocabulary of the entire corpus (i.e. 58,680), but usually

ends somewhat smaller since it is only fit to the training data. In order to reduce

this size, a minimum document frequency of .005 is used - words occurring with

less frequency than this are dropped.

A second feature space is created for each problem using the learned contexts

of the words in their respective training data. These contexts are learned using a

Word2Vec model based on the skip-gram model architecture with a hidden layer

containing 300 neurons. This number was chosen because it is the same dimension

that Google uses in their Google News Vector Dataset [3]. The resulting contexts,

represented as a table of embeddings, is multiplied by the TF-IDF matrix for the

characters to create a new, 300-dimensional feature space that describes the average
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context (weighted for the importance of each word as per TF-IDF) of a character’s

backstory. We call this the TF-IDF averaged context. Figure 5.1 shows this process.

Word x1 x2 x3 ... x300
word1 .65 .11 .24 ... .74
word2 .34 .65 .17 ... .99
word3 .41 .68 .32 ... .77

... ... ... ... ... ...
wordvocab_size .76 .54 .21 ... .12

Character word1 word2 word3 ... wordvocab_size
character1 .54 .35 .24 ... 0
character2 .01 .05 .98 ... .01
character3 .25 .78 .85 ... .09

... ... ... ... ... ...
charactercharacter_count .54 .65 .89  .98

TF-IDF Matrix Word Contexts

Figure 5.1: Multiplication of TF-IDF matrix and word embedding table to create a new feature space.

5.1.1 BaselineModels andMetrics

The most fundamental scoring metric for classification models is classification

accuracy - the percentage of successfully classified instances in a group of examples.

However, classification accuracy can often be misleading or a poor metric to evaluate

performance. Consider the example of noble prize winners given in Chapter 4.

Precision and recall are two metrics that often reveal more about a model’s

performance. Each class label in a classification problem has an associated precision

and recall value. Both are measured using the following counts using the predicted

labels of some known data (assume x to be the class label in question):

• True Positives (TP) - we predict x and the actual class is x

• False Positives (FP) - we predict x and the actual class is ¬x

• True Negatives (TN) - we predict ¬x and the actual class is ¬x

• False Negatives (FN) -we predict ¬x and the actual class is x
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Precision represents how many instances predicted as the label in question are

relevant and is calculated as TP
FP+TP . Recall represents how many of the relevant

items for a class label are accurately predicted and is calculated as TP
FN+TP . A third

metric, the F1 Score combines precision and recall into one value by taking their

harmonic mean, which is calculated as (precision)×(recall)
precision+recall .

While a classification accuracy of 100% (precision and recall for each class are 1)

indicates a perfect model, what constitutes ‘good’ performance varies depending

on the problem domain. Because of this, it is useful to compare the performance

of trained models to some baseline model when discussing their efficacy. Baseline

models are naive models that (usually) follow simple rules in order to make a

prediction.

In the case of a classification problem, perhaps the simplest baseline is just to

always predict the dominant class found in the training data. However, knowing

the domain of the project, there is a better baseline model. For each backstory, we

count the frequency of the classification labels in the text. We then classify the

character as the label with the highest frequency - facing a lack of labels in the text,

we simply classify the character as the majority class. This captures characters with

backstories that start with something like: “Thorqtoq is a half orc barbarian.”

Figure 5.2 shows the confusion matrices for the baseline models on the testing

data for both class and race. A confusion matrix is a heat map which visualizes

the predictions of a model on some data versus the actual labels of the data. The

rows of the matrix correspond to the actual labels in the data, while the columns

are the predicted labels. The sum of each row is 1, and thus the value in a cell

represents the percentage of the row’s label classified as that column’s label. Heat

along the diagonal is good, since this represents correctly labeled instances. Heat in

other areas can reveal where the model is performing poorly. Table 5.2 contains the

discussed performance metrics of each baseline.
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Figure 5.2: Baseline classifier confusion matrices.
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Baseline Accuracy Mean Precision Mean Recall Mean F1 Score

Class 42.10% 0.65 0.39 0.44

Race 69.51% 0.67 0.53 0.56

Table 5.2: Performance metrics of baselines for character class and race.

Overall, the baselines perform as expected; the significant heat in the human

and fighter columns reveal the that the models are heavily biased toward the most

common label. The raw accuracy of the race baseline outperforms the class. This is

probably because there are more labels among class and the race counts were more

imbalanced than the class counts.

5.1.2 DealingWith Imbalance

The problem of imbalanced class labels persists when training models. Figure 5.3

shows the results of a default logistic regression model trained on the TF-IDF matrix

of backstories to classify character class. The intense heat in the fighter column

reveals that models will learn the imbalance in the training data.

In order to combat the problem of imbalance, a combination of oversampling

and undersampling is used. In the case of character class, where the imbalance is

not as drastic, the training data is oversampled so that there are as many instances

of the minority class labels as there are of the majority (fighter). The sampling

method used is random (with replacement). Thus, after sampling, the training data

will have quite a few duplicate instances. Character race is much more imbalanced,

so the majority class label is undersampled before the minority class labels are

oversampled to match it. The undersampling method is also random. Of the

majority class, 75% are dropped before oversampling occurs.
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Figure 5.3: Confusion matrix of a logistic regression model trained to classify character class
without sampling.

5.1.3 Model Selection

Three models are compared when predicting class and race: logistic regression,

random forests, and support vector machines. These models were selected because

of their popularity for classification and in order to keep the scope of the project

within reason. The models are trained on each of the two feature spaces: the TF-IDF

values for the backstories and the TF-IDF averaged context.

In order to select the best set of hyper-parameters for each model, exhaustive grid

search is used. This technique takes a model type and a grid of possible parameters;

a model is trained for each of the possible parameter combinations, and the model

with the best performance is returned. Selecting the best combination by evaluating

on the test set could lead to overfitting, so 5-fold cross validation is used instead.



48 5. Predicting Characters: Approach and Results

Using 5-fold cross validation, the grid search splits the training data into 5 bins

before trying a parameter combination. It then trains 5 version of the model, each

on a different set of four bins. The last bin for each model is used as the testing set

to find the performance of the model, after which, the performance of the 5 models

is averaged.

Figure 5.4 shows the character class confusion matrices for each combination

of model and feature space. The title of each matrix indicates the model type, the

classification problem (class for all), and the feature space the model was trained on.

The confusion matrices are similar in format to those already seen so the labels are

elided.

Log. Regression (Class, TF-IDF)

(a)

Random Forest (Class, TF-IDF)

(b)

SVM (Class, TF-IDF)

(c)

Log. Regression (Class, Context)

(d)

Random Forest (Class, Context)

(e)

SVM (Class, Context)

(f)

Figure 5.4: Confusion matrices for character class classifiers. The title of each matrix indicates the
model trained what feature space was used.

Without even considering the actual metrics associated with each combination
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it is clear that the models trained on the TF-IDF matrix outperform those trained

on the TF-IDF averaged context feature space. The heat for the former models are

much more focused along the diagonal than those in the latter group.

Interestingly, the models in Figure 5.4(a) and Figure 5.4(b) compensate each

other’s failing to a minor degree. For example, the 5.4(b) does better at classifying

fighters, while 5.4(a) excels at classifying sorcerers. This can be observed by

comparing the heats of each in both the fifth and tenth cells along the diagonal. This

is relevant because logistic regression and random forest models are both capable

of producing the predicted probabilities of all class labels for an instance. Thus, it is

possible to combine their predictions (sadly, this is not the case for support vector

machines).

Based on the indication that models 5.4(a) and 5.4(b) might complement each

other, they are combined in a simple ensemble method - their predicted probabilities

are averaged. The label corresponding to the maximum probability of this average

is used to label the instance. Figure 5.5 shows the heat map for this ensemble, the

combination of logistic regression and random forests, for classifying class.
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Figure 5.5: Confusion matrix of random forest and logistic regression ensemble to classify character
class.

Using visual cues alone, it is impossible to determine which model is best, so

the performance metrics of each model are presented in Table 5.3. Other than

accuracy, the metrics represent the average metric across all class labels. These

values reinforce the previous statements made. Both the classification accuracies as

well as the F1 Scores are higher for each of the models trained on the TF-IDF matrix

feature space than those not. Further, while each of the models these models is

extremely close in terms of accuracy and F1 Score, the ensemble of logistic regression

and random forest slightly outperforms the others . This model improved upon the

accuracy of the baseline model by 18.10% and had a higher mean F1 Score by .16.

While this might not seem like a miraculous improvement, there is some

additional merit in how the ensemble model misclassifies instances compared to the

baseline. In the case of the baseline, instances are almost entirely misclassified as the
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majority class. With the ensemble model, however, classes are often misclassified as

similar classes. For example, paladins are most frequently misclassified as fighters

or clerics, and in the world of D&D, paladins are something of a fusion of these two

classes. Sorcerers are misclassified as rogues and wizards, two labels with similar

characteristics to the sorcerer class when it comes to gameplay. Thus, instances

misclassified by the ensemble model are still somewhat useful.

Model Features Accuracy Mean Precision Mean Recall Mean F1 Score

Class Baseline - 42.10% 0.65 0.39 0.44

Log. Regression TF-IDF 58.01% 0.59 0.58 0.58

Random Forest TF-IDF 57.89% 0.61 0.57 0.58

SVM TF-IDF 56.18% 0.55 0.57 0.55

Log. Regression Context 44.85% 0.44 0.47 0.45

Random Forest Context 34.21% 0.58 0.26 0.28

SVM Context 40.73% 0.40 0.43 0.41

Ensemble TF-IDF 60.20% 0.62 0.59 0.60

Table 5.3: Performance metrics of classifiers for character class.

Figure 5.6 shows the character race confusion matrices for each combination of

model and feature space. As before, the title of each matrix indicates the model

type, the classification problem (race for all), and the feature space the model was

trained on. Again, labels are elided.



52 5. Predicting Characters: Approach and Results

Log. Regression (Race, TF-IDF)

(a)

Random Forest (Race, TF-IDF)

(b)

SVM (Race, TF-IDF)

(c)

Log. Regression (Race, Context)

(d)

Random Forest (Race, Context)

(e)

SVM (Race, Context)

(f)

Figure 5.6: Confusion matrices for character race classifiers. The title of each matrix indicates the
model trained what feature space was used.

The results here appear very similar to those for the character class classifiers.

The TF-IDF matrix feature space outperforms that of TF-IDF averaged context. The

same complementary behavior between logistic regression and random forests

can be seen when observing the heat differences between Figures 5.6(a) and 5.6(b).

Figure 5.7 shows the confusion matrix of the ensemble of these two classifiers. The

performance metrics in Table 5.4 reveal the ensemble model to be the strongest

performer. Here, however, there is an even smaller gap between the accuracy

of the race baseline and this model (only 6.64%). Still, the same argument as to

misclassification can be applied (many a dungeon master struggles to describe the

difference between elves and half elves).
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For both class and race, the best performing models are the ensemble of lo-

gistic regression and random forest classifiers trained on TF-IDF matrices for the

backstories.
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Figure 5.7: Confusion matrix of random forest and logistic regression ensemble to classify character
race.
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Model Features Accuracy Mean Precision Mean Recall Mean F1 Score

Race Baseline - 69.51% 0.67 0.53 0.56

Log. Regression TF-IDF 70.19% 0.61 0.64 0.62

Random Forest TF-IDF 74.32% 0.71 0.65 0.67

SVM TF-IDF 65.96% 0.55 0.65 0.58

Log. Regression Context 49.33% 0.39 0.52 0.42

Random Forest Context 55.19% 0.70 0.27 0.27

SVM Context 45.19% 0.36 0.49 0.39

Ensemble TF-IDF 76.15% 0.73 0.67 0.69

Table 5.4: Performance metrics of classifiers for character race.

5.2 Attribute Scores

Predicting attribute scores requires generating six different real values, one for

each possible attribute: strength, dexterity, wisdom, charisma, intelligence, and

constitution. The first task in this problem is choosing how to represent these scores.

In the actual data, they show up as they would on a character sheet; each score has

positive integer assigned to it. However, early attempts at training regressors to

predict these scores were met with little success. This is probably because of the

sheer range of scores found. Characters with higher levels have higher attribute

scores than others, and level isn’t something easily captured from a backstory.

In order to account for this, the attribute scores of each character are stan-

dardized. Each attribute score for a character is represented as the percentage

of total attribute points that character has allocated for that attribute; these stan-

dardized scores add up to 1 and are in the range [0, 1]. In this way, a char-

acter with raw attributes {10, 12, 16, 12, 10, 10} has the same standardized scores
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({.142, .171, .229, .171, .142, .142}) as a character with raw attributes {15, 17, 21, 17, 15, 15}.

These percentage representations can be transformed back into actual attribute score

values by multiplying them by some point pool (e.g. 72 for a level 1 character).

With these targets, the feature spaces used to classify race and class, TF-IDF

values and TF-IDF averaged contexts, were found to underperform when used to

train regressors. Very little correlation was observed between the predictions of

these models and any testing values. Following this, the assumption was made that

class and race themselves might be good indicators of attribute scores. Indeed, in the

Player’s Handbook, there are suggestions for each class and race on how to tweak

attribute scores. The data itself also seems to back this assumption. Figures 5.8 and

5.9 show the distribution of attribute score percentages for each class and race. For

many of the attributes, there seems to be notable deviation between categories. Half

orcs and dwarves appear to lack in charisma, for example, while barbarians and

fighters excel in strength. Preliminary attempts to predict attribute scores using the

actual class and race of a character proved much more successful than those using

backstory features.
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Figure 5.8: Distributions of attribute scores among class.
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Figure 5.9: Distributions of attribute scores among race.

The problem with this approach, of course, is that the goal of the project is to

use backstories alone to generate the character’s stats - the class and race should

be unknown. However, as shown, it is possible to predict a character’s class and
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race. Thus, the feature space used to train attribute score regressors is the predicted

class and race for a character using the ensemble models discussed in the previous

section. This feature space has 18 dimensions, one for each class and race and is the

concatenation of the predicted probabilities of the the two ensemble models.

With this feature space in mind, the training and testing sets for attribute scores

are constructed using only characters with known class and race. It doesn’t make

sense to include a character with an unrecognized class or race, since one cannot

hope to accurately predict its class or race using a classifier that only spits out

probabilities for known labels. This is however, a large compromise - some characters

which were part of the training sets for class and race show up in the training

data for the attribute scores. Predictions for class and race of these characters are

informed predictions, since the class and race classifiers were trained on them. This

is unavoidable, however, if large enough training and testing sets are to be used.

In addition, before creating the training and testing sets, the Local Outlier Factor

algorithm is used to remove outliers from the available characters. This algorithm

identifies anomalies in data as instances which have much lower density than their

neighbors. In other words, if a training instance is farther away from its neighbors

than those neighbors are close to their own neighbors, then the instance is dropped.

Removing outliers is important in regression since outliers can have a dramatic pull,

especially on linear models. Table 5.5 shows the final testing and training sets for

attribute scores as well as how many outliers are detected.

Total Instances Outliers Valid Training Testing

3028 253 2775 2220 555

Table 5.5: Training and testing sets for attribute regression.
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5.2.1 BaselineModels andMetrics

This project uses explained variance and absolute error as analysis for the final

regression models. These metrics differ fundamentally from those used for the race

and class classifiers just as the tasks of regression and classification do.

Explained variance reveals how good the model is at capturing the variance

found within the testing data. If ytrue is a vector of true targets and ypred is a vector of

predicted targets, then the explained variance score of these predictions is defined

as

1 −
Variance{ytrue − ypred}

Variance{ytrue}

Thus, the explained variance ranges from [0, 1], and can be viewed as a percentage.

A perfect model captures 100% of the variance. In the case of targets with multiple

values, such as the attribute scores, the explained variance of each output is

calculated, and then the aggregate is averaged.

Absolute error is simply the absolute value of the difference between a prediction

and the actual value for an instance. For targets with multiple outputs, the absolute

error represents the averaged absolute error of all outputs. This isn’t to be confused

with mean absolute error, which is the average of absolute error across all predictions.

In the context of attribute scores, the absolute error for a character represents the

average percentage that any one attribute of that character is off.

In the case of the attribute scores, the baseline model finds the average attribute

score in the training data and uses it as the prediction for any testing instances. This

model makes no assumptions about the character backstories, unlike the classifica-

tion baselines, but there doesn’t seem to be any easily exploitable information to

refine it with.
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5.2.2 Model Selection

Two models are compared when predicting attribute scores: linear regression using

least squares and an MLP. These models were selected because linear regression is

one of the least complex regression models, while an MLP is capable of picking up

on nonlinear relationships within data.

There are virtually no hyperparameters to tune for the linear regression model

used and the MLP was implemented using Tensorflow, so neither conformed well

to the exhaustive grid search method. The MLP’s parameters (e.g hidden layer

neuron counts, number of hidden layers, learning rate) were tuned manually until

its performance stopped increasing on the testing set. This is by no means good

practice, and in the future these parameters should be chosen using some sort of

validation set. Because of this method, the MLP can be assumed to be slightly

overfit to the testing data.

With this established, the final structure of the MLP used is an input layer with

18 neurons (one for each class and race predicted probability), two hidden layers

with 75 neurons using the ReLU activation function, and an output layer with six

neurons (one for each attribute score) using the soft-max activation function. The

soft-max activation forces the final output to sum to 1.

Table 5.6 shows the results of each of these models as well as the baseline on the

testing data. Immediately, it is apparent that the baseline is very poor at capturing

the variance in the testing data, but this is expected since it is just a flatline average.

The linear regression is slightly outdone by the MLP, probably because of slight

nonlinear relationships between the probabilities of class and race and the attribute

scores. While both of the models’ explained variances are under 50%, this is to be

expected in hard to predict problems. Values under 50% are seen in many studies

trying to predict human behavior, for example.

Interestingly, the mean absolute error of all three models appear very close at
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first glance. When converted to actual attribute points (using a level 1 character’s

point pool of 72), the discrepancy seems a little more impactful. The last column

of Table 5.6 shows this adjustment and represents the attribute points each model

would be off by for the average attribute (assuming a level 1 character).

Model Explained Variance (%) Mean AE (x102) Mean AE as Attribute Points

Baseline 5.00e-14 2.67 1.92

Linear Reg. 39.5 1.99 1.43

MLP 42.5 1.93 1.38

Table 5.6: Performance metrics of attribute score regressors.

Still, these metrics don’t reveal much about the spread of error in each model and

lump the performance on each attribute together, omitting information. As already

seen in Figure 4.4, the distribution of each attribute is not the same. Thus, Figure

5.10 explores the raw error of the baseline and MLP on each attribute separately

(the linear regression model is excluded here since it performed similarly to the

MLP). Each plot shown contains the estimated probability distribution of error for

both the MLP and baseline model on an attribute. The y-axis denotes probability

while the x-axis represents error in attribute points (assuming level 1 point pool of

72). In the background of each plot is the histogram of errors for both models used

to estimate the probability distribution.

These plots reveal that for each attribute the standard deviation of the attribute

scores for the MLP was lower than the baseline. In addition, we can see the the

error distributions were much closer for the two models for the attributes with

lower variations with respect to class and race as seen in Figures 5.8 and 5.9 (e.g.

constitution).
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Figure 5.10: Raw errors of MLP and baseline on each attribute.
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Conclusion

The results in the previous section indicate that it is possible to make predictions

about a D&D character using only their backstory. In each category - class, race,

and attribute scores - we are able to outperform the simple guesses modeled by

the baselines. The classifier for race had a higher classification accuracy than that

of class, but this is expected. Race was both more imbalanced and had fewer

classification labels than class, which both contribute to this. Finally, while the

attribute score regressors were not outstanding, it is important to keep in mind that

they were trained on predicted outputs already containing error.

The question becomes, then, how much can one say about the information on a

character sheet given the corresponding backstory. Often these two can clash; as a

player develops their character over time through leveling up, it can start to look

less and less like the character they describe in the backstory. Furthermore, the

misclassifications of the classification models demonstrate that it there is a certain

amount of overlap between some characters (e.g. wizards and sorcerers).

In order to explore this further, there are a number of changes that could be

pursued. First, there are several parameters that could be tuned rather than using a

‘best-guess’ approach. These include the minimum frequency cutoff for the TF-IDF

vectorization of the backstories, the percentage of the majority class dropped in the

undersampling in the case of race, and the minimum character cutoff for dropping

63
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backstories. In addition, when training the various classification models, accuracy

score was used to choose the best model-parameter combinations. Other metrics

could be used to choose this model (e.g F1 score).

Other than the changes that could be made, there are also other venues of

approach to the problem that might reveal more information. One of the big

drawbacks to the existing approaches is failing to incorporate the impact of nearby

words on a given word. We address each word in isolation, essentially, even when

using the TF-IDF averaged contexts.

There are several techniques that might be used to tackle this problem. The

simplest is to use an n-gram method; instead of considering individual words

as tokens, one considers each n-combination of words as a token. For example

using bi-grams, “hates humans” would be a token in the sentence “Thortoq hates

humans.” This approach explodes the feature space, but captures some of the

context in sentences.

Another approach, which wouldn’t lead to as large a feature space, is to

incorporate sentiment analysis into the existing TF-IDF feature space. One could

create two values for each word, the TF-IDF value of the word in negative sentences

and the TF-IDF value of the word in positive sentences. This might capture some

more information about what the word means for the backstory.

A more complicated approach is to use recurrent neural networks with long

short term memory cells for text classification. Early in the project, this method was

pursued, but the performance was poor. While these networks have been met with

success in NLP tasks [23], they require large amounts of data, something this project

does not have.

In an effort to account for this, however, and put the models into the hands

of D&D players, a frontend was developed for the models (it currently lives at

chardd.net ). Using Python’s Flask framework, Chart.js and Highcharts, Docker,
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and Amazon Web Services, this frontend allows users to enter in a backstory and

receive their class, race, and attribute score predictions. It also logs these predictions

and saves the backstory (and in the future will save what the user thought should

be predicted). In this way, it gathers additional data of the sort used in the project.

Hopefully, in the future, this can be used to create more accurate models.
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APPENDIX A

Character Sheet

RACE

CLASS & LEVEL PLAYER NAME

CHARACTER NAME

BACKGROUND

EXPERIENCE POINTSALIGNMENT

TM & © 2014 Wizards of the Coast LLC. Permission is granted to photocopy this document for personal use.

Hit Point Maximum
  Strength

  Dexterity

  Constitution

  Intelligence

  Wisdom

  Charisma

CP

EP

PP

GP

SP

PASSIVE WISDOM (PERCEPTION)

EQUIPMENTOTHER PROFICIENCIES & LANGUAGES

ATTACKS & SPELLCASTING

FEATURES & TRAITS

  Acrobatics (Dex)

  Animal Handling (Wis)

  Arcana (Int)

  Athletics (Str)

  Deception (Cha)

  History (Int)

  Insight (Wis)

  Intimidation (Cha)

  Investigation (Int)

  Medicine (Wis)

  Nature (Int)

  Perception (Wis)

  Performance (Cha)

  Persuasion (Cha)

  Religion (Int)

  Sleight of Hand (Dex)

  Stealth (Dex)

  Survival (Wis)

DEATH SAVESHIT DICE

NAME ATK BONUS DAMAGE/TYPE

Total SUCCESSES

FAILURES

IDEALS

BONDS

FLAWS

PERSONALITY TRAITS

ARMOR
CLASS

CURRENT HIT POINTS

TEMPORARY HIT POINTS

INITIATIVE SPEEDPROFICIENCY BONUS

STRENGTH

DEXTERITY

CONSTITUTION

INTELLIGENCE

WISDOM

CHARISMA

SAVING THROWS

INSPIRATION

SKILLS

Figure A.1: D&D 5th Edition Character Sheet
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