Summer 6-8-2008

Dendrochronological Analysis of The University of Akron, Wayne College Barnet-Hoover Farmhouse, Wayne County, Ohio

Follow this and additional works at: http://openworks.wooster.edu/historicstructures

Part of the Geology Commons

Recommended Citation

"Dendrochronological Analysis of The University of Akron, Wayne College Barnet-Hoover Farmhouse, Wayne County, Ohio" (2008). Historic Structures. 32.
http://openworks.wooster.edu/historicstructures/32

This Book is brought to you for free and open access by the Geology Data Archive at Open Works, a service of The College of Wooster Libraries. It has been accepted for inclusion in Historic Structures by an authorized administrator of Open Works. For more information, please contact openworks@wooster.edu.
Summer 6-8-2008

Dendrochronological Analysis of The University of Akron, Wayne College Barnet-Hoover Farmhouse, Wayne County, Ohio

Follow this and additional works at: http://openworks.wooster.edu/historicstructures

Part of the Geology Commons

Recommended Citation

"Dendrochronological Analysis of The University of Akron, Wayne College Barnet-Hoover Farmhouse, Wayne County, Ohio" (2008). Historic Structures. 32.

http://openworks.wooster.edu/historicstructures/32
Dendrochronological Analysis of
The University of Akron,
Wayne College Barnet-Hoover
Farmhouse, Wayne County, Ohio

June 8, 2006

Report submitted to Tamara Lowe.

Greg Wiles and Sophie Lehmann
Wooster Tree Ring Lab
Department of Geology
The College of Wooster
Wooster, OH 44691
Tel: 330-263-2298, gwiles@wooster.edu

General Analysis: Cores and sections from the Barnet-Hoover Farmhouse and beam pile located near the house were processed and crossdated (Fig 1) at the Wooster Tree Ring Lab using standard dendrochronological techniques (Stokes and Smiley, 1968). These techniques include preparing the cores surfaces, counting rings, measuring and crossdating ring-widths. Ring-widths were measured to the nearest 0.001 mm and crossdating was performed visually and using the computer program COFECHA (Holmes, 1983).

The five cores and three cross-sections from the wood pile on the side lawn (Table 1) were internally crossdated with one another to construct a floating ring-width series. This floating chronology was then absolutely dated against calendar-dated, living, ring-width chronologies from the region including Johnson Woods, Sigrist Woods, and Brown’s Lake Bog (ITRDB, 2005; Wooster Tree Ring Lab, unpublished data, 2005). The floating ring-width chronology from the Barnet-Hoover Farmhouse site spans 205 years and when adjusted to calendar dates ranges from AD 1634-1839.

Table 1 summarizes the calendar dates of each sample and lists the presence of an outer ring in the samples. Outer rings provide a calendar date for when the tree was cut. Although samples include the sapwood, not all of the samples in the house or the beams in the right front lawn indicate the last year of growth, as they do not have an outer ring. The earliest cut date of the house is AD 1818 and the latest cut date is AD 1839. Sample WCF01 from the crawl space dates to 1839 which is much later than the rest of the house. All of the plugged core holes were labeled in the house so that samples can be keyed directly to the beams for further interpretation.
All cores and data are archived at the Wooster Tree Ring lab, which is housed in Scovel Hall in the Department of Geology at The College of Wooster. We would be happy to discuss the results with you.

Table 1: List of tree-rings from the Barnet-Hoover Farmhouse. Samples providing an outer ring are underlined.

<table>
<thead>
<tr>
<th>Sample</th>
<th>First Year</th>
<th>Last Year</th>
<th>Range</th>
<th>Presence of Outer ring</th>
<th>Area sample was taken from</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>WCF01</td>
<td>1705</td>
<td>1831</td>
<td>127</td>
<td>Crawl space</td>
</tr>
<tr>
<td>2</td>
<td>WCF03</td>
<td>1717</td>
<td>1839</td>
<td>123</td>
<td>Front room</td>
</tr>
<tr>
<td>3</td>
<td>WCF05</td>
<td>1682</td>
<td>1819</td>
<td>138</td>
<td>Upstairs</td>
</tr>
<tr>
<td>4</td>
<td>WCF06</td>
<td>1734</td>
<td>1818</td>
<td>85</td>
<td>Upstairs</td>
</tr>
<tr>
<td>5</td>
<td>WCF07</td>
<td>1708</td>
<td>1818</td>
<td>111</td>
<td>Upstairs</td>
</tr>
<tr>
<td>6</td>
<td>WCRL01</td>
<td>1668</td>
<td>1818</td>
<td>151</td>
<td>Beam pile</td>
</tr>
<tr>
<td>7</td>
<td>WCRL1B</td>
<td>1668</td>
<td>1818</td>
<td>151</td>
<td>Beam pile</td>
</tr>
<tr>
<td>8</td>
<td>WCRL2A</td>
<td>1688</td>
<td>1808</td>
<td>121</td>
<td>Beam pile</td>
</tr>
<tr>
<td>9</td>
<td>WCRL2B</td>
<td>1687</td>
<td>1818</td>
<td>132</td>
<td>Beam pile</td>
</tr>
<tr>
<td>10</td>
<td>WCRL3A</td>
<td>1634</td>
<td>1816</td>
<td>183</td>
<td>Beam pile</td>
</tr>
<tr>
<td>11</td>
<td>WCRL3B</td>
<td>1634</td>
<td>1809</td>
<td>176</td>
<td>Beam pile</td>
</tr>
</tbody>
</table>
Figure 1: Principles of Crossdating (Anne Krawiec, 2005). Crossdating matches overlapping ring-width patterns.

References: